blob: a274f720f6e22ec0da1533223cd6029952982df4 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "./av1_rtcd.h"
#include "./aom_dsp_rtcd.h"
#include "./aom_config.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_ports/mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/system_state.h"
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/idct.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconintra.h"
#include "av1/common/reconinter.h"
#include "av1/common/seg_common.h"
#include "av1/common/tile_common.h"
#include "av1/encoder/aq_complexity.h"
#include "av1/encoder/aq_cyclicrefresh.h"
#include "av1/encoder/aq_variance.h"
#if CONFIG_SUPERTX
#include "av1/encoder/cost.h"
#endif
#if CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
#include "av1/common/warped_motion.h"
#endif // CONFIG_GLOBAL_MOTION || CONFIG_WARPED_MOTION
#if CONFIG_GLOBAL_MOTION
#include "av1/encoder/global_motion.h"
#endif // CONFIG_GLOBAL_MOTION
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/ethread.h"
#include "av1/encoder/extend.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/tokenize.h"
#if CONFIG_PVQ
#include "av1/encoder/pvq_encoder.h"
#endif
#if CONFIG_AOM_HIGHBITDEPTH
#define IF_HBD(...) __VA_ARGS__
#else
#define IF_HBD(...)
#endif // CONFIG_AOM_HIGHBITDEPTH
static void encode_superblock(const AV1_COMP *const cpi, ThreadData *td,
TOKENEXTRA **t, RUN_TYPE dry_run, int mi_row,
int mi_col, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx, int *rate);
#if CONFIG_SUPERTX
static int check_intra_b(PICK_MODE_CONTEXT *ctx);
static int check_intra_sb(const AV1_COMP *cpi, const TileInfo *const tile,
int mi_row, int mi_col, BLOCK_SIZE bsize,
PC_TREE *pc_tree);
static void predict_superblock(const AV1_COMP *const cpi, ThreadData *td,
#if CONFIG_EXT_INTER
int mi_row_ori, int mi_col_ori,
#endif // CONFIG_EXT_INTER
int mi_row_pred, int mi_col_pred,
BLOCK_SIZE bsize_pred, int b_sub8x8, int block);
static int check_supertx_sb(BLOCK_SIZE bsize, TX_SIZE supertx_size,
PC_TREE *pc_tree);
static void predict_sb_complex(const AV1_COMP *const cpi, ThreadData *td,
const TileInfo *const tile, int mi_row,
int mi_col, int mi_row_ori, int mi_col_ori,
RUN_TYPE dry_run, BLOCK_SIZE bsize,
BLOCK_SIZE top_bsize, uint8_t *dst_buf[3],
int dst_stride[3], PC_TREE *pc_tree);
static void update_state_sb_supertx(const AV1_COMP *const cpi, ThreadData *td,
const TileInfo *const tile, int mi_row,
int mi_col, BLOCK_SIZE bsize,
RUN_TYPE dry_run, PC_TREE *pc_tree);
static void rd_supertx_sb(const AV1_COMP *const cpi, ThreadData *td,
const TileInfo *const tile, int mi_row, int mi_col,
BLOCK_SIZE bsize, int *tmp_rate, int64_t *tmp_dist,
TX_TYPE *best_tx, PC_TREE *pc_tree);
#endif // CONFIG_SUPERTX
// This is used as a reference when computing the source variance for the
// purposes of activity masking.
// Eventually this should be replaced by custom no-reference routines,
// which will be faster.
static const uint8_t AV1_VAR_OFFS[MAX_SB_SIZE] = {
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
#if CONFIG_EXT_PARTITION
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
#endif // CONFIG_EXT_PARTITION
};
#if CONFIG_AOM_HIGHBITDEPTH
static const uint16_t AV1_HIGH_VAR_OFFS_8[MAX_SB_SIZE] = {
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
#if CONFIG_EXT_PARTITION
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128
#endif // CONFIG_EXT_PARTITION
};
static const uint16_t AV1_HIGH_VAR_OFFS_10[MAX_SB_SIZE] = {
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
#if CONFIG_EXT_PARTITION
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4
#endif // CONFIG_EXT_PARTITION
};
static const uint16_t AV1_HIGH_VAR_OFFS_12[MAX_SB_SIZE] = {
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16,
#if CONFIG_EXT_PARTITION
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16
#endif // CONFIG_EXT_PARTITION
};
#endif // CONFIG_AOM_HIGHBITDEPTH
unsigned int av1_get_sby_perpixel_variance(const AV1_COMP *cpi,
const struct buf_2d *ref,
BLOCK_SIZE bs) {
unsigned int sse;
const unsigned int var =
cpi->fn_ptr[bs].vf(ref->buf, ref->stride, AV1_VAR_OFFS, 0, &sse);
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
}
#if CONFIG_AOM_HIGHBITDEPTH
unsigned int av1_high_get_sby_perpixel_variance(const AV1_COMP *cpi,
const struct buf_2d *ref,
BLOCK_SIZE bs, int bd) {
unsigned int var, sse;
switch (bd) {
case 10:
var =
cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10), 0, &sse);
break;
case 12:
var =
cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12), 0, &sse);
break;
case 8:
default:
var =
cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8), 0, &sse);
break;
}
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
}
#endif // CONFIG_AOM_HIGHBITDEPTH
static unsigned int get_sby_perpixel_diff_variance(const AV1_COMP *const cpi,
const struct buf_2d *ref,
int mi_row, int mi_col,
BLOCK_SIZE bs) {
unsigned int sse, var;
uint8_t *last_y;
const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME);
assert(last != NULL);
last_y =
&last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE];
var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse);
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
}
static BLOCK_SIZE get_rd_var_based_fixed_partition(AV1_COMP *cpi, MACROBLOCK *x,
int mi_row, int mi_col) {
unsigned int var = get_sby_perpixel_diff_variance(
cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64);
if (var < 8)
return BLOCK_64X64;
else if (var < 128)
return BLOCK_32X32;
else if (var < 2048)
return BLOCK_16X16;
else
return BLOCK_8X8;
}
// Lighter version of set_offsets that only sets the mode info
// pointers.
static void set_mode_info_offsets(const AV1_COMP *const cpi,
MACROBLOCK *const x, MACROBLOCKD *const xd,
int mi_row, int mi_col) {
const AV1_COMMON *const cm = &cpi->common;
const int idx_str = xd->mi_stride * mi_row + mi_col;
xd->mi = cm->mi_grid_visible + idx_str;
xd->mi[0] = cm->mi + idx_str;
x->mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
}
static void set_offsets_without_segment_id(const AV1_COMP *const cpi,
const TileInfo *const tile,
MACROBLOCK *const x, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
const int bwl = b_width_log2_lookup[AOMMAX(bsize, BLOCK_8X8)];
const int bhl = b_height_log2_lookup[AOMMAX(bsize, BLOCK_8X8)];
set_skip_context(xd, mi_row, mi_col);
set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
#if CONFIG_VAR_TX
xd->above_txfm_context = cm->above_txfm_context + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
xd->max_tx_size = max_txsize_lookup[bsize];
#endif
// Set up destination pointers.
av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
// Set up limit values for MV components.
// Mv beyond the range do not produce new/different prediction block.
x->mv_row_min = -(((mi_row + mi_height) * MI_SIZE) + AOM_INTERP_EXTEND);
x->mv_col_min = -(((mi_col + mi_width) * MI_SIZE) + AOM_INTERP_EXTEND);
x->mv_row_max = (cm->mi_rows - mi_row) * MI_SIZE + AOM_INTERP_EXTEND;
x->mv_col_max = (cm->mi_cols - mi_col) * MI_SIZE + AOM_INTERP_EXTEND;
set_plane_n4(xd, mi_width, mi_height, bwl, bhl);
// Set up distance of MB to edge of frame in 1/8th pel units.
assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows,
cm->mi_cols);
// Set up source buffers.
av1_setup_src_planes(x, cpi->Source, mi_row, mi_col);
// R/D setup.
x->rddiv = cpi->rd.RDDIV;
x->rdmult = cpi->rd.RDMULT;
// required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs()
xd->tile = *tile;
}
static void set_offsets(const AV1_COMP *const cpi, const TileInfo *const tile,
MACROBLOCK *const x, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
const struct segmentation *const seg = &cm->seg;
set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
mbmi = &xd->mi[0]->mbmi;
// Setup segment ID.
if (seg->enabled) {
if (!cpi->vaq_refresh) {
const uint8_t *const map =
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
mbmi->segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
}
av1_init_plane_quantizers(cpi, x, mbmi->segment_id);
} else {
mbmi->segment_id = 0;
}
#if CONFIG_SUPERTX
mbmi->segment_id_supertx = MAX_SEGMENTS;
#endif // CONFIG_SUPERTX
}
#if CONFIG_SUPERTX
static void set_offsets_supertx(const AV1_COMP *const cpi, ThreadData *td,
const TileInfo *const tile, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
MACROBLOCK *const x = &td->mb;
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
// Set up distance of MB to edge of frame in 1/8th pel units.
assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows,
cm->mi_cols);
}
static void set_offsets_extend(const AV1_COMP *const cpi, ThreadData *td,
const TileInfo *const tile, int mi_row_pred,
int mi_col_pred, int mi_row_ori, int mi_col_ori,
BLOCK_SIZE bsize_pred) {
// Used in supertx
// (mi_row_ori, mi_col_ori, bsize_ori): region for mv
// (mi_row_pred, mi_col_pred, bsize_pred): region to predict
MACROBLOCK *const x = &td->mb;
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_width = num_8x8_blocks_wide_lookup[bsize_pred];
const int mi_height = num_8x8_blocks_high_lookup[bsize_pred];
set_mode_info_offsets(cpi, x, xd, mi_row_ori, mi_col_ori);
// Set up limit values for MV components.
// Mv beyond the range do not produce new/different prediction block.
x->mv_row_min = -(((mi_row_pred + mi_height) * MI_SIZE) + AOM_INTERP_EXTEND);
x->mv_col_min = -(((mi_col_pred + mi_width) * MI_SIZE) + AOM_INTERP_EXTEND);
x->mv_row_max = (cm->mi_rows - mi_row_pred) * MI_SIZE + AOM_INTERP_EXTEND;
x->mv_col_max = (cm->mi_cols - mi_col_pred) * MI_SIZE + AOM_INTERP_EXTEND;
// Set up distance of MB to edge of frame in 1/8th pel units.
assert(!(mi_col_pred & (mi_width - 1)) && !(mi_row_pred & (mi_height - 1)));
set_mi_row_col(xd, tile, mi_row_pred, mi_height, mi_col_pred, mi_width,
cm->mi_rows, cm->mi_cols);
xd->up_available = (mi_row_ori > tile->mi_row_start);
xd->left_available = (mi_col_ori > tile->mi_col_start);
// R/D setup.
x->rddiv = cpi->rd.RDDIV;
x->rdmult = cpi->rd.RDMULT;
}
static void set_segment_id_supertx(const AV1_COMP *const cpi,
MACROBLOCK *const x, const int mi_row,
const int mi_col, const BLOCK_SIZE bsize) {
const AV1_COMMON *cm = &cpi->common;
const struct segmentation *seg = &cm->seg;
const int miw =
AOMMIN(num_8x8_blocks_wide_lookup[bsize], cm->mi_cols - mi_col);
const int mih =
AOMMIN(num_8x8_blocks_high_lookup[bsize], cm->mi_rows - mi_row);
const int mi_offset = mi_row * cm->mi_stride + mi_col;
MODE_INFO **const mip = cm->mi_grid_visible + mi_offset;
int r, c;
int seg_id_supertx = MAX_SEGMENTS;
if (!seg->enabled) {
seg_id_supertx = 0;
} else {
// Find the minimum segment_id
for (r = 0; r < mih; r++)
for (c = 0; c < miw; c++)
seg_id_supertx =
AOMMIN(mip[r * cm->mi_stride + c]->mbmi.segment_id, seg_id_supertx);
assert(0 <= seg_id_supertx && seg_id_supertx < MAX_SEGMENTS);
// Initialize plane quantisers
av1_init_plane_quantizers(cpi, x, seg_id_supertx);
}
// Assign the the segment_id back to segment_id_supertx
for (r = 0; r < mih; r++)
for (c = 0; c < miw; c++)
mip[r * cm->mi_stride + c]->mbmi.segment_id_supertx = seg_id_supertx;
}
#endif // CONFIG_SUPERTX
static void set_block_size(AV1_COMP *const cpi, MACROBLOCK *const x,
MACROBLOCKD *const xd, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
if (cpi->common.mi_cols > mi_col && cpi->common.mi_rows > mi_row) {
set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
xd->mi[0]->mbmi.sb_type = bsize;
}
}
static void set_vt_partitioning(AV1_COMP *cpi, MACROBLOCK *const x,
MACROBLOCKD *const xd, VAR_TREE *vt, int mi_row,
int mi_col, const int64_t *const threshold,
const BLOCK_SIZE *const bsize_min) {
AV1_COMMON *const cm = &cpi->common;
const int hbw = mi_size_wide[vt->bsize] / 2;
const int hbh = mi_size_high[vt->bsize] / 2;
const int has_cols = mi_col + hbw < cm->mi_cols;
const int has_rows = mi_row + hbh < cm->mi_rows;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
assert(vt->bsize >= BLOCK_8X8);
assert(hbh == hbw);
if (vt->bsize == BLOCK_8X8 && cm->frame_type != KEY_FRAME) {
set_block_size(cpi, x, xd, mi_row, mi_col, BLOCK_8X8);
return;
}
if (vt->force_split || (!has_cols && !has_rows)) goto split;
// For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if
// variance is below threshold, otherwise split will be selected.
// No check for vert/horiz split as too few samples for variance.
if (vt->bsize == bsize_min[0]) {
if (has_cols && has_rows && vt->variances.none.variance < threshold[0]) {
set_block_size(cpi, x, xd, mi_row, mi_col, vt->bsize);
return;
} else {
BLOCK_SIZE subsize = get_subsize(vt->bsize, PARTITION_SPLIT);
set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
if (vt->bsize > BLOCK_8X8) {
set_block_size(cpi, x, xd, mi_row, mi_col + hbw, subsize);
set_block_size(cpi, x, xd, mi_row + hbh, mi_col, subsize);
set_block_size(cpi, x, xd, mi_row + hbh, mi_col + hbw, subsize);
}
return;
}
} else if (vt->bsize > bsize_min[0]) {
// For key frame: take split for bsize above 32X32 or very high variance.
if (cm->frame_type == KEY_FRAME &&
(vt->bsize > BLOCK_32X32 ||
vt->variances.none.variance > (threshold[0] << 4))) {
goto split;
}
// If variance is low, take the bsize (no split).
if (has_cols && has_rows && vt->variances.none.variance < threshold[0]) {
set_block_size(cpi, x, xd, mi_row, mi_col, vt->bsize);
return;
}
// Check vertical split.
if (has_rows) {
BLOCK_SIZE subsize = get_subsize(vt->bsize, PARTITION_VERT);
if (vt->variances.vert[0].variance < threshold[0] &&
vt->variances.vert[1].variance < threshold[0] &&
get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
set_block_size(cpi, x, xd, mi_row, mi_col + hbw, subsize);
return;
}
}
// Check horizontal split.
if (has_cols) {
BLOCK_SIZE subsize = get_subsize(vt->bsize, PARTITION_HORZ);
if (vt->variances.horz[0].variance < threshold[0] &&
vt->variances.horz[1].variance < threshold[0] &&
get_plane_block_size(subsize, &xd->plane[1]) < BLOCK_INVALID) {
set_block_size(cpi, x, xd, mi_row, mi_col, subsize);
set_block_size(cpi, x, xd, mi_row + hbh, mi_col, subsize);
return;
}
}
}
split : {
set_vt_partitioning(cpi, x, xd, vt->split[0], mi_row, mi_col, threshold + 1,
bsize_min + 1);
set_vt_partitioning(cpi, x, xd, vt->split[1], mi_row, mi_col + hbw,
threshold + 1, bsize_min + 1);
set_vt_partitioning(cpi, x, xd, vt->split[2], mi_row + hbh, mi_col,
threshold + 1, bsize_min + 1);
set_vt_partitioning(cpi, x, xd, vt->split[3], mi_row + hbh, mi_col + hbw,
threshold + 1, bsize_min + 1);
return;
}
}
// Set the variance split thresholds for following the block sizes:
// 0 - threshold_64x64, 1 - threshold_32x32, 2 - threshold_16x16,
// 3 - vbp_threshold_8x8. vbp_threshold_8x8 (to split to 4x4 partition) is
// currently only used on key frame.
static void set_vbp_thresholds(AV1_COMP *cpi, int64_t thresholds[], int q) {
AV1_COMMON *const cm = &cpi->common;
const int is_key_frame = (cm->frame_type == KEY_FRAME);
const int threshold_multiplier = is_key_frame ? 20 : 1;
const int64_t threshold_base =
(int64_t)(threshold_multiplier * cpi->y_dequant[q][1]);
if (is_key_frame) {
thresholds[1] = threshold_base;
thresholds[2] = threshold_base >> 2;
thresholds[3] = threshold_base >> 2;
thresholds[4] = threshold_base << 2;
} else {
thresholds[2] = threshold_base;
if (cm->width <= 352 && cm->height <= 288) {
thresholds[1] = threshold_base >> 2;
thresholds[3] = threshold_base << 3;
} else {
thresholds[1] = threshold_base;
thresholds[2] = (5 * threshold_base) >> 2;
if (cm->width >= 1920 && cm->height >= 1080)
thresholds[2] = (7 * threshold_base) >> 2;
thresholds[3] = threshold_base << cpi->oxcf.speed;
}
}
thresholds[0] = INT64_MIN;
}
void av1_set_variance_partition_thresholds(AV1_COMP *cpi, int q) {
AV1_COMMON *const cm = &cpi->common;
SPEED_FEATURES *const sf = &cpi->sf;
const int is_key_frame = (cm->frame_type == KEY_FRAME);
if (sf->partition_search_type != VAR_BASED_PARTITION &&
sf->partition_search_type != REFERENCE_PARTITION) {
return;
} else {
set_vbp_thresholds(cpi, cpi->vbp_thresholds, q);
// The thresholds below are not changed locally.
if (is_key_frame) {
cpi->vbp_threshold_sad = 0;
cpi->vbp_bsize_min = BLOCK_8X8;
} else {
if (cm->width <= 352 && cm->height <= 288)
cpi->vbp_threshold_sad = 100;
else
cpi->vbp_threshold_sad = (cpi->y_dequant[q][1] << 1) > 1000
? (cpi->y_dequant[q][1] << 1)
: 1000;
cpi->vbp_bsize_min = BLOCK_16X16;
}
cpi->vbp_threshold_minmax = 15 + (q >> 3);
}
}
// Compute the minmax over the 8x8 subblocks.
static int compute_minmax_8x8(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
#if CONFIG_AOM_HIGHBITDEPTH
int highbd,
#endif
int pixels_wide, int pixels_high) {
int k;
int minmax_max = 0;
int minmax_min = 255;
// Loop over the 4 8x8 subblocks.
for (k = 0; k < 4; k++) {
const int x8_idx = ((k & 1) << 3);
const int y8_idx = ((k >> 1) << 3);
int min = 0;
int max = 0;
if (x8_idx < pixels_wide && y8_idx < pixels_high) {
const int src_offset = y8_idx * src_stride + x8_idx;
const int ref_offset = y8_idx * ref_stride + x8_idx;
#if CONFIG_AOM_HIGHBITDEPTH
if (highbd) {
aom_highbd_minmax_8x8(src + src_offset, src_stride, ref + ref_offset,
ref_stride, &min, &max);
} else {
aom_minmax_8x8(src + src_offset, src_stride, ref + ref_offset,
ref_stride, &min, &max);
}
#else
aom_minmax_8x8(src + src_offset, src_stride, ref + ref_offset, ref_stride,
&min, &max);
#endif
if ((max - min) > minmax_max) minmax_max = (max - min);
if ((max - min) < minmax_min) minmax_min = (max - min);
}
}
return (minmax_max - minmax_min);
}
#if CONFIG_AOM_HIGHBITDEPTH
static INLINE int avg_4x4(const uint8_t *const src, const int stride,
const int highbd) {
if (highbd) {
return aom_highbd_avg_4x4(src, stride);
} else {
return aom_avg_4x4(src, stride);
}
}
#else
static INLINE int avg_4x4(const uint8_t *const src, const int stride) {
return aom_avg_4x4(src, stride);
}
#endif
#if CONFIG_AOM_HIGHBITDEPTH
static INLINE int avg_8x8(const uint8_t *const src, const int stride,
const int highbd) {
if (highbd) {
return aom_highbd_avg_8x8(src, stride);
} else {
return aom_avg_8x8(src, stride);
}
}
#else
static INLINE int avg_8x8(const uint8_t *const src, const int stride) {
return aom_avg_8x8(src, stride);
}
#endif
static void init_variance_tree(VAR_TREE *const vt,
#if CONFIG_AOM_HIGHBITDEPTH
const int highbd,
#endif
BLOCK_SIZE bsize, BLOCK_SIZE leaf_size,
const int width, const int height,
const uint8_t *const src, const int src_stride,
const uint8_t *const ref, const int ref_stride) {
assert(bsize >= leaf_size);
vt->bsize = bsize;
vt->force_split = 0;
vt->src = src;
vt->src_stride = src_stride;
vt->ref = ref;
vt->ref_stride = ref_stride;
vt->width = width;
vt->height = height;
#if CONFIG_AOM_HIGHBITDEPTH
vt->highbd = highbd;
#endif // CONFIG_AOM_HIGHBITDEPTH
if (bsize > leaf_size) {
const BLOCK_SIZE subsize = get_subsize(bsize, PARTITION_SPLIT);
const int px = block_size_wide[subsize];
init_variance_tree(vt->split[0],
#if CONFIG_AOM_HIGHBITDEPTH
highbd,
#endif // CONFIG_AOM_HIGHBITDEPTH
subsize, leaf_size, AOMMIN(px, width),
AOMMIN(px, height), src, src_stride, ref, ref_stride);
init_variance_tree(vt->split[1],
#if CONFIG_AOM_HIGHBITDEPTH
highbd,
#endif // CONFIG_AOM_HIGHBITDEPTH
subsize, leaf_size, width - px, AOMMIN(px, height),
src + px, src_stride, ref + px, ref_stride);
init_variance_tree(vt->split[2],
#if CONFIG_AOM_HIGHBITDEPTH
highbd,
#endif // CONFIG_AOM_HIGHBITDEPTH
subsize, leaf_size, AOMMIN(px, width), height - px,
src + px * src_stride, src_stride, ref + px * ref_stride,
ref_stride);
init_variance_tree(vt->split[3],
#if CONFIG_AOM_HIGHBITDEPTH
highbd,
#endif // CONFIG_AOM_HIGHBITDEPTH
subsize, leaf_size, width - px, height - px,
src + px * src_stride + px, src_stride,
ref + px * ref_stride + px, ref_stride);
}
}
// Fill the variance tree based on averaging pixel values (sub-sampling), at
// the leaf node size.
static void fill_variance_tree(VAR_TREE *const vt, const BLOCK_SIZE leaf_size) {
if (vt->bsize > leaf_size) {
fill_variance_tree(vt->split[0], leaf_size);
fill_variance_tree(vt->split[1], leaf_size);
fill_variance_tree(vt->split[2], leaf_size);
fill_variance_tree(vt->split[3], leaf_size);
fill_variance_node(vt);
} else if (vt->width <= 0 || vt->height <= 0) {
fill_variance(0, 0, 0, &vt->variances.none);
} else {
unsigned int sse = 0;
int sum = 0;
int src_avg;
int ref_avg;
assert(leaf_size == BLOCK_4X4 || leaf_size == BLOCK_8X8);
if (leaf_size == BLOCK_4X4) {
src_avg = avg_4x4(vt->src, vt->src_stride IF_HBD(, vt->highbd));
ref_avg = avg_4x4(vt->ref, vt->ref_stride IF_HBD(, vt->highbd));
} else {
src_avg = avg_8x8(vt->src, vt->src_stride IF_HBD(, vt->highbd));
ref_avg = avg_8x8(vt->ref, vt->ref_stride IF_HBD(, vt->highbd));
}
sum = src_avg - ref_avg;
sse = sum * sum;
fill_variance(sse, sum, 0, &vt->variances.none);
}
}
static void refine_variance_tree(VAR_TREE *const vt, const int64_t threshold) {
if (vt->bsize >= BLOCK_8X8) {
if (vt->bsize == BLOCK_16X16) {
if (vt->variances.none.variance <= threshold)
return;
else
vt->force_split = 0;
}
refine_variance_tree(vt->split[0], threshold);
refine_variance_tree(vt->split[1], threshold);
refine_variance_tree(vt->split[2], threshold);
refine_variance_tree(vt->split[3], threshold);
if (vt->bsize <= BLOCK_16X16) fill_variance_node(vt);
} else if (vt->width <= 0 || vt->height <= 0) {
fill_variance(0, 0, 0, &vt->variances.none);
} else {
const int src_avg = avg_4x4(vt->src, vt->src_stride IF_HBD(, vt->highbd));
const int ref_avg = avg_4x4(vt->ref, vt->ref_stride IF_HBD(, vt->highbd));
const int sum = src_avg - ref_avg;
const unsigned int sse = sum * sum;
assert(vt->bsize == BLOCK_4X4);
fill_variance(sse, sum, 0, &vt->variances.none);
}
}
static int check_split_key_frame(VAR_TREE *const vt, const int64_t threshold) {
if (vt->bsize == BLOCK_32X32) {
vt->force_split = vt->variances.none.variance > threshold;
} else {
vt->force_split |= check_split_key_frame(vt->split[0], threshold);
vt->force_split |= check_split_key_frame(vt->split[1], threshold);
vt->force_split |= check_split_key_frame(vt->split[2], threshold);
vt->force_split |= check_split_key_frame(vt->split[3], threshold);
}
return vt->force_split;
}
static int check_split(AV1_COMP *const cpi, VAR_TREE *const vt,
const int segment_id, const int64_t *const thresholds) {
if (vt->bsize == BLOCK_16X16) {
vt->force_split = vt->variances.none.variance > thresholds[0];
if (!vt->force_split && vt->variances.none.variance > thresholds[-1] &&
!cyclic_refresh_segment_id_boosted(segment_id)) {
// We have some nominal amount of 16x16 variance (based on average),
// compute the minmax over the 8x8 sub-blocks, and if above threshold,
// force split to 8x8 block for this 16x16 block.
