|  | /* | 
|  | * Copyright (c) 2014 The WebM project authors. All rights reserved. | 
|  | * Copyright (c) 2023, Alliance for Open Media. All rights reserved. | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <arm_neon.h> | 
|  | #include <assert.h> | 
|  | #include <string.h> | 
|  |  | 
|  | #include "config/aom_config.h" | 
|  | #include "config/aom_dsp_rtcd.h" | 
|  |  | 
|  | #include "aom/aom_integer.h" | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "aom_dsp/aom_filter.h" | 
|  | #include "aom_dsp/arm/aom_convolve8_neon.h" | 
|  | #include "aom_dsp/arm/aom_filter.h" | 
|  | #include "aom_dsp/arm/mem_neon.h" | 
|  | #include "aom_dsp/arm/transpose_neon.h" | 
|  | #include "aom_ports/mem.h" | 
|  |  | 
|  | // Filter values always sum to 128. | 
|  | #define FILTER_WEIGHT 128 | 
|  |  | 
|  | DECLARE_ALIGNED(16, static const uint8_t, kDotProdPermuteTbl[48]) = { | 
|  | 0, 1, 2,  3,  1, 2,  3,  4,  2,  3,  4,  5,  3,  4,  5,  6, | 
|  | 4, 5, 6,  7,  5, 6,  7,  8,  6,  7,  8,  9,  7,  8,  9,  10, | 
|  | 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 | 
|  | }; | 
|  |  | 
|  | DECLARE_ALIGNED(16, static const uint8_t, kDotProdMergeBlockTbl[48]) = { | 
|  | // Shift left and insert new last column in transposed 4x4 block. | 
|  | 1, 2, 3, 16, 5, 6, 7, 20, 9, 10, 11, 24, 13, 14, 15, 28, | 
|  | // Shift left and insert two new columns in transposed 4x4 block. | 
|  | 2, 3, 16, 17, 6, 7, 20, 21, 10, 11, 24, 25, 14, 15, 28, 29, | 
|  | // Shift left and insert three new columns in transposed 4x4 block. | 
|  | 3, 16, 17, 18, 7, 20, 21, 22, 11, 24, 25, 26, 15, 28, 29, 30 | 
|  | }; | 
|  |  | 
|  | static inline int16x4_t convolve8_4_h(const uint8x16_t samples, | 
|  | const int8x8_t filters, | 
|  | const uint8x16x2_t permute_tbl) { | 
|  | // Transform sample range to [-128, 127] for 8-bit signed dot product. | 
|  | int8x16_t samples_128 = | 
|  | vreinterpretq_s8_u8(vsubq_u8(samples, vdupq_n_u8(128))); | 
|  |  | 
|  | // Permute samples ready for dot product. | 
|  | // { 0,  1,  2,  3,  1,  2,  3,  4,  2,  3,  4,  5,  3,  4,  5,  6 } | 
|  | // { 4,  5,  6,  7,  5,  6,  7,  8,  6,  7,  8,  9,  7,  8,  9, 10 } | 
|  | int8x16_t perm_samples[2] = { vqtbl1q_s8(samples_128, permute_tbl.val[0]), | 
|  | vqtbl1q_s8(samples_128, permute_tbl.val[1]) }; | 
|  |  | 
|  | // Accumulate into 128 * FILTER_WEIGHT to account for range transform. | 
|  | // (Divide by 2 since we halved the filter values.) | 
|  | int32x4_t acc = vdupq_n_s32(128 * FILTER_WEIGHT / 2); | 
|  | int32x4_t sum = vdotq_lane_s32(acc, perm_samples[0], filters, 0); | 
|  | sum = vdotq_lane_s32(sum, perm_samples[1], filters, 1); | 
|  |  | 
|  | // Further narrowing and packing is performed by the caller. | 
|  | return vmovn_s32(sum); | 
|  | } | 
|  |  | 
|  | static inline uint8x8_t convolve8_8_h(const uint8x16_t samples, | 
|  | const int8x8_t filters, | 
|  | const uint8x16x3_t permute_tbl) { | 
|  | // Transform sample range to [-128, 127] for 8-bit signed dot product. | 
|  | int8x16_t samples_128 = | 
