| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <math.h> |
| #include <limits.h> |
| #include <stdio.h> |
| #include "vp9/common/vp9_systemdependent.h" |
| #include "vp9/encoder/vp9_block.h" |
| #include "vp9/encoder/vp9_encodeframe.h" |
| #include "vp9/encoder/vp9_encodemb.h" |
| #include "vp9/encoder/vp9_extend.h" |
| #include "vp9/encoder/vp9_firstpass.h" |
| #include "vp9/encoder/vp9_mcomp.h" |
| #include "vp9/encoder/vp9_onyx_int.h" |
| #include "vp9/encoder/vp9_variance.h" |
| #include "vpx_scale/vpx_scale.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "vpx_scale/yv12config.h" |
| #include "vp9/encoder/vp9_quantize.h" |
| #include "vp9/encoder/vp9_rdopt.h" |
| #include "vp9/encoder/vp9_ratectrl.h" |
| #include "vp9/common/vp9_quant_common.h" |
| #include "vp9/common/vp9_entropymv.h" |
| #include "vp9/encoder/vp9_encodemv.h" |
| #include "vp9/encoder/vp9_vaq.h" |
| #include "./vpx_scale_rtcd.h" |
| // TODO(jkoleszar): for setup_dst_planes |
| #include "vp9/common/vp9_reconinter.h" |
| |
| #define OUTPUT_FPF 0 |
| |
| #define IIFACTOR 12.5 |
| #define IIKFACTOR1 12.5 |
| #define IIKFACTOR2 15.0 |
| #define RMAX 512.0 |
| #define GF_RMAX 96.0 |
| #define ERR_DIVISOR 150.0 |
| #define MIN_DECAY_FACTOR 0.1 |
| |
| #define KF_MB_INTRA_MIN 150 |
| #define GF_MB_INTRA_MIN 100 |
| |
| #define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x) - 0.000001 : (x) + 0.000001) |
| |
| #define POW1 (double)cpi->oxcf.two_pass_vbrbias/100.0 |
| #define POW2 (double)cpi->oxcf.two_pass_vbrbias/100.0 |
| |
| static void swap_yv12(YV12_BUFFER_CONFIG *a, YV12_BUFFER_CONFIG *b) { |
| YV12_BUFFER_CONFIG temp = *a; |
| *a = *b; |
| *b = temp; |
| } |
| |
| static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame); |
| |
| static int select_cq_level(int qindex) { |
| int ret_val = QINDEX_RANGE - 1; |
| int i; |
| |
| double target_q = (vp9_convert_qindex_to_q(qindex) * 0.5847) + 1.0; |
| |
| for (i = 0; i < QINDEX_RANGE; i++) { |
| if (target_q <= vp9_convert_qindex_to_q(i)) { |
| ret_val = i; |
| break; |
| } |
| } |
| |
| return ret_val; |
| } |
| |
| static int gfboost_qadjust(int qindex) { |
| const double q = vp9_convert_qindex_to_q(qindex); |
| return (int)((0.00000828 * q * q * q) + |
| (-0.0055 * q * q) + |
| (1.32 * q) + 79.3); |
| } |
| |
| static int kfboost_qadjust(int qindex) { |
| const double q = vp9_convert_qindex_to_q(qindex); |
| return (int)((0.00000973 * q * q * q) + |
| (-0.00613 * q * q) + |
| (1.316 * q) + 121.2); |
| } |
| |
| // Resets the first pass file to the given position using a relative seek from |
| // the current position. |
| static void reset_fpf_position(VP9_COMP *cpi, FIRSTPASS_STATS *position) { |
| cpi->twopass.stats_in = position; |
| } |
| |
| static int lookup_next_frame_stats(VP9_COMP *cpi, FIRSTPASS_STATS *next_frame) { |
| if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) |
| return EOF; |
| |
| *next_frame = *cpi->twopass.stats_in; |
| return 1; |
| } |
| |
| // Read frame stats at an offset from the current position |
| static int read_frame_stats(VP9_COMP *cpi, |
| FIRSTPASS_STATS *frame_stats, |
| int offset) { |
| FIRSTPASS_STATS *fps_ptr = cpi->twopass.stats_in; |
| |
| // Check legality of offset |
| if (offset >= 0) { |
| if (&fps_ptr[offset] >= cpi->twopass.stats_in_end) |
| return EOF; |
| } else if (offset < 0) { |
| if (&fps_ptr[offset] < cpi->twopass.stats_in_start) |
| return EOF; |
| } |
| |
| *frame_stats = fps_ptr[offset]; |
| return 1; |
| } |
| |
| static int input_stats(VP9_COMP *cpi, FIRSTPASS_STATS *fps) { |
| if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) |
| return EOF; |
| |
| *fps = *cpi->twopass.stats_in; |
| cpi->twopass.stats_in = |
| (void *)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS)); |
| return 1; |
| } |
| |
| static void output_stats(const VP9_COMP *cpi, |
| struct vpx_codec_pkt_list *pktlist, |
| FIRSTPASS_STATS *stats) { |
| struct vpx_codec_cx_pkt pkt; |
| pkt.kind = VPX_CODEC_STATS_PKT; |
| pkt.data.twopass_stats.buf = stats; |
| pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); |
| vpx_codec_pkt_list_add(pktlist, &pkt); |
| |
| // TEMP debug code |
| #if OUTPUT_FPF |
| |
| { |
| FILE *fpfile; |
| fpfile = fopen("firstpass.stt", "a"); |
| |
| fprintf(stdout, "%12.0f %12.0f %12.0f %12.0f %12.0f %12.4f %12.4f" |
| "%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f" |
| "%12.0f %12.0f %12.4f %12.0f %12.0f %12.4f\n", |
| stats->frame, |
| stats->intra_error, |
| stats->coded_error, |
| stats->sr_coded_error, |
| stats->ssim_weighted_pred_err, |
| stats->pcnt_inter, |
| stats->pcnt_motion, |
| stats->pcnt_second_ref, |
| stats->pcnt_neutral, |
| stats->MVr, |
| stats->mvr_abs, |
| stats->MVc, |
| stats->mvc_abs, |
| stats->MVrv, |
| stats->MVcv, |
| stats->mv_in_out_count, |
| stats->new_mv_count, |
| stats->count, |
| stats->duration); |
| fclose(fpfile); |
| } |
| #endif |
| } |
| |
| static void zero_stats(FIRSTPASS_STATS *section) { |
| section->frame = 0.0; |
| section->intra_error = 0.0; |
| section->coded_error = 0.0; |
| section->sr_coded_error = 0.0; |
| section->ssim_weighted_pred_err = 0.0; |
| section->pcnt_inter = 0.0; |
| section->pcnt_motion = 0.0; |
| section->pcnt_second_ref = 0.0; |
| section->pcnt_neutral = 0.0; |
| section->MVr = 0.0; |
| section->mvr_abs = 0.0; |
| section->MVc = 0.0; |
| section->mvc_abs = 0.0; |
| section->MVrv = 0.0; |
| section->MVcv = 0.0; |
| section->mv_in_out_count = 0.0; |
| section->new_mv_count = 0.0; |
| section->count = 0.0; |
| section->duration = 1.0; |
| } |
| |
| static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) { |
| section->frame += frame->frame; |
| section->intra_error += frame->intra_error; |
| section->coded_error += frame->coded_error; |
| section->sr_coded_error += frame->sr_coded_error; |
| section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err; |
| section->pcnt_inter += frame->pcnt_inter; |
| section->pcnt_motion += frame->pcnt_motion; |
| section->pcnt_second_ref += frame->pcnt_second_ref; |
| section->pcnt_neutral += frame->pcnt_neutral; |
| section->MVr += frame->MVr; |
| section->mvr_abs += frame->mvr_abs; |
| section->MVc += frame->MVc; |
| section->mvc_abs += frame->mvc_abs; |
| section->MVrv += frame->MVrv; |
| section->MVcv += frame->MVcv; |
| section->mv_in_out_count += frame->mv_in_out_count; |
| section->new_mv_count += frame->new_mv_count; |
| section->count += frame->count; |
| section->duration += frame->duration; |
| } |
| |
| static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) { |
| section->frame -= frame->frame; |
| section->intra_error -= frame->intra_error; |
| section->coded_error -= frame->coded_error; |
| section->sr_coded_error -= frame->sr_coded_error; |
| section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err; |
| section->pcnt_inter -= frame->pcnt_inter; |
| section->pcnt_motion -= frame->pcnt_motion; |
| section->pcnt_second_ref -= frame->pcnt_second_ref; |
| section->pcnt_neutral -= frame->pcnt_neutral; |
| section->MVr -= frame->MVr; |
| section->mvr_abs -= frame->mvr_abs; |
| section->MVc -= frame->MVc; |
| section->mvc_abs -= frame->mvc_abs; |
| section->MVrv -= frame->MVrv; |
| section->MVcv -= frame->MVcv; |
| section->mv_in_out_count -= frame->mv_in_out_count; |
| section->new_mv_count -= frame->new_mv_count; |
| section->count -= frame->count; |
| section->duration -= frame->duration; |
| } |
| |
| static void avg_stats(FIRSTPASS_STATS *section) { |
| if (section->count < 1.0) |
| return; |
| |
| section->intra_error /= section->count; |
| section->coded_error /= section->count; |
| section->sr_coded_error /= section->count; |
| section->ssim_weighted_pred_err /= section->count; |
| section->pcnt_inter /= section->count; |
| section->pcnt_second_ref /= section->count; |
| section->pcnt_neutral /= section->count; |
| section->pcnt_motion /= section->count; |
| section->MVr /= section->count; |
| section->mvr_abs /= section->count; |
| section->MVc /= section->count; |
| section->mvc_abs /= section->count; |
| section->MVrv /= section->count; |
| section->MVcv /= section->count; |
| section->mv_in_out_count /= section->count; |
| section->duration /= section->count; |
| } |
| |
| // Calculate a modified Error used in distributing bits between easier and |
| // harder frames. |
| static double calculate_modified_err(VP9_COMP *cpi, |
| FIRSTPASS_STATS *this_frame) { |
| const FIRSTPASS_STATS *const stats = &cpi->twopass.total_stats; |
| const double av_err = stats->ssim_weighted_pred_err / stats->count; |
| const double this_err = this_frame->ssim_weighted_pred_err; |
| double modified_error; |
| |
| modified_error = av_err * pow(this_err / DOUBLE_DIVIDE_CHECK(av_err), |
| this_err > av_err ? POW1 : POW2); |
| |
| if (modified_error < cpi->twopass.modified_error_min) |
| modified_error = cpi->twopass.modified_error_min; |
| else if (modified_error > cpi->twopass.modified_error_max) |
| modified_error = cpi->twopass.modified_error_max; |
| |
| return modified_error; |
| } |
| |
| static const double weight_table[256] = { |
| 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, |
| 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, |
| 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, |
| 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, |
| 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.031250, 0.062500, |
| 0.093750, 0.125000, 0.156250, 0.187500, 0.218750, 0.250000, 0.281250, |
| 0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750, 0.500000, |
| 0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750, |
| 0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500, |
| 0.968750, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, |
| 1.000000, 1.000000, 1.000000, 1.000000 |
| }; |
| |
| static double simple_weight(YV12_BUFFER_CONFIG *source) { |
| int i, j; |
| |
| uint8_t *src = source->y_buffer; |
| double sum_weights = 0.0; |
| |
| // Loop through the Y plane examining levels and creating a weight for |
| // the image. |
| i = source->y_height; |
| do { |
| j = source->y_width; |
| do { |
| sum_weights += weight_table[ *src]; |
| src++; |
| } while (--j); |
| src -= source->y_width; |
| src += source->y_stride; |
| } while (--i); |
| |
| sum_weights /= (source->y_height * source->y_width); |
| |
| return sum_weights; |
| } |
| |
| |
| // This function returns the current per frame maximum bitrate target. |
| static int frame_max_bits(VP9_COMP *cpi) { |
| // Max allocation for a single frame based on the max section guidelines |
| // passed in and how many bits are left. |
| // For VBR base this on the bits and frames left plus the |
| // two_pass_vbrmax_section rate passed in by the user. |
| const double max_bits = (1.0 * cpi->twopass.bits_left / |
| (cpi->twopass.total_stats.count - cpi->common.current_video_frame)) * |
| (cpi->oxcf.two_pass_vbrmax_section / 100.0); |