int minmax =
compute_minmax_8x8(vt->src, vt->src_stride, vt->ref, vt->ref_stride,
#if CONFIG_AOM_HIGHBITDEPTH
vt->highbd,
#endif
vt->width, vt->height);
vt->force_split = minmax > cpi->vbp_threshold_minmax;
}
} else {
vt->force_split |=
check_split(cpi, vt->split[0], segment_id, thresholds + 1);
vt->force_split |=
check_split(cpi, vt->split[1], segment_id, thresholds + 1);
vt->force_split |=
check_split(cpi, vt->split[2], segment_id, thresholds + 1);
vt->force_split |=
check_split(cpi, vt->split[3], segment_id, thresholds + 1);
if (vt->bsize == BLOCK_32X32 && !vt->force_split) {
vt->force_split = vt->variances.none.variance > thresholds[0];
}
}
return vt->force_split;
}
// This function chooses partitioning based on the variance between source and
// reconstructed last (or golden), where variance is computed for down-sampled
// inputs.
static void choose_partitioning(AV1_COMP *const cpi, ThreadData *const td,
const TileInfo *const tile, MACROBLOCK *const x,
const int mi_row, const int mi_col) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
VAR_TREE *const vt = td->var_root[cm->mib_size_log2 - MIN_MIB_SIZE_LOG2];
#if CONFIG_DUAL_FILTER
int i;
#endif
const uint8_t *src;
const uint8_t *ref;
int src_stride;
int ref_stride;
int pixels_wide = MI_SIZE * mi_size_wide[cm->sb_size];
int pixels_high = MI_SIZE * mi_size_high[cm->sb_size];
int64_t thresholds[5] = {
cpi->vbp_thresholds[0], cpi->vbp_thresholds[1], cpi->vbp_thresholds[2],
cpi->vbp_thresholds[3], cpi->vbp_thresholds[4],
};
BLOCK_SIZE bsize_min[5] = { BLOCK_16X16, BLOCK_16X16, BLOCK_16X16,
cpi->vbp_bsize_min, BLOCK_8X8 };
const int start_level = cm->sb_size == BLOCK_64X64 ? 1 : 0;
const int64_t *const thre = thresholds + start_level;
const BLOCK_SIZE *const bmin = bsize_min + start_level;
const int is_key_frame = (cm->frame_type == KEY_FRAME);
const int low_res = (cm->width <= 352 && cm->height <= 288);
int segment_id = CR_SEGMENT_ID_BASE;
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled) {
const uint8_t *const map =
cm->seg.update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
segment_id = get_segment_id(cm, map, cm->sb_size, mi_row, mi_col);
if (cyclic_refresh_segment_id_boosted(segment_id)) {
int q = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex);
set_vbp_thresholds(cpi, thresholds, q);
}
}
set_offsets(cpi, tile, x, mi_row, mi_col, cm->sb_size);
if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3);
if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3);
src = x->plane[0].src.buf;
src_stride = x->plane[0].src.stride;
if (!is_key_frame) {
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
const YV12_BUFFER_CONFIG *yv12_g = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
unsigned int y_sad, y_sad_g;
const int hbs = cm->mib_size / 2;
const int split_vert = mi_col + hbs >= cm->mi_cols;
const int split_horz = mi_row + hbs >= cm->mi_rows;
BLOCK_SIZE bsize;
if (split_vert && split_horz)
bsize = get_subsize(cm->sb_size, PARTITION_SPLIT);
else if (split_vert)
bsize = get_subsize(cm->sb_size, PARTITION_VERT);
else if (split_horz)
bsize = get_subsize(cm->sb_size, PARTITION_HORZ);
else
bsize = cm->sb_size;
assert(yv12 != NULL);
if (yv12_g && yv12_g != yv12) {
av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
&cm->frame_refs[GOLDEN_FRAME - 1].sf);
y_sad_g = cpi->fn_ptr[bsize].sdf(
x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].pre[0].buf,
xd->plane[0].pre[0].stride);
} else {
y_sad_g = UINT_MAX;
}
av1_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
&cm->frame_refs[LAST_FRAME - 1].sf);
mbmi->ref_frame[0] = LAST_FRAME;
mbmi->ref_frame[1] = NONE;
mbmi->sb_type = cm->sb_size;
mbmi->mv[0].as_int = 0;
#if CONFIG_DUAL_FILTER
for (i = 0; i < 4; ++i) mbmi->interp_filter[i] = BILINEAR;
#else
mbmi->interp_filter = BILINEAR;
#endif
y_sad = av1_int_pro_motion_estimation(cpi, x, bsize, mi_row, mi_col);
if (y_sad_g < y_sad) {
av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col,
&cm->frame_refs[GOLDEN_FRAME - 1].sf);
mbmi->ref_frame[0] = GOLDEN_FRAME;
mbmi->mv[0].as_int = 0;
y_sad = y_sad_g;
} else {
x->pred_mv[LAST_FRAME] = mbmi->mv[0].as_mv;
}
av1_build_inter_predictors_sb(xd, mi_row, mi_col, NULL, cm->sb_size);
ref = xd->plane[0].dst.buf;
ref_stride = xd->plane[0].dst.stride;
// If the y_sad is very small, take the largest partition and exit.
// Don't check on boosted segment for now, as largest is suppressed there.
if (segment_id == CR_SEGMENT_ID_BASE && y_sad < cpi->vbp_threshold_sad) {
if (!split_vert && !split_horz) {
set_block_size(cpi, x, xd, mi_row, mi_col, cm->sb_size);
return;
}
}
} else {
ref = AV1_VAR_OFFS;
ref_stride = 0;
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
switch (xd->bd) {
case 10: ref = CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10); break;
case 12: ref = CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12); break;
case 8:
default: ref = CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8); break;
}
}
#endif // CONFIG_AOM_HIGHBITDEPTH
}
init_variance_tree(
vt,
#if CONFIG_AOM_HIGHBITDEPTH
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH,
#endif // CONFIG_AOM_HIGHBITDEPTH
cm->sb_size, (is_key_frame || low_res) ? BLOCK_4X4 : BLOCK_8X8,
pixels_wide, pixels_high, src, src_stride, ref, ref_stride);
// Fill in the entire tree of variances and compute splits.
if (is_key_frame) {
fill_variance_tree(vt, BLOCK_4X4);
check_split_key_frame(vt, thre[1]);
} else {
fill_variance_tree(vt, BLOCK_8X8);
check_split(cpi, vt, segment_id, thre);
if (low_res) {
refine_variance_tree(vt, thre[1] << 1);
}
}
vt->force_split |= mi_col + cm->mib_size > cm->mi_cols ||
mi_row + cm->mib_size > cm->mi_rows;
// Now go through the entire structure, splitting every block size until
// we get to one that's got a variance lower than our threshold.
set_vt_partitioning(cpi, x, xd, vt, mi_row, mi_col, thre, bmin);
}
#if CONFIG_DUAL_FILTER
static void reset_intmv_filter_type(const AV1_COMMON *const cm, MACROBLOCKD *xd,
MB_MODE_INFO *mbmi) {
int dir;
for (dir = 0; dir < 2; ++dir) {
if (!has_subpel_mv_component(xd->mi[0], xd, dir) &&
(mbmi->ref_frame[1] == NONE ||
!has_subpel_mv_component(xd->mi[0], xd, dir + 2)))
mbmi->interp_filter[dir] = (cm->interp_filter == SWITCHABLE)
? EIGHTTAP_REGULAR
: cm->interp_filter;
mbmi->interp_filter[dir + 2] = mbmi->interp_filter[dir];
}
}
static void update_filter_type_count(FRAME_COUNTS *counts,
const MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi) {
int dir;
for (dir = 0; dir < 2; ++dir) {
if (has_subpel_mv_component(xd->mi[0], xd, dir) ||
(mbmi->ref_frame[1] > INTRA_FRAME &&
has_subpel_mv_component(xd->mi[0], xd, dir + 2))) {
const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
++counts->switchable_interp[ctx][mbmi->interp_filter[dir]];
}
}
}
#endif
#if CONFIG_GLOBAL_MOTION
static void update_global_motion_used(PREDICTION_MODE mode,
const MB_MODE_INFO *mbmi, AV1_COMP *cpi) {
if (mode == ZEROMV) {
++cpi->global_motion_used[mbmi->ref_frame[0]];
if (has_second_ref(mbmi)) ++cpi->global_motion_used[mbmi->ref_frame[1]];
}
}
#endif // CONFIG_GLOBAL_MOTION
static void update_state(const AV1_COMP *const cpi, ThreadData *td,
PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
BLOCK_SIZE bsize, RUN_TYPE dry_run) {
int i, x_idx, y;
const AV1_COMMON *const cm = &cpi->common;
RD_COUNTS *const rdc = &td->rd_counts;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
MODE_INFO *mi = &ctx->mic;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
MODE_INFO *mi_addr = xd->mi[0];
const struct segmentation *const seg = &cm->seg;
const int bw = mi_size_wide[mi->mbmi.sb_type];
const int bh = mi_size_high[mi->mbmi.sb_type];
const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col);
const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row);
MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
int w, h;
const int mis = cm->mi_stride;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
#if CONFIG_REF_MV
int8_t rf_type;
#endif
#if !CONFIG_SUPERTX
assert(mi->mbmi.sb_type == bsize);
#endif
*mi_addr = *mi;
*x->mbmi_ext = ctx->mbmi_ext;
#if CONFIG_DUAL_FILTER
reset_intmv_filter_type(cm, xd, mbmi);
#endif
#if CONFIG_REF_MV
rf_type = av1_ref_frame_type(mbmi->ref_frame);
if (x->mbmi_ext->ref_mv_count[rf_type] > 1 && mbmi->sb_type >= BLOCK_8X8 &&
mbmi->mode == NEWMV) {
for (i = 0; i < 1 + has_second_ref(mbmi); ++i) {
int_mv this_mv =
(i == 0)
? x->mbmi_ext->ref_mv_stack[rf_type][mbmi->ref_mv_idx].this_mv
: x->mbmi_ext->ref_mv_stack[rf_type][mbmi->ref_mv_idx].comp_mv;
clamp_mv_ref(&this_mv.as_mv, xd->n8_w << 3, xd->n8_h << 3, xd);
x->mbmi_ext->ref_mvs[mbmi->ref_frame[i]][0] = this_mv;
mbmi->pred_mv[i] = this_mv;
mi->mbmi.pred_mv[i] = this_mv;
}
}
#endif
// If segmentation in use
if (seg->enabled) {
// For in frame complexity AQ copy the segment id from the segment map.
if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
const uint8_t *const map =
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
mi_addr->mbmi.segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
}
// Else for cyclic refresh mode update the segment map, set the segment id
// and then update the quantizer.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
av1_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi, mi_row, mi_col,
bsize, ctx->rate, ctx->dist, x->skip);
}
}
for (i = 0; i < MAX_MB_PLANE; ++i) {
p[i].coeff = ctx->coeff[i];
p[i].qcoeff = ctx->qcoeff[i];
pd[i].dqcoeff = ctx->dqcoeff[i];
#if CONFIG_PVQ
pd[i].pvq_ref_coeff = ctx->pvq_ref_coeff[i];
#endif
p[i].eobs = ctx->eobs[i];
}
#if CONFIG_PALETTE
for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
#endif // CONFIG_PALETTE
// Restore the coding context of the MB to that that was in place
// when the mode was picked for it
for (y = 0; y < mi_height; y++)
for (x_idx = 0; x_idx < mi_width; x_idx++)
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
(xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
xd->mi[x_idx + y * mis] = mi_addr;
}
#if CONFIG_DELTA_Q
if (cpi->oxcf.aq_mode > NO_AQ && cpi->oxcf.aq_mode < DELTA_AQ)
av1_init_plane_quantizers(cpi, x, xd->mi[0]->mbmi.segment_id);
#else
if (cpi->oxcf.aq_mode)
av1_init_plane_quantizers(cpi, x, xd->mi[0]->mbmi.segment_id);
#endif
if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) {
mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
}
x->skip = ctx->skip;
#if CONFIG_VAR_TX
for (i = 0; i < 1; ++i)
memcpy(x->blk_skip[i], ctx->blk_skip[i],
sizeof(uint8_t) * ctx->num_4x4_blk);
#endif
if (dry_run) return;
#if CONFIG_INTERNAL_STATS
{
unsigned int *const mode_chosen_counts =
(unsigned int *)cpi->mode_chosen_counts; // Cast const away.
if (frame_is_intra_only(cm)) {
static const int kf_mode_index[] = {
THR_DC /*DC_PRED*/,
THR_V_PRED /*V_PRED*/,
THR_H_PRED /*H_PRED*/,
THR_D45_PRED /*D45_PRED*/,
THR_D135_PRED /*D135_PRED*/,
THR_D117_PRED /*D117_PRED*/,
THR_D153_PRED /*D153_PRED*/,
THR_D207_PRED /*D207_PRED*/,
THR_D63_PRED /*D63_PRED*/,
#if CONFIG_ALT_INTRA
THR_SMOOTH, /*SMOOTH_PRED*/
#endif // CONFIG_ALT_INTRA
THR_TM /*TM_PRED*/,
};
++mode_chosen_counts[kf_mode_index[mbmi->mode]];
} else {
// Note how often each mode chosen as best
++mode_chosen_counts[ctx->best_mode_index];
}
}
#endif
if (!frame_is_intra_only(cm)) {
if (is_inter_block(mbmi)) {
av1_update_mv_count(td);
#if CONFIG_GLOBAL_MOTION
if (bsize >= BLOCK_8X8) {
// TODO(sarahparker): global motion stats need to be handled per-tile
// to be compatible with tile-based threading.
update_global_motion_used(mbmi->mode, mbmi, (AV1_COMP *)cpi);
} else {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int j = idy * 2 + idx;
update_global_motion_used(mi->bmi[j].as_mode, mbmi,
(AV1_COMP *)cpi);
}
}
}
#endif // CONFIG_GLOBAL_MOTION
if (cm->interp_filter == SWITCHABLE
#if CONFIG_EXT_INTERP
&& av1_is_interp_needed(xd)
#endif
#if CONFIG_WARPED_MOTION
&& mbmi->motion_mode != WARPED_CAUSAL
#endif // CONFIG_WARPED_MOTION
) {
#if CONFIG_DUAL_FILTER
update_filter_type_count(td->counts, xd, mbmi);
#else
const int switchable_ctx = av1_get_pred_context_switchable_interp(xd);
++td->counts->switchable_interp[switchable_ctx][mbmi->interp_filter];
#endif
}
}
rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
}
for (h = 0; h < y_mis; ++h) {
MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
for (w = 0; w < x_mis; ++w) {
MV_REF *const mv = frame_mv + w;
mv->ref_frame[0] = mi->mbmi.ref_frame[0];
mv->ref_frame[1] = mi->mbmi.ref_frame[1];
mv->mv[0].as_int = mi->mbmi.mv[0].as_int;
mv->mv[1].as_int = mi->mbmi.mv[1].as_int;
}
}
}
#if CONFIG_SUPERTX
static void update_state_supertx(const AV1_COMP *const cpi, ThreadData *td,
PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
BLOCK_SIZE bsize, RUN_TYPE dry_run) {
int y, x_idx;
#if CONFIG_VAR_TX || CONFIG_REF_MV
int i;
#endif
const AV1_COMMON *const cm = &cpi->common;
RD_COUNTS *const rdc = &td->rd_counts;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *mi = &ctx->mic;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
MODE_INFO *mi_addr = xd->mi[0];
const struct segmentation *const seg = &cm->seg;
const int mis = cm->mi_stride;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
const int x_mis = AOMMIN(mi_width, cm->mi_cols - mi_col);
const int y_mis = AOMMIN(mi_height, cm->mi_rows - mi_row);
MV_REF *const frame_mvs = cm->cur_frame->mvs + mi_row * cm->mi_cols + mi_col;
int w, h;
#if CONFIG_REF_MV
int8_t rf_type;
#endif
*mi_addr = *mi;
*x->mbmi_ext = ctx->mbmi_ext;
assert(is_inter_block(mbmi));
assert(mbmi->tx_size == ctx->mic.mbmi.tx_size);
#if CONFIG_DUAL_FILTER
reset_intmv_filter_type(cm, xd, mbmi);
#endif
#if CONFIG_REF_MV
rf_type = av1_ref_frame_type(mbmi->ref_frame);
if (x->mbmi_ext->ref_mv_count[rf_type] > 1 && mbmi->sb_type >= BLOCK_8X8 &&
mbmi->mode == NEWMV) {
for (i = 0; i < 1 + has_second_ref(mbmi); ++i) {
int_mv this_mv =
(i == 0)
? x->mbmi_ext->ref_mv_stack[rf_type][mbmi->ref_mv_idx].this_mv
: x->mbmi_ext->ref_mv_stack[rf_type][mbmi->ref_mv_idx].comp_mv;
clamp_mv_ref(&this_mv.as_mv, xd->n8_w << 3, xd->n8_h << 3, xd);
lower_mv_precision(&this_mv.as_mv, cm->allow_high_precision_mv);
x->mbmi_ext->ref_mvs[mbmi->ref_frame[i]][0] = this_mv;
mbmi->pred_mv[i] = this_mv;
}
}
#endif
// If segmentation in use
if (seg->enabled) {
if (cpi->vaq_refresh) {
const int energy =
bsize <= BLOCK_16X16 ? x->mb_energy : av1_block_energy(cpi, x, bsize);
mi_addr->mbmi.segment_id = av1_vaq_segment_id(energy);
} else if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
// For cyclic refresh mode, now update the segment map
// and set the segment id.
av1_cyclic_refresh_update_segment(cpi, &xd->mi[0]->mbmi, mi_row, mi_col,
bsize, ctx->rate, ctx->dist, 1);
} else {
// Otherwise just set the segment id based on the current segment map
const uint8_t *const map =
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
mi_addr->mbmi.segment_id = get_segment_id(cm, map, bsize, mi_row, mi_col);
}
mi_addr->mbmi.segment_id_supertx = MAX_SEGMENTS;
}
// Restore the coding context of the MB to that that was in place
// when the mode was picked for it
for (y = 0; y < mi_height; y++)
for (x_idx = 0; x_idx < mi_width; x_idx++)
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
(xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
xd->mi[x_idx + y * mis] = mi_addr;
}
if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) {
mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int;
mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int;
}
x->skip = ctx->skip;
#if CONFIG_VAR_TX
for (i = 0; i < 1; ++i)
memcpy(x->blk_skip[i], ctx->blk_skip[i],
sizeof(uint8_t) * ctx->num_4x4_blk);
if (!is_inter_block(mbmi) || mbmi->skip)
mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size);
#endif // CONFIG_VAR_TX
#if CONFIG_VAR_TX
{
const TX_SIZE mtx = mbmi->tx_size;
const int num_4x4_blocks_wide = tx_size_wide_unit[mtx] >> 1;
const int num_4x4_blocks_high = tx_size_high_unit[mtx] >> 1;
int idy, idx;
mbmi->inter_tx_size[0][0] = mtx;
for (idy = 0; idy < num_4x4_blocks_high; ++idy)
for (idx = 0; idx < num_4x4_blocks_wide; ++idx)
mbmi->inter_tx_size[idy][idx] = mtx;
}
#endif // CONFIG_VAR_TX
// Turn motion variation off for supertx
mbmi->motion_mode = SIMPLE_TRANSLATION;
if (dry_run) return;
if (!frame_is_intra_only(cm)) {
av1_update_mv_count(td);
#if CONFIG_GLOBAL_MOTION
if (is_inter_block(mbmi)) {
if (bsize >= BLOCK_8X8) {
// TODO(sarahparker): global motion stats need to be handled per-tile
// to be compatible with tile-based threading.