|  | vreinterpretq_s8_u8(vsubq_u8(samples, vdupq_n_u8(128))); | 
|  |  | 
|  | // Permute samples ready for dot product. | 
|  | // { 0,  1,  2,  3,  1,  2,  3,  4,  2,  3,  4,  5,  3,  4,  5,  6 } | 
|  | // { 4,  5,  6,  7,  5,  6,  7,  8,  6,  7,  8,  9,  7,  8,  9, 10 } | 
|  | // { 8,  9, 10, 11,  9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } | 
|  | int8x16_t perm_samples[3] = { vqtbl1q_s8(samples_128, permute_tbl.val[0]), | 
|  | vqtbl1q_s8(samples_128, permute_tbl.val[1]), | 
|  | vqtbl1q_s8(samples_128, permute_tbl.val[2]) }; | 
|  |  | 
|  | // Accumulate into 128 * FILTER_WEIGHT to account for range transform. | 
|  | // (Divide by 2 since we halved the filter values.) | 
|  | int32x4_t acc = vdupq_n_s32(128 * FILTER_WEIGHT / 2); | 
|  | // First 4 output values. | 
|  | int32x4_t sum0 = vdotq_lane_s32(acc, perm_samples[0], filters, 0); | 
|  | sum0 = vdotq_lane_s32(sum0, perm_samples[1], filters, 1); | 
|  | // Second 4 output values. | 
|  | int32x4_t sum1 = vdotq_lane_s32(acc, perm_samples[1], filters, 0); | 
|  | sum1 = vdotq_lane_s32(sum1, perm_samples[2], filters, 1); | 
|  |  | 
|  | // Narrow and re-pack. | 
|  | int16x8_t sum = vcombine_s16(vmovn_s32(sum0), vmovn_s32(sum1)); | 
|  | // We halved the filter values so -1 from right shift. | 
|  | return vqrshrun_n_s16(sum, FILTER_BITS - 1); | 
|  | } | 
|  |  | 
|  | static inline void convolve8_horiz_8tap_neon_dotprod( | 
|  | const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, | 
|  | ptrdiff_t dst_stride, const int16_t *filter_x, int w, int h) { | 
|  | // Filter values are even, so halve to reduce intermediate precision reqs. | 
|  | const int8x8_t filter = vshrn_n_s16(vld1q_s16(filter_x), 1); | 
|  |  | 
|  | if (w == 4) { | 
|  | const uint8x16x2_t perm_tbl = vld1q_u8_x2(kDotProdPermuteTbl); | 
|  | do { | 
|  | uint8x16_t s0, s1, s2, s3; | 
|  | load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); | 
|  |  | 
|  | int16x4_t d0 = convolve8_4_h(s0, filter, perm_tbl); | 
|  | int16x4_t d1 = convolve8_4_h(s1, filter, perm_tbl); | 
|  | int16x4_t d2 = convolve8_4_h(s2, filter, perm_tbl); | 
|  | int16x4_t d3 = convolve8_4_h(s3, filter, perm_tbl); | 
|  | // We halved the filter values so -1 from right shift. | 
|  | uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1); | 
|  | uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS - 1); | 
|  |  | 
|  | store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); | 
|  | store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); | 
|  |  | 
|  | src += 4 * src_stride; | 
|  | dst += 4 * dst_stride; | 
|  | h -= 4; | 
|  | } while (h > 0); | 
|  | } else { | 
|  | const uint8x16x3_t perm_tbl = vld1q_u8_x3(kDotProdPermuteTbl); | 
|  |  | 
|  | do { | 
|  | int width = w; | 
|  | const uint8_t *s = src; | 
|  | uint8_t *d = dst; | 
|  | do { | 
|  | uint8x16_t s0, s1, s2, s3; | 
|  | load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); | 
|  |  | 
|  | uint8x8_t d0 = convolve8_8_h(s0, filter, perm_tbl); | 