| if (max_bits < 0) |
| return 0; |
| if (max_bits >= INT_MAX) |
| return INT_MAX; |
| return (int)max_bits; |
| } |
| |
| void vp9_init_first_pass(VP9_COMP *cpi) { |
| zero_stats(&cpi->twopass.total_stats); |
| } |
| |
| void vp9_end_first_pass(VP9_COMP *cpi) { |
| output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.total_stats); |
| } |
| |
| static vp9_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) { |
| switch (bsize) { |
| case BLOCK_8X8: |
| return vp9_mse8x8; |
| case BLOCK_16X8: |
| return vp9_mse16x8; |
| case BLOCK_8X16: |
| return vp9_mse8x16; |
| default: |
| return vp9_mse16x16; |
| } |
| } |
| |
| static unsigned int zz_motion_search(VP9_COMP *cpi, MACROBLOCK *x, |
| YV12_BUFFER_CONFIG *recon_buffer, |
| int recon_yoffset) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const uint8_t *const src = x->plane[0].src.buf; |
| const int src_stride = x->plane[0].src.stride; |
| const uint8_t *const ref = xd->plane[0].pre[0].buf |
| = recon_buffer->y_buffer + recon_yoffset; |
| const int ref_stride = xd->plane[0].pre[0].stride; |
| |
| unsigned int sse; |
| vp9_variance_fn_t fn = get_block_variance_fn(xd->mi_8x8[0]->mbmi.sb_type); |
| fn(src, src_stride, ref, ref_stride, &sse); |
| return sse; |
| } |
| |
| static void first_pass_motion_search(VP9_COMP *cpi, MACROBLOCK *x, |
| MV *ref_mv, MV *best_mv, |
| YV12_BUFFER_CONFIG *recon_buffer, |
| int *best_motion_err, int recon_yoffset) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int num00; |
| |
| MV tmp_mv = {0, 0}; |
| MV ref_mv_full; |
| |
| int tmp_err; |
| int step_param = 3; |
| int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; |
| int n; |
| vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[xd->mi_8x8[0]->mbmi.sb_type]; |
| int new_mv_mode_penalty = 256; |
| |
| int sr = 0; |
| int quart_frm = MIN(cpi->common.width, cpi->common.height); |
| |
| // refine the motion search range accroding to the frame dimension |
| // for first pass test |
| while ((quart_frm << sr) < MAX_FULL_PEL_VAL) |
| sr++; |
| |
| step_param += sr; |
| further_steps -= sr; |
| |
| // override the default variance function to use MSE |
| v_fn_ptr.vf = get_block_variance_fn(xd->mi_8x8[0]->mbmi.sb_type); |
| |
| // Set up pointers for this macro block recon buffer |
| xd->plane[0].pre[0].buf = recon_buffer->y_buffer + recon_yoffset; |
| |
| // Initial step/diamond search centred on best mv |
| ref_mv_full.col = ref_mv->col >> 3; |
| ref_mv_full.row = ref_mv->row >> 3; |
| tmp_err = cpi->diamond_search_sad(x, &ref_mv_full, &tmp_mv, |
| step_param, |
| x->sadperbit16, &num00, &v_fn_ptr, |
| x->nmvjointcost, |
| x->mvcost, ref_mv); |
| if (tmp_err < INT_MAX - new_mv_mode_penalty) |
| tmp_err += new_mv_mode_penalty; |
| |
| if (tmp_err < *best_motion_err) { |
| *best_motion_err = tmp_err; |
| best_mv->row = tmp_mv.row; |
| best_mv->col = tmp_mv.col; |
| } |
| |
| // Further step/diamond searches as necessary |
| n = num00; |
| num00 = 0; |
| |
| while (n < further_steps) { |
| n++; |
| |
| if (num00) { |
| num00--; |
| } else { |
| tmp_err = cpi->diamond_search_sad(x, &ref_mv_full, &tmp_mv, |
| step_param + n, x->sadperbit16, |
| &num00, &v_fn_ptr, |
| x->nmvjointcost, |
| x->mvcost, ref_mv); |
| if (tmp_err < INT_MAX - new_mv_mode_penalty) |
| tmp_err += new_mv_mode_penalty; |
| |
| if (tmp_err < *best_motion_err) { |
| *best_motion_err = tmp_err; |
| best_mv->row = tmp_mv.row; |
| best_mv->col = tmp_mv.col; |
| } |
| } |
| } |
| } |
| |
| void vp9_first_pass(VP9_COMP *cpi) { |
| int mb_row, mb_col; |
| MACROBLOCK *const x = &cpi->mb; |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| TileInfo tile; |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| PICK_MODE_CONTEXT *ctx = &x->sb64_context; |
| int i; |
| |
| int recon_yoffset, recon_uvoffset; |
| YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME); |
| YV12_BUFFER_CONFIG *const gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME); |
| YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm); |
| const int recon_y_stride = lst_yv12->y_stride; |
| const int recon_uv_stride = lst_yv12->uv_stride; |
| const int uv_mb_height = 16 >> (lst_yv12->y_height > lst_yv12->uv_height); |
| int64_t intra_error = 0; |
| int64_t coded_error = 0; |
| int64_t sr_coded_error = 0; |
| |
| int sum_mvr = 0, sum_mvc = 0; |
| int sum_mvr_abs = 0, sum_mvc_abs = 0; |
| int sum_mvrs = 0, sum_mvcs = 0; |
| int mvcount = 0; |
| int intercount = 0; |
| int second_ref_count = 0; |
| int intrapenalty = 256; |
| int neutral_count = 0; |
| int new_mv_count = 0; |
| int sum_in_vectors = 0; |
| uint32_t lastmv_as_int = 0; |
| |
| int_mv zero_ref_mv; |
| |
| zero_ref_mv.as_int = 0; |
| |
| vp9_clear_system_state(); // __asm emms; |
| |
| vp9_setup_src_planes(x, cpi->Source, 0, 0); |
| setup_pre_planes(xd, 0, lst_yv12, 0, 0, NULL); |
| setup_dst_planes(xd, new_yv12, 0, 0); |
| |
| xd->mi_8x8 = cm->mi_grid_visible; |
| // required for vp9_frame_init_quantizer |
| xd->mi_8x8[0] = cm->mi; |
| |
| setup_block_dptrs(&x->e_mbd, cm->subsampling_x, cm->subsampling_y); |
| |
| vp9_frame_init_quantizer(cpi); |
| |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| p[i].coeff = ctx->coeff_pbuf[i][1]; |
| p[i].qcoeff = ctx->qcoeff_pbuf[i][1]; |
| pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1]; |
| p[i].eobs = ctx->eobs_pbuf[i][1]; |
| } |
| x->skip_recode = 0; |
| |
| |
| // Initialise the MV cost table to the defaults |
| // if( cm->current_video_frame == 0) |
| // if ( 0 ) |
| { |
| vp9_init_mv_probs(cm); |
| vp9_initialize_rd_consts(cpi); |
| } |
| |
| // tiling is ignored in the first pass |
| vp9_tile_init(&tile, cm, 0, 0); |
| |
| // for each macroblock row in image |
| for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { |
| int_mv best_ref_mv; |
| |
| best_ref_mv.as_int = 0; |
| |
| // reset above block coeffs |
| xd->up_available = (mb_row != 0); |
| recon_yoffset = (mb_row * recon_y_stride * 16); |
| recon_uvoffset = (mb_row * recon_uv_stride * uv_mb_height); |
| |
| // Set up limit values for motion vectors to prevent them extending |
| // outside the UMV borders |
| x->mv_row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16); |
| x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) |
| + BORDER_MV_PIXELS_B16; |
| |
| // for each macroblock col in image |
| for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { |
| int this_error; |
| int gf_motion_error = INT_MAX; |
| int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); |
| double error_weight = 1.0; |
| |
| vp9_clear_system_state(); // __asm emms; |
| |
| xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset; |
| xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset; |
| xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset; |
| xd->left_available = (mb_col != 0); |
| |
| if (mb_col * 2 + 1 < cm->mi_cols) { |
| if (mb_row * 2 + 1 < cm->mi_rows) { |
| xd->mi_8x8[0]->mbmi.sb_type = BLOCK_16X16; |
| } else { |
| xd->mi_8x8[0]->mbmi.sb_type = BLOCK_16X8; |
| } |
| } else { |
| if (mb_row * 2 + 1 < cm->mi_rows) { |
| xd->mi_8x8[0]->mbmi.sb_type = BLOCK_8X16; |
| } else { |
| xd->mi_8x8[0]->mbmi.sb_type = BLOCK_8X8; |
| } |
| } |
| xd->mi_8x8[0]->mbmi.ref_frame[0] = INTRA_FRAME; |
| set_mi_row_col(xd, &tile, |
| mb_row << 1, |
| num_8x8_blocks_high_lookup[xd->mi_8x8[0]->mbmi.sb_type], |
| mb_col << 1, |
| num_8x8_blocks_wide_lookup[xd->mi_8x8[0]->mbmi.sb_type], |
| cm->mi_rows, cm->mi_cols); |
| |
| if (cpi->oxcf.aq_mode == VARIANCE_AQ) { |
| int energy = vp9_block_energy(cpi, x, xd->mi_8x8[0]->mbmi.sb_type); |
| error_weight = vp9_vaq_inv_q_ratio(energy); |
| } |
| |
| // do intra 16x16 prediction |
| this_error = vp9_encode_intra(x, use_dc_pred); |
| if (cpi->oxcf.aq_mode == VARIANCE_AQ) { |
| vp9_clear_system_state(); // __asm emms; |
| this_error *= error_weight; |
| } |
| |
| // intrapenalty below deals with situations where the intra and inter |
| // error scores are very low (eg a plain black frame). |
| // We do not have special cases in first pass for 0,0 and nearest etc so |
| // all inter modes carry an overhead cost estimate for the mv. |
| // When the error score is very low this causes us to pick all or lots of |
| // INTRA modes and throw lots of key frames. |
| // This penalty adds a cost matching that of a 0,0 mv to the intra case. |
| this_error += intrapenalty; |
| |
| // Cumulative intra error total |
| intra_error += (int64_t)this_error; |
| |
| // Set up limit values for motion vectors to prevent them extending |
| // outside the UMV borders. |
| x->mv_col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16); |
| x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) |
| + BORDER_MV_PIXELS_B16; |
| |
| // Other than for the first frame do a motion search |
| if (cm->current_video_frame > 0) { |
| int tmp_err; |
| int motion_error = zz_motion_search(cpi, x, lst_yv12, recon_yoffset); |
| int_mv mv, tmp_mv; |
| // Simple 0,0 motion with no mv overhead |
| mv.as_int = tmp_mv.as_int = 0; |
| |
| // Test last reference frame using the previous best mv as the |
| // starting point (best reference) for the search |
| first_pass_motion_search(cpi, x, &best_ref_mv.as_mv, &mv.as_mv, |
| lst_yv12, &motion_error, recon_yoffset); |
| if (cpi->oxcf.aq_mode == VARIANCE_AQ) { |
| vp9_clear_system_state(); // __asm emms; |
| motion_error *= error_weight; |
| } |
| |
| // If the current best reference mv is not centered on 0,0 then do a 0,0 |
| // based search as well. |
| if (best_ref_mv.as_int) { |
| tmp_err = INT_MAX; |
| first_pass_motion_search(cpi, x, &zero_ref_mv.as_mv, &tmp_mv.as_mv, |
| lst_yv12, &tmp_err, recon_yoffset); |
| if (cpi->oxcf.aq_mode == VARIANCE_AQ) { |
| vp9_clear_system_state(); // __asm emms; |
| tmp_err *= error_weight; |
| } |
| |
| if (tmp_err < motion_error) { |
| motion_error = tmp_err; |
| mv.as_int = tmp_mv.as_int; |
| } |
| } |
| |
| // Experimental search in an older reference frame |
| if (cm->current_video_frame > 1) { |
| // Simple 0,0 motion with no mv overhead |
| gf_motion_error = zz_motion_search(cpi, x, gld_yv12, recon_yoffset); |
| |
| first_pass_motion_search(cpi, x, &zero_ref_mv.as_mv, &tmp_mv.as_mv, |
| gld_yv12, &gf_motion_error, recon_yoffset); |
| if (cpi->oxcf.aq_mode == VARIANCE_AQ) { |
| vp9_clear_system_state(); // __asm emms; |
| gf_motion_error *= error_weight; |
| } |
| |
| if ((gf_motion_error < motion_error) && |
| (gf_motion_error < this_error)) { |
| second_ref_count++; |
| } |
| |
| // Reset to last frame as reference buffer |
| xd->plane[0].pre[0].buf = lst_yv12->y_buffer + recon_yoffset; |
| xd->plane[1].pre[0].buf = lst_yv12->u_buffer + recon_uvoffset; |
| xd->plane[2].pre[0].buf = lst_yv12->v_buffer + recon_uvoffset; |
| |
| // In accumulating a score for the older reference frame |
| // take the best of the motion predicted score and |
| // the intra coded error (just as will be done for) |