update_global_motion_used(mbmi->mode, mbmi, (AV1_COMP *)cpi);
} else {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int j = idy * 2 + idx;
update_global_motion_used(mi->bmi[j].as_mode, mbmi,
(AV1_COMP *)cpi);
}
}
}
}
#endif // CONFIG_GLOBAL_MOTION
if (cm->interp_filter == SWITCHABLE
#if CONFIG_EXT_INTERP
&& av1_is_interp_needed(xd)
#endif
) {
#if CONFIG_DUAL_FILTER
update_filter_type_count(td->counts, xd, mbmi);
#else
const int pred_ctx = av1_get_pred_context_switchable_interp(xd);
++td->counts->switchable_interp[pred_ctx][mbmi->interp_filter];
#endif
}
rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
}
for (h = 0; h < y_mis; ++h) {
MV_REF *const frame_mv = frame_mvs + h * cm->mi_cols;
for (w = 0; w < x_mis; ++w) {
MV_REF *const mv = frame_mv + w;
mv->ref_frame[0] = mi->mbmi.ref_frame[0];
mv->ref_frame[1] = mi->mbmi.ref_frame[1];
mv->mv[0].as_int = mi->mbmi.mv[0].as_int;
mv->mv[1].as_int = mi->mbmi.mv[1].as_int;
}
}
}
static void update_state_sb_supertx(const AV1_COMP *const cpi, ThreadData *td,
const TileInfo *const tile, int mi_row,
int mi_col, BLOCK_SIZE bsize,
RUN_TYPE dry_run, PC_TREE *pc_tree) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
PARTITION_TYPE partition = pc_tree->partitioning;
BLOCK_SIZE subsize = get_subsize(bsize, partition);
int i;
#if CONFIG_EXT_PARTITION_TYPES
BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
#endif
PICK_MODE_CONTEXT *pmc = NULL;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
if (bsize == BLOCK_16X16 && cpi->vaq_refresh)
x->mb_energy = av1_block_energy(cpi, x, bsize);
switch (partition) {
case PARTITION_NONE:
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
update_state_supertx(cpi, td, &pc_tree->none, mi_row, mi_col, subsize,
dry_run);
break;
case PARTITION_VERT:
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
update_state_supertx(cpi, td, &pc_tree->vertical[0], mi_row, mi_col,
subsize, dry_run);
if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize);
update_state_supertx(cpi, td, &pc_tree->vertical[1], mi_row,
mi_col + hbs, subsize, dry_run);
}
pmc = &pc_tree->vertical_supertx;
break;
case PARTITION_HORZ:
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
update_state_supertx(cpi, td, &pc_tree->horizontal[0], mi_row, mi_col,
subsize, dry_run);
if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize);
update_state_supertx(cpi, td, &pc_tree->horizontal[1], mi_row + hbs,
mi_col, subsize, dry_run);
}
pmc = &pc_tree->horizontal_supertx;
break;
case PARTITION_SPLIT:
if (bsize == BLOCK_8X8) {
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
update_state_supertx(cpi, td, pc_tree->leaf_split[0], mi_row, mi_col,
subsize, dry_run);
} else {
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
update_state_sb_supertx(cpi, td, tile, mi_row, mi_col, subsize, dry_run,
pc_tree->split[0]);
set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize);
update_state_sb_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize,
dry_run, pc_tree->split[1]);
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize);
update_state_sb_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize,
dry_run, pc_tree->split[2]);
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs, subsize);
update_state_sb_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs,
subsize, dry_run, pc_tree->split[3]);
}
pmc = &pc_tree->split_supertx;
break;
#if CONFIG_EXT_PARTITION_TYPES
case PARTITION_HORZ_A:
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, bsize2);
update_state_supertx(cpi, td, &pc_tree->horizontala[0], mi_row, mi_col,
bsize2, dry_run);
set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, bsize2);
update_state_supertx(cpi, td, &pc_tree->horizontala[1], mi_row,
mi_col + hbs, bsize2, dry_run);
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, subsize);
update_state_supertx(cpi, td, &pc_tree->horizontala[2], mi_row + hbs,
mi_col, subsize, dry_run);
pmc = &pc_tree->horizontala_supertx;
break;
case PARTITION_HORZ_B:
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
update_state_supertx(cpi, td, &pc_tree->horizontalb[0], mi_row, mi_col,
subsize, dry_run);
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, bsize2);
update_state_supertx(cpi, td, &pc_tree->horizontalb[1], mi_row + hbs,
mi_col, bsize2, dry_run);
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs, bsize2);
update_state_supertx(cpi, td, &pc_tree->horizontalb[2], mi_row + hbs,
mi_col + hbs, bsize2, dry_run);
pmc = &pc_tree->horizontalb_supertx;
break;
case PARTITION_VERT_A:
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, bsize2);
update_state_supertx(cpi, td, &pc_tree->verticala[0], mi_row, mi_col,
bsize2, dry_run);
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col, bsize2);
update_state_supertx(cpi, td, &pc_tree->verticala[1], mi_row + hbs,
mi_col, bsize2, dry_run);
set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, subsize);
update_state_supertx(cpi, td, &pc_tree->verticala[2], mi_row,
mi_col + hbs, subsize, dry_run);
pmc = &pc_tree->verticala_supertx;
break;
case PARTITION_VERT_B:
set_offsets_supertx(cpi, td, tile, mi_row, mi_col, subsize);
update_state_supertx(cpi, td, &pc_tree->verticalb[0], mi_row, mi_col,
subsize, dry_run);
set_offsets_supertx(cpi, td, tile, mi_row, mi_col + hbs, bsize2);
update_state_supertx(cpi, td, &pc_tree->verticalb[1], mi_row,
mi_col + hbs, bsize2, dry_run);
set_offsets_supertx(cpi, td, tile, mi_row + hbs, mi_col + hbs, bsize2);
update_state_supertx(cpi, td, &pc_tree->verticalb[2], mi_row + hbs,
mi_col + hbs, bsize2, dry_run);
pmc = &pc_tree->verticalb_supertx;
break;
#endif // CONFIG_EXT_PARTITION_TYPES
default: assert(0);
}
for (i = 0; i < MAX_MB_PLANE; ++i) {
if (pmc != NULL) {
p[i].coeff = pmc->coeff[i];
p[i].qcoeff = pmc->qcoeff[i];
pd[i].dqcoeff = pmc->dqcoeff[i];
p[i].eobs = pmc->eobs[i];
} else {
// These should never be used
p[i].coeff = NULL;
p[i].qcoeff = NULL;
pd[i].dqcoeff = NULL;
p[i].eobs = NULL;
}
}
}
static void update_supertx_param(ThreadData *td, PICK_MODE_CONTEXT *ctx,
int best_tx, TX_SIZE supertx_size) {
MACROBLOCK *const x = &td->mb;
#if CONFIG_VAR_TX
int i;
for (i = 0; i < 1; ++i)
memcpy(ctx->blk_skip[i], x->blk_skip[i],
sizeof(uint8_t) * ctx->num_4x4_blk);
ctx->mic.mbmi.min_tx_size = get_min_tx_size(supertx_size);
#endif // CONFIG_VAR_TX
ctx->mic.mbmi.tx_size = supertx_size;
ctx->skip = x->skip;
ctx->mic.mbmi.tx_type = best_tx;
}
static void update_supertx_param_sb(const AV1_COMP *const cpi, ThreadData *td,
int mi_row, int mi_col, BLOCK_SIZE bsize,
int best_tx, TX_SIZE supertx_size,
PC_TREE *pc_tree) {
const AV1_COMMON *const cm = &cpi->common;
int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
PARTITION_TYPE partition = pc_tree->partitioning;
BLOCK_SIZE subsize = get_subsize(bsize, partition);
#if CONFIG_EXT_PARTITION_TYPES
int i;
#endif
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
switch (partition) {
case PARTITION_NONE:
update_supertx_param(td, &pc_tree->none, best_tx, supertx_size);
break;
case PARTITION_VERT:
update_supertx_param(td, &pc_tree->vertical[0], best_tx, supertx_size);
if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8)
update_supertx_param(td, &pc_tree->vertical[1], best_tx, supertx_size);
break;
case PARTITION_HORZ:
update_supertx_param(td, &pc_tree->horizontal[0], best_tx, supertx_size);
if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8)
update_supertx_param(td, &pc_tree->horizontal[1], best_tx,
supertx_size);
break;
case PARTITION_SPLIT:
if (bsize == BLOCK_8X8) {
update_supertx_param(td, pc_tree->leaf_split[0], best_tx, supertx_size);
} else {
update_supertx_param_sb(cpi, td, mi_row, mi_col, subsize, best_tx,
supertx_size, pc_tree->split[0]);
update_supertx_param_sb(cpi, td, mi_row, mi_col + hbs, subsize, best_tx,
supertx_size, pc_tree->split[1]);
update_supertx_param_sb(cpi, td, mi_row + hbs, mi_col, subsize, best_tx,
supertx_size, pc_tree->split[2]);
update_supertx_param_sb(cpi, td, mi_row + hbs, mi_col + hbs, subsize,
best_tx, supertx_size, pc_tree->split[3]);
}
break;
#if CONFIG_EXT_PARTITION_TYPES
case PARTITION_HORZ_A:
for (i = 0; i < 3; i++)
update_supertx_param(td, &pc_tree->horizontala[i], best_tx,
supertx_size);
break;
case PARTITION_HORZ_B:
for (i = 0; i < 3; i++)
update_supertx_param(td, &pc_tree->horizontalb[i], best_tx,
supertx_size);
break;
case PARTITION_VERT_A:
for (i = 0; i < 3; i++)
update_supertx_param(td, &pc_tree->verticala[i], best_tx, supertx_size);
break;
case PARTITION_VERT_B:
for (i = 0; i < 3; i++)
update_supertx_param(td, &pc_tree->verticalb[i], best_tx, supertx_size);
break;
#endif // CONFIG_EXT_PARTITION_TYPES
default: assert(0);
}
}
#endif // CONFIG_SUPERTX
void av1_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
int mi_row, int mi_col) {
uint8_t *const buffers[3] = { src->y_buffer, src->u_buffer, src->v_buffer };
const int widths[3] = { src->y_crop_width, src->uv_crop_width,
src->uv_crop_width };
const int heights[3] = { src->y_crop_height, src->uv_crop_height,
src->uv_crop_height };
const int strides[3] = { src->y_stride, src->uv_stride, src->uv_stride };
int i;
// Set current frame pointer.
x->e_mbd.cur_buf = src;
for (i = 0; i < MAX_MB_PLANE; i++)
setup_pred_plane(&x->plane[i].src, buffers[i], widths[i], heights[i],
strides[i], mi_row, mi_col, NULL,
x->e_mbd.plane[i].subsampling_x,
x->e_mbd.plane[i].subsampling_y);
}
static int set_segment_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
int8_t segment_id) {
int segment_qindex;
const AV1_COMMON *const cm = &cpi->common;
av1_init_plane_quantizers(cpi, x, segment_id);
aom_clear_system_state();
segment_qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex);
return av1_compute_rd_mult(cpi, segment_qindex + cm->y_dc_delta_q);
}
static void rd_pick_sb_modes(const AV1_COMP *const cpi, TileDataEnc *tile_data,
MACROBLOCK *const x, int mi_row, int mi_col,
RD_COST *rd_cost,
#if CONFIG_SUPERTX
int *totalrate_nocoef,
#endif
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_TYPE partition,
#endif
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
int64_t best_rd) {
const AV1_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
int i, orig_rdmult;
aom_clear_system_state();
// Use the lower precision, but faster, 32x32 fdct for mode selection.
x->use_lp32x32fdct = 1;
#if CONFIG_PVQ
x->pvq_speed = 1;
x->pvq_coded = 0;
#endif
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
mbmi = &xd->mi[0]->mbmi;
mbmi->sb_type = bsize;
#if CONFIG_RD_DEBUG
mbmi->mi_row = mi_row;
mbmi->mi_col = mi_col;
#endif
#if CONFIG_SUPERTX
// We set tx_size here as skip blocks would otherwise not set it.
// tx_size needs to be set at this point as supertx_enable in
// write_modes_sb is computed based on this, and if the garbage in memory
// just happens to be the supertx_size, then the packer will code this
// block as a supertx block, even if rdopt did not pick it as such.
mbmi->tx_size = max_txsize_lookup[bsize];
#endif
#if CONFIG_EXT_PARTITION_TYPES
mbmi->partition = partition;
#endif
for (i = 0; i < MAX_MB_PLANE; ++i) {
p[i].coeff = ctx->coeff[i];
p[i].qcoeff = ctx->qcoeff[i];
pd[i].dqcoeff = ctx->dqcoeff[i];
#if CONFIG_PVQ
pd[i].pvq_ref_coeff = ctx->pvq_ref_coeff[i];
#endif
p[i].eobs = ctx->eobs[i];
}
#if CONFIG_PALETTE
for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
#endif // CONFIG_PALETTE
ctx->skippable = 0;
ctx->pred_pixel_ready = 0;
// Set to zero to make sure we do not use the previous encoded frame stats
mbmi->skip = 0;
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
x->source_variance = av1_high_get_sby_perpixel_variance(
cpi, &x->plane[0].src, bsize, xd->bd);
} else {
x->source_variance =
av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
}
#else
x->source_variance =
av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
#endif // CONFIG_AOM_HIGHBITDEPTH
// Save rdmult before it might be changed, so it can be restored later.
orig_rdmult = x->rdmult;
if (aq_mode == VARIANCE_AQ) {
if (cpi->vaq_refresh) {
const int energy =
bsize <= BLOCK_16X16 ? x->mb_energy : av1_block_energy(cpi, x, bsize);
mbmi->segment_id = av1_vaq_segment_id(energy);
// Re-initialise quantiser
av1_init_plane_quantizers(cpi, x, mbmi->segment_id);
}
x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
} else if (aq_mode == COMPLEXITY_AQ) {
x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
} else if (aq_mode == CYCLIC_REFRESH_AQ) {
// If segment is boosted, use rdmult for that segment.
if (cyclic_refresh_segment_id_boosted(mbmi->segment_id))
x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
}
// Find best coding mode & reconstruct the MB so it is available
// as a predictor for MBs that follow in the SB
if (frame_is_intra_only(cm)) {
av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd);
#if CONFIG_SUPERTX
*totalrate_nocoef = 0;
#endif // CONFIG_SUPERTX
} else {
if (bsize >= BLOCK_8X8) {
if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, rd_cost, bsize,
ctx, best_rd);
#if CONFIG_SUPERTX
*totalrate_nocoef = rd_cost->rate;
#endif // CONFIG_SUPERTX
} else {
av1_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, rd_cost,
#if CONFIG_SUPERTX
totalrate_nocoef,
#endif // CONFIG_SUPERTX
bsize, ctx, best_rd);
#if CONFIG_SUPERTX
assert(*totalrate_nocoef >= 0);
#endif // CONFIG_SUPERTX
}
} else {
if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
// The decoder rejects sub8x8 partitions when SEG_LVL_SKIP is set.
rd_cost->rate = INT_MAX;
} else {
av1_rd_pick_inter_mode_sub8x8(cpi, tile_data, x, mi_row, mi_col,
rd_cost,
#if CONFIG_SUPERTX
totalrate_nocoef,
#endif // CONFIG_SUPERTX
bsize, ctx, best_rd);
#if CONFIG_SUPERTX
assert(*totalrate_nocoef >= 0);
#endif // CONFIG_SUPERTX
}
}
}
// Examine the resulting rate and for AQ mode 2 make a segment choice.
if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) &&
(bsize >= BLOCK_16X16) &&
(cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame ||
(cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) {
av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
}
x->rdmult = orig_rdmult;
// TODO(jingning) The rate-distortion optimization flow needs to be
// refactored to provide proper exit/return handle.
if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX;
ctx->rate = rd_cost->rate;
ctx->dist = rd_cost->dist;
}
#if CONFIG_REF_MV
static void update_inter_mode_stats(FRAME_COUNTS *counts, PREDICTION_MODE mode,
#if CONFIG_EXT_INTER
int is_compound,
#endif // CONFIG_EXT_INTER
int16_t mode_context) {
int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
#if CONFIG_EXT_INTER
if (mode == NEWMV || mode == NEWFROMNEARMV) {
if (!is_compound) ++counts->new2mv_mode[mode == NEWFROMNEARMV];
#else
if (mode == NEWMV) {
#endif // CONFIG_EXT_INTER
++counts->newmv_mode[mode_ctx][0];
return;
} else {
++counts->newmv_mode[mode_ctx][1];
if (mode_context & (1 << ALL_ZERO_FLAG_OFFSET)) {
return;
}
mode_ctx = (mode_context >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK;
if (mode == ZEROMV) {
++counts->zeromv_mode[mode_ctx][0];
return;
} else {
++counts->zeromv_mode[mode_ctx][1];
mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
if (mode_context & (1 << SKIP_NEARESTMV_OFFSET)) mode_ctx = 6;
if (mode_context & (1 << SKIP_NEARMV_OFFSET)) mode_ctx = 7;
if (mode_context & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) mode_ctx = 8;
++counts->refmv_mode[mode_ctx][mode != NEARESTMV];
}
}
}
#endif
static void update_stats(const AV1_COMMON *const cm, ThreadData *td, int mi_row,
int mi_col
#if CONFIG_SUPERTX
,
int supertx_enabled
#endif
) {
#if CONFIG_DELTA_Q
MACROBLOCK *x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
#else
const MACROBLOCK *x = &td->mb;
const MACROBLOCKD *const xd = &x->e_mbd;
#endif
const MODE_INFO *const mi = xd->mi[0];
const MB_MODE_INFO *const mbmi = &mi->mbmi;
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const BLOCK_SIZE bsize = mbmi->sb_type;
#if CONFIG_DELTA_Q
// delta quant applies to both intra and inter
const int super_block_upper_left = ((mi_row & 7) == 0) && ((mi_col & 7) == 0);
if (cm->delta_q_present_flag && (bsize != BLOCK_64X64 || !mbmi->skip) &&
super_block_upper_left) {
const int dq = (mbmi->current_q_index - xd->prev_qindex) / cm->delta_q_res;
const int absdq = abs(dq);
int i;
for (i = 0; i < absdq; ++i) {
td->counts->delta_q[i][1]++;
}
if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++;
xd->prev_qindex = mbmi->current_q_index;
}
#else
(void)mi_row;
(void)mi_col;
#endif
if (!frame_is_intra_only(cm)) {
FRAME_COUNTS *const counts = td->counts;
const int inter_block = is_inter_block(mbmi);
const int seg_ref_active =
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);
if (!seg_ref_active) {
#if CONFIG_SUPERTX
if (!supertx_enabled)
#endif
counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++;
// If the segment reference feature is enabled we have only a single
// reference frame allowed for the segment so exclude it from
// the reference frame counts used to work out probabilities.
if (inter_block) {
const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0];
#if CONFIG_EXT_REFS
const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1];
#endif // CONFIG_EXT_REFS
if (cm->reference_mode == REFERENCE_MODE_SELECT)
counts->comp_inter[av1_get_reference_mode_context(cm, xd)]
[has_second_ref(mbmi)]++;
if (has_second_ref(mbmi)) {
#if CONFIG_EXT_REFS
const int bit = (ref0 == GOLDEN_FRAME || ref0 == LAST3_FRAME);
counts->comp_ref[av1_get_pred_context_comp_ref_p(cm, xd)][0][bit]++;
if (!bit) {
counts->comp_ref[av1_get_pred_context_comp_ref_p1(cm, xd)][1]
[ref0 == LAST_FRAME]++;
} else {
counts->comp_ref[av1_get_pred_context_comp_ref_p2(cm, xd)][2]
[ref0 == GOLDEN_FRAME]++;
}
counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p(cm, xd)][0]
[ref1 == ALTREF_FRAME]++;
#else
counts->comp_ref[av1_get_pred_context_comp_ref_p(cm, xd)][0]
[ref0 == GOLDEN_FRAME]++;
#endif // CONFIG_EXT_REFS
} else {
#if CONFIG_EXT_REFS
const int bit = (ref0 == ALTREF_FRAME || ref0 == BWDREF_FRAME);
counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0][bit]++;
if (bit) {
counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1]
[ref0 != BWDREF_FRAME]++;
} else {
const int bit1 = !(ref0 == LAST2_FRAME || ref0 == LAST_FRAME);
counts->single_ref[av1_get_pred_context_single_ref_p3(xd)][2]
[bit1]++;
if (!bit1) {
counts->single_ref[av1_get_pred_context_single_ref_p4(xd)][3]
[ref0 != LAST_FRAME]++;
} else {
counts->single_ref[av1_get_pred_context_single_ref_p5(xd)][4]
[ref0 != LAST3_FRAME]++;
}
}
#else
counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0]
[ref0 != LAST_FRAME]++;
if (ref0 != LAST_FRAME) {
counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1]
[ref0 != GOLDEN_FRAME]++;
}
#endif // CONFIG_EXT_REFS
}
#if CONFIG_EXT_INTER
if (cm->reference_mode != COMPOUND_REFERENCE &&
#if CONFIG_SUPERTX
!supertx_enabled &&
#endif
is_interintra_allowed(mbmi)) {
const int bsize_group = size_group_lookup[bsize];
if (mbmi->ref_frame[1] == INTRA_FRAME) {
counts->interintra[bsize_group][1]++;
counts->interintra_mode[bsize_group][mbmi->interintra_mode]++;
if (is_interintra_wedge_used(bsize))
counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++;
} else {
counts->interintra[bsize_group][0]++;
}
}
#endif // CONFIG_EXT_INTER
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
#if CONFIG_SUPERTX
if (!supertx_enabled)
#endif // CONFIG_SUPERTX
#if CONFIG_EXT_INTER
if (mbmi->ref_frame[1] != INTRA_FRAME)
#endif // CONFIG_EXT_INTER
#if CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
{
if (motion_mode_allowed(mbmi) == WARPED_CAUSAL)
counts->motion_mode[mbmi->sb_type][mbmi->motion_mode]++;
else if (motion_mode_allowed(mbmi) == OBMC_CAUSAL)
counts->obmc[mbmi->sb_type][mbmi->motion_mode == OBMC_CAUSAL]++;
}
#else
if (motion_mode_allowed(mbmi) > SIMPLE_TRANSLATION)
counts->motion_mode[mbmi->sb_type][mbmi->motion_mode]++;
#endif // CONFIG_MOTION_VAR && CONFIG_WARPED_MOTION
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
#if CONFIG_EXT_INTER
if (cm->reference_mode != SINGLE_REFERENCE &&
is_inter_compound_mode(mbmi->mode)
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
&& mbmi->motion_mode == SIMPLE_TRANSLATION
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
) {
counts->compound_interinter[bsize]
[mbmi->interinter_compound_data.type]++;
}
#endif // CONFIG_EXT_INTER
}
}
if (inter_block &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
int16_t mode_ctx;
#if !CONFIG_REF_MV
mode_ctx = mbmi_ext->mode_context[mbmi->ref_frame[0]];
#endif
if (bsize >= BLOCK_8X8) {
const PREDICTION_MODE mode = mbmi->mode;
#if CONFIG_REF_MV
#if CONFIG_EXT_INTER
if (has_second_ref(mbmi)) {
mode_ctx = mbmi_ext->compound_mode_context[mbmi->ref_frame[0]];
++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)];
} else {
#endif // CONFIG_EXT_INTER
mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context,
mbmi->ref_frame, bsize, -1);
update_inter_mode_stats(counts, mode,
#if CONFIG_EXT_INTER
has_second_ref(mbmi),
#endif // CONFIG_EXT_INTER
mode_ctx);
if (mode == NEWMV) {
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
int idx;
for (idx = 0; idx < 2; ++idx) {
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
uint8_t drl_ctx =
av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx);
++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx];
if (mbmi->ref_mv_idx == idx) break;
}
}
}
if (mode == NEARMV) {
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
int idx;
for (idx = 1; idx < 3; ++idx) {
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
uint8_t drl_ctx =
av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx);
++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx - 1];
if (mbmi->ref_mv_idx == idx - 1) break;
}
}
}
#if CONFIG_EXT_INTER
}
#endif // CONFIG_EXT_INTER
#else
#if CONFIG_EXT_INTER
if (is_inter_compound_mode(mode))
++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)];
else
#endif // CONFIG_EXT_INTER
++counts->inter_mode[mode_ctx][INTER_OFFSET(mode)];
#endif
} else {
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
int idx, idy;
for (idy = 0; idy < 2; idy += num_4x4_h) {
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int j = idy * 2 + idx;
const PREDICTION_MODE b_mode = mi->bmi[j].as_mode;
#if CONFIG_REF_MV
#if CONFIG_EXT_INTER
if (has_second_ref(mbmi)) {
mode_ctx = mbmi_ext->compound_mode_context[mbmi->ref_frame[0]];
++counts->inter_compound_mode[mode_ctx]
[INTER_COMPOUND_OFFSET(b_mode)];
} else {
#endif // CONFIG_EXT_INTER
mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context,
mbmi->ref_frame, bsize, j);
update_inter_mode_stats(counts, b_mode,
#if CONFIG_EXT_INTER
has_second_ref(mbmi),
#endif // CONFIG_EXT_INTER
mode_ctx);
#if CONFIG_EXT_INTER
}
#endif // CONFIG_EXT_INTER
#else
#if CONFIG_EXT_INTER
if (is_inter_compound_mode(b_mode))
++counts->inter_compound_mode[mode_ctx]
[INTER_COMPOUND_OFFSET(b_mode)];
else
#endif // CONFIG_EXT_INTER
++counts->inter_mode[mode_ctx][INTER_OFFSET(b_mode)];
#endif
}
}
}
}
}
}
typedef struct {
ENTROPY_CONTEXT a[2 * MAX_MIB_SIZE * MAX_MB_PLANE];
ENTROPY_CONTEXT l[2 * MAX_MIB_SIZE * MAX_MB_PLANE];
PARTITION_CONTEXT sa[MAX_MIB_SIZE];
PARTITION_CONTEXT sl[MAX_MIB_SIZE];
#if CONFIG_VAR_TX
TXFM_CONTEXT *p_ta;
TXFM_CONTEXT *p_tl;
TXFM_CONTEXT ta[MAX_MIB_SIZE];
TXFM_CONTEXT tl[MAX_MIB_SIZE];
#endif
} RD_SEARCH_MACROBLOCK_CONTEXT;
static void restore_context(MACROBLOCK *x,
const RD_SEARCH_MACROBLOCK_CONTEXT *ctx, int mi_row,
int mi_col,
#if CONFIG_PVQ
od_rollback_buffer *rdo_buf,
#endif
BLOCK_SIZE bsize) {
MACROBLOCKD *xd = &x->e_mbd;
int p;
const int num_4x4_blocks_wide =
block_size_wide[bsize] >> tx_size_wide_log2[0];
const int num_4x4_blocks_high =
block_size_high[bsize] >> tx_size_high_log2[0];
int mi_width = mi_size_wide[bsize];
int mi_height = mi_size_high[bsize];
for (p = 0; p < MAX_MB_PLANE; p++) {
memcpy(xd->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x),
ctx->a + num_4x4_blocks_wide * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
xd->plane[p].subsampling_x);
memcpy(xd->left_context[p] +
((mi_row & MAX_MIB_MASK) * 2 >> xd->plane[p].subsampling_y),
ctx->l + num_4x4_blocks_high * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
xd->plane[p].subsampling_y);
}
memcpy(xd->above_seg_context + mi_col, ctx->sa,
sizeof(*xd->above_seg_context) * mi_width);
memcpy(xd->left_seg_context + (mi_row & MAX_MIB_MASK), ctx->sl,
sizeof(xd->left_seg_context[0]) * mi_height);
#if CONFIG_VAR_TX
xd->above_txfm_context = ctx->p_ta;
xd->left_txfm_context = ctx->p_tl;
memcpy(xd->above_txfm_context, ctx->ta,
sizeof(*xd->above_txfm_context) * mi_width);
memcpy(xd->left_txfm_context, ctx->tl,
sizeof(*xd->left_txfm_context) * mi_height);
#endif
#if CONFIG_PVQ
od_encode_rollback(&x->daala_enc, rdo_buf);
#endif
}
static void save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
int mi_row, int mi_col,
#if CONFIG_PVQ
od_rollback_buffer *rdo_buf,
#endif
BLOCK_SIZE bsize) {
const MACROBLOCKD *xd = &x->e_mbd;
int p;
const int num_4x4_blocks_wide =
block_size_wide[bsize] >> tx_size_wide_log2[0];
const int num_4x4_blocks_high =
block_size_high[bsize] >> tx_size_high_log2[0];
int mi_width = mi_size_wide[bsize];
int mi_height = mi_size_high[bsize];
// buffer the above/left context information of the block in search.