|  | uint8x8_t d1 = convolve8_8_h(s1, filter, perm_tbl); | 
|  | uint8x8_t d2 = convolve8_8_h(s2, filter, perm_tbl); | 
|  | uint8x8_t d3 = convolve8_8_h(s3, filter, perm_tbl); | 
|  |  | 
|  | store_u8_8x4(d, dst_stride, d0, d1, d2, d3); | 
|  |  | 
|  | s += 8; | 
|  | d += 8; | 
|  | width -= 8; | 
|  | } while (width != 0); | 
|  | src += 4 * src_stride; | 
|  | dst += 4 * dst_stride; | 
|  | h -= 4; | 
|  | } while (h > 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int16x4_t convolve4_4_h(const uint8x16_t samples, | 
|  | const int8x8_t filters, | 
|  | const uint8x16_t permute_tbl) { | 
|  | // Transform sample range to [-128, 127] for 8-bit signed dot product. | 
|  | int8x16_t samples_128 = | 
|  | vreinterpretq_s8_u8(vsubq_u8(samples, vdupq_n_u8(128))); | 
|  |  | 
|  | // Permute samples ready for dot product. | 
|  | // { 0,  1,  2,  3,  1,  2,  3,  4,  2,  3,  4,  5,  3,  4,  5,  6 } | 
|  | int8x16_t perm_samples = vqtbl1q_s8(samples_128, permute_tbl); | 
|  |  | 
|  | // Accumulate into 128 * FILTER_WEIGHT to account for range transform. | 
|  | // (Divide by 2 since we halved the filter values.) | 
|  | int32x4_t acc = vdupq_n_s32(128 * FILTER_WEIGHT / 2); | 
|  | int32x4_t sum = vdotq_lane_s32(acc, perm_samples, filters, 0); | 
|  |  | 
|  | // Further narrowing and packing is performed by the caller. | 
|  | return vmovn_s32(sum); | 
|  | } | 
|  |  | 
|  | static inline uint8x8_t convolve4_8_h(const uint8x16_t samples, | 
|  | const int8x8_t filters, | 
|  | const uint8x16x2_t permute_tbl) { | 
|  | // Transform sample range to [-128, 127] for 8-bit signed dot product. | 
|  | int8x16_t samples_128 = | 
|  | vreinterpretq_s8_u8(vsubq_u8(samples, vdupq_n_u8(128))); | 
|  |  | 
|  | // Permute samples ready for dot product. | 
|  | // { 0,  1,  2,  3,  1,  2,  3,  4,  2,  3,  4,  5,  3,  4,  5,  6 } | 
|  | // { 4,  5,  6,  7,  5,  6,  7,  8,  6,  7,  8,  9,  7,  8,  9, 10 } | 
|  | int8x16_t perm_samples[2] = { vqtbl1q_s8(samples_128, permute_tbl.val[0]), | 
|  | vqtbl1q_s8(samples_128, permute_tbl.val[1]) }; | 
|  |  | 
|  | // Accumulate into 128 * FILTER_WEIGHT to account for range transform. | 
|  | // (Divide by 2 since we halved the filter values.) | 
|  | int32x4_t acc = vdupq_n_s32(128 * FILTER_WEIGHT / 2); | 
|  | // First 4 output values. | 
|  | int32x4_t sum0 = vdotq_lane_s32(acc, perm_samples[0], filters, 0); | 
|  | // Second 4 output values. | 
|  | int32x4_t sum1 = vdotq_lane_s32(acc, perm_samples[1], filters, 0); | 
|  |  | 
|  | // Narrow and re-pack. | 
|  | int16x8_t sum = vcombine_s16(vmovn_s32(sum0), vmovn_s32(sum1)); | 
|  | // We halved the filter values so -1 from right shift. | 
|  | return vqrshrun_n_s16(sum, FILTER_BITS - 1); | 
|  | } | 
|  |  | 
|  | static inline void convolve8_horiz_4tap_neon_dotprod( | 
|  | const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, | 
|  | ptrdiff_t dst_stride, const int16_t *filter_x, int width, int height) { | 
|  | const int16x4_t x_filter = vld1_s16(filter_x + 2); | 
|  | // All 4-tap and bilinear filter values are even, so halve them to reduce | 