| // accumulation of "coded_error" for the last frame. |
| if (gf_motion_error < this_error) |
| sr_coded_error += gf_motion_error; |
| else |
| sr_coded_error += this_error; |
| } else { |
| sr_coded_error += motion_error; |
| } |
| /* Intra assumed best */ |
| best_ref_mv.as_int = 0; |
| |
| if (motion_error <= this_error) { |
| // Keep a count of cases where the inter and intra were |
| // very close and very low. This helps with scene cut |
| // detection for example in cropped clips with black bars |
| // at the sides or top and bottom. |
| if (((this_error - intrapenalty) * 9 <= motion_error * 10) && |
| this_error < 2 * intrapenalty) |
| neutral_count++; |
| |
| mv.as_mv.row *= 8; |
| mv.as_mv.col *= 8; |
| this_error = motion_error; |
| vp9_set_mbmode_and_mvs(x, NEWMV, &mv); |
| xd->mi_8x8[0]->mbmi.tx_size = TX_4X4; |
| xd->mi_8x8[0]->mbmi.ref_frame[0] = LAST_FRAME; |
| xd->mi_8x8[0]->mbmi.ref_frame[1] = NONE; |
| vp9_build_inter_predictors_sby(xd, mb_row << 1, mb_col << 1, |
| xd->mi_8x8[0]->mbmi.sb_type); |
| vp9_encode_sby(x, xd->mi_8x8[0]->mbmi.sb_type); |
| sum_mvr += mv.as_mv.row; |
| sum_mvr_abs += abs(mv.as_mv.row); |
| sum_mvc += mv.as_mv.col; |
| sum_mvc_abs += abs(mv.as_mv.col); |
| sum_mvrs += mv.as_mv.row * mv.as_mv.row; |
| sum_mvcs += mv.as_mv.col * mv.as_mv.col; |
| intercount++; |
| |
| best_ref_mv.as_int = mv.as_int; |
| |
| // Was the vector non-zero |
| if (mv.as_int) { |
| mvcount++; |
| |
| // Was it different from the last non zero vector |
| if (mv.as_int != lastmv_as_int) |
| new_mv_count++; |
| lastmv_as_int = mv.as_int; |
| |
| // Does the Row vector point inwards or outwards |
| if (mb_row < cm->mb_rows / 2) { |
| if (mv.as_mv.row > 0) |
| sum_in_vectors--; |
| else if (mv.as_mv.row < 0) |
| sum_in_vectors++; |
| } else if (mb_row > cm->mb_rows / 2) { |
| if (mv.as_mv.row > 0) |
| sum_in_vectors++; |
| else if (mv.as_mv.row < 0) |
| sum_in_vectors--; |
| } |
| |
| // Does the Row vector point inwards or outwards |
| if (mb_col < cm->mb_cols / 2) { |
| if (mv.as_mv.col > 0) |
| sum_in_vectors--; |
| else if (mv.as_mv.col < 0) |
| sum_in_vectors++; |
| } else if (mb_col > cm->mb_cols / 2) { |
| if (mv.as_mv.col > 0) |
| sum_in_vectors++; |
| else if (mv.as_mv.col < 0) |
| sum_in_vectors--; |
| } |
| } |
| } |
| } else { |
| sr_coded_error += (int64_t)this_error; |
| } |
| coded_error += (int64_t)this_error; |
| |
| // adjust to the next column of macroblocks |
| x->plane[0].src.buf += 16; |
| x->plane[1].src.buf += uv_mb_height; |
| x->plane[2].src.buf += uv_mb_height; |
| |
| recon_yoffset += 16; |
| recon_uvoffset += uv_mb_height; |
| } |
| |
| // adjust to the next row of mbs |
| x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols; |
| x->plane[1].src.buf += uv_mb_height * x->plane[1].src.stride - |
| uv_mb_height * cm->mb_cols; |
| x->plane[2].src.buf += uv_mb_height * x->plane[1].src.stride - |
| uv_mb_height * cm->mb_cols; |
| |
| vp9_clear_system_state(); // __asm emms; |
| } |
| |
| vp9_clear_system_state(); // __asm emms; |
| { |
| double weight = 0.0; |
| |
| FIRSTPASS_STATS fps; |
| |
| fps.frame = cm->current_video_frame; |
| fps.intra_error = (double)(intra_error >> 8); |
| fps.coded_error = (double)(coded_error >> 8); |
| fps.sr_coded_error = (double)(sr_coded_error >> 8); |
| weight = simple_weight(cpi->Source); |
| |
| |
| if (weight < 0.1) |
| weight = 0.1; |
| |
| fps.ssim_weighted_pred_err = fps.coded_error * weight; |
| |
| fps.pcnt_inter = 0.0; |
| fps.pcnt_motion = 0.0; |
| fps.MVr = 0.0; |
| fps.mvr_abs = 0.0; |
| fps.MVc = 0.0; |
| fps.mvc_abs = 0.0; |
| fps.MVrv = 0.0; |
| fps.MVcv = 0.0; |
| fps.mv_in_out_count = 0.0; |
| fps.new_mv_count = 0.0; |
| fps.count = 1.0; |
| |
| fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs; |
| fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs; |
| fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs; |
| |
| if (mvcount > 0) { |
| fps.MVr = (double)sum_mvr / (double)mvcount; |
| fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount; |
| fps.MVc = (double)sum_mvc / (double)mvcount; |
| fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount; |
| fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / |
| (double)mvcount; |
| fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / |
| (double)mvcount; |
| fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2); |
| fps.new_mv_count = new_mv_count; |
| |
| fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs; |
| } |
| |
| // TODO(paulwilkins): Handle the case when duration is set to 0, or |
| // something less than the full time between subsequent values of |
| // cpi->source_time_stamp. |
| fps.duration = (double)(cpi->source->ts_end |
| - cpi->source->ts_start); |
| |
| // don't want to do output stats with a stack variable! |
| cpi->twopass.this_frame_stats = fps; |
| output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.this_frame_stats); |
| accumulate_stats(&cpi->twopass.total_stats, &fps); |
| } |
| |
| // Copy the previous Last Frame back into gf and and arf buffers if |
| // the prediction is good enough... but also dont allow it to lag too far |
| if ((cpi->twopass.sr_update_lag > 3) || |
| ((cm->current_video_frame > 0) && |
| (cpi->twopass.this_frame_stats.pcnt_inter > 0.20) && |
| ((cpi->twopass.this_frame_stats.intra_error / |
| DOUBLE_DIVIDE_CHECK(cpi->twopass.this_frame_stats.coded_error)) > |
| 2.0))) { |
| vp8_yv12_copy_frame(lst_yv12, gld_yv12); |
| cpi->twopass.sr_update_lag = 1; |
| } else { |
| cpi->twopass.sr_update_lag++; |
| } |
| // swap frame pointers so last frame refers to the frame we just compressed |
| swap_yv12(lst_yv12, new_yv12); |
| |
| vp9_extend_frame_borders(lst_yv12, cm->subsampling_x, cm->subsampling_y); |
| |
| // Special case for the first frame. Copy into the GF buffer as a second |
| // reference. |
| if (cm->current_video_frame == 0) |
| vp8_yv12_copy_frame(lst_yv12, gld_yv12); |
| |
| // use this to see what the first pass reconstruction looks like |
| if (0) { |
| char filename[512]; |
| FILE *recon_file; |
| snprintf(filename, sizeof(filename), "enc%04d.yuv", |
| (int)cm->current_video_frame); |
| |
| if (cm->current_video_frame == 0) |
| recon_file = fopen(filename, "wb"); |
| else |
| recon_file = fopen(filename, "ab"); |
| |
| (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file); |
| fclose(recon_file); |
| } |
| |
| cm->current_video_frame++; |
| } |
| |
| // Estimate a cost per mb attributable to overheads such as the coding of |
| // modes and motion vectors. |
| // Currently simplistic in its assumptions for testing. |
| // |
| |
| |
| static double bitcost(double prob) { |
| return -(log(prob) / log(2.0)); |
| } |
| |
| static int64_t estimate_modemvcost(VP9_COMP *cpi, |
| FIRSTPASS_STATS *fpstats) { |
| #if 0 |
| int mv_cost; |
| int mode_cost; |
| |
| double av_pct_inter = fpstats->pcnt_inter / fpstats->count; |
| double av_pct_motion = fpstats->pcnt_motion / fpstats->count; |
| double av_intra = (1.0 - av_pct_inter); |
| |
| double zz_cost; |
| double motion_cost; |
| double intra_cost; |
| |
| zz_cost = bitcost(av_pct_inter - av_pct_motion); |
| motion_cost = bitcost(av_pct_motion); |
| intra_cost = bitcost(av_intra); |
| |
| // Estimate of extra bits per mv overhead for mbs |
| // << 9 is the normalization to the (bits * 512) used in vp9_rc_bits_per_mb |
| mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9; |
| |
| // Crude estimate of overhead cost from modes |
| // << 9 is the normalization to (bits * 512) used in vp9_rc_bits_per_mb |
| mode_cost = |
| (int)((((av_pct_inter - av_pct_motion) * zz_cost) + |
| (av_pct_motion * motion_cost) + |
| (av_intra * intra_cost)) * cpi->common.MBs) << 9; |
| |
| // return mv_cost + mode_cost; |
| // TODO(paulwilkins): Fix overhead costs for extended Q range. |
| #endif |
| return 0; |
| } |
| |
| static double calc_correction_factor(double err_per_mb, |
| double err_divisor, |
| double pt_low, |
| double pt_high, |
| int q) { |
| const double error_term = err_per_mb / err_divisor; |
| |
| // Adjustment based on actual quantizer to power term. |
| const double power_term = MIN(vp9_convert_qindex_to_q(q) * 0.0125 + pt_low, |
| pt_high); |
| |
| // Calculate correction factor |
| if (power_term < 1.0) |
| assert(error_term >= 0.0); |
| |
| return fclamp(pow(error_term, power_term), 0.05, 5.0); |
| } |
| |
| static int estimate_max_q(VP9_COMP *cpi, |
| FIRSTPASS_STATS *fpstats, |
| int section_target_bandwitdh) { |
| int q; |
| int num_mbs = cpi->common.MBs; |
| int target_norm_bits_per_mb; |
| |
| double section_err = fpstats->coded_error / fpstats->count; |
| double err_per_mb = section_err / num_mbs; |
| double err_correction_factor; |
| |
| if (section_target_bandwitdh <= 0) |
| return cpi->rc.worst_quality; // Highest value allowed |
| |
| target_norm_bits_per_mb = section_target_bandwitdh < (1 << 20) |
| ? (512 * section_target_bandwitdh) / num_mbs |
| : 512 * (section_target_bandwitdh / num_mbs); |
| |
| // Try and pick a max Q that will be high enough to encode the |
| // content at the given rate. |
| for (q = cpi->rc.best_quality; q < cpi->rc.worst_quality; q++) { |
| int bits_per_mb_at_this_q; |
| |
| err_correction_factor = calc_correction_factor(err_per_mb, |
| ERR_DIVISOR, 0.5, 0.90, q); |
| |
| bits_per_mb_at_this_q = vp9_rc_bits_per_mb(INTER_FRAME, q, |
| err_correction_factor); |
| |
| if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) |
| break; |
| } |
| |
| // Restriction on active max q for constrained quality mode. |
| if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY && |
| q < cpi->cq_target_quality) |
| q = cpi->cq_target_quality; |
| |
| return q; |
| } |
| |
| // For cq mode estimate a cq level that matches the observed |
| // complexity and data rate. |
| static int estimate_cq(VP9_COMP *cpi, |
| FIRSTPASS_STATS *fpstats, |
| int section_target_bandwitdh) { |
| int q; |
| int num_mbs = cpi->common.MBs; |
| int target_norm_bits_per_mb; |
| |
| double section_err = (fpstats->coded_error / fpstats->count); |
| double err_per_mb = section_err / num_mbs; |
| double err_correction_factor; |
| double clip_iiratio; |
| double clip_iifactor; |
| |
| target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) |
| ? (512 * section_target_bandwitdh) / num_mbs |
| : 512 * (section_target_bandwitdh / num_mbs); |
| |
| |
| // II ratio correction factor for clip as a whole |
| clip_iiratio = cpi->twopass.total_stats.intra_error / |
| DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats.coded_error); |
| clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025); |
| if (clip_iifactor < 0.80) |
| clip_iifactor = 0.80; |
| |
| // Try and pick a Q that can encode the content at the given rate. |
| for (q = 0; q < MAXQ; q++) { |
| int bits_per_mb_at_this_q; |
| |
| // Error per MB based correction factor |