for (p = 0; p < MAX_MB_PLANE; ++p) {
memcpy(ctx->a + num_4x4_blocks_wide * p,
xd->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x),
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
xd->plane[p].subsampling_x);
memcpy(ctx->l + num_4x4_blocks_high * p,
xd->left_context[p] +
((mi_row & MAX_MIB_MASK) * 2 >> xd->plane[p].subsampling_y),
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
xd->plane[p].subsampling_y);
}
memcpy(ctx->sa, xd->above_seg_context + mi_col,
sizeof(*xd->above_seg_context) * mi_width);
memcpy(ctx->sl, xd->left_seg_context + (mi_row & MAX_MIB_MASK),
sizeof(xd->left_seg_context[0]) * mi_height);
#if CONFIG_VAR_TX
memcpy(ctx->ta, xd->above_txfm_context,
sizeof(*xd->above_txfm_context) * mi_width);
memcpy(ctx->tl, xd->left_txfm_context,
sizeof(*xd->left_txfm_context) * mi_height);
ctx->p_ta = xd->above_txfm_context;
ctx->p_tl = xd->left_txfm_context;
#endif
#if CONFIG_PVQ
od_encode_checkpoint(&x->daala_enc, rdo_buf);
#endif
}
static void encode_b(const AV1_COMP *const cpi, const TileInfo *const tile,
ThreadData *td, TOKENEXTRA **tp, int mi_row, int mi_col,
RUN_TYPE dry_run, BLOCK_SIZE bsize,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_TYPE partition,
#endif
PICK_MODE_CONTEXT *ctx, int *rate) {
MACROBLOCK *const x = &td->mb;
set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
#if CONFIG_EXT_PARTITION_TYPES
x->e_mbd.mi[0]->mbmi.partition = partition;
#endif
update_state(cpi, td, ctx, mi_row, mi_col, bsize, dry_run);
encode_superblock(cpi, td, tp, dry_run, mi_row, mi_col, bsize, ctx, rate);
if (!dry_run) {
#if CONFIG_SUPERTX
update_stats(&cpi->common, td, mi_row, mi_col, 0);
#else
update_stats(&cpi->common, td, mi_row, mi_col);
#endif
}
}
static void encode_sb(const AV1_COMP *const cpi, ThreadData *td,
const TileInfo *const tile, TOKENEXTRA **tp, int mi_row,
int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize,
PC_TREE *pc_tree, int *rate) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
const int hbs = mi_size_wide[bsize] / 2;
const PARTITION_TYPE partition = pc_tree->partitioning;
const BLOCK_SIZE subsize = get_subsize(bsize, partition);
#if CONFIG_EXT_PARTITION_TYPES
const BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
#endif
assert(bsize >= BLOCK_8X8);
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
if (!dry_run) td->counts->partition[ctx][partition]++;
#if CONFIG_SUPERTX
if (!frame_is_intra_only(cm) && bsize <= MAX_SUPERTX_BLOCK_SIZE &&
partition != PARTITION_NONE && !xd->lossless[0]) {
int supertx_enabled;
TX_SIZE supertx_size = max_txsize_lookup[bsize];
supertx_enabled = check_supertx_sb(bsize, supertx_size, pc_tree);
if (supertx_enabled) {
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
int x_idx, y_idx, i;
uint8_t *dst_buf[3];
int dst_stride[3];
set_skip_context(xd, mi_row, mi_col);
set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
update_state_sb_supertx(cpi, td, tile, mi_row, mi_col, bsize, dry_run,
pc_tree);
av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
for (i = 0; i < MAX_MB_PLANE; i++) {
dst_buf[i] = xd->plane[i].dst.buf;
dst_stride[i] = xd->plane[i].dst.stride;
}
predict_sb_complex(cpi, td, tile, mi_row, mi_col, mi_row, mi_col, dry_run,
bsize, bsize, dst_buf, dst_stride, pc_tree);
set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
set_segment_id_supertx(cpi, x, mi_row, mi_col, bsize);
if (!x->skip) {
int this_rate = 0;
x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
av1_encode_sb_supertx((AV1_COMMON *)cm, x, bsize);
av1_tokenize_sb_supertx(cpi, td, tp, dry_run, bsize, rate);
if (rate) *rate += this_rate;
} else {
xd->mi[0]->mbmi.skip = 1;
if (!dry_run) td->counts->skip[av1_get_skip_context(xd)][1]++;
reset_skip_context(xd, bsize);
}
if (!dry_run) {
for (y_idx = 0; y_idx < mi_height; y_idx++)
for (x_idx = 0; x_idx < mi_width; x_idx++) {
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width >
x_idx &&
(xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height >
y_idx) {
xd->mi[x_idx + y_idx * cm->mi_stride]->mbmi.skip =
xd->mi[0]->mbmi.skip;
}
}
td->counts->supertx[partition_supertx_context_lookup[partition]]
[supertx_size][1]++;
td->counts->supertx_size[supertx_size]++;
#if CONFIG_EXT_TX
if (get_ext_tx_types(supertx_size, bsize, 1) > 1 &&
!xd->mi[0]->mbmi.skip) {
int eset = get_ext_tx_set(supertx_size, bsize, 1);
if (eset > 0) {
++td->counts->inter_ext_tx[eset][supertx_size]
[xd->mi[0]->mbmi.tx_type];
}
}
#else
if (supertx_size < TX_32X32 && !xd->mi[0]->mbmi.skip) {
++td->counts->inter_ext_tx[supertx_size][xd->mi[0]->mbmi.tx_type];
}
#endif // CONFIG_EXT_TX
}
#if CONFIG_EXT_PARTITION_TYPES
update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize,
partition);
#else
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
#endif
#if CONFIG_VAR_TX
set_txfm_ctxs(supertx_size, mi_width, mi_height, xd->mi[0]->mbmi.skip,
xd);
#endif // CONFIG_VAR_TX
return;
} else {
if (!dry_run) {
td->counts->supertx[partition_supertx_context_lookup[partition]]
[supertx_size][0]++;
}
}
}
#endif // CONFIG_SUPERTX
switch (partition) {
case PARTITION_NONE:
encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif
&pc_tree->none, rate);
break;
case PARTITION_VERT:
encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif
&pc_tree->vertical[0], rate);
if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, dry_run, subsize,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif
&pc_tree->vertical[1], rate);
}
break;
case PARTITION_HORZ:
encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif
&pc_tree->horizontal[0], rate);
if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, dry_run, subsize,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif
&pc_tree->horizontal[1], rate);
}
break;
case PARTITION_SPLIT:
if (bsize == BLOCK_8X8) {
encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif
pc_tree->leaf_split[0], rate);
} else {
encode_sb(cpi, td, tile, tp, mi_row, mi_col, dry_run, subsize,
pc_tree->split[0], rate);
encode_sb(cpi, td, tile, tp, mi_row, mi_col + hbs, dry_run, subsize,
pc_tree->split[1], rate);
encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col, dry_run, subsize,
pc_tree->split[2], rate);
encode_sb(cpi, td, tile, tp, mi_row + hbs, mi_col + hbs, dry_run,
subsize, pc_tree->split[3], rate);
}
break;
#if CONFIG_EXT_PARTITION_TYPES
case PARTITION_HORZ_A:
encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, bsize2, partition,
&pc_tree->horizontala[0], rate);
encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, dry_run, bsize2,
partition, &pc_tree->horizontala[1], rate);
encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, dry_run, subsize,
partition, &pc_tree->horizontala[2], rate);
break;
case PARTITION_HORZ_B:
encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize, partition,
&pc_tree->horizontalb[0], rate);
encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, dry_run, bsize2,
partition, &pc_tree->horizontalb[1], rate);
encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col + hbs, dry_run, bsize2,
partition, &pc_tree->horizontalb[2], rate);
break;
case PARTITION_VERT_A:
encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, bsize2, partition,
&pc_tree->verticala[0], rate);
encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col, dry_run, bsize2,
partition, &pc_tree->verticala[1], rate);
encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, dry_run, subsize,
partition, &pc_tree->verticala[2], rate);
break;
case PARTITION_VERT_B:
encode_b(cpi, tile, td, tp, mi_row, mi_col, dry_run, subsize, partition,
&pc_tree->verticalb[0], rate);
encode_b(cpi, tile, td, tp, mi_row, mi_col + hbs, dry_run, bsize2,
partition, &pc_tree->verticalb[1], rate);
encode_b(cpi, tile, td, tp, mi_row + hbs, mi_col + hbs, dry_run, bsize2,
partition, &pc_tree->verticalb[2], rate);
break;
#endif // CONFIG_EXT_PARTITION_TYPES
default: assert(0 && "Invalid partition type."); break;
}
#if CONFIG_EXT_PARTITION_TYPES
update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
#else
if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8)
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
#endif // CONFIG_EXT_PARTITION_TYPES
}
// Check to see if the given partition size is allowed for a specified number
// of mi block rows and columns remaining in the image.
// If not then return the largest allowed partition size
static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left,
int cols_left, int *bh, int *bw) {
if (rows_left <= 0 || cols_left <= 0) {
return AOMMIN(bsize, BLOCK_8X8);
} else {
for (; bsize > 0; bsize -= 3) {
*bh = mi_size_high[bsize];
*bw = mi_size_wide[bsize];
if ((*bh <= rows_left) && (*bw <= cols_left)) {
break;
}
}
}
return bsize;
}
static void set_partial_sb_partition(const AV1_COMMON *const cm, MODE_INFO *mi,
int bh_in, int bw_in,
int mi_rows_remaining,
int mi_cols_remaining, BLOCK_SIZE bsize,
MODE_INFO **mib) {
int bh = bh_in;
int r, c;
for (r = 0; r < cm->mib_size; r += bh) {
int bw = bw_in;
for (c = 0; c < cm->mib_size; c += bw) {
const int index = r * cm->mi_stride + c;
mib[index] = mi + index;
mib[index]->mbmi.sb_type = find_partition_size(
bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw);
}
}
}
// This function attempts to set all mode info entries in a given superblock
// to the same block partition size.
// However, at the bottom and right borders of the image the requested size
// may not be allowed in which case this code attempts to choose the largest
// allowable partition.
static void set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile,
MODE_INFO **mib, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
AV1_COMMON *const cm = &cpi->common;
const int mi_rows_remaining = tile->mi_row_end - mi_row;
const int mi_cols_remaining = tile->mi_col_end - mi_col;
int block_row, block_col;
MODE_INFO *const mi_upper_left = cm->mi + mi_row * cm->mi_stride + mi_col;
int bh = mi_size_high[bsize];
int bw = mi_size_wide[bsize];
assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0));
// Apply the requested partition size to the SB if it is all "in image"
if ((mi_cols_remaining >= cm->mib_size) &&
(mi_rows_remaining >= cm->mib_size)) {
for (block_row = 0; block_row < cm->mib_size; block_row += bh) {
for (block_col = 0; block_col < cm->mib_size; block_col += bw) {
int index = block_row * cm->mi_stride + block_col;
mib[index] = mi_upper_left + index;
mib[index]->mbmi.sb_type = bsize;
}
}
} else {
// Else this is a partial SB.
set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining,
mi_cols_remaining, bsize, mib);
}
}
static void rd_use_partition(AV1_COMP *cpi, ThreadData *td,
TileDataEnc *tile_data, MODE_INFO **mib,
TOKENEXTRA **tp, int mi_row, int mi_col,
BLOCK_SIZE bsize, int *rate, int64_t *dist,
#if CONFIG_SUPERTX
int *rate_nocoef,
#endif
int do_recon, PC_TREE *pc_tree) {
AV1_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int bs = mi_size_wide[bsize];
const int hbs = bs / 2;
int i;
const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
const BLOCK_SIZE subsize = get_subsize(bsize, partition);
RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
RD_COST last_part_rdc, none_rdc, chosen_rdc;
BLOCK_SIZE sub_subsize = BLOCK_4X4;
int splits_below = 0;
BLOCK_SIZE bs_type = mib[0]->mbmi.sb_type;
int do_partition_search = 1;
PICK_MODE_CONTEXT *ctx_none = &pc_tree->none;
#if CONFIG_SUPERTX
int last_part_rate_nocoef = INT_MAX;
int none_rate_nocoef = INT_MAX;
int chosen_rate_nocoef = INT_MAX;
#endif
#if CONFIG_PVQ
od_rollback_buffer pre_rdo_buf;
#endif
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
assert(num_4x4_blocks_wide_lookup[bsize] ==
num_4x4_blocks_high_lookup[bsize]);
av1_rd_cost_reset(&last_part_rdc);
av1_rd_cost_reset(&none_rdc);
av1_rd_cost_reset(&chosen_rdc);
pc_tree->partitioning = partition;
#if CONFIG_VAR_TX
xd->above_txfm_context = cm->above_txfm_context + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
#endif
#if !CONFIG_PVQ
save_context(x, &x_ctx, mi_row, mi_col, bsize);
#else
save_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize);
#endif
if (bsize == BLOCK_16X16 && cpi->vaq_refresh) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
x->mb_energy = av1_block_energy(cpi, x, bsize);
}
if (do_partition_search &&
cpi->sf.partition_search_type == SEARCH_PARTITION &&
cpi->sf.adjust_partitioning_from_last_frame) {
// Check if any of the sub blocks are further split.
if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
sub_subsize = get_subsize(subsize, PARTITION_SPLIT);
splits_below = 1;
for (i = 0; i < 4; i++) {
int jj = i >> 1, ii = i & 0x01;
MODE_INFO *this_mi = mib[jj * hbs * cm->mi_stride + ii * hbs];
if (this_mi && this_mi->mbmi.sb_type >= sub_subsize) {
splits_below = 0;
}
}
}
// If partition is not none try none unless each of the 4 splits are split
// even further..
if (partition != PARTITION_NONE && !splits_below &&
mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) {
pc_tree->partitioning = PARTITION_NONE;
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc,
#if CONFIG_SUPERTX
&none_rate_nocoef,
#endif
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_NONE,
#endif
bsize, ctx_none, INT64_MAX);
if (none_rdc.rate < INT_MAX) {
none_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
none_rdc.rdcost =
RDCOST(x->rdmult, x->rddiv, none_rdc.rate, none_rdc.dist);
#if CONFIG_SUPERTX
none_rate_nocoef += cpi->partition_cost[pl][PARTITION_NONE];
#endif
}
#if !CONFIG_PVQ
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
#else
restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize);
#endif
mib[0]->mbmi.sb_type = bs_type;
pc_tree->partitioning = partition;
}
}
switch (partition) {
case PARTITION_NONE:
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
#if CONFIG_SUPERTX
&last_part_rate_nocoef,
#endif
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_NONE,
#endif
bsize, ctx_none, INT64_MAX);
break;
case PARTITION_HORZ:
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
#if CONFIG_SUPERTX
&last_part_rate_nocoef,
#endif
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_HORZ,
#endif
subsize, &pc_tree->horizontal[0], INT64_MAX);
if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
mi_row + hbs < cm->mi_rows) {
RD_COST tmp_rdc;
#if CONFIG_SUPERTX
int rt_nocoef = 0;
#endif
PICK_MODE_CONTEXT *ctx_h = &pc_tree->horizontal[0];
av1_rd_cost_init(&tmp_rdc);
update_state(cpi, td, ctx_h, mi_row, mi_col, subsize, 1);
encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, subsize,
ctx_h, NULL);
rd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &tmp_rdc,
#if CONFIG_SUPERTX
&rt_nocoef,
#endif
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_HORZ,
#endif
subsize, &pc_tree->horizontal[1], INT64_MAX);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_rd_cost_reset(&last_part_rdc);
#if CONFIG_SUPERTX
last_part_rate_nocoef = INT_MAX;
#endif
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
last_part_rdc.rdcost += tmp_rdc.rdcost;
#if CONFIG_SUPERTX
last_part_rate_nocoef += rt_nocoef;
#endif
}
break;
case PARTITION_VERT:
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
#if CONFIG_SUPERTX
&last_part_rate_nocoef,
#endif
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_VERT,
#endif
subsize, &pc_tree->vertical[0], INT64_MAX);
if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
mi_col + hbs < cm->mi_cols) {
RD_COST tmp_rdc;
#if CONFIG_SUPERTX
int rt_nocoef = 0;
#endif
PICK_MODE_CONTEXT *ctx_v = &pc_tree->vertical[0];
av1_rd_cost_init(&tmp_rdc);
update_state(cpi, td, ctx_v, mi_row, mi_col, subsize, 1);
encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, subsize,
ctx_v, NULL);
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &tmp_rdc,
#if CONFIG_SUPERTX
&rt_nocoef,
#endif
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_VERT,
#endif
subsize, &pc_tree->vertical[bsize > BLOCK_8X8],
INT64_MAX);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_rd_cost_reset(&last_part_rdc);
#if CONFIG_SUPERTX
last_part_rate_nocoef = INT_MAX;
#endif
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
last_part_rdc.rdcost += tmp_rdc.rdcost;
#if CONFIG_SUPERTX
last_part_rate_nocoef += rt_nocoef;
#endif
}
break;
case PARTITION_SPLIT:
if (bsize == BLOCK_8X8) {
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
#if CONFIG_SUPERTX
&last_part_rate_nocoef,
#endif
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_SPLIT,
#endif
subsize, pc_tree->leaf_split[0], INT64_MAX);
break;
}
last_part_rdc.rate = 0;
last_part_rdc.dist = 0;
last_part_rdc.rdcost = 0;
#if CONFIG_SUPERTX
last_part_rate_nocoef = 0;
#endif
for (i = 0; i < 4; i++) {
int x_idx = (i & 1) * hbs;
int y_idx = (i >> 1) * hbs;
int jj = i >> 1, ii = i & 0x01;
RD_COST tmp_rdc;
#if CONFIG_SUPERTX
int rt_nocoef;
#endif
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
continue;
av1_rd_cost_init(&tmp_rdc);
rd_use_partition(cpi, td, tile_data,
mib + jj * hbs * cm->mi_stride + ii * hbs, tp,
mi_row + y_idx, mi_col + x_idx, subsize, &tmp_rdc.rate,
&tmp_rdc.dist,
#if CONFIG_SUPERTX
&rt_nocoef,
#endif
i != 3, pc_tree->split[i]);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_rd_cost_reset(&last_part_rdc);
#if CONFIG_SUPERTX
last_part_rate_nocoef = INT_MAX;
#endif
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
#if CONFIG_SUPERTX
last_part_rate_nocoef += rt_nocoef;
#endif
}
break;
#if CONFIG_EXT_PARTITION_TYPES
case PARTITION_VERT_A:
case PARTITION_VERT_B:
case PARTITION_HORZ_A:
case PARTITION_HORZ_B: assert(0 && "Cannot handle extended partiton types");
#endif // CONFIG_EXT_PARTITION_TYPES
default: assert(0); break;
}
if (last_part_rdc.rate < INT_MAX) {
last_part_rdc.rate += cpi->partition_cost[pl][partition];
last_part_rdc.rdcost =
RDCOST(x->rdmult, x->rddiv, last_part_rdc.rate, last_part_rdc.dist);
#if CONFIG_SUPERTX
last_part_rate_nocoef += cpi->partition_cost[pl][partition];
#endif
}
if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame &&
cpi->sf.partition_search_type == SEARCH_PARTITION &&
partition != PARTITION_SPLIT && bsize > BLOCK_8X8 &&
(mi_row + bs < cm->mi_rows || mi_row + hbs == cm->mi_rows) &&
(mi_col + bs < cm->mi_cols || mi_col + hbs == cm->mi_cols)) {
BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT);
chosen_rdc.rate = 0;
chosen_rdc.dist = 0;
#if CONFIG_SUPERTX
chosen_rate_nocoef = 0;
#endif
#if !CONFIG_PVQ
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
#else
restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize);
#endif
pc_tree->partitioning = PARTITION_SPLIT;
// Split partition.
for (i = 0; i < 4; i++) {
int x_idx = (i & 1) * hbs;
int y_idx = (i >> 1) * hbs;
RD_COST tmp_rdc;
#if CONFIG_SUPERTX
int rt_nocoef = 0;
#endif
#if CONFIG_PVQ
od_rollback_buffer buf;
#endif
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
continue;
#if !CONFIG_PVQ
save_context(x, &x_ctx, mi_row, mi_col, bsize);
#else
save_context(x, &x_ctx, mi_row, mi_col, &buf, bsize);
#endif
pc_tree->split[i]->partitioning = PARTITION_NONE;
rd_pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx,
&tmp_rdc,
#if CONFIG_SUPERTX
&rt_nocoef,
#endif
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_SPLIT,
#endif
split_subsize, &pc_tree->split[i]->none, INT64_MAX);
#if !CONFIG_PVQ
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
#else
restore_context(x, &x_ctx, mi_row, mi_col, &buf, bsize);
#endif
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_rd_cost_reset(&chosen_rdc);
#if CONFIG_SUPERTX
chosen_rate_nocoef = INT_MAX;
#endif
break;
}
chosen_rdc.rate += tmp_rdc.rate;
chosen_rdc.dist += tmp_rdc.dist;
#if CONFIG_SUPERTX
chosen_rate_nocoef += rt_nocoef;
#endif
if (i != 3)
encode_sb(cpi, td, tile_info, tp, mi_row + y_idx, mi_col + x_idx,
OUTPUT_ENABLED, split_subsize, pc_tree->split[i], NULL);
chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_NONE];
#if CONFIG_SUPERTX
chosen_rate_nocoef += cpi->partition_cost[pl][PARTITION_SPLIT];
#endif
}
if (chosen_rdc.rate < INT_MAX) {
chosen_rdc.rate += cpi->partition_cost[pl][PARTITION_SPLIT];
chosen_rdc.rdcost =
RDCOST(x->rdmult, x->rddiv, chosen_rdc.rate, chosen_rdc.dist);
#if CONFIG_SUPERTX
chosen_rate_nocoef += cpi->partition_cost[pl][PARTITION_NONE];
#endif
}
}
// If last_part is better set the partitioning to that.
if (last_part_rdc.rdcost < chosen_rdc.rdcost) {
mib[0]->mbmi.sb_type = bsize;
if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition;
chosen_rdc = last_part_rdc;
#if CONFIG_SUPERTX
chosen_rate_nocoef = last_part_rate_nocoef;
#endif
}
// If none was better set the partitioning to that.
if (none_rdc.rdcost < chosen_rdc.rdcost) {
if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
chosen_rdc = none_rdc;
#if CONFIG_SUPERTX
chosen_rate_nocoef = none_rate_nocoef;
#endif
}
#if !CONFIG_PVQ
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
#else
restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize);
#endif
// We must have chosen a partitioning and encoding or we'll fail later on.
// No other opportunities for success.
if (bsize == cm->sb_size)
assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX);
if (do_recon) {
if (bsize == cm->sb_size) {
// NOTE: To get estimate for rate due to the tokens, use:
// int rate_coeffs = 0;
// encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS,
// bsize, pc_tree, &rate_coeffs);
encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
pc_tree, NULL);
} else {
encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
pc_tree, NULL);
}
}
*rate = chosen_rdc.rate;
*dist = chosen_rdc.dist;
#if CONFIG_SUPERTX
*rate_nocoef = chosen_rate_nocoef;
#endif
}
/* clang-format off */
static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = {
#if CONFIG_CB4X4
BLOCK_2X2, BLOCK_2X2, BLOCK_2X2, // 2x2, 2x4, 4x2
#endif
BLOCK_4X4, // 4x4
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, // 4x8, 8x4, 8x8
BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 8x16, 16x8, 16x16
BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, // 16x32, 32x16, 32x32
BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, // 32x64, 64x32, 64x64
#if CONFIG_EXT_PARTITION
BLOCK_16X16, BLOCK_16X16, BLOCK_16X16 // 64x128, 128x64, 128x128
#endif // CONFIG_EXT_PARTITION
};
static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = {
#if CONFIG_CB4X4
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, // 2x2, 2x4, 4x2
#endif
BLOCK_8X8, // 4x4
BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, // 4x8, 8x4, 8x8
BLOCK_32X32, BLOCK_32X32, BLOCK_32X32, // 8x16, 16x8, 16x16
BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, // 16x32, 32x16, 32x32
BLOCK_LARGEST, BLOCK_LARGEST, BLOCK_LARGEST, // 32x64, 64x32, 64x64
#if CONFIG_EXT_PARTITION
BLOCK_LARGEST, BLOCK_LARGEST, BLOCK_LARGEST // 64x128, 128x64, 128x128
#endif // CONFIG_EXT_PARTITION
};
// Next square block size less or equal than current block size.
static const BLOCK_SIZE next_square_size[BLOCK_SIZES] = {
#if CONFIG_CB4X4
BLOCK_2X2, BLOCK_2X2, BLOCK_2X2, // 2x2, 2x4, 4x2
#endif
BLOCK_4X4, // 4x4
BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 4x8, 8x4, 8x8
BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, // 8x16, 16x8, 16x16
BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, // 16x32, 32x16, 32x32
BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, // 32x64, 64x32, 64x64
#if CONFIG_EXT_PARTITION
BLOCK_64X64, BLOCK_64X64, BLOCK_128X128 // 64x128, 128x64, 128x128
#endif // CONFIG_EXT_PARTITION
};
/* clang-format on */
// Look at all the mode_info entries for blocks that are part of this
// partition and find the min and max values for sb_type.