|  | // intermediate precision requirements. | 
|  | const int8x8_t filter = vshrn_n_s16(vcombine_s16(x_filter, vdup_n_s16(0)), 1); | 
|  |  | 
|  | if (width == 4) { | 
|  | const uint8x16_t permute_tbl = vld1q_u8(kDotProdPermuteTbl); | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0, s1, s2, s3; | 
|  | load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); | 
|  |  | 
|  | int16x4_t t0 = convolve4_4_h(s0, filter, permute_tbl); | 
|  | int16x4_t t1 = convolve4_4_h(s1, filter, permute_tbl); | 
|  | int16x4_t t2 = convolve4_4_h(s2, filter, permute_tbl); | 
|  | int16x4_t t3 = convolve4_4_h(s3, filter, permute_tbl); | 
|  | // We halved the filter values so -1 from right shift. | 
|  | uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(t0, t1), FILTER_BITS - 1); | 
|  | uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(t2, t3), FILTER_BITS - 1); | 
|  |  | 
|  | store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); | 
|  | store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); | 
|  |  | 
|  | src += 4 * src_stride; | 
|  | dst += 4 * dst_stride; | 
|  | height -= 4; | 
|  | } while (height > 0); | 
|  | } else { | 
|  | const uint8x16x2_t permute_tbl = vld1q_u8_x2(kDotProdPermuteTbl); | 
|  |  | 
|  | do { | 
|  | const uint8_t *s = src; | 
|  | uint8_t *d = dst; | 
|  | int w = width; | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0, s1, s2, s3; | 
|  | load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); | 
|  |  | 
|  | uint8x8_t d0 = convolve4_8_h(s0, filter, permute_tbl); | 
|  | uint8x8_t d1 = convolve4_8_h(s1, filter, permute_tbl); | 
|  | uint8x8_t d2 = convolve4_8_h(s2, filter, permute_tbl); | 
|  | uint8x8_t d3 = convolve4_8_h(s3, filter, permute_tbl); | 
|  |  | 
|  | store_u8_8x4(d, dst_stride, d0, d1, d2, d3); | 
|  |  | 
|  | s += 8; | 
|  | d += 8; | 
|  | w -= 8; | 
|  | } while (w != 0); | 
|  | src += 4 * src_stride; | 
|  | dst += 4 * dst_stride; | 
|  | height -= 4; | 
|  | } while (height > 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void aom_convolve8_horiz_neon_dotprod(const uint8_t *src, ptrdiff_t src_stride, | 
|  | uint8_t *dst, ptrdiff_t dst_stride, | 
|  | const int16_t *filter_x, int x_step_q4, | 
|  | const int16_t *filter_y, int y_step_q4, | 
|  | int w, int h) { | 
|  | assert((intptr_t)dst % 4 == 0); | 
|  | assert(dst_stride % 4 == 0); | 
|  |  | 
|  | (void)x_step_q4; | 
|  | (void)filter_y; | 
|  | (void)y_step_q4; | 
|  |  | 
|  | src -= ((SUBPEL_TAPS / 2) - 1); | 
|  |  | 
|  | int filter_taps = get_filter_taps_convolve8(filter_x); | 
|  |  | 
|  | if (filter_taps == 2) { | 
|  | convolve8_horiz_2tap_neon(src + 3, src_stride, dst, dst_stride, filter_x, w, | 
|  | h); | 
|  | } else if (filter_taps == 4) { | 
|  | convolve8_horiz_4tap_neon_dotprod(src + 2, src_stride, dst, dst_stride, | 
|  | filter_x, w, h); | 
|  | } else { | 
|  | convolve8_horiz_8tap_neon_dotprod(src, src_stride, dst, dst_stride, | 