| err_correction_factor = |
| calc_correction_factor(err_per_mb, 100.0, 0.5, 0.90, q) * clip_iifactor; |
| |
| bits_per_mb_at_this_q = |
| vp9_rc_bits_per_mb(INTER_FRAME, q, err_correction_factor); |
| |
| if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) |
| break; |
| } |
| |
| // Clip value to range "best allowed to (worst allowed - 1)" |
| q = select_cq_level(q); |
| if (q >= cpi->rc.worst_quality) |
| q = cpi->rc.worst_quality - 1; |
| if (q < cpi->rc.best_quality) |
| q = cpi->rc.best_quality; |
| |
| return q; |
| } |
| |
| extern void vp9_new_framerate(VP9_COMP *cpi, double framerate); |
| |
| void vp9_init_second_pass(VP9_COMP *cpi) { |
| FIRSTPASS_STATS this_frame; |
| FIRSTPASS_STATS *start_pos; |
| |
| zero_stats(&cpi->twopass.total_stats); |
| zero_stats(&cpi->twopass.total_left_stats); |
| |
| if (!cpi->twopass.stats_in_end) |
| return; |
| |
| cpi->twopass.total_stats = *cpi->twopass.stats_in_end; |
| cpi->twopass.total_left_stats = cpi->twopass.total_stats; |
| |
| // each frame can have a different duration, as the frame rate in the source |
| // isn't guaranteed to be constant. The frame rate prior to the first frame |
| // encoded in the second pass is a guess. However the sum duration is not. |
| // Its calculated based on the actual durations of all frames from the first |
| // pass. |
| vp9_new_framerate(cpi, 10000000.0 * cpi->twopass.total_stats.count / |
| cpi->twopass.total_stats.duration); |
| |
| cpi->output_framerate = cpi->oxcf.framerate; |
| cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats.duration * |
| cpi->oxcf.target_bandwidth / 10000000.0); |
| |
| // Calculate a minimum intra value to be used in determining the IIratio |
| // scores used in the second pass. We have this minimum to make sure |
| // that clips that are static but "low complexity" in the intra domain |
| // are still boosted appropriately for KF/GF/ARF |
| cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs; |
| cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs; |
| |
| // This variable monitors how far behind the second ref update is lagging |
| cpi->twopass.sr_update_lag = 1; |
| |
| // Scan the first pass file and calculate an average Intra / Inter error score |
| // ratio for the sequence. |
| { |
| double sum_iiratio = 0.0; |
| double IIRatio; |
| |
| start_pos = cpi->twopass.stats_in; // Note the starting "file" position. |
| |
| while (input_stats(cpi, &this_frame) != EOF) { |
| IIRatio = this_frame.intra_error |
| / DOUBLE_DIVIDE_CHECK(this_frame.coded_error); |
| IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio; |
| sum_iiratio += IIRatio; |
| } |
| |
| cpi->twopass.avg_iiratio = sum_iiratio / |
| DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats.count); |
| |
| // Reset file position |
| reset_fpf_position(cpi, start_pos); |
| } |
| |
| // Scan the first pass file and calculate a modified total error based upon |
| // the bias/power function used to allocate bits. |
| { |
| double av_error = cpi->twopass.total_stats.ssim_weighted_pred_err / |
| DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats.count); |
| |
| start_pos = cpi->twopass.stats_in; // Note starting "file" position |
| |
| cpi->twopass.modified_error_total = 0.0; |
| cpi->twopass.modified_error_min = |
| (av_error * cpi->oxcf.two_pass_vbrmin_section) / 100; |
| cpi->twopass.modified_error_max = |
| (av_error * cpi->oxcf.two_pass_vbrmax_section) / 100; |
| |
| while (input_stats(cpi, &this_frame) != EOF) { |
| cpi->twopass.modified_error_total += |
| calculate_modified_err(cpi, &this_frame); |
| } |
| cpi->twopass.modified_error_left = cpi->twopass.modified_error_total; |
| |
| reset_fpf_position(cpi, start_pos); // Reset file position |
| } |
| } |
| |
| void vp9_end_second_pass(VP9_COMP *cpi) { |
| } |
| |
| // This function gives and estimate of how badly we believe |
| // the prediction quality is decaying from frame to frame. |
| static double get_prediction_decay_rate(VP9_COMP *cpi, |
| FIRSTPASS_STATS *next_frame) { |
| // Look at the observed drop in prediction quality between the last frame |
| // and the GF buffer (which contains an older frame). |
| const double mb_sr_err_diff = (next_frame->sr_coded_error - |
| next_frame->coded_error) / cpi->common.MBs; |
| const double second_ref_decay = mb_sr_err_diff <= 512.0 |
| ? fclamp(pow(1.0 - (mb_sr_err_diff / 512.0), 0.5), 0.85, 1.0) |
| : 0.85; |
| |
| return MIN(second_ref_decay, next_frame->pcnt_inter); |
| } |
| |
| // Function to test for a condition where a complex transition is followed |
| // by a static section. For example in slide shows where there is a fade |
| // between slides. This is to help with more optimal kf and gf positioning. |
| static int detect_transition_to_still( |
| VP9_COMP *cpi, |
| int frame_interval, |
| int still_interval, |
| double loop_decay_rate, |
| double last_decay_rate) { |
| int trans_to_still = 0; |
| |
| // Break clause to detect very still sections after motion |
| // For example a static image after a fade or other transition |
| // instead of a clean scene cut. |
| if (frame_interval > MIN_GF_INTERVAL && |
| loop_decay_rate >= 0.999 && |
| last_decay_rate < 0.9) { |
| int j; |
| FIRSTPASS_STATS *position = cpi->twopass.stats_in; |
| FIRSTPASS_STATS tmp_next_frame; |
| double zz_inter; |
| |
| // Look ahead a few frames to see if static condition |
| // persists... |
| for (j = 0; j < still_interval; j++) { |
| if (EOF == input_stats(cpi, &tmp_next_frame)) |
| break; |
| |
| zz_inter = |
| (tmp_next_frame.pcnt_inter - tmp_next_frame.pcnt_motion); |
| if (zz_inter < 0.999) |
| break; |
| } |
| // Reset file position |
| reset_fpf_position(cpi, position); |
| |
| // Only if it does do we signal a transition to still |
| if (j == still_interval) |
| trans_to_still = 1; |
| } |
| |
| return trans_to_still; |
| } |
| |
| // This function detects a flash through the high relative pcnt_second_ref |
| // score in the frame following a flash frame. The offset passed in should |
| // reflect this |
| static int detect_flash(VP9_COMP *cpi, int offset) { |
| FIRSTPASS_STATS next_frame; |
| |
| int flash_detected = 0; |
| |
| // Read the frame data. |
| // The return is FALSE (no flash detected) if not a valid frame |
| if (read_frame_stats(cpi, &next_frame, offset) != EOF) { |
| // What we are looking for here is a situation where there is a |
| // brief break in prediction (such as a flash) but subsequent frames |
| // are reasonably well predicted by an earlier (pre flash) frame. |
| // The recovery after a flash is indicated by a high pcnt_second_ref |
| // comapred to pcnt_inter. |
| if (next_frame.pcnt_second_ref > next_frame.pcnt_inter && |
| next_frame.pcnt_second_ref >= 0.5) |
| flash_detected = 1; |
| } |
| |
| return flash_detected; |
| } |
| |
| // Update the motion related elements to the GF arf boost calculation |
| static void accumulate_frame_motion_stats( |
| FIRSTPASS_STATS *this_frame, |
| double *this_frame_mv_in_out, |
| double *mv_in_out_accumulator, |
| double *abs_mv_in_out_accumulator, |
| double *mv_ratio_accumulator) { |
| // double this_frame_mv_in_out; |
| double this_frame_mvr_ratio; |
| double this_frame_mvc_ratio; |
| double motion_pct; |
| |
| // Accumulate motion stats. |
| motion_pct = this_frame->pcnt_motion; |
| |
| // Accumulate Motion In/Out of frame stats |
| *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct; |
| *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct; |
| *abs_mv_in_out_accumulator += |
| fabs(this_frame->mv_in_out_count * motion_pct); |
| |
| // Accumulate a measure of how uniform (or conversely how random) |
| // the motion field is. (A ratio of absmv / mv) |
| if (motion_pct > 0.05) { |
| this_frame_mvr_ratio = fabs(this_frame->mvr_abs) / |
| DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr)); |
| |
| this_frame_mvc_ratio = fabs(this_frame->mvc_abs) / |
| DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc)); |
| |
| *mv_ratio_accumulator += |
| (this_frame_mvr_ratio < this_frame->mvr_abs) |
| ? (this_frame_mvr_ratio * motion_pct) |
| : this_frame->mvr_abs * motion_pct; |
| |
| *mv_ratio_accumulator += |
| (this_frame_mvc_ratio < this_frame->mvc_abs) |
| ? (this_frame_mvc_ratio * motion_pct) |
| : this_frame->mvc_abs * motion_pct; |
| } |
| } |
| |
| // Calculate a baseline boost number for the current frame. |
| static double calc_frame_boost( |
| VP9_COMP *cpi, |
| FIRSTPASS_STATS *this_frame, |
| double this_frame_mv_in_out) { |
| double frame_boost; |
| |
| // Underlying boost factor is based on inter intra error ratio |
| if (this_frame->intra_error > cpi->twopass.gf_intra_err_min) |
| frame_boost = (IIFACTOR * this_frame->intra_error / |
| DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); |
| else |
| frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min / |
| DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); |
| |
| // Increase boost for frames where new data coming into frame |
| // (eg zoom out). Slightly reduce boost if there is a net balance |
| // of motion out of the frame (zoom in). |
| // The range for this_frame_mv_in_out is -1.0 to +1.0 |
| if (this_frame_mv_in_out > 0.0) |
| frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); |
| // In extreme case boost is halved |
| else |
| frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); |
| |
| // Clip to maximum |
| if (frame_boost > GF_RMAX) |
| frame_boost = GF_RMAX; |
| |
| return frame_boost; |
| } |
| |
| static int calc_arf_boost(VP9_COMP *cpi, int offset, |
| int f_frames, int b_frames, |
| int *f_boost, int *b_boost) { |
| FIRSTPASS_STATS this_frame; |
| |
| int i; |
| double boost_score = 0.0; |
| double mv_ratio_accumulator = 0.0; |
| double decay_accumulator = 1.0; |
| double this_frame_mv_in_out = 0.0; |
| double mv_in_out_accumulator = 0.0; |
| double abs_mv_in_out_accumulator = 0.0; |
| int arf_boost; |
| int flash_detected = 0; |
| |
| // Search forward from the proposed arf/next gf position |
| for (i = 0; i < f_frames; i++) { |
| if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) |
| break; |
| |
| // Update the motion related elements to the boost calculation |
| accumulate_frame_motion_stats(&this_frame, |
| &this_frame_mv_in_out, &mv_in_out_accumulator, |
| &abs_mv_in_out_accumulator, |
| &mv_ratio_accumulator); |
| |
| // We want to discount the flash frame itself and the recovery |
| // frame that follows as both will have poor scores. |
| flash_detected = detect_flash(cpi, (i + offset)) || |
| detect_flash(cpi, (i + offset + 1)); |
| |
| // Cumulative effect of prediction quality decay |
| if (!flash_detected) { |
| decay_accumulator *= get_prediction_decay_rate(cpi, &this_frame); |
| decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR |
| ? MIN_DECAY_FACTOR : decay_accumulator; |
| } |
| |
| boost_score += (decay_accumulator * |
| calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out)); |
| } |
| |
| *f_boost = (int)boost_score; |
| |
| // Reset for backward looking loop |
| boost_score = 0.0; |
| mv_ratio_accumulator = 0.0; |
| decay_accumulator = 1.0; |
| this_frame_mv_in_out = 0.0; |
| mv_in_out_accumulator = 0.0; |
| abs_mv_in_out_accumulator = 0.0; |
| |
| // Search backward towards last gf position |
| for (i = -1; i >= -b_frames; i--) { |
| if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF) |
| break; |
| |
| // Update the motion related elements to the boost calculation |
| accumulate_frame_motion_stats(&this_frame, |
| &this_frame_mv_in_out, &mv_in_out_accumulator, |
| &abs_mv_in_out_accumulator, |
| &mv_ratio_accumulator); |
| |
| // We want to discount the the flash frame itself and the recovery |
| // frame that follows as both will have poor scores. |
| flash_detected = detect_flash(cpi, (i + offset)) || |
| detect_flash(cpi, (i + offset + 1)); |
| |
| // Cumulative effect of prediction quality decay |
| if (!flash_detected) { |
| decay_accumulator *= get_prediction_decay_rate(cpi, &this_frame); |
| decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR |
| ? MIN_DECAY_FACTOR : decay_accumulator; |
| } |
| |
| boost_score += (decay_accumulator * |
| calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out)); |
| } |
| *b_boost = (int)boost_score; |
| |
| arf_boost = (*f_boost + *b_boost); |
| if (arf_boost < ((b_frames + f_frames) * 20)) |
| arf_boost = ((b_frames + f_frames) * 20); |
| |
| return arf_boost; |
| } |
| |
| #if CONFIG_MULTIPLE_ARF |
| // Work out the frame coding order for a GF or an ARF group. |
| // The current implementation codes frames in their natural order for a |
| // GF group, and inserts additional ARFs into an ARF group using a |
| // binary split approach. |
| // NOTE: this function is currently implemented recursively. |
| static void schedule_frames(VP9_COMP *cpi, const int start, const int end, |
| const int arf_idx, const int gf_or_arf_group, |
| const int level) { |
| int i, abs_end, half_range; |
| int *cfo = cpi->frame_coding_order; |
| int idx = cpi->new_frame_coding_order_period; |
| |
| // If (end < 0) an ARF should be coded at position (-end). |
| assert(start >= 0); |
| |
| // printf("start:%d end:%d\n", start, end); |
| |
| // GF Group: code frames in logical order. |
| if (gf_or_arf_group == 0) { |
| assert(end >= start); |
| for (i = start; i <= end; ++i) { |
| cfo[idx] = i; |
| cpi->arf_buffer_idx[idx] = arf_idx; |
| cpi->arf_weight[idx] = -1; |
| ++idx; |
| } |
| cpi->new_frame_coding_order_period = idx; |
| return; |
| } |
| |
| // ARF Group: work out the ARF schedule. |
| // Mark ARF frames as negative. |
| if (end < 0) { |
| // printf("start:%d end:%d\n", -end, -end); |
| // ARF frame is at the end of the range. |
| cfo[idx] = end; |
| // What ARF buffer does this ARF use as predictor. |
| cpi->arf_buffer_idx[idx] = (arf_idx > 2) ? (arf_idx - 1) : 2; |
| cpi->arf_weight[idx] = level; |
| ++idx; |
| abs_end = -end; |
| } else { |
| abs_end = end; |
| } |
| |
| half_range = (abs_end - start) >> 1; |
| |
| // ARFs may not be adjacent, they must be separated by at least |
| // MIN_GF_INTERVAL non-ARF frames. |
| if ((start + MIN_GF_INTERVAL) >= (abs_end - MIN_GF_INTERVAL)) { |
| // printf("start:%d end:%d\n", start, abs_end); |
| // Update the coding order and active ARF. |
| for (i = start; i <= abs_end; ++i) { |
| cfo[idx] = i; |
| cpi->arf_buffer_idx[idx] = arf_idx; |
| cpi->arf_weight[idx] = -1; |
| ++idx; |
| } |
| cpi->new_frame_coding_order_period = idx; |
| } else { |
| // Place a new ARF at the mid-point of the range. |
| cpi->new_frame_coding_order_period = idx; |
| schedule_frames(cpi, start, -(start + half_range), arf_idx + 1, |
| gf_or_arf_group, level + 1); |
| schedule_frames(cpi, start + half_range + 1, abs_end, arf_idx, |
| gf_or_arf_group, level + 1); |
| } |
| } |
| |
| #define FIXED_ARF_GROUP_SIZE 16 |
| |
| void define_fixed_arf_period(VP9_COMP *cpi) { |
| int i; |
| int max_level = INT_MIN; |
| |
| assert(cpi->multi_arf_enabled); |
| assert(cpi->oxcf.lag_in_frames >= FIXED_ARF_GROUP_SIZE); |
| |
| // Save the weight of the last frame in the sequence before next |
| // sequence pattern overwrites it. |
| cpi->this_frame_weight = cpi->arf_weight[cpi->sequence_number]; |
| assert(cpi->this_frame_weight >= 0); |
| |
| cpi->twopass.gf_zeromotion_pct = 0; |
| |
| // Initialize frame coding order variables. |
| cpi->new_frame_coding_order_period = 0; |
| cpi->next_frame_in_order = 0; |
| cpi->arf_buffered = 0; |
| vp9_zero(cpi->frame_coding_order); |
| vp9_zero(cpi->arf_buffer_idx); |
| vpx_memset(cpi->arf_weight, -1, sizeof(cpi->arf_weight)); |
| |
| if (cpi->rc.frames_to_key <= (FIXED_ARF_GROUP_SIZE + 8)) { |
| // Setup a GF group close to the keyframe. |
| cpi->rc.source_alt_ref_pending = 0; |
| cpi->rc.baseline_gf_interval = cpi->rc.frames_to_key; |
| schedule_frames(cpi, 0, (cpi->rc.baseline_gf_interval - 1), 2, 0, 0); |
| } else { |
| // Setup a fixed period ARF group. |
| cpi->rc.source_alt_ref_pending = 1; |
| cpi->rc.baseline_gf_interval = FIXED_ARF_GROUP_SIZE; |
| schedule_frames(cpi, 0, -(cpi->rc.baseline_gf_interval - 1), 2, 1, 0); |
| } |
| |
| // Replace level indicator of -1 with correct level. |
| for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { |
| if (cpi->arf_weight[i] > max_level) { |
| max_level = cpi->arf_weight[i]; |
| } |
| } |
| ++max_level; |
| for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { |
| if (cpi->arf_weight[i] == -1) { |
| cpi->arf_weight[i] = max_level; |
| } |
| } |
| cpi->max_arf_level = max_level; |
| #if 0 |
| printf("\nSchedule: "); |
| for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { |
| printf("%4d ", cpi->frame_coding_order[i]); |
| } |
| printf("\n"); |
| printf("ARFref: "); |
| for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { |
| printf("%4d ", cpi->arf_buffer_idx[i]); |
| } |
| printf("\n"); |
| printf("Weight: "); |
| for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { |
| printf("%4d ", cpi->arf_weight[i]); |
| } |
| printf("\n"); |
| #endif |
| } |
| #endif |
| |
| // Analyse and define a gf/arf group. |
| static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { |
| FIRSTPASS_STATS next_frame = { 0 }; |
| FIRSTPASS_STATS *start_pos; |
| int i; |
| double boost_score = 0.0; |
| double old_boost_score = 0.0; |
| double gf_group_err = 0.0; |
| double gf_first_frame_err = 0.0; |
| double mod_frame_err = 0.0; |
| |
| double mv_ratio_accumulator = 0.0; |
| double decay_accumulator = 1.0; |
| double zero_motion_accumulator = 1.0; |
| |
| double loop_decay_rate = 1.00; // Starting decay rate |
| double last_loop_decay_rate = 1.00; |
| |
| double this_frame_mv_in_out = 0.0; |
| double mv_in_out_accumulator = 0.0; |
| double abs_mv_in_out_accumulator = 0.0; |
| double mv_ratio_accumulator_thresh; |
| int max_bits = frame_max_bits(cpi); // Max for a single frame |
| |
| unsigned int allow_alt_ref = |
| cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames; |
| |
| int f_boost = 0; |
| int b_boost = 0; |
| int flash_detected; |
| int active_max_gf_interval; |
| |
| cpi->twopass.gf_group_bits = 0; |
| |
| vp9_clear_system_state(); // __asm emms; |
| |
| start_pos = cpi->twopass.stats_in; |
| |
| // Load stats for the current frame. |
| mod_frame_err = calculate_modified_err(cpi, this_frame); |
| |
| // Note the error of the frame at the start of the group (this will be |
| // the GF frame error if we code a normal gf |
| gf_first_frame_err = mod_frame_err; |
| |
| // Special treatment if the current frame is a key frame (which is also |
| // a gf). If it is then its error score (and hence bit allocation) need |
| // to be subtracted out from the calculation for the GF group |
| if (cpi->common.frame_type == KEY_FRAME) |
| gf_group_err -= gf_first_frame_err; |
| |
| // Motion breakout threshold for loop below depends on image size. |
| mv_ratio_accumulator_thresh = (cpi->common.width + cpi->common.height) / 10.0; |
| |
| // Work out a maximum interval for the GF. |
| // If the image appears completely static we can extend beyond this. |
| // The value chosen depends on the active Q range. At low Q we have |
| // bits to spare and are better with a smaller interval and smaller boost. |
| // At high Q when there are few bits to spare we are better with a longer |
| // interval to spread the cost of the GF. |
| // |
| active_max_gf_interval = |
| 11 + ((int)vp9_convert_qindex_to_q(cpi->rc.last_q[INTER_FRAME]) >> 5); |
| |
| if (active_max_gf_interval > cpi->rc.max_gf_interval) |
| active_max_gf_interval = cpi->rc.max_gf_interval; |
| |
| i = 0; |
| while ((i < cpi->twopass.static_scene_max_gf_interval) && |
| (i < (cpi->rc.frames_to_key - 1))) { |
| i++; // Increment the loop counter |
| |
| // Accumulate error score of frames in this gf group |
| mod_frame_err = calculate_modified_err(cpi, this_frame); |
| gf_group_err += mod_frame_err; |
| |
| if (EOF == input_stats(cpi, &next_frame)) |
| break; |
| |
| // Test for the case where there is a brief flash but the prediction |
| // quality back to an earlier frame is then restored. |
| flash_detected = detect_flash(cpi, 0); |
| |
| // Update the motion related elements to the boost calculation |
| accumulate_frame_motion_stats(&next_frame, |
| &this_frame_mv_in_out, &mv_in_out_accumulator, |
| &abs_mv_in_out_accumulator, |
| &mv_ratio_accumulator); |
| |
| // Cumulative effect of prediction quality decay |
| if (!flash_detected) { |
| last_loop_decay_rate = loop_decay_rate; |
| loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); |
| decay_accumulator = decay_accumulator * loop_decay_rate; |
| |
| // Monitor for static sections. |
| if ((next_frame.pcnt_inter - next_frame.pcnt_motion) < |
| zero_motion_accumulator) { |
| zero_motion_accumulator = |
| (next_frame.pcnt_inter - next_frame.pcnt_motion); |
| } |
| |
| // Break clause to detect very still sections after motion |
| // (for example a static image after a fade or other transition). |
| if (detect_transition_to_still(cpi, i, 5, loop_decay_rate, |
| last_loop_decay_rate)) { |
| allow_alt_ref = 0; |
| break; |
| } |
| } |
| |
| // Calculate a boost number for this frame |
| boost_score += |
| (decay_accumulator * |
| calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out)); |
| |
| // Break out conditions. |
| if ( |
| // Break at cpi->max_gf_interval unless almost totally static |
| (i >= active_max_gf_interval && (zero_motion_accumulator < 0.995)) || |
| ( |
| // Don't break out with a very short interval |
| (i > MIN_GF_INTERVAL) && |
| ((boost_score > 125.0) || (next_frame.pcnt_inter < 0.75)) && |
| (!flash_detected) && |
| ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) || |
| (abs_mv_in_out_accumulator > 3.0) || |
| (mv_in_out_accumulator < -2.0) || |
| ((boost_score - old_boost_score) < IIFACTOR)))) { |