// At the moment this is designed to work on a superblock but could be
// adjusted to use a size parameter.
//
// The min and max are assumed to have been initialized prior to calling this
// function so repeat calls can accumulate a min and max of more than one
// superblock.
static void get_sb_partition_size_range(const AV1_COMMON *const cm,
MACROBLOCKD *xd, MODE_INFO **mib,
BLOCK_SIZE *min_block_size,
BLOCK_SIZE *max_block_size) {
int i, j;
int index = 0;
// Check the sb_type for each block that belongs to this region.
for (i = 0; i < cm->mib_size; ++i) {
for (j = 0; j < cm->mib_size; ++j) {
MODE_INFO *mi = mib[index + j];
BLOCK_SIZE sb_type = mi ? mi->mbmi.sb_type : BLOCK_4X4;
*min_block_size = AOMMIN(*min_block_size, sb_type);
*max_block_size = AOMMAX(*max_block_size, sb_type);
}
index += xd->mi_stride;
}
}
// Look at neighboring blocks and set a min and max partition size based on
// what they chose.
static void rd_auto_partition_range(AV1_COMP *cpi, const TileInfo *const tile,
MACROBLOCKD *const xd, int mi_row,
int mi_col, BLOCK_SIZE *min_block_size,
BLOCK_SIZE *max_block_size) {
AV1_COMMON *const cm = &cpi->common;
MODE_INFO **mi = xd->mi;
const int left_in_image = xd->left_available && mi[-1];
const int above_in_image = xd->up_available && mi[-xd->mi_stride];
const int mi_rows_remaining = tile->mi_row_end - mi_row;
const int mi_cols_remaining = tile->mi_col_end - mi_col;
int bh, bw;
BLOCK_SIZE min_size = BLOCK_4X4;
BLOCK_SIZE max_size = BLOCK_LARGEST;
// Trap case where we do not have a prediction.
if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) {
// Default "min to max" and "max to min"
min_size = BLOCK_LARGEST;
max_size = BLOCK_4X4;
// NOTE: each call to get_sb_partition_size_range() uses the previous
// passed in values for min and max as a starting point.
// Find the min and max partition used in previous frame at this location
if (cm->frame_type != KEY_FRAME) {
MODE_INFO **prev_mi =
&cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col];
get_sb_partition_size_range(cm, xd, prev_mi, &min_size, &max_size);
}
// Find the min and max partition sizes used in the left superblock
if (left_in_image) {
MODE_INFO **left_sb_mi = &mi[-cm->mib_size];
get_sb_partition_size_range(cm, xd, left_sb_mi, &min_size, &max_size);
}
// Find the min and max partition sizes used in the above suprblock.
if (above_in_image) {
MODE_INFO **above_sb_mi = &mi[-xd->mi_stride * cm->mib_size];
get_sb_partition_size_range(cm, xd, above_sb_mi, &min_size, &max_size);
}
// Adjust observed min and max for "relaxed" auto partition case.
if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
min_size = min_partition_size[min_size];
max_size = max_partition_size[max_size];
}
}
// Check border cases where max and min from neighbors may not be legal.
max_size = find_partition_size(max_size, mi_rows_remaining, mi_cols_remaining,
&bh, &bw);
min_size = AOMMIN(min_size, max_size);
// Test for blocks at the edge of the active image.
// This may be the actual edge of the image or where there are formatting
// bars.
if (av1_active_edge_sb(cpi, mi_row, mi_col)) {
min_size = BLOCK_4X4;
} else {
min_size = AOMMIN(cpi->sf.rd_auto_partition_min_limit, min_size);
}
// When use_square_partition_only is true, make sure at least one square
// partition is allowed by selecting the next smaller square size as
// *min_block_size.
if (cpi->sf.use_square_partition_only) {
min_size = AOMMIN(min_size, next_square_size[max_size]);
}
*min_block_size = AOMMIN(min_size, cm->sb_size);
*max_block_size = AOMMIN(max_size, cm->sb_size);
}
// TODO(jingning) refactor functions setting partition search range
static void set_partition_range(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd, int mi_row,
int mi_col, BLOCK_SIZE bsize,
BLOCK_SIZE *const min_bs,
BLOCK_SIZE *const max_bs) {
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
int idx, idy;
const int idx_str = cm->mi_stride * mi_row + mi_col;
MODE_INFO **const prev_mi = &cm->prev_mi_grid_visible[idx_str];
BLOCK_SIZE min_size = BLOCK_64X64; // default values
BLOCK_SIZE max_size = BLOCK_4X4;
if (prev_mi) {
for (idy = 0; idy < mi_height; ++idy) {
for (idx = 0; idx < mi_width; ++idx) {
const MODE_INFO *const mi = prev_mi[idy * cm->mi_stride + idx];
const BLOCK_SIZE bs = mi ? mi->mbmi.sb_type : bsize;
min_size = AOMMIN(min_size, bs);
max_size = AOMMAX(max_size, bs);
}
}
}
if (xd->left_available) {
for (idy = 0; idy < mi_height; ++idy) {
const MODE_INFO *const mi = xd->mi[idy * cm->mi_stride - 1];
const BLOCK_SIZE bs = mi ? mi->mbmi.sb_type : bsize;
min_size = AOMMIN(min_size, bs);
max_size = AOMMAX(max_size, bs);
}
}
if (xd->up_available) {
for (idx = 0; idx < mi_width; ++idx) {
const MODE_INFO *const mi = xd->mi[idx - cm->mi_stride];
const BLOCK_SIZE bs = mi ? mi->mbmi.sb_type : bsize;
min_size = AOMMIN(min_size, bs);
max_size = AOMMAX(max_size, bs);
}
}
if (min_size == max_size) {
min_size = min_partition_size[min_size];
max_size = max_partition_size[max_size];
}
*min_bs = AOMMIN(min_size, cm->sb_size);
*max_bs = AOMMIN(max_size, cm->sb_size);
}
static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
}
static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
}
#if CONFIG_FP_MB_STATS
const int qindex_skip_threshold_lookup[BLOCK_SIZES] = {
0,
10,
10,
30,
40,
40,
60,
80,
80,
90,
100,
100,
120,
#if CONFIG_EXT_PARTITION
// TODO(debargha): What are the correct numbers here?
130,
130,
150
#endif // CONFIG_EXT_PARTITION
};
const int qindex_split_threshold_lookup[BLOCK_SIZES] = {
0,
3,
3,
7,
15,
15,
30,
40,
40,
60,
80,
80,
120,
#if CONFIG_EXT_PARTITION
// TODO(debargha): What are the correct numbers here?
160,
160,
240
#endif // CONFIG_EXT_PARTITION
};
const int complexity_16x16_blocks_threshold[BLOCK_SIZES] = {
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
4,
4,
6,
#if CONFIG_EXT_PARTITION
// TODO(debargha): What are the correct numbers here?
8,
8,
10
#endif // CONFIG_EXT_PARTITION
};
typedef enum {
MV_ZERO = 0,
MV_LEFT = 1,
MV_UP = 2,
MV_RIGHT = 3,
MV_DOWN = 4,
MV_INVALID
} MOTION_DIRECTION;
static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) {
if (fp_byte & FPMB_MOTION_ZERO_MASK) {
return MV_ZERO;
} else if (fp_byte & FPMB_MOTION_LEFT_MASK) {
return MV_LEFT;
} else if (fp_byte & FPMB_MOTION_RIGHT_MASK) {
return MV_RIGHT;
} else if (fp_byte & FPMB_MOTION_UP_MASK) {
return MV_UP;
} else {
return MV_DOWN;
}
}
static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv,
MOTION_DIRECTION that_mv) {
if (this_mv == that_mv) {
return 0;
} else {
return abs(this_mv - that_mv) == 2 ? 2 : 1;
}
}
#endif
#if CONFIG_EXT_PARTITION_TYPES
static void rd_test_partition3(
const AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data,
TOKENEXTRA **tp, PC_TREE *pc_tree, RD_COST *best_rdc,
PICK_MODE_CONTEXT ctxs[3], PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
BLOCK_SIZE bsize, PARTITION_TYPE partition,
#if CONFIG_SUPERTX
int64_t best_rd, int *best_rate_nocoef, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx,
#endif
int mi_row0, int mi_col0, BLOCK_SIZE subsize0, int mi_row1, int mi_col1,
BLOCK_SIZE subsize1, int mi_row2, int mi_col2, BLOCK_SIZE subsize2) {
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
RD_COST this_rdc, sum_rdc;
#if CONFIG_SUPERTX
const AV1_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
int this_rate_nocoef, sum_rate_nocoef;
int abort_flag;
const int supertx_allowed = !frame_is_intra_only(cm) &&
bsize <= MAX_SUPERTX_BLOCK_SIZE &&
!xd->lossless[0];
#endif
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx);
rd_pick_sb_modes(cpi, tile_data, x, mi_row0, mi_col0, &sum_rdc,
#if CONFIG_SUPERTX
&sum_rate_nocoef,
#endif
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif
subsize0, &ctxs[0], best_rdc->rdcost);
#if CONFIG_SUPERTX
abort_flag = sum_rdc.rdcost >= best_rd;
#endif
#if CONFIG_SUPERTX
if (sum_rdc.rdcost < INT64_MAX) {
#else
if (sum_rdc.rdcost < best_rdc->rdcost) {
#endif
PICK_MODE_CONTEXT *ctx_0 = &ctxs[0];
update_state(cpi, td, ctx_0, mi_row0, mi_col0, subsize0, 1);
encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row0, mi_col0, subsize0,
ctx_0, NULL);
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_0);
#if CONFIG_SUPERTX
rd_pick_sb_modes(cpi, tile_data, x, mi_row1, mi_col1, &this_rdc,
&this_rate_nocoef,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif
subsize1, &ctxs[1], INT64_MAX - sum_rdc.rdcost);
#else
rd_pick_sb_modes(cpi, tile_data, x, mi_row1, mi_col1, &this_rdc,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif
subsize1, &ctxs[1], best_rdc->rdcost - sum_rdc.rdcost);
#endif // CONFIG_SUPERTX
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
#if CONFIG_SUPERTX
sum_rate_nocoef = INT_MAX;
#endif
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost += this_rdc.rdcost;
#if CONFIG_SUPERTX
sum_rate_nocoef += this_rate_nocoef;
#endif
}
#if CONFIG_SUPERTX
if (sum_rdc.rdcost < INT64_MAX) {
#else
if (sum_rdc.rdcost < best_rdc->rdcost) {
#endif
PICK_MODE_CONTEXT *ctx_1 = &ctxs[1];
update_state(cpi, td, ctx_1, mi_row1, mi_col1, subsize1, 1);
encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row1, mi_col1, subsize1,
ctx_1, NULL);
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_1);
#if CONFIG_SUPERTX
rd_pick_sb_modes(cpi, tile_data, x, mi_row2, mi_col2, &this_rdc,
&this_rate_nocoef,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif
subsize2, &ctxs[2], INT64_MAX - sum_rdc.rdcost);
#else
rd_pick_sb_modes(cpi, tile_data, x, mi_row2, mi_col2, &this_rdc,
#if CONFIG_EXT_PARTITION_TYPES
partition,
#endif
subsize2, &ctxs[2], best_rdc->rdcost - sum_rdc.rdcost);
#endif // CONFIG_SUPERTX
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
#if CONFIG_SUPERTX
sum_rate_nocoef = INT_MAX;
#endif
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost += this_rdc.rdcost;
#if CONFIG_SUPERTX
sum_rate_nocoef += this_rate_nocoef;
#endif
}
#if CONFIG_SUPERTX
if (supertx_allowed && !abort_flag && sum_rdc.rdcost < INT64_MAX) {
TX_SIZE supertx_size = max_txsize_lookup[bsize];
const PARTITION_TYPE best_partition = pc_tree->partitioning;
pc_tree->partitioning = partition;
sum_rdc.rate += av1_cost_bit(
cm->fc->supertx_prob[partition_supertx_context_lookup[partition]]
[supertx_size],
0);
sum_rdc.rdcost =
RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
if (!check_intra_sb(cpi, tile_info, mi_row, mi_col, bsize, pc_tree)) {
TX_TYPE best_tx = DCT_DCT;
RD_COST tmp_rdc = { sum_rate_nocoef, 0, 0 };
restore_context(x, x_ctx, mi_row, mi_col, bsize);
rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize,
&tmp_rdc.rate, &tmp_rdc.dist, &best_tx, pc_tree);
tmp_rdc.rate += av1_cost_bit(
cm->fc->supertx_prob[partition_supertx_context_lookup[partition]]
[supertx_size],
1);
tmp_rdc.rdcost =
RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist);
if (tmp_rdc.rdcost < sum_rdc.rdcost) {
sum_rdc = tmp_rdc;
update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx,
supertx_size, pc_tree);
}
}
pc_tree->partitioning = best_partition;
}
#endif // CONFIG_SUPERTX
if (sum_rdc.rdcost < best_rdc->rdcost) {
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
sum_rdc.rate += cpi->partition_cost[pl][partition];
sum_rdc.rdcost =
RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
#if CONFIG_SUPERTX
sum_rate_nocoef += cpi->partition_cost[pl][partition];
#endif
if (sum_rdc.rdcost < best_rdc->rdcost) {
#if CONFIG_SUPERTX
*best_rate_nocoef = sum_rate_nocoef;
assert(*best_rate_nocoef >= 0);
#endif
*best_rdc = sum_rdc;
pc_tree->partitioning = partition;
}
}
}
}
}
#endif // CONFIG_EXT_PARTITION_TYPES
// TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
// unlikely to be selected depending on previous rate-distortion optimization
// results, for encoding speed-up.
static void rd_pick_partition(const AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TOKENEXTRA **tp,
int mi_row, int mi_col, BLOCK_SIZE bsize,
RD_COST *rd_cost,
#if CONFIG_SUPERTX
int *rate_nocoef,
#endif
int64_t best_rd, PC_TREE *pc_tree) {
const AV1_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_step = mi_size_wide[bsize] / 2;
RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
const TOKENEXTRA *const tp_orig = *tp;
PICK_MODE_CONTEXT *ctx_none = &pc_tree->none;
const int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
const int *partition_cost = cpi->partition_cost[pl];
int tmp_partition_cost[PARTITION_TYPES];
BLOCK_SIZE subsize;
RD_COST this_rdc, sum_rdc, best_rdc;
#if CONFIG_SUPERTX
int this_rate_nocoef, sum_rate_nocoef = 0, best_rate_nocoef = INT_MAX;
int abort_flag;
const int supertx_allowed = !frame_is_intra_only(cm) &&
bsize <= MAX_SUPERTX_BLOCK_SIZE &&
!xd->lossless[0];
#endif // CONFIG_SUPERTX
const int bsize_at_least_8x8 = (bsize >= BLOCK_8X8);
int do_square_split = bsize_at_least_8x8;
int do_rectangular_split = 1;
#if CONFIG_EXT_PARTITION_TYPES
BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
#endif
// Override skipping rectangular partition operations for edge blocks
const int force_horz_split = (mi_row + mi_step >= cm->mi_rows);
const int force_vert_split = (mi_col + mi_step >= cm->mi_cols);
const int xss = x->e_mbd.plane[1].subsampling_x;
const int yss = x->e_mbd.plane[1].subsampling_y;
BLOCK_SIZE min_size = x->min_partition_size;
BLOCK_SIZE max_size = x->max_partition_size;
#if CONFIG_FP_MB_STATS
unsigned int src_diff_var = UINT_MAX;
int none_complexity = 0;
#endif
int partition_none_allowed = !force_horz_split && !force_vert_split;
int partition_horz_allowed =
!force_vert_split && yss <= xss && bsize_at_least_8x8;
int partition_vert_allowed =
!force_horz_split && xss <= yss && bsize_at_least_8x8;
#if CONFIG_PVQ
od_rollback_buffer pre_rdo_buf;
#endif
(void)*tp_orig;
if (force_horz_split || force_vert_split) {
tmp_partition_cost[PARTITION_NONE] = INT_MAX;
if (!force_vert_split) { // force_horz_split only
tmp_partition_cost[PARTITION_VERT] = INT_MAX;
tmp_partition_cost[PARTITION_HORZ] =
av1_cost_bit(cm->fc->partition_prob[pl][PARTITION_HORZ], 0);
tmp_partition_cost[PARTITION_SPLIT] =
av1_cost_bit(cm->fc->partition_prob[pl][PARTITION_HORZ], 1);
} else if (!force_horz_split) { // force_vert_split only
tmp_partition_cost[PARTITION_HORZ] = INT_MAX;
tmp_partition_cost[PARTITION_VERT] =
av1_cost_bit(cm->fc->partition_prob[pl][PARTITION_VERT], 0);
tmp_partition_cost[PARTITION_SPLIT] =
av1_cost_bit(cm->fc->partition_prob[pl][PARTITION_VERT], 1);
} else { // force_ horz_split && force_vert_split horz_split
tmp_partition_cost[PARTITION_HORZ] = INT_MAX;
tmp_partition_cost[PARTITION_VERT] = INT_MAX;
tmp_partition_cost[PARTITION_SPLIT] = 0;
}
partition_cost = tmp_partition_cost;
}
#if CONFIG_VAR_TX
#ifndef NDEBUG
// Nothing should rely on the default value of this array (which is just
// leftover from encoding the previous block. Setting it to magic number
// when debugging.
memset(x->blk_skip[0], 234, sizeof(x->blk_skip[0]));
#endif // NDEBUG
#endif // CONFIG_VAR_TX
assert(mi_size_wide[bsize] == mi_size_high[bsize]);
av1_rd_cost_init(&this_rdc);
av1_rd_cost_init(&sum_rdc);
av1_rd_cost_reset(&best_rdc);
best_rdc.rdcost = best_rd;
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
if (bsize == BLOCK_16X16 && cpi->vaq_refresh)
x->mb_energy = av1_block_energy(cpi, x, bsize);
if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) {
const int cb_partition_search_ctrl =
((pc_tree->index == 0 || pc_tree->index == 3) +
get_chessboard_index(cm->current_video_frame)) &
0x1;
if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size)
set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size);
}
// Determine partition types in search according to the speed features.
// The threshold set here has to be of square block size.
if (cpi->sf.auto_min_max_partition_size) {
const int no_partition_allowed = (bsize <= max_size && bsize >= min_size);
// Note: Further partitioning is NOT allowed when bsize == min_size already.
const int partition_allowed = (bsize <= max_size && bsize > min_size);
partition_none_allowed &= no_partition_allowed;
partition_horz_allowed &= partition_allowed || force_horz_split;
partition_vert_allowed &= partition_allowed || force_vert_split;
do_square_split &= bsize > min_size;
}
if (cpi->sf.use_square_partition_only) {
partition_horz_allowed &= force_horz_split;
partition_vert_allowed &= force_vert_split;
}
#if CONFIG_VAR_TX
xd->above_txfm_context = cm->above_txfm_context + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
#endif
#if !CONFIG_PVQ
save_context(x, &x_ctx, mi_row, mi_col, bsize);
#else
save_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize);
#endif
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
src_diff_var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src, mi_row,
mi_col, bsize);
}
#endif
#if CONFIG_FP_MB_STATS
// Decide whether we shall split directly and skip searching NONE by using
// the first pass block statistics
if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_square_split &&
partition_none_allowed && src_diff_var > 4 &&
cm->base_qindex < qindex_split_threshold_lookup[bsize]) {
int mb_row = mi_row >> 1;
int mb_col = mi_col >> 1;
int mb_row_end =
AOMMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
int mb_col_end =
AOMMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
int r, c;
// compute a complexity measure, basically measure inconsistency of motion
// vectors obtained from the first pass in the current block
for (r = mb_row; r < mb_row_end; r++) {
for (c = mb_col; c < mb_col_end; c++) {
const int mb_index = r * cm->mb_cols + c;
MOTION_DIRECTION this_mv;
MOTION_DIRECTION right_mv;
MOTION_DIRECTION bottom_mv;
this_mv =
get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]);
// to its right
if (c != mb_col_end - 1) {
right_mv = get_motion_direction_fp(
cpi->twopass.this_frame_mb_stats[mb_index + 1]);
none_complexity += get_motion_inconsistency(this_mv, right_mv);
}
// to its bottom
if (r != mb_row_end - 1) {
bottom_mv = get_motion_direction_fp(
cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]);
none_complexity += get_motion_inconsistency(this_mv, bottom_mv);
}
// do not count its left and top neighbors to avoid double counting
}
}
if (none_complexity > complexity_16x16_blocks_threshold[bsize]) {
partition_none_allowed = 0;
}
}
#endif
// PARTITION_NONE
if (partition_none_allowed) {
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc,
#if CONFIG_SUPERTX
&this_rate_nocoef,
#endif
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_NONE,
#endif
bsize, ctx_none, best_rdc.rdcost);
if (this_rdc.rate != INT_MAX) {
if (bsize_at_least_8x8) {
this_rdc.rate += partition_cost[PARTITION_NONE];
this_rdc.rdcost =
RDCOST(x->rdmult, x->rddiv, this_rdc.rate, this_rdc.dist);
#if CONFIG_SUPERTX
this_rate_nocoef += partition_cost[PARTITION_NONE];
#endif
}
if (this_rdc.rdcost < best_rdc.rdcost) {
// Adjust dist breakout threshold according to the partition size.
const int64_t dist_breakout_thr =
cpi->sf.partition_search_breakout_dist_thr >>
((2 * (MAX_SB_SIZE_LOG2 - 2)) -
(b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]));
const int rate_breakout_thr =
cpi->sf.partition_search_breakout_rate_thr *
num_pels_log2_lookup[bsize];
best_rdc = this_rdc;
#if CONFIG_SUPERTX
best_rate_nocoef = this_rate_nocoef;
assert(best_rate_nocoef >= 0);
#endif
if (bsize_at_least_8x8) pc_tree->partitioning = PARTITION_NONE;
// If all y, u, v transform blocks in this partition are skippable, and
// the dist & rate are within the thresholds, the partition search is
// terminated for current branch of the partition search tree.
// The dist & rate thresholds are set to 0 at speed 0 to disable the
// early termination at that speed.
if (!x->e_mbd.lossless[xd->mi[0]->mbmi.segment_id] &&
(ctx_none->skippable && best_rdc.dist < dist_breakout_thr &&
best_rdc.rate < rate_breakout_thr)) {
do_square_split = 0;
do_rectangular_split = 0;
}
#if CONFIG_FP_MB_STATS
// Check if every 16x16 first pass block statistics has zero
// motion and the corresponding first pass residue is small enough.