|  | filter_x, w, h); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void transpose_concat_4x4(int8x8_t a0, int8x8_t a1, int8x8_t a2, | 
|  | int8x8_t a3, int8x16_t *b) { | 
|  | // Transpose 8-bit elements and concatenate result rows as follows: | 
|  | // a0: 00, 01, 02, 03, XX, XX, XX, XX | 
|  | // a1: 10, 11, 12, 13, XX, XX, XX, XX | 
|  | // a2: 20, 21, 22, 23, XX, XX, XX, XX | 
|  | // a3: 30, 31, 32, 33, XX, XX, XX, XX | 
|  | // | 
|  | // b: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33 | 
|  |  | 
|  | int8x16_t a0q = vcombine_s8(a0, vdup_n_s8(0)); | 
|  | int8x16_t a1q = vcombine_s8(a1, vdup_n_s8(0)); | 
|  | int8x16_t a2q = vcombine_s8(a2, vdup_n_s8(0)); | 
|  | int8x16_t a3q = vcombine_s8(a3, vdup_n_s8(0)); | 
|  |  | 
|  | int8x16_t a01 = vzipq_s8(a0q, a1q).val[0]; | 
|  | int8x16_t a23 = vzipq_s8(a2q, a3q).val[0]; | 
|  |  | 
|  | int16x8_t a0123 = | 
|  | vzipq_s16(vreinterpretq_s16_s8(a01), vreinterpretq_s16_s8(a23)).val[0]; | 
|  |  | 
|  | *b = vreinterpretq_s8_s16(a0123); | 
|  | } | 
|  |  | 
|  | static inline void transpose_concat_8x4(int8x8_t a0, int8x8_t a1, int8x8_t a2, | 
|  | int8x8_t a3, int8x16_t *b0, | 
|  | int8x16_t *b1) { | 
|  | // Transpose 8-bit elements and concatenate result rows as follows: | 
|  | // a0: 00, 01, 02, 03, 04, 05, 06, 07 | 
|  | // a1: 10, 11, 12, 13, 14, 15, 16, 17 | 
|  | // a2: 20, 21, 22, 23, 24, 25, 26, 27 | 
|  | // a3: 30, 31, 32, 33, 34, 35, 36, 37 | 
|  | // | 
|  | // b0: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33 | 
|  | // b1: 04, 14, 24, 34, 05, 15, 25, 35, 06, 16, 26, 36, 07, 17, 27, 37 | 
|  |  | 
|  | int8x16_t a0q = vcombine_s8(a0, vdup_n_s8(0)); | 
|  | int8x16_t a1q = vcombine_s8(a1, vdup_n_s8(0)); | 
|  | int8x16_t a2q = vcombine_s8(a2, vdup_n_s8(0)); | 
|  | int8x16_t a3q = vcombine_s8(a3, vdup_n_s8(0)); | 
|  |  | 
|  | int8x16_t a01 = vzipq_s8(a0q, a1q).val[0]; | 
|  | int8x16_t a23 = vzipq_s8(a2q, a3q).val[0]; | 
|  |  | 
|  | int16x8x2_t a0123 = | 
|  | vzipq_s16(vreinterpretq_s16_s8(a01), vreinterpretq_s16_s8(a23)); | 
|  |  | 
|  | *b0 = vreinterpretq_s8_s16(a0123.val[0]); | 
|  | *b1 = vreinterpretq_s8_s16(a0123.val[1]); | 
|  | } | 
|  |  | 
|  | static inline int16x4_t convolve8_4_v(const int8x16_t samples_lo, | 
|  | const int8x16_t samples_hi, | 
|  | const int8x8_t filters) { | 
|  | // The sample range transform and permutation are performed by the caller. | 
|  |  | 
|  | // Accumulate into 128 * FILTER_WEIGHT to account for range transform. | 
|  | // (Divide by 2 since we halved the filter values.) | 
|  | int32x4_t acc = vdupq_n_s32(128 * FILTER_WEIGHT / 2); | 
|  | int32x4_t sum = vdotq_lane_s32(acc, samples_lo, filters, 0); | 
|  | sum = vdotq_lane_s32(sum, samples_hi, filters, 1); | 
|  |  | 
|  | // Further narrowing and packing is performed by the caller. | 
|  | return vmovn_s32(sum); | 
|  | } | 
|  |  | 
|  | static inline uint8x8_t convolve8_8_v(const int8x16_t samples0_lo, | 
|  | const int8x16_t samples0_hi, | 
|  | const int8x16_t samples1_lo, | 
|  | const int8x16_t samples1_hi, | 
|  | const int8x8_t filters) { | 