| boost_score = old_boost_score; |
| break; |
| } |
| |
| *this_frame = next_frame; |
| |
| old_boost_score = boost_score; |
| } |
| |
| cpi->twopass.gf_zeromotion_pct = (int)(zero_motion_accumulator * 1000.0); |
| |
| // Don't allow a gf too near the next kf |
| if ((cpi->rc.frames_to_key - i) < MIN_GF_INTERVAL) { |
| while (i < (cpi->rc.frames_to_key - 1)) { |
| i++; |
| |
| if (EOF == input_stats(cpi, this_frame)) |
| break; |
| |
| if (i < cpi->rc.frames_to_key) { |
| mod_frame_err = calculate_modified_err(cpi, this_frame); |
| gf_group_err += mod_frame_err; |
| } |
| } |
| } |
| |
| // Set the interval until the next gf or arf. |
| cpi->rc.baseline_gf_interval = i; |
| |
| #if CONFIG_MULTIPLE_ARF |
| if (cpi->multi_arf_enabled) { |
| // Initialize frame coding order variables. |
| cpi->new_frame_coding_order_period = 0; |
| cpi->next_frame_in_order = 0; |
| cpi->arf_buffered = 0; |
| vp9_zero(cpi->frame_coding_order); |
| vp9_zero(cpi->arf_buffer_idx); |
| vpx_memset(cpi->arf_weight, -1, sizeof(cpi->arf_weight)); |
| } |
| #endif |
| |
| // Should we use the alternate reference frame |
| if (allow_alt_ref && |
| (i < cpi->oxcf.lag_in_frames) && |
| (i >= MIN_GF_INTERVAL) && |
| ((next_frame.pcnt_inter > 0.75) || |
| (next_frame.pcnt_second_ref > 0.5)) && |
| ((mv_in_out_accumulator / (double)i > -0.2) || |
| (mv_in_out_accumulator > -2.0)) && |
| (boost_score > 100)) { |
| // Alternative boost calculation for alt ref |
| cpi->rc.gfu_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost, |
| &b_boost); |
| cpi->rc.source_alt_ref_pending = 1; |
| |
| #if CONFIG_MULTIPLE_ARF |
| // Set the ARF schedule. |
| if (cpi->multi_arf_enabled) { |
| schedule_frames(cpi, 0, -(cpi->rc.baseline_gf_interval - 1), 2, 1, 0); |
| } |
| #endif |
| } else { |
| cpi->rc.gfu_boost = (int)boost_score; |
| cpi->rc.source_alt_ref_pending = 0; |
| #if CONFIG_MULTIPLE_ARF |
| // Set the GF schedule. |
| if (cpi->multi_arf_enabled) { |
| schedule_frames(cpi, 0, cpi->rc.baseline_gf_interval - 1, 2, 0, 0); |
| assert(cpi->new_frame_coding_order_period == |
| cpi->rc.baseline_gf_interval); |
| } |
| #endif |
| } |
| |
| #if CONFIG_MULTIPLE_ARF |
| if (cpi->multi_arf_enabled && (cpi->common.frame_type != KEY_FRAME)) { |
| int max_level = INT_MIN; |
| // Replace level indicator of -1 with correct level. |
| for (i = 0; i < cpi->frame_coding_order_period; ++i) { |
| if (cpi->arf_weight[i] > max_level) { |
| max_level = cpi->arf_weight[i]; |
| } |
| } |
| ++max_level; |
| for (i = 0; i < cpi->frame_coding_order_period; ++i) { |
| if (cpi->arf_weight[i] == -1) { |
| cpi->arf_weight[i] = max_level; |
| } |
| } |
| cpi->max_arf_level = max_level; |
| } |
| #if 0 |
| if (cpi->multi_arf_enabled) { |
| printf("\nSchedule: "); |
| for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { |
| printf("%4d ", cpi->frame_coding_order[i]); |
| } |
| printf("\n"); |
| printf("ARFref: "); |
| for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { |
| printf("%4d ", cpi->arf_buffer_idx[i]); |
| } |
| printf("\n"); |
| printf("Weight: "); |
| for (i = 0; i < cpi->new_frame_coding_order_period; ++i) { |
| printf("%4d ", cpi->arf_weight[i]); |
| } |
| printf("\n"); |
| } |
| #endif |
| #endif |
| |
| // Now decide how many bits should be allocated to the GF group as a |
| // proportion of those remaining in the kf group. |
| // The final key frame group in the clip is treated as a special case |
| // where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left. |
| // This is also important for short clips where there may only be one |
| // key frame. |
| if (cpi->rc.frames_to_key >= (int)(cpi->twopass.total_stats.count - |
| cpi->common.current_video_frame)) { |
| cpi->twopass.kf_group_bits = |
| (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0; |
| } |
| |
| // Calculate the bits to be allocated to the group as a whole |
| if ((cpi->twopass.kf_group_bits > 0) && |
| (cpi->twopass.kf_group_error_left > 0)) { |
| cpi->twopass.gf_group_bits = |
| (int64_t)(cpi->twopass.kf_group_bits * |
| (gf_group_err / cpi->twopass.kf_group_error_left)); |
| } else { |
| cpi->twopass.gf_group_bits = 0; |
| } |
| cpi->twopass.gf_group_bits = |
| (cpi->twopass.gf_group_bits < 0) |
| ? 0 |
| : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits) |
| ? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits; |
| |
| // Clip cpi->twopass.gf_group_bits based on user supplied data rate |
| // variability limit (cpi->oxcf.two_pass_vbrmax_section) |
| if (cpi->twopass.gf_group_bits > |
| (int64_t)max_bits * cpi->rc.baseline_gf_interval) |
| cpi->twopass.gf_group_bits = |
| (int64_t)max_bits * cpi->rc.baseline_gf_interval; |
| |
| // Reset the file position |
| reset_fpf_position(cpi, start_pos); |
| |
| // Assign bits to the arf or gf. |
| for (i = 0; |
| i <= (cpi->rc.source_alt_ref_pending && |
| cpi->common.frame_type != KEY_FRAME); |
| ++i) { |
| int allocation_chunks; |
| int q = cpi->rc.last_q[INTER_FRAME]; |
| int gf_bits; |
| |
| int boost = (cpi->rc.gfu_boost * gfboost_qadjust(q)) / 100; |
| |
| // Set max and minimum boost and hence minimum allocation |
| boost = clamp(boost, 125, (cpi->rc.baseline_gf_interval + 1) * 200); |
| |
| if (cpi->rc.source_alt_ref_pending && i == 0) |
| allocation_chunks = ((cpi->rc.baseline_gf_interval + 1) * 100) + boost; |
| else |
| allocation_chunks = (cpi->rc.baseline_gf_interval * 100) + (boost - 100); |
| |
| // Prevent overflow |
| if (boost > 1023) { |
| int divisor = boost >> 10; |
| boost /= divisor; |
| allocation_chunks /= divisor; |
| } |
| |
| // Calculate the number of bits to be spent on the gf or arf based on |
| // the boost number |
| gf_bits = (int)((double)boost * (cpi->twopass.gf_group_bits / |
| (double)allocation_chunks)); |
| |
| // If the frame that is to be boosted is simpler than the average for |
| // the gf/arf group then use an alternative calculation |
| // based on the error score of the frame itself |
| if (mod_frame_err < gf_group_err / (double)cpi->rc.baseline_gf_interval) { |
| double alt_gf_grp_bits = |
| (double)cpi->twopass.kf_group_bits * |
| (mod_frame_err * (double)cpi->rc.baseline_gf_interval) / |
| DOUBLE_DIVIDE_CHECK(cpi->twopass.kf_group_error_left); |
| |
| int alt_gf_bits = (int)((double)boost * (alt_gf_grp_bits / |
| (double)allocation_chunks)); |
| |
| if (gf_bits > alt_gf_bits) |
| gf_bits = alt_gf_bits; |
| } else { |
| // If it is harder than other frames in the group make sure it at |
| // least receives an allocation in keeping with its relative error |
| // score, otherwise it may be worse off than an "un-boosted" frame. |
| int alt_gf_bits = (int)((double)cpi->twopass.kf_group_bits * |
| mod_frame_err / |
| DOUBLE_DIVIDE_CHECK(cpi->twopass.kf_group_error_left)); |
| |
| if (alt_gf_bits > gf_bits) |
| gf_bits = alt_gf_bits; |
| } |
| |
| // Dont allow a negative value for gf_bits |
| if (gf_bits < 0) |
| gf_bits = 0; |
| |
| // Add in minimum for a frame |
| gf_bits += cpi->rc.min_frame_bandwidth; |
| |
| if (i == 0) { |
| cpi->twopass.gf_bits = gf_bits; |
| } |
| if (i == 1 || (!cpi->rc.source_alt_ref_pending |
| && (cpi->common.frame_type != KEY_FRAME))) { |
| // Per frame bit target for this frame |
| cpi->rc.per_frame_bandwidth = gf_bits; |
| } |
| } |
| |
| { |
| // Adjust KF group bits and error remaining |
| cpi->twopass.kf_group_error_left -= (int64_t)gf_group_err; |
| cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits; |
| |
| if (cpi->twopass.kf_group_bits < 0) |
| cpi->twopass.kf_group_bits = 0; |
| |
| // If this is an arf update we want to remove the score for the |
| // overlay frame at the end which will usually be very cheap to code. |
| // For normal GFs remove the score for the GF itself unless this is |
| // also a key frame in which case it has already been accounted for. |
| if (cpi->rc.source_alt_ref_pending) { |
| cpi->twopass.gf_group_error_left = (int64_t)gf_group_err - mod_frame_err; |
| } else if (cpi->common.frame_type != KEY_FRAME) { |
| cpi->twopass.gf_group_error_left = (int64_t)(gf_group_err |
| - gf_first_frame_err); |
| } else { |
| cpi->twopass.gf_group_error_left = (int64_t)gf_group_err; |
| } |
| |
| cpi->twopass.gf_group_bits -= cpi->twopass.gf_bits |
| - cpi->rc.min_frame_bandwidth; |
| |
| if (cpi->twopass.gf_group_bits < 0) |
| cpi->twopass.gf_group_bits = 0; |
| |
| // This condition could fail if there are two kfs very close together |
| // despite (MIN_GF_INTERVAL) and would cause a divide by 0 in the |
| // calculation of alt_extra_bits. |
| if (cpi->rc.baseline_gf_interval >= 3) { |
| const int boost = cpi->rc.source_alt_ref_pending ? |
| b_boost : cpi->rc.gfu_boost; |
| |
| if (boost >= 150) { |
| int alt_extra_bits; |
| int pct_extra = (boost - 100) / 50; |
| pct_extra = (pct_extra > 20) ? 20 : pct_extra; |
| |
| alt_extra_bits = (int)((cpi->twopass.gf_group_bits * pct_extra) / 100); |
| cpi->twopass.gf_group_bits -= alt_extra_bits; |
| } |
| } |
| } |
| |
| if (cpi->common.frame_type != KEY_FRAME) { |
| FIRSTPASS_STATS sectionstats; |
| |
| zero_stats(§ionstats); |
| reset_fpf_position(cpi, start_pos); |
| |
| for (i = 0; i < cpi->rc.baseline_gf_interval; i++) { |
| input_stats(cpi, &next_frame); |
| accumulate_stats(§ionstats, &next_frame); |
| } |
| |
| avg_stats(§ionstats); |
| |
| cpi->twopass.section_intra_rating = (int) |
| (sectionstats.intra_error / |
| DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); |
| |
| reset_fpf_position(cpi, start_pos); |
| } |
| } |
| |
| // Allocate bits to a normal frame that is neither a gf an arf or a key frame. |
| static void assign_std_frame_bits(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { |
| int target_frame_size; |
| |
| double modified_err; |
| double err_fraction; |
| |
| // Max for a single frame. |
| int max_bits = frame_max_bits(cpi); |
| |
| // Calculate modified prediction error used in bit allocation. |
| modified_err = calculate_modified_err(cpi, this_frame); |
| |
| if (cpi->twopass.gf_group_error_left > 0) |
| // What portion of the remaining GF group error is used by this frame. |
| err_fraction = modified_err / cpi->twopass.gf_group_error_left; |
| else |
| err_fraction = 0.0; |
| |
| // How many of those bits available for allocation should we give it? |
| target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction); |
| |
| // Clip target size to 0 - max_bits (or cpi->twopass.gf_group_bits) at |
| // the top end. |
| if (target_frame_size < 0) { |
| target_frame_size = 0; |
| } else { |
| if (target_frame_size > max_bits) |
| target_frame_size = max_bits; |
| |
| if (target_frame_size > cpi->twopass.gf_group_bits) |
| target_frame_size = (int)cpi->twopass.gf_group_bits; |
| } |
| |
| // Adjust error and bits remaining. |
| cpi->twopass.gf_group_error_left -= (int64_t)modified_err; |
| cpi->twopass.gf_group_bits -= target_frame_size; |
| |