// If that is the case, check the difference variance between the
// current frame and the last frame. If the variance is small enough,
// stop further splitting in RD optimization
if (cpi->use_fp_mb_stats && do_square_split &&
cm->base_qindex > qindex_skip_threshold_lookup[bsize]) {
int mb_row = mi_row >> 1;
int mb_col = mi_col >> 1;
int mb_row_end =
AOMMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
int mb_col_end =
AOMMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
int r, c;
int skip = 1;
for (r = mb_row; r < mb_row_end; r++) {
for (c = mb_col; c < mb_col_end; c++) {
const int mb_index = r * cm->mb_cols + c;
if (!(cpi->twopass.this_frame_mb_stats[mb_index] &
FPMB_MOTION_ZERO_MASK) ||
!(cpi->twopass.this_frame_mb_stats[mb_index] &
FPMB_ERROR_SMALL_MASK)) {
skip = 0;
break;
}
}
if (skip == 0) {
break;
}
}
if (skip) {
if (src_diff_var == UINT_MAX) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
src_diff_var = get_sby_perpixel_diff_variance(
cpi, &x->plane[0].src, mi_row, mi_col, bsize);
}
if (src_diff_var < 8) {
do_square_split = 0;
do_rectangular_split = 0;
}
}
}
#endif
}
}
#if !CONFIG_PVQ
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
#else
restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize);
#endif
}
// store estimated motion vector
if (cpi->sf.adaptive_motion_search) store_pred_mv(x, ctx_none);
// PARTITION_SPLIT
// TODO(jingning): use the motion vectors given by the above search as
// the starting point of motion search in the following partition type check.
if (do_square_split) {
int reached_last_index = 0;
subsize = get_subsize(bsize, PARTITION_SPLIT);
if (bsize == BLOCK_8X8) {
#if CONFIG_DUAL_FILTER
if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed)
pc_tree->leaf_split[0]->pred_interp_filter =
ctx_none->mic.mbmi.interp_filter[0];
#else
if (cpi->sf.adaptive_pred_interp_filter && partition_none_allowed)
pc_tree->leaf_split[0]->pred_interp_filter =
ctx_none->mic.mbmi.interp_filter;
#endif
#if CONFIG_SUPERTX
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc,
&sum_rate_nocoef,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_SPLIT,
#endif
subsize, pc_tree->leaf_split[0], INT64_MAX);
#else
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_SPLIT,
#endif
subsize, pc_tree->leaf_split[0], best_rdc.rdcost);
#endif // CONFIG_SUPERTX
if (sum_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
#if CONFIG_SUPERTX
sum_rate_nocoef = INT_MAX;
#endif
}
#if CONFIG_SUPERTX
if (supertx_allowed && sum_rdc.rdcost < INT64_MAX) {
TX_SIZE supertx_size = max_txsize_lookup[bsize];
const PARTITION_TYPE best_partition = pc_tree->partitioning;
pc_tree->partitioning = PARTITION_SPLIT;
sum_rdc.rate +=
av1_cost_bit(cm->fc->supertx_prob
[partition_supertx_context_lookup[PARTITION_SPLIT]]
[supertx_size],
0);
sum_rdc.rdcost =
RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
if (is_inter_mode(pc_tree->leaf_split[0]->mic.mbmi.mode)) {
TX_TYPE best_tx = DCT_DCT;
RD_COST tmp_rdc = { sum_rate_nocoef, 0, 0 };
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize,
&tmp_rdc.rate, &tmp_rdc.dist, &best_tx, pc_tree);
tmp_rdc.rate += av1_cost_bit(
cm->fc->supertx_prob
[partition_supertx_context_lookup[PARTITION_SPLIT]]
[supertx_size],
1);
tmp_rdc.rdcost =
RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist);
if (tmp_rdc.rdcost < sum_rdc.rdcost) {
sum_rdc = tmp_rdc;
update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx,
supertx_size, pc_tree);
}
}
pc_tree->partitioning = best_partition;
}
#endif // CONFIG_SUPERTX
reached_last_index = 1;
} else {
int idx;
#if CONFIG_SUPERTX
for (idx = 0; idx < 4 && sum_rdc.rdcost < INT64_MAX; ++idx) {
#else
for (idx = 0; idx < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++idx) {
#endif // CONFIG_SUPERTX
const int x_idx = (idx & 1) * mi_step;
const int y_idx = (idx >> 1) * mi_step;
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
continue;
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
pc_tree->split[idx]->index = idx;
#if CONFIG_SUPERTX
rd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx,
mi_col + x_idx, subsize, &this_rdc, &this_rate_nocoef,
INT64_MAX - sum_rdc.rdcost, pc_tree->split[idx]);
#else
rd_pick_partition(
cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize,
&this_rdc, best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[idx]);
#endif // CONFIG_SUPERTX
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
#if CONFIG_SUPERTX
sum_rate_nocoef = INT_MAX;
#endif // CONFIG_SUPERTX
break;
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost += this_rdc.rdcost;
#if CONFIG_SUPERTX
sum_rate_nocoef += this_rate_nocoef;
#endif // CONFIG_SUPERTX
}
}
reached_last_index = (idx == 4);
#if CONFIG_SUPERTX
if (supertx_allowed && sum_rdc.rdcost < INT64_MAX && reached_last_index) {
TX_SIZE supertx_size = max_txsize_lookup[bsize];
const PARTITION_TYPE best_partition = pc_tree->partitioning;
pc_tree->partitioning = PARTITION_SPLIT;
sum_rdc.rate +=
av1_cost_bit(cm->fc->supertx_prob
[partition_supertx_context_lookup[PARTITION_SPLIT]]
[supertx_size],
0);
sum_rdc.rdcost =
RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
if (!check_intra_sb(cpi, tile_info, mi_row, mi_col, bsize, pc_tree)) {
TX_TYPE best_tx = DCT_DCT;
RD_COST tmp_rdc = { sum_rate_nocoef, 0, 0 };
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize,
&tmp_rdc.rate, &tmp_rdc.dist, &best_tx, pc_tree);
tmp_rdc.rate += av1_cost_bit(
cm->fc->supertx_prob
[partition_supertx_context_lookup[PARTITION_SPLIT]]
[supertx_size],
1);
tmp_rdc.rdcost =
RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist);
if (tmp_rdc.rdcost < sum_rdc.rdcost) {
sum_rdc = tmp_rdc;
update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx,
supertx_size, pc_tree);
}
}
pc_tree->partitioning = best_partition;
}
#endif // CONFIG_SUPERTX
}
if (reached_last_index && sum_rdc.rdcost < best_rdc.rdcost) {
sum_rdc.rate += partition_cost[PARTITION_SPLIT];
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
#if CONFIG_SUPERTX
sum_rate_nocoef += partition_cost[PARTITION_SPLIT];
#endif // CONFIG_SUPERTX
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
#if CONFIG_SUPERTX
best_rate_nocoef = sum_rate_nocoef;
assert(best_rate_nocoef >= 0);
#endif // CONFIG_SUPERTX
pc_tree->partitioning = PARTITION_SPLIT;
}
} else if (cpi->sf.less_rectangular_check) {
// skip rectangular partition test when larger block size
// gives better rd cost
do_rectangular_split &= !partition_none_allowed;
}
#if !CONFIG_PVQ
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
#else
restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize);
#endif
} // if (do_split)
// PARTITION_HORZ
if (partition_horz_allowed &&
(do_rectangular_split || av1_active_h_edge(cpi, mi_row, mi_step))) {
subsize = get_subsize(bsize, PARTITION_HORZ);
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
#if CONFIG_DUAL_FILTER
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->horizontal[0].pred_interp_filter =
ctx_none->mic.mbmi.interp_filter[0];
#else
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->horizontal[0].pred_interp_filter =
ctx_none->mic.mbmi.interp_filter;
#endif
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc,
#if CONFIG_SUPERTX
&sum_rate_nocoef,
#endif // CONFIG_SUPERTX
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_HORZ,
#endif
subsize, &pc_tree->horizontal[0], best_rdc.rdcost);
#if CONFIG_SUPERTX
abort_flag = (sum_rdc.rdcost >= best_rd && bsize > BLOCK_8X8) ||
(sum_rdc.rate == INT_MAX && bsize == BLOCK_8X8);
if (sum_rdc.rdcost < INT64_MAX &&
#else
if (sum_rdc.rdcost < best_rdc.rdcost &&
#endif // CONFIG_SUPERTX
!force_horz_split && bsize > BLOCK_8X8) {
PICK_MODE_CONTEXT *ctx_h = &pc_tree->horizontal[0];
update_state(cpi, td, ctx_h, mi_row, mi_col, subsize, 1);
encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, subsize,
ctx_h, NULL);
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_h);
#if CONFIG_DUAL_FILTER
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->horizontal[1].pred_interp_filter =
ctx_h->mic.mbmi.interp_filter[0];
#else
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->horizontal[1].pred_interp_filter =
ctx_none->mic.mbmi.interp_filter;
#endif
#if CONFIG_SUPERTX
rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc,
&this_rate_nocoef,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_HORZ,
#endif
subsize, &pc_tree->horizontal[1], INT64_MAX);
#else
rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_HORZ,
#endif
subsize, &pc_tree->horizontal[1],
best_rdc.rdcost - sum_rdc.rdcost);
#endif // CONFIG_SUPERTX
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
#if CONFIG_SUPERTX
sum_rate_nocoef = INT_MAX;
#endif // CONFIG_SUPERTX
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost += this_rdc.rdcost;
#if CONFIG_SUPERTX
sum_rate_nocoef += this_rate_nocoef;
#endif // CONFIG_SUPERTX
}
}
#if CONFIG_SUPERTX
if (supertx_allowed && sum_rdc.rdcost < INT64_MAX && !abort_flag) {
TX_SIZE supertx_size = max_txsize_lookup[bsize];
const PARTITION_TYPE best_partition = pc_tree->partitioning;
pc_tree->partitioning = PARTITION_HORZ;
sum_rdc.rate += av1_cost_bit(
cm->fc->supertx_prob[partition_supertx_context_lookup[PARTITION_HORZ]]
[supertx_size],
0);
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
if (!check_intra_sb(cpi, tile_info, mi_row, mi_col, bsize, pc_tree)) {
TX_TYPE best_tx = DCT_DCT;
RD_COST tmp_rdc = { sum_rate_nocoef, 0, 0 };
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize, &tmp_rdc.rate,
&tmp_rdc.dist, &best_tx, pc_tree);
tmp_rdc.rate += av1_cost_bit(
cm->fc
->supertx_prob[partition_supertx_context_lookup[PARTITION_HORZ]]
[supertx_size],
1);
tmp_rdc.rdcost =
RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist);
if (tmp_rdc.rdcost < sum_rdc.rdcost) {
sum_rdc = tmp_rdc;
update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx,
supertx_size, pc_tree);
}
}
pc_tree->partitioning = best_partition;
}
#endif // CONFIG_SUPERTX
if (sum_rdc.rdcost < best_rdc.rdcost) {
sum_rdc.rate += partition_cost[PARTITION_HORZ];
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
#if CONFIG_SUPERTX
sum_rate_nocoef += partition_cost[PARTITION_HORZ];
#endif // CONFIG_SUPERTX
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
#if CONFIG_SUPERTX
best_rate_nocoef = sum_rate_nocoef;
assert(best_rate_nocoef >= 0);
#endif // CONFIG_SUPERTX
pc_tree->partitioning = PARTITION_HORZ;
}
}
#if !CONFIG_PVQ
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
#else
restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize);
#endif
}
// PARTITION_VERT
if (partition_vert_allowed &&
(do_rectangular_split || av1_active_v_edge(cpi, mi_col, mi_step))) {
subsize = get_subsize(bsize, PARTITION_VERT);
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
#if CONFIG_DUAL_FILTER
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->vertical[0].pred_interp_filter =
ctx_none->mic.mbmi.interp_filter[0];
#else
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->vertical[0].pred_interp_filter =
ctx_none->mic.mbmi.interp_filter;
#endif
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc,
#if CONFIG_SUPERTX
&sum_rate_nocoef,
#endif // CONFIG_SUPERTX
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_VERT,
#endif
subsize, &pc_tree->vertical[0], best_rdc.rdcost);
#if CONFIG_SUPERTX
abort_flag = (sum_rdc.rdcost >= best_rd && bsize > BLOCK_8X8) ||
(sum_rdc.rate == INT_MAX && bsize == BLOCK_8X8);
if (sum_rdc.rdcost < INT64_MAX &&
#else
if (sum_rdc.rdcost < best_rdc.rdcost &&
#endif // CONFIG_SUPERTX
!force_vert_split && bsize > BLOCK_8X8) {
update_state(cpi, td, &pc_tree->vertical[0], mi_row, mi_col, subsize, 1);
encode_superblock(cpi, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, subsize,
&pc_tree->vertical[0], NULL);
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
#if CONFIG_DUAL_FILTER
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->vertical[1].pred_interp_filter =
ctx_none->mic.mbmi.interp_filter[0];
#else
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed)
pc_tree->vertical[1].pred_interp_filter =
ctx_none->mic.mbmi.interp_filter;
#endif
#if CONFIG_SUPERTX
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc,
&this_rate_nocoef,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_VERT,
#endif
subsize, &pc_tree->vertical[1],
INT64_MAX - sum_rdc.rdcost);
#else
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc,
#if CONFIG_EXT_PARTITION_TYPES
PARTITION_VERT,
#endif
subsize, &pc_tree->vertical[1],
best_rdc.rdcost - sum_rdc.rdcost);
#endif // CONFIG_SUPERTX
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
#if CONFIG_SUPERTX
sum_rate_nocoef = INT_MAX;
#endif // CONFIG_SUPERTX
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost += this_rdc.rdcost;
#if CONFIG_SUPERTX
sum_rate_nocoef += this_rate_nocoef;
#endif // CONFIG_SUPERTX
}
}
#if CONFIG_SUPERTX
if (supertx_allowed && sum_rdc.rdcost < INT64_MAX && !abort_flag) {
TX_SIZE supertx_size = max_txsize_lookup[bsize];
const PARTITION_TYPE best_partition = pc_tree->partitioning;
pc_tree->partitioning = PARTITION_VERT;
sum_rdc.rate += av1_cost_bit(
cm->fc->supertx_prob[partition_supertx_context_lookup[PARTITION_VERT]]
[supertx_size],
0);
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
if (!check_intra_sb(cpi, tile_info, mi_row, mi_col, bsize, pc_tree)) {
TX_TYPE best_tx = DCT_DCT;
RD_COST tmp_rdc = { sum_rate_nocoef, 0, 0 };
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
rd_supertx_sb(cpi, td, tile_info, mi_row, mi_col, bsize, &tmp_rdc.rate,
&tmp_rdc.dist, &best_tx, pc_tree);
tmp_rdc.rate += av1_cost_bit(
cm->fc
->supertx_prob[partition_supertx_context_lookup[PARTITION_VERT]]
[supertx_size],
1);
tmp_rdc.rdcost =
RDCOST(x->rdmult, x->rddiv, tmp_rdc.rate, tmp_rdc.dist);
if (tmp_rdc.rdcost < sum_rdc.rdcost) {
sum_rdc = tmp_rdc;
update_supertx_param_sb(cpi, td, mi_row, mi_col, bsize, best_tx,
supertx_size, pc_tree);
}
}
pc_tree->partitioning = best_partition;
}
#endif // CONFIG_SUPERTX
if (sum_rdc.rdcost < best_rdc.rdcost) {
sum_rdc.rate += partition_cost[PARTITION_VERT];
sum_rdc.rdcost = RDCOST(x->rdmult, x->rddiv, sum_rdc.rate, sum_rdc.dist);
#if CONFIG_SUPERTX
sum_rate_nocoef += partition_cost[PARTITION_VERT];
#endif // CONFIG_SUPERTX
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
#if CONFIG_SUPERTX
best_rate_nocoef = sum_rate_nocoef;
assert(best_rate_nocoef >= 0);
#endif // CONFIG_SUPERTX
pc_tree->partitioning = PARTITION_VERT;
}
}
#if !CONFIG_PVQ
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
#else
restore_context(x, &x_ctx, mi_row, mi_col, &pre_rdo_buf, bsize);
#endif
}
#if CONFIG_EXT_PARTITION_TYPES
// PARTITION_HORZ_A
if (partition_horz_allowed && do_rectangular_split && bsize > BLOCK_8X8 &&
partition_none_allowed) {
subsize = get_subsize(bsize, PARTITION_HORZ_A);
rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc,
pc_tree->horizontala, ctx_none, mi_row, mi_col, bsize,
PARTITION_HORZ_A,
#if CONFIG_SUPERTX
best_rd, &best_rate_nocoef, &x_ctx,
#endif
mi_row, mi_col, bsize2, mi_row, mi_col + mi_step, bsize2,
mi_row + mi_step, mi_col, subsize);
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
}
// PARTITION_HORZ_B
if (partition_horz_allowed && do_rectangular_split && bsize > BLOCK_8X8 &&
partition_none_allowed) {
subsize = get_subsize(bsize, PARTITION_HORZ_B);
rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc,
pc_tree->horizontalb, ctx_none, mi_row, mi_col, bsize,
PARTITION_HORZ_B,
#if CONFIG_SUPERTX
best_rd, &best_rate_nocoef, &x_ctx,
#endif
mi_row, mi_col, subsize, mi_row + mi_step, mi_col,
bsize2, mi_row + mi_step, mi_col + mi_step, bsize2);
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
}
// PARTITION_VERT_A
if (partition_vert_allowed && do_rectangular_split && bsize > BLOCK_8X8 &&
partition_none_allowed) {
subsize = get_subsize(bsize, PARTITION_VERT_A);
rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc,
pc_tree->verticala, ctx_none, mi_row, mi_col, bsize,
PARTITION_VERT_A,
#if CONFIG_SUPERTX
best_rd, &best_rate_nocoef, &x_ctx,
#endif
mi_row, mi_col, bsize2, mi_row + mi_step, mi_col, bsize2,
mi_row, mi_col + mi_step, subsize);
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
}
// PARTITION_VERT_B
if (partition_vert_allowed && do_rectangular_split && bsize > BLOCK_8X8 &&
partition_none_allowed) {
subsize = get_subsize(bsize, PARTITION_VERT_B);
rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc,
pc_tree->verticalb, ctx_none, mi_row, mi_col, bsize,
PARTITION_VERT_B,
#if CONFIG_SUPERTX
best_rd, &best_rate_nocoef, &x_ctx,
#endif
mi_row, mi_col, subsize, mi_row, mi_col + mi_step,
bsize2, mi_row + mi_step, mi_col + mi_step, bsize2);
restore_context(x, &x_ctx, mi_row, mi_col, bsize);
}
#endif // CONFIG_EXT_PARTITION_TYPES
// TODO(jbb): This code added so that we avoid static analysis
// warning related to the fact that best_rd isn't used after this
// point. This code should be refactored so that the duplicate
// checks occur in some sub function and thus are used...
(void)best_rd;
*rd_cost = best_rdc;
#if CONFIG_SUPERTX
*rate_nocoef = best_rate_nocoef;
#endif // CONFIG_SUPERTX
if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX &&
pc_tree->index != 3) {
if (bsize == cm->sb_size) {
encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
pc_tree, NULL);
} else {
encode_sb(cpi, td, tile_info, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
pc_tree, NULL);
}
}
if (bsize == cm->sb_size) {
#if !CONFIG_PVQ
assert(tp_orig < *tp || (tp_orig == *tp && xd->mi[0]->mbmi.skip));
#endif
assert(best_rdc.rate < INT_MAX);
assert(best_rdc.dist < INT64_MAX);
} else {
assert(tp_orig == *tp);
}
}
static void encode_rd_sb_row(AV1_COMP *cpi, ThreadData *td,
TileDataEnc *tile_data, int mi_row,
TOKENEXTRA **tp) {
AV1_COMMON *const cm = &cpi->common;
const TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
SPEED_FEATURES *const sf = &cpi->sf;
int mi_col;
#if CONFIG_EXT_PARTITION
const int leaf_nodes = 256;
#else
const int leaf_nodes = 64;
#endif // CONFIG_EXT_PARTITION
// Initialize the left context for the new SB row
av1_zero_left_context(xd);
#if CONFIG_DELTA_Q
// Reset delta for every tile
if (cm->delta_q_present_flag)
if (mi_row == tile_info->mi_row_start) xd->prev_qindex = cm->base_qindex;
#endif
// Code each SB in the row
for (mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end;
mi_col += cm->mib_size) {
const struct segmentation *const seg = &cm->seg;
int dummy_rate;
int64_t dummy_dist;
RD_COST dummy_rdc;
#if CONFIG_SUPERTX
int dummy_rate_nocoef;
#endif // CONFIG_SUPERTX
int i;
int seg_skip = 0;
const int idx_str = cm->mi_stride * mi_row + mi_col;
MODE_INFO **mi = cm->mi_grid_visible + idx_str;
PC_TREE *const pc_root = td->pc_root[cm->mib_size_log2 - MIN_MIB_SIZE_LOG2];
if (sf->adaptive_pred_interp_filter) {
for (i = 0; i < leaf_nodes; ++i)
td->leaf_tree[i].pred_interp_filter = SWITCHABLE;
for (i = 0; i < leaf_nodes; ++i) {
td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE;
td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE;
td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE;
td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE;
}
}
av1_zero(x->pred_mv);
pc_root->index = 0;
if (seg->enabled) {
const uint8_t *const map =
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
int segment_id = get_segment_id(cm, map, cm->sb_size, mi_row, mi_col);
seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
}
#if CONFIG_DELTA_Q
if (cpi->oxcf.aq_mode == DELTA_AQ) {
// Test mode for delta quantization
int sb_row = mi_row >> 3;
int sb_col = mi_col >> 3;
int sb_stride = (cm->width + MAX_SB_SIZE - 1) >> MAX_SB_SIZE_LOG2;
int index = ((sb_row * sb_stride + sb_col + 8) & 31) - 16;
// Ensure divisibility of delta_qindex by delta_q_res
int offset_qindex = (index < 0 ? -index - 8 : index - 8);
int qmask = ~(cm->delta_q_res - 1);
int current_qindex = clamp(cm->base_qindex + offset_qindex,
cm->delta_q_res, 256 - cm->delta_q_res);
current_qindex =
((current_qindex - cm->base_qindex + cm->delta_q_res / 2) & qmask) +
cm->base_qindex;
xd->delta_qindex = current_qindex - cm->base_qindex;
set_offsets(cpi, tile_info, x, mi_row, mi_col, BLOCK_64X64);
xd->mi[0]->mbmi.current_q_index = current_qindex;
xd->mi[0]->mbmi.segment_id = 0;
av1_init_plane_quantizers(cpi, x, xd->mi[0]->mbmi.segment_id);
}
#endif
x->source_variance = UINT_MAX;
if (sf->partition_search_type == FIXED_PARTITION || seg_skip) {
BLOCK_SIZE bsize;
set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->sb_size);
bsize = seg_skip ? cm->sb_size : sf->always_this_block_size;
set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, cm->sb_size,
&dummy_rate, &dummy_dist,
#if CONFIG_SUPERTX
&dummy_rate_nocoef,
#endif // CONFIG_SUPERTX
1, pc_root);
} else if (cpi->partition_search_skippable_frame) {
BLOCK_SIZE bsize;
set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->sb_size);
bsize = get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col);
set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, cm->sb_size,
&dummy_rate, &dummy_dist,
#if CONFIG_SUPERTX
&dummy_rate_nocoef,
#endif // CONFIG_SUPERTX
1, pc_root);
} else if (sf->partition_search_type == VAR_BASED_PARTITION) {
choose_partitioning(cpi, td, tile_info, x, mi_row, mi_col);
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, cm->sb_size,
&dummy_rate, &dummy_dist,
#if CONFIG_SUPERTX
&dummy_rate_nocoef,
#endif // CONFIG_SUPERTX
1, pc_root);
} else {
// If required set upper and lower partition size limits
if (sf->auto_min_max_partition_size) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->sb_size);
rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col,
&x->min_partition_size, &x->max_partition_size);
}
rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, cm->sb_size,
&dummy_rdc,
#if CONFIG_SUPERTX
&dummy_rate_nocoef,
#endif // CONFIG_SUPERTX
INT64_MAX, pc_root);
}
}
#if CONFIG_ENTROPY
if (cm->do_subframe_update &&
cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
if ((mi_row + MI_SIZE) %
(MI_SIZE *
AOMMAX(cm->mi_rows / MI_SIZE / COEF_PROBS_BUFS, 1)) ==
0 &&
mi_row + MI_SIZE < cm->mi_rows &&
cm->coef_probs_update_idx < COEF_PROBS_BUFS - 1) {
TX_SIZE t;
SUBFRAME_STATS *subframe_stats = &cpi->subframe_stats;
for (t = TX_4X4; t < TX_SIZES; ++t)
av1_full_to_model_counts(cpi->td.counts->coef[t],
cpi->td.rd_counts.coef_counts[t]);
av1_partial_adapt_probs(cm, mi_row, mi_col);
++cm->coef_probs_update_idx;
av1_copy(subframe_stats->coef_probs_buf[cm->coef_probs_update_idx],
cm->fc->coef_probs);
av1_copy(subframe_stats->coef_counts_buf[cm->coef_probs_update_idx],
cpi->td.rd_counts.coef_counts);
av1_copy(subframe_stats->eob_counts_buf[cm->coef_probs_update_idx],
cm->counts.eob_branch);
av1_fill_token_costs(x->token_costs, cm->fc->coef_probs);
}
}
#endif // CONFIG_ENTROPY
}
static void init_encode_frame_mb_context(AV1_COMP *cpi) {
MACROBLOCK *const x = &cpi->td.mb;
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
// Copy data over into macro block data structures.
av1_setup_src_planes(x, cpi->Source, 0, 0);
av1_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y);
}
static int check_dual_ref_flags(AV1_COMP *cpi) {
const int ref_flags = cpi->ref_frame_flags;
if (segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) {
return 0;
} else {
return (!!(ref_flags & AOM_GOLD_FLAG) + !!(ref_flags & AOM_LAST_FLAG) +
#if CONFIG_EXT_REFS
!!(ref_flags & AOM_LAST2_FLAG) + !!(ref_flags & AOM_LAST3_FLAG) +
!!(ref_flags & AOM_BWD_FLAG) +
#endif // CONFIG_EXT_REFS
!!(ref_flags & AOM_ALT_FLAG)) >= 2;
}
}
#if !CONFIG_VAR_TX
static void reset_skip_tx_size(AV1_COMMON *cm, TX_SIZE max_tx_size) {
int mi_row, mi_col;
const int mis = cm->mi_stride;
MODE_INFO **mi_ptr = cm->mi_grid_visible;
for (mi_row = 0; mi_row < cm->mi_rows; ++mi_row, mi_ptr += mis) {
for (mi_col = 0; mi_col < cm->mi_cols; ++mi_col) {
if (txsize_sqr_up_map[mi_ptr[mi_col]->mbmi.tx_size] > max_tx_size)
mi_ptr[mi_col]->mbmi.tx_size = max_tx_size;
}
}
}
#endif
static MV_REFERENCE_FRAME get_frame_type(const AV1_COMP *cpi) {
if (frame_is_intra_only(&cpi->common)) return INTRA_FRAME;
#if CONFIG_EXT_REFS
// We will not update the golden frame with an internal overlay frame
else if ((cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame) ||
cpi->rc.is_src_frame_ext_arf)
#else
else if (cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame)
#endif
return ALTREF_FRAME;
else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame)
return GOLDEN_FRAME;
else
// TODO(zoeliu): To investigate whether a frame_type other than
// INTRA/ALTREF/GOLDEN/LAST needs to be specified seperately.