|  | // The sample range transform and permutation are performed by the caller. | 
|  |  | 
|  | // Accumulate into 128 * FILTER_WEIGHT to account for range transform. | 
|  | // (Divide by 2 since we halved the filter values.) | 
|  | int32x4_t acc = vdupq_n_s32(128 * FILTER_WEIGHT / 2); | 
|  | // First 4 output values. | 
|  | int32x4_t sum0 = vdotq_lane_s32(acc, samples0_lo, filters, 0); | 
|  | sum0 = vdotq_lane_s32(sum0, samples0_hi, filters, 1); | 
|  | // Second 4 output values. | 
|  | int32x4_t sum1 = vdotq_lane_s32(acc, samples1_lo, filters, 0); | 
|  | sum1 = vdotq_lane_s32(sum1, samples1_hi, filters, 1); | 
|  |  | 
|  | // Narrow and re-pack. | 
|  | int16x8_t sum = vcombine_s16(vmovn_s32(sum0), vmovn_s32(sum1)); | 
|  | // We halved the filter values so -1 from right shift. | 
|  | return vqrshrun_n_s16(sum, FILTER_BITS - 1); | 
|  | } | 
|  |  | 
|  | static inline void convolve8_vert_8tap_neon_dotprod( | 
|  | const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, | 
|  | ptrdiff_t dst_stride, const int16_t *filter_y, int w, int h) { | 
|  | // Filter values are even, so halve to reduce intermediate precision reqs. | 
|  | const int8x8_t filter = vshrn_n_s16(vld1q_s16(filter_y), 1); | 
|  | const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl); | 
|  | int8x16x2_t samples_LUT; | 
|  |  | 
|  | if (w == 4) { | 
|  | uint8x8_t t0, t1, t2, t3, t4, t5, t6; | 
|  | load_u8_8x7(src, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6); | 
|  | src += 7 * src_stride; | 
|  |  | 
|  | // Clamp sample range to [-128, 127] for 8-bit signed dot product. | 
|  | int8x8_t s0 = vreinterpret_s8_u8(vsub_u8(t0, vdup_n_u8(128))); | 
|  | int8x8_t s1 = vreinterpret_s8_u8(vsub_u8(t1, vdup_n_u8(128))); | 
|  | int8x8_t s2 = vreinterpret_s8_u8(vsub_u8(t2, vdup_n_u8(128))); | 
|  | int8x8_t s3 = vreinterpret_s8_u8(vsub_u8(t3, vdup_n_u8(128))); | 
|  | int8x8_t s4 = vreinterpret_s8_u8(vsub_u8(t4, vdup_n_u8(128))); | 
|  | int8x8_t s5 = vreinterpret_s8_u8(vsub_u8(t5, vdup_n_u8(128))); | 
|  | int8x8_t s6 = vreinterpret_s8_u8(vsub_u8(t6, vdup_n_u8(128))); | 
|  |  | 
|  | // This operation combines a conventional transpose and the sample permute | 
|  | // (see horizontal case) required before computing the dot product. | 
|  | int8x16_t s0123, s1234, s2345, s3456; | 
|  | transpose_concat_4x4(s0, s1, s2, s3, &s0123); | 
|  | transpose_concat_4x4(s1, s2, s3, s4, &s1234); | 
|  | transpose_concat_4x4(s2, s3, s4, s5, &s2345); | 
|  | transpose_concat_4x4(s3, s4, s5, s6, &s3456); | 
|  |  | 
|  | do { | 
|  | uint8x8_t t7, t8, t9, t10; | 
|  | load_u8_8x4(src, src_stride, &t7, &t8, &t9, &t10); | 
|  |  | 
|  | int8x8_t s7 = vreinterpret_s8_u8(vsub_u8(t7, vdup_n_u8(128))); | 
|  | int8x8_t s8 = vreinterpret_s8_u8(vsub_u8(t8, vdup_n_u8(128))); | 
|  | int8x8_t s9 = vreinterpret_s8_u8(vsub_u8(t9, vdup_n_u8(128))); | 
|  | int8x8_t s10 = vreinterpret_s8_u8(vsub_u8(t10, vdup_n_u8(128))); | 
|  |  | 
|  | int8x16_t s4567, s5678, s6789, s78910; | 
|  | transpose_concat_4x4(s7, s8, s9, s10, &s78910); | 