| if (cpi->twopass.gf_group_bits < 0) |
| cpi->twopass.gf_group_bits = 0; |
| |
| // Add in the minimum number of bits that is set aside for every frame. |
| target_frame_size += cpi->rc.min_frame_bandwidth; |
| |
| // Per frame bit target for this frame. |
| cpi->rc.per_frame_bandwidth = target_frame_size; |
| } |
| |
| static int test_for_kf_one_pass(VP9_COMP *cpi) { |
| // Placeholder function for auto key frame |
| return 0; |
| } |
| |
| void vp9_get_svc_params(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| if ((cm->current_video_frame == 0) || |
| (cm->frame_flags & FRAMEFLAGS_KEY) || |
| (cpi->oxcf.auto_key && (cpi->rc.frames_since_key % |
| cpi->key_frame_frequency == 0))) { |
| cm->frame_type = KEY_FRAME; |
| } else { |
| cm->frame_type = INTER_FRAME; |
| } |
| cpi->rc.frames_till_gf_update_due = INT_MAX; |
| cpi->rc.baseline_gf_interval = INT_MAX; |
| } |
| |
| void vp9_get_one_pass_params(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| if (!cpi->refresh_alt_ref_frame && |
| (cm->current_video_frame == 0 || |
| cm->frame_flags & FRAMEFLAGS_KEY || |
| cpi->rc.frames_to_key == 0 || |
| (cpi->oxcf.auto_key && test_for_kf_one_pass(cpi)))) { |
| cm->frame_type = KEY_FRAME; |
| cpi->rc.frames_to_key = cpi->key_frame_frequency; |
| } else { |
| cm->frame_type = INTER_FRAME; |
| } |
| if (cpi->rc.frames_till_gf_update_due == 0) { |
| cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval; |
| cpi->refresh_golden_frame = 1; |
| } |
| } |
| |
| void vp9_get_one_pass_cbr_params(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| if ((cm->current_video_frame == 0 || |
| cm->frame_flags & FRAMEFLAGS_KEY || |
| cpi->rc.frames_to_key == 0 || |
| (cpi->oxcf.auto_key && test_for_kf_one_pass(cpi)))) { |
| cm->frame_type = KEY_FRAME; |
| cpi->rc.frames_to_key = cpi->key_frame_frequency; |
| } else { |
| cm->frame_type = INTER_FRAME; |
| } |
| // Don't use gf_update by default in CBR mode. |
| cpi->rc.frames_till_gf_update_due = INT_MAX; |
| cpi->rc.baseline_gf_interval = INT_MAX; |
| } |
| |
| void vp9_get_first_pass_params(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| if (!cpi->refresh_alt_ref_frame && |
| (cm->current_video_frame == 0 || |
| cm->frame_flags & FRAMEFLAGS_KEY)) { |
| cm->frame_type = KEY_FRAME; |
| } else { |
| cm->frame_type = INTER_FRAME; |
| } |
| cpi->rc.frames_to_key = INT_MAX; |
| // Do not use periodic key frames |
| } |
| |
| void vp9_get_second_pass_params(VP9_COMP *cpi) { |
| int tmp_q; |
| int frames_left = (int)(cpi->twopass.total_stats.count - |
| cpi->common.current_video_frame); |
| |
| FIRSTPASS_STATS this_frame; |
| FIRSTPASS_STATS this_frame_copy; |
| |
| double this_frame_intra_error; |
| double this_frame_coded_error; |
| |
| if (cpi->refresh_alt_ref_frame) { |
| cpi->common.frame_type = INTER_FRAME; |
| return; |
| } |
| if (!cpi->twopass.stats_in) |
| return; |
| |
| vp9_clear_system_state(); |
| |
| if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) { |
| cpi->rc.active_worst_quality = cpi->oxcf.cq_level; |
| } else if (cpi->common.current_video_frame == 0) { |
| // Special case code for first frame. |
| int section_target_bandwidth = |
| (int)(cpi->twopass.bits_left / frames_left); |
| |
| tmp_q = estimate_max_q(cpi, &cpi->twopass.total_left_stats, |
| section_target_bandwidth); |
| |
| cpi->rc.active_worst_quality = tmp_q; |
| cpi->rc.ni_av_qi = tmp_q; |
| cpi->rc.avg_q = vp9_convert_qindex_to_q(tmp_q); |
| |
| // Limit the maxq value returned subsequently. |
| // This increases the risk of overspend or underspend if the initial |
| // estimate for the clip is bad, but helps prevent excessive |
| // variation in Q, especially near the end of a clip |
| // where for example a small overspend may cause Q to crash |
| // adjust_maxq_qrange(cpi); |
| } |
| vp9_zero(this_frame); |
| if (EOF == input_stats(cpi, &this_frame)) |
| return; |
| |
| this_frame_intra_error = this_frame.intra_error; |
| this_frame_coded_error = this_frame.coded_error; |
| |
| // keyframe and section processing ! |
| if (cpi->rc.frames_to_key == 0) { |
| // Define next KF group and assign bits to it |
| this_frame_copy = this_frame; |
| find_next_key_frame(cpi, &this_frame_copy); |
| } else { |
| cpi->common.frame_type = INTER_FRAME; |
| } |
| |
| // Is this a GF / ARF (Note that a KF is always also a GF) |
| if (cpi->rc.frames_till_gf_update_due == 0) { |
| // Define next gf group and assign bits to it |
| this_frame_copy = this_frame; |
| |
| #if CONFIG_MULTIPLE_ARF |
| if (cpi->multi_arf_enabled) { |
| define_fixed_arf_period(cpi); |
| } else { |
| #endif |
| define_gf_group(cpi, &this_frame_copy); |
| #if CONFIG_MULTIPLE_ARF |
| } |
| #endif |
| |
| if (cpi->twopass.gf_zeromotion_pct > 995) { |
| // As long as max_thresh for encode breakout is small enough, it is ok |
| // to enable it for no-show frame, i.e. set enable_encode_breakout to 2. |
| if (!cpi->common.show_frame) |
| cpi->enable_encode_breakout = 0; |
| else |
| cpi->enable_encode_breakout = 2; |
| } |
| |
| // If we are going to code an altref frame at the end of the group |
| // and the current frame is not a key frame.... |
| // If the previous group used an arf this frame has already benefited |
| // from that arf boost and it should not be given extra bits |
| // If the previous group was NOT coded using arf we may want to apply |
| // some boost to this GF as well |
| if (cpi->rc.source_alt_ref_pending && |
| cpi->common.frame_type != KEY_FRAME) { |
| // Assign a standard frames worth of bits from those allocated |
| // to the GF group |
| int bak = cpi->rc.per_frame_bandwidth; |
| this_frame_copy = this_frame; |
| assign_std_frame_bits(cpi, &this_frame_copy); |
| cpi->rc.per_frame_bandwidth = bak; |
| } |
| cpi->rc.frames_till_gf_update_due = cpi->rc.baseline_gf_interval; |
| cpi->refresh_golden_frame = 1; |
| } else { |
| // Otherwise this is an ordinary frame |
| // Assign bits from those allocated to the GF group |
| this_frame_copy = this_frame; |
| assign_std_frame_bits(cpi, &this_frame_copy); |
| } |
| |
| // Keep a globally available copy of this and the next frame's iiratio. |
| cpi->twopass.this_iiratio = (int)(this_frame_intra_error / |
| DOUBLE_DIVIDE_CHECK(this_frame_coded_error)); |
| { |
| FIRSTPASS_STATS next_frame; |
| if (lookup_next_frame_stats(cpi, &next_frame) != EOF) { |
| cpi->twopass.next_iiratio = (int)(next_frame.intra_error / |
| DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); |
| } |
| } |
| |
| // Set nominal per second bandwidth for this frame |
| cpi->target_bandwidth = (int)(cpi->rc.per_frame_bandwidth |
| * cpi->output_framerate); |
| if (cpi->target_bandwidth < 0) |
| cpi->target_bandwidth = 0; |
| |
| // Update the total stats remaining structure |
| subtract_stats(&cpi->twopass.total_left_stats, &this_frame); |
| } |
| |
| static int test_candidate_kf(VP9_COMP *cpi, |
| FIRSTPASS_STATS *last_frame, |
| FIRSTPASS_STATS *this_frame, |
| FIRSTPASS_STATS *next_frame) { |
| int is_viable_kf = 0; |
| |
| // Does the frame satisfy the primary criteria of a key frame |
| // If so, then examine how well it predicts subsequent frames |
| if ((this_frame->pcnt_second_ref < 0.10) && |
| (next_frame->pcnt_second_ref < 0.10) && |
| ((this_frame->pcnt_inter < 0.05) || |
| (((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .35) && |
| ((this_frame->intra_error / |
| DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) && |
| ((fabs(last_frame->coded_error - this_frame->coded_error) / |
| DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > |
| .40) || |
| (fabs(last_frame->intra_error - this_frame->intra_error) / |
| DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > |
| .40) || |
| ((next_frame->intra_error / |
| DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5))))) { |
| int i; |
| FIRSTPASS_STATS *start_pos; |
| |
| FIRSTPASS_STATS local_next_frame; |
| |
| double boost_score = 0.0; |
| double old_boost_score = 0.0; |
| double decay_accumulator = 1.0; |
| double next_iiratio; |
| |
| local_next_frame = *next_frame; |
| |
| // Note the starting file position so we can reset to it |
| start_pos = cpi->twopass.stats_in; |
| |
| // Examine how well the key frame predicts subsequent frames |
| for (i = 0; i < 16; i++) { |
| next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / |
| DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)); |
| |
| if (next_iiratio > RMAX) |
| next_iiratio = RMAX; |
| |
| // Cumulative effect of decay in prediction quality |
| if (local_next_frame.pcnt_inter > 0.85) |
| decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; |
| else |
| decay_accumulator = |
| decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0); |
| |
| // decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; |
| |
| // Keep a running total |
| boost_score += (decay_accumulator * next_iiratio); |
| |
| // Test various breakout clauses |
| if ((local_next_frame.pcnt_inter < 0.05) || |
| (next_iiratio < 1.5) || |
| (((local_next_frame.pcnt_inter - |
| local_next_frame.pcnt_neutral) < 0.20) && |
| (next_iiratio < 3.0)) || |
| ((boost_score - old_boost_score) < 3.0) || |
| (local_next_frame.intra_error < 200) |
| ) { |
| break; |
| } |
| |
| old_boost_score = boost_score; |
| |
| // Get the next frame details |
| if (EOF == input_stats(cpi, &local_next_frame)) |
| break; |
| } |
| |
| // If there is tolerable prediction for at least the next 3 frames then |
| // break out else discard this potential key frame and move on |
| if (boost_score > 30.0 && (i > 3)) { |
| is_viable_kf = 1; |
| } else { |
| // Reset the file position |
| reset_fpf_position(cpi, start_pos); |
| |
| is_viable_kf = 0; |
| } |
| } |
| |
| return is_viable_kf; |
| } |
| |
| static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) { |
| int i, j; |
| FIRSTPASS_STATS last_frame; |
| FIRSTPASS_STATS first_frame; |
| FIRSTPASS_STATS next_frame; |
| FIRSTPASS_STATS *start_position; |
| |
| double decay_accumulator = 1.0; |
| double zero_motion_accumulator = 1.0; |
| double boost_score = 0; |
| double loop_decay_rate; |
| |
| double kf_mod_err = 0.0; |
| double kf_group_err = 0.0; |
| double kf_group_intra_err = 0.0; |
| double kf_group_coded_err = 0.0; |
| double recent_loop_decay[8] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}; |
| |
| vp9_zero(next_frame); |
| |
| vp9_clear_system_state(); // __asm emms; |
| start_position = cpi->twopass.stats_in; |
| |
| cpi->common.frame_type = KEY_FRAME; |
| |
| // is this a forced key frame by interval |
| cpi->rc.this_key_frame_forced = cpi->rc.next_key_frame_forced; |
| |
| // Clear the alt ref active flag as this can never be active on a key frame |
| cpi->rc.source_alt_ref_active = 0; |
| |
| // Kf is always a gf so clear frames till next gf counter |
| cpi->rc.frames_till_gf_update_due = 0; |
| |
| cpi->rc.frames_to_key = 1; |
| |
| // Take a copy of the initial frame details |