return LAST_FRAME;
}
static TX_MODE select_tx_mode(const AV1_COMP *cpi, MACROBLOCKD *const xd) {
if (xd->lossless[0]) return ONLY_4X4;
if (cpi->sf.tx_size_search_method == USE_LARGESTALL)
return ALLOW_32X32 + CONFIG_TX64X64;
else if (cpi->sf.tx_size_search_method == USE_FULL_RD ||
cpi->sf.tx_size_search_method == USE_TX_8X8)
return TX_MODE_SELECT;
else
return cpi->common.tx_mode;
}
void av1_init_tile_data(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
int tile_col, tile_row;
TOKENEXTRA *pre_tok = cpi->tile_tok[0][0];
unsigned int tile_tok = 0;
if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) {
if (cpi->tile_data != NULL) aom_free(cpi->tile_data);
CHECK_MEM_ERROR(cm, cpi->tile_data, aom_malloc(tile_cols * tile_rows *
sizeof(*cpi->tile_data)));
cpi->allocated_tiles = tile_cols * tile_rows;
for (tile_row = 0; tile_row < tile_rows; ++tile_row)
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
TileDataEnc *const tile_data =
&cpi->tile_data[tile_row * tile_cols + tile_col];
int i, j;
for (i = 0; i < BLOCK_SIZES; ++i) {
for (j = 0; j < MAX_MODES; ++j) {
tile_data->thresh_freq_fact[i][j] = 32;
tile_data->mode_map[i][j] = j;
}
}
#if CONFIG_PVQ
// This will be dynamically increased as more pvq block is encoded.
tile_data->pvq_q.buf_len = 1000;
CHECK_MEM_ERROR(
cm, tile_data->pvq_q.buf,
aom_malloc(tile_data->pvq_q.buf_len * sizeof(PVQ_INFO)));
tile_data->pvq_q.curr_pos = 0;
#endif
}
}
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
TileInfo *const tile_info =
&cpi->tile_data[tile_row * tile_cols + tile_col].tile_info;
av1_tile_init(tile_info, cm, tile_row, tile_col);
cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok;
pre_tok = cpi->tile_tok[tile_row][tile_col];
tile_tok = allocated_tokens(*tile_info);
#if CONFIG_PVQ
cpi->tile_data[tile_row * tile_cols + tile_col].pvq_q.curr_pos = 0;
#endif
}
}
}
void av1_encode_tile(AV1_COMP *cpi, ThreadData *td, int tile_row,
int tile_col) {
AV1_COMMON *const cm = &cpi->common;
TileDataEnc *const this_tile =
&cpi->tile_data[tile_row * cm->tile_cols + tile_col];
const TileInfo *const tile_info = &this_tile->tile_info;
TOKENEXTRA *tok = cpi->tile_tok[tile_row][tile_col];
int mi_row;
#if CONFIG_PVQ
od_adapt_ctx *adapt;
#endif
av1_zero_above_context(cm, tile_info->mi_col_start, tile_info->mi_col_end);
// Set up pointers to per thread motion search counters.
this_tile->m_search_count = 0; // Count of motion search hits.
this_tile->ex_search_count = 0; // Exhaustive mesh search hits.
td->mb.m_search_count_ptr = &this_tile->m_search_count;
td->mb.ex_search_count_ptr = &this_tile->ex_search_count;
#if CONFIG_PVQ
td->mb.pvq_q = &this_tile->pvq_q;
// TODO(yushin)
// If activity masking is enabled, change below to OD_HVS_QM
td->mb.daala_enc.qm = OD_FLAT_QM; // Hard coded. Enc/dec required to sync.
{
// FIXME: Multiple segments support
int segment_id = 0;
int rdmult = set_segment_rdmult(cpi, &td->mb, segment_id);
int qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex);
int64_t q_ac = av1_ac_quant(qindex, 0, cpi->common.bit_depth);
int64_t q_dc = av1_dc_quant(qindex, 0, cpi->common.bit_depth);
/* td->mb.daala_enc.pvq_norm_lambda = OD_PVQ_LAMBDA; */
td->mb.daala_enc.pvq_norm_lambda =
(double)rdmult * (64 / 16) / (q_ac * q_ac * (1 << RDDIV_BITS));
td->mb.daala_enc.pvq_norm_lambda_dc =
(double)rdmult * (64 / 16) / (q_dc * q_dc * (1 << RDDIV_BITS));
// printf("%f\n", td->mb.daala_enc.pvq_norm_lambda);
}
od_init_qm(td->mb.daala_enc.state.qm, td->mb.daala_enc.state.qm_inv,
td->mb.daala_enc.qm == OD_HVS_QM ? OD_QM8_Q4_HVS : OD_QM8_Q4_FLAT);
od_ec_enc_init(&td->mb.daala_enc.ec, 65025);
adapt = &td->mb.daala_enc.state.adapt;
od_ec_enc_reset(&td->mb.daala_enc.ec);
od_adapt_ctx_reset(adapt, 0);
#endif
for (mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
mi_row += cm->mib_size) {
encode_rd_sb_row(cpi, td, this_tile, mi_row, &tok);
}
cpi->tok_count[tile_row][tile_col] =
(unsigned int)(tok - cpi->tile_tok[tile_row][tile_col]);
assert(cpi->tok_count[tile_row][tile_col] <= allocated_tokens(*tile_info));
#if CONFIG_PVQ
od_ec_enc_clear(&td->mb.daala_enc.ec);
td->mb.pvq_q->last_pos = td->mb.pvq_q->curr_pos;
// rewind current position so that bitstream can be written
// from the 1st pvq block
td->mb.pvq_q->curr_pos = 0;
td->mb.pvq_q = NULL;
#endif
}
static void encode_tiles(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
int tile_col, tile_row;
av1_init_tile_data(cpi);
for (tile_row = 0; tile_row < cm->tile_rows; ++tile_row)
for (tile_col = 0; tile_col < cm->tile_cols; ++tile_col)
av1_encode_tile(cpi, &cpi->td, tile_row, tile_col);
}
#if CONFIG_FP_MB_STATS
static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats,
AV1_COMMON *cm, uint8_t **this_frame_mb_stats) {
uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start +
cm->current_video_frame * cm->MBs * sizeof(uint8_t);
if (mb_stats_in > firstpass_mb_stats->mb_stats_end) return EOF;
*this_frame_mb_stats = mb_stats_in;
return 1;
}
#endif
#if CONFIG_GLOBAL_MOTION
#define MIN_TRANS_THRESH (1 * GM_TRANS_DECODE_FACTOR)
// Border over which to compute the global motion
#define ERRORADV_BORDER 0
static const double gm_advantage_thresh[TRANS_TYPES] = {
1.00, // Identity (not used)
0.85, // Translation
0.75, // Rot zoom
0.65, // Affine
0.50, // Homography
};
static void convert_to_params(const double *params, int32_t *model) {
int i;
int alpha_present = 0;
model[0] = (int32_t)floor(params[0] * (1 << GM_TRANS_PREC_BITS) + 0.5);
model[1] = (int32_t)floor(params[1] * (1 << GM_TRANS_PREC_BITS) + 0.5);
model[0] = (int32_t)clamp(model[0], GM_TRANS_MIN, GM_TRANS_MAX) *
GM_TRANS_DECODE_FACTOR;
model[1] = (int32_t)clamp(model[1], GM_TRANS_MIN, GM_TRANS_MAX) *
GM_TRANS_DECODE_FACTOR;
for (i = 2; i < 6; ++i) {
const int diag_value = ((i == 2 || i == 5) ? (1 << GM_ALPHA_PREC_BITS) : 0);
model[i] = (int32_t)floor(params[i] * (1 << GM_ALPHA_PREC_BITS) + 0.5);
model[i] =
(int32_t)clamp(model[i] - diag_value, GM_ALPHA_MIN, GM_ALPHA_MAX);
alpha_present |= (model[i] != 0);
model[i] = (model[i] + diag_value) * GM_ALPHA_DECODE_FACTOR;
}
for (; i < 8; ++i) {
model[i] = (int32_t)floor(params[i] * (1 << GM_ROW3HOMO_PREC_BITS) + 0.5);
model[i] = (int32_t)clamp(model[i], GM_ROW3HOMO_MIN, GM_ROW3HOMO_MAX) *
GM_ROW3HOMO_DECODE_FACTOR;
alpha_present |= (model[i] != 0);
}
if (!alpha_present) {
if (abs(model[0]) < MIN_TRANS_THRESH && abs(model[1]) < MIN_TRANS_THRESH) {
model[0] = 0;
model[1] = 0;
}
}
}
static void convert_model_to_params(const double *params,
WarpedMotionParams *model) {
convert_to_params(params, model->wmmat);
model->wmtype = get_gmtype(model);
}
// Adds some offset to a global motion parameter and handles
// all of the necessary precision shifts, clamping, and
// zero-centering.
static int32_t add_param_offset(int param_index, int32_t param_value,
int32_t offset) {
const int scale_vals[3] = { GM_TRANS_PREC_DIFF, GM_ALPHA_PREC_DIFF,
GM_ROW3HOMO_PREC_DIFF };
const int clamp_vals[3] = { GM_TRANS_MAX, GM_ALPHA_MAX, GM_ROW3HOMO_MAX };
// type of param: 0 - translation, 1 - affine, 2 - homography
const int param_type = (param_index < 2 ? 0 : (param_index < 6 ? 1 : 2));
const int is_one_centered = (param_index == 2 || param_index == 5);
// Make parameter zero-centered and offset the shift that was done to make
// it compatible with the warped model
param_value = (param_value - (is_one_centered << WARPEDMODEL_PREC_BITS)) >>
scale_vals[param_type];
// Add desired offset to the rescaled/zero-centered parameter
param_value += offset;
// Clamp the parameter so it does not overflow the number of bits allotted
// to it in the bitstream
param_value = (int32_t)clamp(param_value, -clamp_vals[param_type],
clamp_vals[param_type]);
// Rescale the parameter to WARPEDMODEL_PRECISION_BITS so it is compatible
// with the warped motion library
param_value *= (1 << scale_vals[param_type]);
// Undo the zero-centering step if necessary
return param_value + (is_one_centered << WARPEDMODEL_PREC_BITS);
}
static void force_wmtype(WarpedMotionParams *wm, TransformationType wmtype) {
switch (wmtype) {
case IDENTITY: wm->wmmat[0] = 0; wm->wmmat[1] = 0;
case TRANSLATION:
wm->wmmat[2] = 1 << WARPEDMODEL_PREC_BITS;
wm->wmmat[3] = 0;
case ROTZOOM: wm->wmmat[4] = -wm->wmmat[3]; wm->wmmat[5] = wm->wmmat[2];
case AFFINE: wm->wmmat[6] = wm->wmmat[7] = 0;
case HOMOGRAPHY: break;
default: assert(0);
}
wm->wmtype = wmtype;
}
static double refine_integerized_param(WarpedMotionParams *wm,
TransformationType wmtype,
#if CONFIG_AOM_HIGHBITDEPTH
int use_hbd, int bd,
#endif // CONFIG_AOM_HIGHBITDEPTH
uint8_t *ref, int r_width, int r_height,
int r_stride, uint8_t *dst, int d_width,
int d_height, int d_stride,
int n_refinements) {
const int border = ERRORADV_BORDER;
int i = 0, p;
int n_params = n_trans_model_params[wmtype];
int32_t *param_mat = wm->wmmat;
double step_error;
int32_t step;
int32_t *param;
int32_t curr_param;
int32_t best_param;
double best_error;
force_wmtype(wm, wmtype);
best_error = av1_warp_erroradv(wm,
#if CONFIG_AOM_HIGHBITDEPTH
use_hbd, bd,
#endif // CONFIG_AOM_HIGHBITDEPTH
ref, r_width, r_height, r_stride,
dst + border * d_stride + border, border,
border, d_width - 2 * border,
d_height - 2 * border, d_stride, 0, 0, 16, 16);
step = 1 << (n_refinements + 1);
for (i = 0; i < n_refinements; i++, step >>= 1) {
for (p = 0; p < n_params; ++p) {
int step_dir = 0;
param = param_mat + p;
curr_param = *param;
best_param = curr_param;
// look to the left
*param = add_param_offset(p, curr_param, -step);
step_error = av1_warp_erroradv(
wm,
#if CONFIG_AOM_HIGHBITDEPTH
use_hbd, bd,
#endif // CONFIG_AOM_HIGHBITDEPTH
ref, r_width, r_height, r_stride, dst + border * d_stride + border,
border, border, d_width - 2 * border, d_height - 2 * border, d_stride,
0, 0, 16, 16);
if (step_error < best_error) {
best_error = step_error;
best_param = *param;
step_dir = -1;
}
// look to the right
*param = add_param_offset(p, curr_param, step);
step_error = av1_warp_erroradv(
wm,
#if CONFIG_AOM_HIGHBITDEPTH
use_hbd, bd,
#endif // CONFIG_AOM_HIGHBITDEPTH
ref, r_width, r_height, r_stride, dst + border * d_stride + border,
border, border, d_width - 2 * border, d_height - 2 * border, d_stride,
0, 0, 16, 16);
if (step_error < best_error) {
best_error = step_error;
best_param = *param;
step_dir = 1;
}
*param = best_param;
// look to the direction chosen above repeatedly until error increases
// for the biggest step size
while (step_dir) {
*param = add_param_offset(p, best_param, step * step_dir);
step_error = av1_warp_erroradv(
wm,
#if CONFIG_AOM_HIGHBITDEPTH
use_hbd, bd,
#endif // CONFIG_AOM_HIGHBITDEPTH
ref, r_width, r_height, r_stride, dst + border * d_stride + border,
border, border, d_width - 2 * border, d_height - 2 * border,
d_stride, 0, 0, 16, 16);
if (step_error < best_error) {
best_error = step_error;
best_param = *param;
} else {
*param = best_param;
step_dir = 0;
}
}
}
}
force_wmtype(wm, wmtype);
wm->wmtype = get_gmtype(wm);
return best_error;
}
#endif // CONFIG_GLOBAL_MOTION
static void encode_frame_internal(AV1_COMP *cpi) {
ThreadData *const td = &cpi->td;
MACROBLOCK *const x = &td->mb;
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
RD_COUNTS *const rdc = &cpi->td.rd_counts;
int i;
x->min_partition_size = AOMMIN(x->min_partition_size, cm->sb_size);
x->max_partition_size = AOMMIN(x->max_partition_size, cm->sb_size);
#if CONFIG_REF_MV
cm->setup_mi(cm);
#endif
xd->mi = cm->mi_grid_visible;
xd->mi[0] = cm->mi;
av1_zero(*td->counts);
av1_zero(rdc->coef_counts);
av1_zero(rdc->comp_pred_diff);
#if CONFIG_GLOBAL_MOTION
av1_zero(cpi->global_motion_used);
if (cpi->common.frame_type == INTER_FRAME && cpi->Source &&
!cpi->global_motion_search_done) {
YV12_BUFFER_CONFIG *ref_buf;
int frame;
double erroradvantage = 0;
double params[8] = { 0, 0, 1, 0, 0, 1, 0, 0 };
for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
ref_buf = get_ref_frame_buffer(cpi, frame);
if (ref_buf) {
aom_clear_system_state();
if (compute_global_motion_feature_based(GLOBAL_TRANS_TYPES - 1,
cpi->Source, ref_buf,
#if CONFIG_AOM_HIGHBITDEPTH
cpi->common.bit_depth,
#endif // CONFIG_AOM_HIGHBITDEPTH
params)) {
convert_model_to_params(params, &cm->global_motion[frame]);
if (cm->global_motion[frame].wmtype != IDENTITY) {
erroradvantage = refine_integerized_param(
&cm->global_motion[frame], cm->global_motion[frame].wmtype,
#if CONFIG_AOM_HIGHBITDEPTH
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd,
#endif // CONFIG_AOM_HIGHBITDEPTH
ref_buf->y_buffer, ref_buf->y_width, ref_buf->y_height,
ref_buf->y_stride, cpi->Source->y_buffer, cpi->Source->y_width,
cpi->Source->y_height, cpi->Source->y_stride, 3);
if (erroradvantage >
gm_advantage_thresh[cm->global_motion[frame].wmtype]) {
set_default_gmparams(&cm->global_motion[frame]);
}
}
}
aom_clear_system_state();
}
}
cpi->global_motion_search_done = 1;
}
#endif // CONFIG_GLOBAL_MOTION
for (i = 0; i < MAX_SEGMENTS; ++i) {
const int qindex = cm->seg.enabled
? av1_get_qindex(&cm->seg, i, cm->base_qindex)
: cm->base_qindex;
xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 &&
cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0;
}
if (!cm->seg.enabled && xd->lossless[0]) x->optimize = 0;
cm->tx_mode = select_tx_mode(cpi, xd);
av1_frame_init_quantizer(cpi);
av1_initialize_rd_consts(cpi);
av1_initialize_me_consts(cpi, x, cm->base_qindex);
init_encode_frame_mb_context(cpi);
cm->use_prev_frame_mvs =
!cm->error_resilient_mode && cm->width == cm->last_width &&
cm->height == cm->last_height && !cm->intra_only && cm->last_show_frame;
#if CONFIG_DELTA_Q
// Fix delta q resolution for the moment
cm->delta_q_res = DEFAULT_DELTA_Q_RES;
#endif
#if CONFIG_EXT_REFS
// NOTE(zoeliu): As cm->prev_frame can take neither a frame of
// show_exisiting_frame=1, nor can it take a frame not used as
// a reference, it is probable that by the time it is being
// referred to, the frame buffer it originally points to may
// already get expired and have been reassigned to the current
// newly coded frame. Hence, we need to check whether this is
// the case, and if yes, we have 2 choices:
// (1) Simply disable the use of previous frame mvs; or
// (2) Have cm->prev_frame point to one reference frame buffer,
// e.g. LAST_FRAME.
if (cm->use_prev_frame_mvs && !enc_is_ref_frame_buf(cpi, cm->prev_frame)) {
// Reassign the LAST_FRAME buffer to cm->prev_frame.
const int last_fb_buf_idx = get_ref_frame_buf_idx(cpi, LAST_FRAME);
cm->prev_frame = &cm->buffer_pool->frame_bufs[last_fb_buf_idx];
}
#endif // CONFIG_EXT_REFS
// Special case: set prev_mi to NULL when the previous mode info
// context cannot be used.
cm->prev_mi =
cm->use_prev_frame_mvs ? cm->prev_mip + cm->mi_stride + 1 : NULL;
#if CONFIG_VAR_TX
x->txb_split_count = 0;
#if CONFIG_REF_MV
av1_zero(x->blk_skip_drl);
#endif
#endif
if (cpi->sf.partition_search_type == VAR_BASED_PARTITION &&
cpi->td.var_root[0] == NULL)
av1_setup_var_tree(&cpi->common, &cpi->td);
{
struct aom_usec_timer emr_timer;
aom_usec_timer_start(&emr_timer);
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm,
&cpi->twopass.this_frame_mb_stats);
}
#endif
// If allowed, encoding tiles in parallel with one thread handling one tile.
// TODO(geza.lore): The multi-threaded encoder is not safe with more than
// 1 tile rows, as it uses the single above_context et al arrays from
// cpi->common
if (AOMMIN(cpi->oxcf.max_threads, cm->tile_cols) > 1 && cm->tile_rows == 1)
av1_encode_tiles_mt(cpi);
else
encode_tiles(cpi);
aom_usec_timer_mark(&emr_timer);
cpi->time_encode_sb_row += aom_usec_timer_elapsed(&emr_timer);
}
#if 0
// Keep record of the total distortion this time around for future use
cpi->last_frame_distortion = cpi->frame_distortion;
#endif
}
void av1_encode_frame(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
// In the longer term the encoder should be generalized to match the
// decoder such that we allow compound where one of the 3 buffers has a
// different sign bias and that buffer is then the fixed ref. However, this
// requires further work in the rd loop. For now the only supported encoder
// side behavior is where the ALT ref buffer has opposite sign bias to
// the other two.
if (!frame_is_intra_only(cm)) {
if ((cm->ref_frame_sign_bias[ALTREF_FRAME] ==
cm->ref_frame_sign_bias[GOLDEN_FRAME]) ||
(cm->ref_frame_sign_bias[ALTREF_FRAME] ==
cm->ref_frame_sign_bias[LAST_FRAME])) {
cpi->allow_comp_inter_inter = 0;
} else {
cpi->allow_comp_inter_inter = 1;
#if CONFIG_EXT_REFS
cm->comp_fwd_ref[0] = LAST_FRAME;
cm->comp_fwd_ref[1] = LAST2_FRAME;
cm->comp_fwd_ref[2] = LAST3_FRAME;
cm->comp_fwd_ref[3] = GOLDEN_FRAME;
cm->comp_bwd_ref[0] = BWDREF_FRAME;
cm->comp_bwd_ref[1] = ALTREF_FRAME;
#else
cm->comp_fixed_ref = ALTREF_FRAME;
cm->comp_var_ref[0] = LAST_FRAME;
cm->comp_var_ref[1] = GOLDEN_FRAME;
#endif // CONFIG_EXT_REFS
}
} else {
cpi->allow_comp_inter_inter = 0;
}
if (cpi->sf.frame_parameter_update) {
int i;
RD_OPT *const rd_opt = &cpi->rd;
FRAME_COUNTS *counts = cpi->td.counts;
RD_COUNTS *const rdc = &cpi->td.rd_counts;
// This code does a single RD pass over the whole frame assuming
// either compound, single or hybrid prediction as per whatever has
// worked best for that type of frame in the past.
// It also predicts whether another coding mode would have worked
// better than this coding mode. If that is the case, it remembers
// that for subsequent frames.
// It does the same analysis for transform size selection also.