|  |  | 
|  | // Merge new data into block from previous iteration. | 
|  | samples_LUT.val[0] = s3456; | 
|  | samples_LUT.val[1] = s78910; | 
|  | s4567 = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[0]); | 
|  | s5678 = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[1]); | 
|  | s6789 = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[2]); | 
|  |  | 
|  | int16x4_t d0 = convolve8_4_v(s0123, s4567, filter); | 
|  | int16x4_t d1 = convolve8_4_v(s1234, s5678, filter); | 
|  | int16x4_t d2 = convolve8_4_v(s2345, s6789, filter); | 
|  | int16x4_t d3 = convolve8_4_v(s3456, s78910, filter); | 
|  | // We halved the filter values so -1 from right shift. | 
|  | uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1); | 
|  | uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS - 1); | 
|  |  | 
|  | store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); | 
|  | store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); | 
|  |  | 
|  | // Prepare block for next iteration - re-using as much as possible. | 
|  | // Shuffle everything up four rows. | 
|  | s0123 = s4567; | 
|  | s1234 = s5678; | 
|  | s2345 = s6789; | 
|  | s3456 = s78910; | 
|  |  | 
|  | src += 4 * src_stride; | 
|  | dst += 4 * dst_stride; | 
|  | h -= 4; | 
|  | } while (h != 0); | 
|  | } else { | 
|  | do { | 
|  | int height = h; | 
|  | const uint8_t *s = src; | 
|  | uint8_t *d = dst; | 
|  |  | 
|  | uint8x8_t t0, t1, t2, t3, t4, t5, t6; | 
|  | load_u8_8x7(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6); | 
|  | s += 7 * src_stride; | 
|  |  | 
|  | // Clamp sample range to [-128, 127] for 8-bit signed dot product. | 
|  | int8x8_t s0 = vreinterpret_s8_u8(vsub_u8(t0, vdup_n_u8(128))); | 
|  | int8x8_t s1 = vreinterpret_s8_u8(vsub_u8(t1, vdup_n_u8(128))); | 
|  | int8x8_t s2 = vreinterpret_s8_u8(vsub_u8(t2, vdup_n_u8(128))); | 
|  | int8x8_t s3 = vreinterpret_s8_u8(vsub_u8(t3, vdup_n_u8(128))); | 
|  | int8x8_t s4 = vreinterpret_s8_u8(vsub_u8(t4, vdup_n_u8(128))); | 
|  | int8x8_t s5 = vreinterpret_s8_u8(vsub_u8(t5, vdup_n_u8(128))); | 
|  | int8x8_t s6 = vreinterpret_s8_u8(vsub_u8(t6, vdup_n_u8(128))); | 
|  |  | 
|  | // This operation combines a conventional transpose and the sample permute | 
|  | // (see horizontal case) required before computing the dot product. | 
|  | int8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi, | 
|  | s3456_lo, s3456_hi; | 
|  | transpose_concat_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi); | 
|  | transpose_concat_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi); | 
|  | transpose_concat_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi); | 
|  | transpose_concat_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi); | 
|  |  | 
|  | do { | 
|  | uint8x8_t t7, t8, t9, t10; | 
|  | load_u8_8x4(s, src_stride, &t7, &t8, &t9, &t10); | 
|  |  | 
|  | int8x8_t s7 = vreinterpret_s8_u8(vsub_u8(t7, vdup_n_u8(128))); | 
|  | int8x8_t s8 = vreinterpret_s8_u8(vsub_u8(t8, vdup_n_u8(128))); | 