| first_frame = *this_frame; |
| |
| cpi->twopass.kf_group_bits = 0; // Total bits available to kf group |
| cpi->twopass.kf_group_error_left = 0; // Group modified error score. |
| |
| kf_mod_err = calculate_modified_err(cpi, this_frame); |
| |
| // find the next keyframe |
| i = 0; |
| while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) { |
| // Accumulate kf group error |
| kf_group_err += calculate_modified_err(cpi, this_frame); |
| |
| // These figures keep intra and coded error counts for all frames including |
| // key frames in the group. The effect of the key frame itself can be |
| // subtracted out using the first_frame data collected above. |
| kf_group_intra_err += this_frame->intra_error; |
| kf_group_coded_err += this_frame->coded_error; |
| |
| // load a the next frame's stats |
| last_frame = *this_frame; |
| input_stats(cpi, this_frame); |
| |
| // Provided that we are not at the end of the file... |
| if (cpi->oxcf.auto_key |
| && lookup_next_frame_stats(cpi, &next_frame) != EOF) { |
| // Normal scene cut check |
| if (test_candidate_kf(cpi, &last_frame, this_frame, &next_frame)) |
| break; |
| |
| |
| // How fast is prediction quality decaying |
| loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); |
| |
| // We want to know something about the recent past... rather than |
| // as used elsewhere where we are concened with decay in prediction |
| // quality since the last GF or KF. |
| recent_loop_decay[i % 8] = loop_decay_rate; |
| decay_accumulator = 1.0; |
| for (j = 0; j < 8; j++) |
| decay_accumulator *= recent_loop_decay[j]; |
| |
| // Special check for transition or high motion followed by a |
| // to a static scene. |
| if (detect_transition_to_still(cpi, i, cpi->key_frame_frequency - i, |
| loop_decay_rate, decay_accumulator)) |
| break; |
| |
| // Step on to the next frame |
| cpi->rc.frames_to_key++; |
| |
| // If we don't have a real key frame within the next two |
| // forcekeyframeevery intervals then break out of the loop. |
| if (cpi->rc.frames_to_key >= 2 * (int)cpi->key_frame_frequency) |
| break; |
| } else { |
| cpi->rc.frames_to_key++; |
| } |
| i++; |
| } |
| |
| // If there is a max kf interval set by the user we must obey it. |
| // We already breakout of the loop above at 2x max. |
| // This code centers the extra kf if the actual natural |
| // interval is between 1x and 2x |
| if (cpi->oxcf.auto_key |
| && cpi->rc.frames_to_key > (int)cpi->key_frame_frequency) { |
| FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in; |
| FIRSTPASS_STATS tmp_frame; |
| |
| cpi->rc.frames_to_key /= 2; |
| |
| // Copy first frame details |
| tmp_frame = first_frame; |
| |
| // Reset to the start of the group |
| reset_fpf_position(cpi, start_position); |
| |
| kf_group_err = 0; |
| kf_group_intra_err = 0; |
| kf_group_coded_err = 0; |
| |
| // Rescan to get the correct error data for the forced kf group |
| for (i = 0; i < cpi->rc.frames_to_key; i++) { |
| // Accumulate kf group errors |
| kf_group_err += calculate_modified_err(cpi, &tmp_frame); |
| kf_group_intra_err += tmp_frame.intra_error; |
| kf_group_coded_err += tmp_frame.coded_error; |
| |
| // Load a the next frame's stats |
| input_stats(cpi, &tmp_frame); |
| } |
| |
| // Reset to the start of the group |
| reset_fpf_position(cpi, current_pos); |
| |
| cpi->rc.next_key_frame_forced = 1; |
| } else { |
| cpi->rc.next_key_frame_forced = 0; |
| } |
| // Special case for the last frame of the file |
| if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) { |
| // Accumulate kf group error |
| kf_group_err += calculate_modified_err(cpi, this_frame); |
| |
| // These figures keep intra and coded error counts for all frames including |
| // key frames in the group. The effect of the key frame itself can be |
| // subtracted out using the first_frame data collected above. |
| kf_group_intra_err += this_frame->intra_error; |
| kf_group_coded_err += this_frame->coded_error; |
| } |
| |
| // Calculate the number of bits that should be assigned to the kf group. |
| if ((cpi->twopass.bits_left > 0) && |
| (cpi->twopass.modified_error_left > 0.0)) { |
| // Max for a single normal frame (not key frame) |
| int max_bits = frame_max_bits(cpi); |
| |
| // Maximum bits for the kf group |
| int64_t max_grp_bits; |
| |
| // Default allocation based on bits left and relative |
| // complexity of the section |
| cpi->twopass.kf_group_bits = (int64_t)(cpi->twopass.bits_left * |
| (kf_group_err / |
| cpi->twopass.modified_error_left)); |
| |
| // Clip based on maximum per frame rate defined by the user. |
| max_grp_bits = (int64_t)max_bits * (int64_t)cpi->rc.frames_to_key; |
| if (cpi->twopass.kf_group_bits > max_grp_bits) |
| cpi->twopass.kf_group_bits = max_grp_bits; |
| } else { |
| cpi->twopass.kf_group_bits = 0; |
| } |
| // Reset the first pass file position |
| reset_fpf_position(cpi, start_position); |
| |
| // Determine how big to make this keyframe based on how well the subsequent |
| // frames use inter blocks. |
| decay_accumulator = 1.0; |
| boost_score = 0.0; |
| loop_decay_rate = 1.00; // Starting decay rate |
| |
| // Scan through the kf group collating various stats. |
| for (i = 0; i < cpi->rc.frames_to_key; i++) { |
| double r; |
| |
| if (EOF == input_stats(cpi, &next_frame)) |
| break; |
| |
| // Monitor for static sections. |
| if ((next_frame.pcnt_inter - next_frame.pcnt_motion) < |
| zero_motion_accumulator) { |
| zero_motion_accumulator = |
| (next_frame.pcnt_inter - next_frame.pcnt_motion); |
| } |
| |
| // For the first few frames collect data to decide kf boost. |
| if (i <= (cpi->rc.max_gf_interval * 2)) { |
| if (next_frame.intra_error > cpi->twopass.kf_intra_err_min) |
| r = (IIKFACTOR2 * next_frame.intra_error / |
| DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); |
| else |
| r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min / |
| DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); |
| |
| if (r > RMAX) |
| r = RMAX; |
| |
| // How fast is prediction quality decaying |
| if (!detect_flash(cpi, 0)) { |
| loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); |
| decay_accumulator = decay_accumulator * loop_decay_rate; |
| decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR |
| ? MIN_DECAY_FACTOR : decay_accumulator; |
| } |
| |
| boost_score += (decay_accumulator * r); |
| } |
| } |
| |
| { |
| FIRSTPASS_STATS sectionstats; |
| |
| zero_stats(§ionstats); |
| reset_fpf_position(cpi, start_position); |
| |
| for (i = 0; i < cpi->rc.frames_to_key; i++) { |
| input_stats(cpi, &next_frame); |
| accumulate_stats(§ionstats, &next_frame); |
| } |
| |
| avg_stats(§ionstats); |
| |
| cpi->twopass.section_intra_rating = (int) |
| (sectionstats.intra_error |
| / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error)); |
| } |
| |
| // Reset the first pass file position |
| reset_fpf_position(cpi, start_position); |
| |
| // Work out how many bits to allocate for the key frame itself |
| if (1) { |
| int kf_boost = (int)boost_score; |
| int allocation_chunks; |
| int alt_kf_bits; |
| |
| if (kf_boost < (cpi->rc.frames_to_key * 3)) |
| kf_boost = (cpi->rc.frames_to_key * 3); |
| |
| if (kf_boost < 300) // Min KF boost |
| kf_boost = 300; |
| |
| // Make a note of baseline boost and the zero motion |
| // accumulator value for use elsewhere. |
| cpi->rc.kf_boost = kf_boost; |
| cpi->twopass.kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0); |
| |
| // We do three calculations for kf size. |
| // The first is based on the error score for the whole kf group. |
| // The second (optionaly) on the key frames own error if this is |
| // smaller than the average for the group. |
| // The final one insures that the frame receives at least the |
| // allocation it would have received based on its own error score vs |
| // the error score remaining |
| // Special case if the sequence appears almost totaly static |
| // In this case we want to spend almost all of the bits on the |
| // key frame. |
| // cpi->rc.frames_to_key-1 because key frame itself is taken |
| // care of by kf_boost. |
| if (zero_motion_accumulator >= 0.99) { |
| allocation_chunks = |
| ((cpi->rc.frames_to_key - 1) * 10) + kf_boost; |
| } else { |
| allocation_chunks = |
| ((cpi->rc.frames_to_key - 1) * 100) + kf_boost; |
| } |
| |
| // Prevent overflow |
| if (kf_boost > 1028) { |
| int divisor = kf_boost >> 10; |
| kf_boost /= divisor; |
| allocation_chunks /= divisor; |
| } |
| |
| cpi->twopass.kf_group_bits = |
| (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits; |
| |
| // Calculate the number of bits to be spent on the key frame |
| cpi->twopass.kf_bits = |
| (int)((double)kf_boost * |
| ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks)); |
| |
| // If the key frame is actually easier than the average for the |
| // kf group (which does sometimes happen... eg a blank intro frame) |
| // Then use an alternate calculation based on the kf error score |
| // which should give a smaller key frame. |
| if (kf_mod_err < kf_group_err / cpi->rc.frames_to_key) { |
| double alt_kf_grp_bits = |
| ((double)cpi->twopass.bits_left * |
| (kf_mod_err * (double)cpi->rc.frames_to_key) / |
| DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)); |
| |
| alt_kf_bits = (int)((double)kf_boost * |
| (alt_kf_grp_bits / (double)allocation_chunks)); |
| |
| if (cpi->twopass.kf_bits > alt_kf_bits) { |
| cpi->twopass.kf_bits = alt_kf_bits; |
| } |
| } else { |
| // Else if it is much harder than other frames in the group make sure |
| // it at least receives an allocation in keeping with its relative |
| // error score |
| alt_kf_bits = |
| (int)((double)cpi->twopass.bits_left * |
| (kf_mod_err / |
| DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left))); |
| |
| if (alt_kf_bits > cpi->twopass.kf_bits) { |
| cpi->twopass.kf_bits = alt_kf_bits; |
| } |
| } |
| |
| cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits; |
| // Add in the minimum frame allowance |
| cpi->twopass.kf_bits += cpi->rc.min_frame_bandwidth; |
| |
| // Peer frame bit target for this frame |
| cpi->rc.per_frame_bandwidth = cpi->twopass.kf_bits; |
| // Convert to a per second bitrate |
| cpi->target_bandwidth = (int)(cpi->twopass.kf_bits * |
| cpi->output_framerate); |
| } |
| |
| // Note the total error score of the kf group minus the key frame itself |
| cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err); |
| |
| // Adjust the count of total modified error left. |
| // The count of bits left is adjusted elsewhere based on real coded frame |
| // sizes. |
| cpi->twopass.modified_error_left -= kf_group_err; |
| } |
| |
| void vp9_twopass_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) { |
| #ifdef DISABLE_RC_LONG_TERM_MEM |
| cpi->twopass.bits_left -= cpi->rc.this_frame_target; |
| #else |
| cpi->twopass.bits_left -= 8 * bytes_used; |
| #endif |
| } |