|  | int8x8_t s9 = vreinterpret_s8_u8(vsub_u8(t9, vdup_n_u8(128))); | 
|  | int8x8_t s10 = vreinterpret_s8_u8(vsub_u8(t10, vdup_n_u8(128))); | 
|  |  | 
|  | int8x16_t s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo, s6789_hi, | 
|  | s78910_lo, s78910_hi; | 
|  | transpose_concat_8x4(s7, s8, s9, s10, &s78910_lo, &s78910_hi); | 
|  |  | 
|  | // Merge new data into block from previous iteration. | 
|  | samples_LUT.val[0] = s3456_lo; | 
|  | samples_LUT.val[1] = s78910_lo; | 
|  | s4567_lo = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[0]); | 
|  | s5678_lo = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[1]); | 
|  | s6789_lo = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[2]); | 
|  |  | 
|  | samples_LUT.val[0] = s3456_hi; | 
|  | samples_LUT.val[1] = s78910_hi; | 
|  | s4567_hi = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[0]); | 
|  | s5678_hi = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[1]); | 
|  | s6789_hi = vqtbl2q_s8(samples_LUT, merge_block_tbl.val[2]); | 
|  |  | 
|  | uint8x8_t d0 = | 
|  | convolve8_8_v(s0123_lo, s4567_lo, s0123_hi, s4567_hi, filter); | 
|  | uint8x8_t d1 = | 
|  | convolve8_8_v(s1234_lo, s5678_lo, s1234_hi, s5678_hi, filter); | 
|  | uint8x8_t d2 = | 
|  | convolve8_8_v(s2345_lo, s6789_lo, s2345_hi, s6789_hi, filter); | 
|  | uint8x8_t d3 = | 
|  | convolve8_8_v(s3456_lo, s78910_lo, s3456_hi, s78910_hi, filter); | 
|  |  | 
|  | store_u8_8x4(d, dst_stride, d0, d1, d2, d3); | 
|  |  | 
|  | // Prepare block for next iteration - re-using as much as possible. | 
|  | // Shuffle everything up four rows. | 
|  | s0123_lo = s4567_lo; | 
|  | s0123_hi = s4567_hi; | 
|  | s1234_lo = s5678_lo; | 
|  | s1234_hi = s5678_hi; | 
|  | s2345_lo = s6789_lo; | 
|  | s2345_hi = s6789_hi; | 
|  | s3456_lo = s78910_lo; | 
|  | s3456_hi = s78910_hi; | 
|  |  | 
|  | s += 4 * src_stride; | 
|  | d += 4 * dst_stride; | 
|  | height -= 4; | 
|  | } while (height != 0); | 
|  | src += 8; | 
|  | dst += 8; | 
|  | w -= 8; | 
|  | } while (w != 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void aom_convolve8_vert_neon_dotprod(const uint8_t *src, ptrdiff_t src_stride, | 
|  | uint8_t *dst, ptrdiff_t dst_stride, | 
|  | const int16_t *filter_x, int x_step_q4, | 
|  | const int16_t *filter_y, int y_step_q4, | 
|  | int w, int h) { | 
|  | assert((intptr_t)dst % 4 == 0); | 
|  | assert(dst_stride % 4 == 0); | 
|  |  | 
|  | (void)filter_x; | 
|  | (void)x_step_q4; | 
|  | (void)y_step_q4; | 
|  |  | 
|  | src -= ((SUBPEL_TAPS / 2) - 1) * src_stride; | 
|  |  | 
|  | int filter_taps = get_filter_taps_convolve8(filter_y); | 
|  |  | 
|  | if (filter_taps == 2) { | 
|  | convolve8_vert_2tap_neon(src + 3 * src_stride, src_stride, dst, dst_stride, | 
|  | filter_y, w, h); | 
|  | } else if (filter_taps == 4) { | 
|  | convolve8_vert_4tap_neon(src + 2 * src_stride, src_stride, dst, dst_stride, | 
|  | filter_y, w, h); | 
|  | } else { | 
|  | convolve8_vert_8tap_neon_dotprod(src, src_stride, dst, dst_stride, filter_y, | 
|  | w, h); | 
|  | } | 
|  | } |