//
// TODO(zoeliu): To investigate whether a frame_type other than
// INTRA/ALTREF/GOLDEN/LAST needs to be specified seperately.
const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type];
const int is_alt_ref = frame_type == ALTREF_FRAME;
/* prediction (compound, single or hybrid) mode selection */
if (is_alt_ref || !cpi->allow_comp_inter_inter)
cm->reference_mode = SINGLE_REFERENCE;
else if (mode_thrs[COMPOUND_REFERENCE] > mode_thrs[SINGLE_REFERENCE] &&
mode_thrs[COMPOUND_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT] &&
check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100)
cm->reference_mode = COMPOUND_REFERENCE;
else if (mode_thrs[SINGLE_REFERENCE] > mode_thrs[REFERENCE_MODE_SELECT])
cm->reference_mode = SINGLE_REFERENCE;
else
cm->reference_mode = REFERENCE_MODE_SELECT;
#if CONFIG_DUAL_FILTER
cm->interp_filter = SWITCHABLE;
#endif
encode_frame_internal(cpi);
for (i = 0; i < REFERENCE_MODES; ++i)
mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2;
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
int single_count_zero = 0;
int comp_count_zero = 0;
for (i = 0; i < COMP_INTER_CONTEXTS; i++) {
single_count_zero += counts->comp_inter[i][0];
comp_count_zero += counts->comp_inter[i][1];
}
if (comp_count_zero == 0) {
cm->reference_mode = SINGLE_REFERENCE;
av1_zero(counts->comp_inter);
} else if (single_count_zero == 0) {
cm->reference_mode = COMPOUND_REFERENCE;
av1_zero(counts->comp_inter);
}
}
#if CONFIG_VAR_TX
if (cm->tx_mode == TX_MODE_SELECT && cpi->td.mb.txb_split_count == 0)
cm->tx_mode = ALLOW_32X32 + CONFIG_TX64X64;
#else
if (cm->tx_mode == TX_MODE_SELECT) {
#if CONFIG_TX64X64
int count4x4 = 0;
int count8x8_8x8p = 0, count8x8_lp = 0;
int count16x16_16x16p = 0, count16x16_lp = 0;
int count32x32_32x32p = 0, count32x32_lp = 0;
int count64x64_64x64p = 0;
for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
// counts->tx_size[max_depth][context_idx][this_depth_level]
count4x4 += counts->tx_size[0][i][0];
count4x4 += counts->tx_size[1][i][0];
count4x4 += counts->tx_size[2][i][0];
count4x4 += counts->tx_size[3][i][0];
count8x8_8x8p += counts->tx_size[0][i][1];
count8x8_lp += counts->tx_size[1][i][1];
count8x8_lp += counts->tx_size[2][i][1];
count8x8_lp += counts->tx_size[3][i][1];
count16x16_16x16p += counts->tx_size[1][i][2];
count16x16_lp += counts->tx_size[2][i][2];
count16x16_lp += counts->tx_size[3][i][2];
count32x32_32x32p += counts->tx_size[2][i][3];
count32x32_lp += counts->tx_size[3][i][3];
count64x64_64x64p += counts->tx_size[3][i][4];
}
#if CONFIG_EXT_TX && CONFIG_RECT_TX
count4x4 += counts->tx_size_implied[0][TX_4X4];
count4x4 += counts->tx_size_implied[1][TX_4X4];
count4x4 += counts->tx_size_implied[2][TX_4X4];
count4x4 += counts->tx_size_implied[3][TX_4X4];
count8x8_8x8p += counts->tx_size_implied[1][TX_8X8];
count8x8_lp += counts->tx_size_implied[2][TX_8X8];
count8x8_lp += counts->tx_size_implied[3][TX_8X8];
count8x8_lp += counts->tx_size_implied[4][TX_8X8];
count16x16_16x16p += counts->tx_size_implied[2][TX_16X16];
count16x16_lp += counts->tx_size_implied[3][TX_16X16];
count16x16_lp += counts->tx_size_implied[4][TX_16X16];
count32x32_32x32p += counts->tx_size_implied[3][TX_32X32];
count32x32_lp += counts->tx_size_implied[4][TX_32X32];
count64x64_64x64p += counts->tx_size_implied[4][TX_64X64];
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
count32x32_lp == 0 && count32x32_32x32p == 0 &&
#if CONFIG_SUPERTX
cm->counts.supertx_size[TX_16X16] == 0 &&
cm->counts.supertx_size[TX_32X32] == 0 &&
cm->counts.supertx_size[TX_64X64] == 0 &&
#endif
count64x64_64x64p == 0) {
cm->tx_mode = ALLOW_8X8;
reset_skip_tx_size(cm, TX_8X8);
} else if (count8x8_8x8p == 0 && count8x8_lp == 0 &&
count16x16_16x16p == 0 && count16x16_lp == 0 &&
count32x32_32x32p == 0 && count32x32_lp == 0 &&
#if CONFIG_SUPERTX
cm->counts.supertx_size[TX_8X8] == 0 &&
cm->counts.supertx_size[TX_16X16] == 0 &&
cm->counts.supertx_size[TX_32X32] == 0 &&
cm->counts.supertx_size[TX_64X64] == 0 &&
#endif
count64x64_64x64p == 0) {
cm->tx_mode = ONLY_4X4;
reset_skip_tx_size(cm, TX_4X4);
} else if (count4x4 == 0 && count8x8_lp == 0 && count16x16_lp == 0 &&
count32x32_lp == 0) {
cm->tx_mode = ALLOW_64X64;
} else if (count4x4 == 0 && count8x8_lp == 0 && count16x16_lp == 0 &&
#if CONFIG_SUPERTX
cm->counts.supertx_size[TX_64X64] == 0 &&
#endif
count64x64_64x64p == 0) {
cm->tx_mode = ALLOW_32X32;
reset_skip_tx_size(cm, TX_32X32);
} else if (count4x4 == 0 && count8x8_lp == 0 && count32x32_lp == 0 &&
count32x32_32x32p == 0 &&
#if CONFIG_SUPERTX
cm->counts.supertx_size[TX_32X32] == 0 &&
cm->counts.supertx_size[TX_64X64] == 0 &&
#endif
count64x64_64x64p == 0) {
cm->tx_mode = ALLOW_16X16;
reset_skip_tx_size(cm, TX_16X16);
}
#else // CONFIG_TX64X64
int count4x4 = 0;
int count8x8_lp = 0, count8x8_8x8p = 0;
int count16x16_16x16p = 0, count16x16_lp = 0;
int count32x32 = 0;
for (i = 0; i < TX_SIZE_CONTEXTS; ++i) {
// counts->tx_size[max_depth][context_idx][this_depth_level]
count4x4 += counts->tx_size[0][i][0];
count4x4 += counts->tx_size[1][i][0];
count4x4 += counts->tx_size[2][i][0];
count8x8_8x8p += counts->tx_size[0][i][1];
count8x8_lp += counts->tx_size[1][i][1];
count8x8_lp += counts->tx_size[2][i][1];
count16x16_16x16p += counts->tx_size[1][i][2];
count16x16_lp += counts->tx_size[2][i][2];
count32x32 += counts->tx_size[2][i][3];
}
#if CONFIG_EXT_TX && CONFIG_RECT_TX
count4x4 += counts->tx_size_implied[0][TX_4X4];
count4x4 += counts->tx_size_implied[1][TX_4X4];
count4x4 += counts->tx_size_implied[2][TX_4X4];
count4x4 += counts->tx_size_implied[3][TX_4X4];
count8x8_8x8p += counts->tx_size_implied[1][TX_8X8];
count8x8_lp += counts->tx_size_implied[2][TX_8X8];
count8x8_lp += counts->tx_size_implied[3][TX_8X8];
count16x16_lp += counts->tx_size_implied[3][TX_16X16];
count16x16_16x16p += counts->tx_size_implied[2][TX_16X16];
count32x32 += counts->tx_size_implied[3][TX_32X32];
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 &&
#if CONFIG_SUPERTX
cm->counts.supertx_size[TX_16X16] == 0 &&
cm->counts.supertx_size[TX_32X32] == 0 &&
#endif // CONFIG_SUPERTX
count32x32 == 0) {
cm->tx_mode = ALLOW_8X8;
reset_skip_tx_size(cm, TX_8X8);
} else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 &&
count8x8_lp == 0 && count16x16_lp == 0 &&
#if CONFIG_SUPERTX
cm->counts.supertx_size[TX_8X8] == 0 &&
cm->counts.supertx_size[TX_16X16] == 0 &&
cm->counts.supertx_size[TX_32X32] == 0 &&
#endif // CONFIG_SUPERTX
count32x32 == 0) {
cm->tx_mode = ONLY_4X4;
reset_skip_tx_size(cm, TX_4X4);
} else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) {
cm->tx_mode = ALLOW_32X32;
} else if (count32x32 == 0 && count8x8_lp == 0 &&
#if CONFIG_SUPERTX
cm->counts.supertx_size[TX_32X32] == 0 &&
#endif // CONFIG_SUPERTX
count4x4 == 0) {
cm->tx_mode = ALLOW_16X16;
reset_skip_tx_size(cm, TX_16X16);
}
#endif // CONFIG_TX64X64
}
#endif
} else {
encode_frame_internal(cpi);
}
}
static void sum_intra_stats(FRAME_COUNTS *counts, const MODE_INFO *mi,
const MODE_INFO *above_mi, const MODE_INFO *left_mi,
const int intraonly) {
const PREDICTION_MODE y_mode = mi->mbmi.mode;
const PREDICTION_MODE uv_mode = mi->mbmi.uv_mode;
const BLOCK_SIZE bsize = mi->mbmi.sb_type;
if (bsize < BLOCK_8X8) {
int idx, idy;
const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[bsize];
for (idy = 0; idy < 2; idy += num_4x4_h)
for (idx = 0; idx < 2; idx += num_4x4_w) {
const int bidx = idy * 2 + idx;
const PREDICTION_MODE bmode = mi->bmi[bidx].as_mode;
if (intraonly) {
const PREDICTION_MODE a = av1_above_block_mode(mi, above_mi, bidx);
const PREDICTION_MODE l = av1_left_block_mode(mi, left_mi, bidx);
++counts->kf_y_mode[a][l][bmode];
} else {
++counts->y_mode[0][bmode];
}
}
} else {
if (intraonly) {
const PREDICTION_MODE above = av1_above_block_mode(mi, above_mi, 0);
const PREDICTION_MODE left = av1_left_block_mode(mi, left_mi, 0);
++counts->kf_y_mode[above][left][y_mode];
} else {
++counts->y_mode[size_group_lookup[bsize]][y_mode];
}
}
++counts->uv_mode[y_mode][uv_mode];
}
#if CONFIG_VAR_TX
static void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd,
FRAME_COUNTS *counts, TX_SIZE tx_size, int depth,
int blk_row, int blk_col) {
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const int tx_row = blk_row >> 1;
const int tx_col = blk_col >> 1;
const int max_blocks_high = max_block_high(xd, mbmi->sb_type, 0);
const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type, 0);
int ctx = txfm_partition_context(xd->above_txfm_context + tx_col,
xd->left_txfm_context + tx_row,
mbmi->sb_type, tx_size);
const TX_SIZE plane_tx_size = mbmi->inter_tx_size[tx_row][tx_col];
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
if (tx_size == plane_tx_size) {
++counts->txfm_partition[ctx][0];
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + tx_col,
xd->left_txfm_context + tx_row, tx_size);
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bs = tx_size_wide_unit[sub_txs];
int i;
++counts->txfm_partition[ctx][1];
++x->txb_split_count;
if (tx_size == TX_8X8) {
mbmi->inter_tx_size[tx_row][tx_col] = TX_4X4;
mbmi->tx_size = TX_4X4;
txfm_partition_update(xd->above_txfm_context + tx_col,
xd->left_txfm_context + tx_row, TX_4X4);
return;
}
for (i = 0; i < 4; ++i) {
int offsetr = (i >> 1) * bs;
int offsetc = (i & 0x01) * bs;
update_txfm_count(x, xd, counts, sub_txs, depth + 1, blk_row + offsetr,
blk_col + offsetc);
}
}
}
static void tx_partition_count_update(const AV1_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE plane_bsize, int mi_row,
int mi_col, FRAME_COUNTS *td_counts) {
MACROBLOCKD *xd = &x->e_mbd;
const int mi_width = num_4x4_blocks_wide_lookup[plane_bsize];
const int mi_height = num_4x4_blocks_high_lookup[plane_bsize];
TX_SIZE max_tx_size = max_txsize_rect_lookup[plane_bsize];
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
int idx, idy;
xd->above_txfm_context = cm->above_txfm_context + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
for (idy = 0; idy < mi_height; idy += bh)
for (idx = 0; idx < mi_width; idx += bw)
update_txfm_count(x, xd, td_counts, max_tx_size, mi_width != mi_height,
idy, idx);
}
static void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size, int blk_row,
int blk_col) {
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const int tx_row = blk_row >> 1;
const int tx_col = blk_col >> 1;
const int max_blocks_high = max_block_high(xd, mbmi->sb_type, 0);
const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type, 0);
const TX_SIZE plane_tx_size = mbmi->inter_tx_size[tx_row][tx_col];
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
if (tx_size == plane_tx_size) {
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + tx_col,
xd->left_txfm_context + tx_row, tx_size);
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsl = tx_size_wide_unit[sub_txs];
int i;
if (tx_size == TX_8X8) {
mbmi->inter_tx_size[tx_row][tx_col] = TX_4X4;
mbmi->tx_size = TX_4X4;
txfm_partition_update(xd->above_txfm_context + tx_col,
xd->left_txfm_context + tx_row, TX_4X4);
return;
}
assert(bsl > 0);
for (i = 0; i < 4; ++i) {
int offsetr = (i >> 1) * bsl;
int offsetc = (i & 0x01) * bsl;
set_txfm_context(xd, sub_txs, blk_row + offsetr, blk_col + offsetc);
}
}
}
static void tx_partition_set_contexts(const AV1_COMMON *const cm,
MACROBLOCKD *xd, BLOCK_SIZE plane_bsize,
int mi_row, int mi_col) {
const int mi_width = num_4x4_blocks_wide_lookup[plane_bsize];
const int mi_height = num_4x4_blocks_high_lookup[plane_bsize];
TX_SIZE max_tx_size = max_txsize_rect_lookup[plane_bsize];
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
int idx, idy;
xd->above_txfm_context = cm->above_txfm_context + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
for (idy = 0; idy < mi_height; idy += bh)
for (idx = 0; idx < mi_width; idx += bw)
set_txfm_context(xd, max_tx_size, idy, idx);
}
#endif
static void encode_superblock(const AV1_COMP *const cpi, ThreadData *td,
TOKENEXTRA **t, RUN_TYPE dry_run, int mi_row,
int mi_col, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx, int *rate) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO **mi_8x8 = xd->mi;
MODE_INFO *mi = mi_8x8[0];
MB_MODE_INFO *mbmi = &mi->mbmi;
const int seg_skip =
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP);
const int mis = cm->mi_stride;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
const int is_inter = is_inter_block(mbmi);
x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct;
#if CONFIG_PVQ
x->pvq_speed = 0;
x->pvq_coded = (dry_run == OUTPUT_ENABLED) ? 1 : 0;
#endif
if (!is_inter) {
int plane;
mbmi->skip = 1;
for (plane = 0; plane < MAX_MB_PLANE; ++plane)
av1_encode_intra_block_plane((AV1_COMMON *)cm, x,
AOMMAX(bsize, BLOCK_8X8), plane, 1);
if (!dry_run)
sum_intra_stats(td->counts, mi, xd->above_mi, xd->left_mi,
frame_is_intra_only(cm));
// TODO(huisu): move this into sum_intra_stats().
if (!dry_run && bsize >= BLOCK_8X8) {
FRAME_COUNTS *counts = td->counts;
(void)counts;
#if CONFIG_FILTER_INTRA
if (mbmi->mode == DC_PRED
#if CONFIG_PALETTE
&& mbmi->palette_mode_info.palette_size[0] == 0
#endif // CONFIG_PALETTE
) {
const int use_filter_intra_mode =
mbmi->filter_intra_mode_info.use_filter_intra_mode[0];
++counts->filter_intra[0][use_filter_intra_mode];
}
if (mbmi->uv_mode == DC_PRED
#if CONFIG_PALETTE
&& mbmi->palette_mode_info.palette_size[1] == 0
#endif // CONFIG_PALETTE
) {
const int use_filter_intra_mode =
mbmi->filter_intra_mode_info.use_filter_intra_mode[1];
++counts->filter_intra[1][use_filter_intra_mode];
}
#endif // CONFIG_FILTER_INTRA
#if CONFIG_EXT_INTRA
if (mbmi->mode != DC_PRED && mbmi->mode != TM_PRED) {
int p_angle;
const int intra_filter_ctx = av1_get_pred_context_intra_interp(xd);
p_angle =
mode_to_angle_map[mbmi->mode] + mbmi->angle_delta[0] * ANGLE_STEP;
if (av1_is_intra_filter_switchable(p_angle))
++counts->intra_filter[intra_filter_ctx][mbmi->intra_filter];
}
#endif // CONFIG_EXT_INTRA
}
#if CONFIG_PALETTE
if (bsize >= BLOCK_8X8 && !dry_run) {
for (plane = 0; plane <= 1; ++plane) {
if (mbmi->palette_mode_info.palette_size[plane] > 0) {
mbmi->palette_mode_info.palette_first_color_idx[plane] =
xd->plane[plane].color_index_map[0];
// TODO(huisu): this increases the use of token buffer. Needs stretch
// test to verify.
av1_tokenize_palette_sb(cpi, td, plane, t, dry_run, bsize, rate);
}
}
}
#endif // CONFIG_PALETTE
#if CONFIG_VAR_TX
mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size);
#endif
av1_tokenize_sb(cpi, td, t, dry_run, AOMMAX(bsize, BLOCK_8X8), rate);
} else {
int ref;
const int is_compound = has_second_ref(mbmi);
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
for (ref = 0; ref < 1 + is_compound; ++ref) {
YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mbmi->ref_frame[ref]);
assert(cfg != NULL);
av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
&xd->block_refs[ref]->sf);
}
#if CONFIG_WARPED_MOTION
if (mbmi->motion_mode == WARPED_CAUSAL) {
int i;
#if CONFIG_AOM_HIGHBITDEPTH
int use_hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH;
#endif // CONFIG_AOM_HIGHBITDEPTH
for (i = 0; i < 3; ++i) {
const struct macroblockd_plane *pd = &xd->plane[i];
av1_warp_plane(&mbmi->wm_params[0],
#if CONFIG_AOM_HIGHBITDEPTH
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd,
#endif // CONFIG_AOM_HIGHBITDEPTH
pd->pre[0].buf0, pd->pre[0].width, pd->pre[0].height,
pd->pre[0].stride, pd->dst.buf,
((mi_col * MI_SIZE) >> pd->subsampling_x),
((mi_row * MI_SIZE) >> pd->subsampling_y),
xd->n8_w * (8 >> pd->subsampling_x),
xd->n8_h * (8 >> pd->subsampling_y), pd->dst.stride,
pd->subsampling_x, pd->subsampling_y, 16, 16, 0);
}
} else {
#endif // CONFIG_WARPED_MOTION
if (!(cpi->sf.reuse_inter_pred_sby && ctx->pred_pixel_ready) || seg_skip)
av1_build_inter_predictors_sby(xd, mi_row, mi_col, NULL,
AOMMAX(bsize, BLOCK_8X8));
av1_build_inter_predictors_sbuv(xd, mi_row, mi_col, NULL,
AOMMAX(bsize, BLOCK_8X8));
#if CONFIG_WARPED_MOTION
}
#endif // CONFIG_WARPED_MOTION
#if CONFIG_MOTION_VAR
if (mbmi->motion_mode == OBMC_CAUSAL) {
av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col);
}
#endif // CONFIG_MOTION_VAR
av1_encode_sb((AV1_COMMON *)cm, x, AOMMAX(bsize, BLOCK_8X8));
#if CONFIG_VAR_TX
if (mbmi->skip) mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size);
av1_tokenize_sb_vartx(cpi, td, t, dry_run, mi_row, mi_col,
AOMMAX(bsize, BLOCK_8X8), rate);
#else
av1_tokenize_sb(cpi, td, t, dry_run, AOMMAX(bsize, BLOCK_8X8), rate);
#endif
}
if (!dry_run) {
#if CONFIG_VAR_TX
TX_SIZE tx_size =
is_inter && !mbmi->skip ? mbmi->min_tx_size : mbmi->tx_size;
#else
TX_SIZE tx_size = mbmi->tx_size;
#endif
if (cm->tx_mode == TX_MODE_SELECT && mbmi->sb_type >= BLOCK_8X8 &&
!(is_inter && (mbmi->skip || seg_skip))) {
const int tx_size_ctx = get_tx_size_context(xd);
const int tx_size_cat = is_inter ? inter_tx_size_cat_lookup[bsize]
: intra_tx_size_cat_lookup[bsize];
const TX_SIZE coded_tx_size = txsize_sqr_up_map[tx_size];
const int depth = tx_size_to_depth(coded_tx_size);
#if CONFIG_EXT_TX && CONFIG_RECT_TX
assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi)));
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
#if CONFIG_VAR_TX
if (is_inter) {
tx_partition_count_update(cm, x, bsize, mi_row, mi_col, td->counts);
} else {
++td->counts->tx_size[tx_size_cat][tx_size_ctx][depth];
if (tx_size != max_txsize_lookup[bsize]) ++x->txb_split_count;
}
#else
++td->counts->tx_size[tx_size_cat][tx_size_ctx][depth];
#endif
} else {
int i, j;
TX_SIZE intra_tx_size;
// The new intra coding scheme requires no change of transform size
if (is_inter) {
if (xd->lossless[mbmi->segment_id]) {
intra_tx_size = TX_4X4;
} else {
intra_tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode, 1);
}
#if CONFIG_EXT_TX && CONFIG_RECT_TX
++td->counts->tx_size_implied[max_txsize_lookup[bsize]]
[txsize_sqr_up_map[tx_size]];
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
} else {
intra_tx_size = (bsize >= BLOCK_8X8) ? tx_size : TX_4X4;
}
for (j = 0; j < mi_height; j++)
for (i = 0; i < mi_width; i++)
if (mi_col + i < cm->mi_cols && mi_row + j < cm->mi_rows)
mi_8x8[mis * j + i]->mbmi.tx_size = intra_tx_size;
#if CONFIG_VAR_TX
mbmi->min_tx_size = get_min_tx_size(intra_tx_size);
if (intra_tx_size != max_txsize_lookup[bsize]) ++x->txb_split_count;
#endif
}
++td->counts->tx_size_totals[txsize_sqr_map[tx_size]];
++td->counts
->tx_size_totals[txsize_sqr_map[get_uv_tx_size(mbmi, &xd->plane[1])]];
#if CONFIG_EXT_TX
if (get_ext_tx_types(tx_size, bsize, is_inter) > 1 && cm->base_qindex > 0 &&
!mbmi->skip &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
int eset = get_ext_tx_set(tx_size, bsize, is_inter);
if (eset > 0) {
if (is_inter) {
++td->counts->inter_ext_tx[eset][txsize_sqr_map[tx_size]]
[mbmi->tx_type];
} else {
++td->counts->intra_ext_tx[eset][tx_size][mbmi->mode][mbmi->tx_type];
}
}
}
#else
if (tx_size < TX_32X32 && cm->base_qindex > 0 && !mbmi->skip &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
if (is_inter) {
++td->counts->inter_ext_tx[tx_size][mbmi->tx_type];
} else {
++td->counts->intra_ext_tx[tx_size]
[intra_mode_to_tx_type_context[mbmi->mode]]
[mbmi->tx_type];
}
}
#endif // CONFIG_EXT_TX
}
#if CONFIG_VAR_TX
if (cm->tx_mode == TX_MODE_SELECT && mbmi->sb_type >= BLOCK_8X8 && is_inter &&
!(mbmi->skip || seg_skip)) {
if (dry_run) tx_partition_set_contexts(cm, xd, bsize, mi_row, mi_col);
} else {
TX_SIZE tx_size = mbmi->tx_size;
// The new intra coding scheme requires no change of transform size
if (is_inter)
tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode, is_inter);
else
tx_size = (bsize >= BLOCK_8X8) ? tx_size : TX_4X4;
mbmi->tx_size = tx_size;
set_txfm_ctxs(tx_size, xd->n8_w, xd->n8_h, (mbmi->skip || seg_skip), xd);
}
#endif // CONFIG_VAR_TX
}
#if CONFIG_SUPERTX
static int check_intra_b(PICK_MODE_CONTEXT *ctx) {
if (!is_inter_mode((&ctx->mic)->mbmi.mode)) return 1;
#if CONFIG_EXT_INTER
if (ctx->mic.mbmi.ref_frame[1] == INTRA_FRAME) return 1;
#endif // CONFIG_EXT_INTER
return 0;
}
static int check_intra_sb(const AV1_COMP *const cpi, const TileInfo *const tile,
int mi_row, int mi_col, BLOCK_SIZE bsize,
PC_TREE *pc_tree) {
const AV1_COMMON *const cm = &cpi->common;
const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2;
const PARTITION_TYPE partition = pc_tree->partitioning;
const BLOCK_SIZE subsize = get_subsize(bsize, partition);
#if CONFIG_EXT_PARTITION_TYPES
int i;
#endif
assert(bsize >= BLOCK_8X8);
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return 1;
switch (partition) {
case PARTITION_NONE: return check_intra_b(&pc_tree->none); break;
case PARTITION_VERT:
if (check_intra_b(&pc_tree->vertical[0])) return 1;
if (mi_col + hbs < cm->mi_cols && bsize > BLOCK_8X8) {
if (check_intra_b(&pc_tree->vertical[1])) return 1;
}
break;
case PARTITION_HORZ:
if (check_intra_b(&pc_tree->horizontal[0])) return 1;
if (mi_row + hbs < cm->mi_rows && bsize > BLOCK_8X8) {
if (check_intra_b(&pc_tree->horizontal[1])) return 1;
}
break;
case PARTITION_SPLIT:
if (bsize == BLOCK_8X8) {
if (check_intra_b(pc_tree->leaf_split[0])) return 1;
} else {
if (check_intra_sb(cpi, tile, mi_row, mi_col, subsize,
pc_tree->split[0]))
return 1;
if (check_intra_sb(cpi, tile, mi_row, mi_col + hbs, subsize,
pc_tree->split[1]))
return 1;
if (check_intra_sb(cpi, tile, mi_row + hbs, mi_col, subsize,
pc_tree->split[2]))
return 1;
if (check_intra_sb(cpi, tile, mi_row + hbs, mi_col + hbs, subsize,
pc_tree->split[3]))
return 1;
}
break;
#if CONFIG_EXT_PARTITION_TYPES
case PARTITION_HORZ_A:
for (i = 0; i < 3; i++) {
if (check_intra_b(&pc_tree->horizontala[i])) return 1;
}
break;
case PARTITION_HORZ_B:
for (i = 0; i < 3; i++) {
if (check_intra_b(&pc_tree->horizontalb[i])) return 1;
}
break;
case PARTITION_VERT_A:
for (i = 0; i < 3; i++) {
if (check_intra_b(&pc_tree->verticala[i])) return 1;
}
break;
case PARTITION_VERT_B:
for (i = 0; i < 3; i++) {
if (check_intra_b(&pc_tree->verticalb[i])) return 1;
}
break;
#endif // CONFIG_EXT_PARTITION_TYPES
default: assert(0);
}
return 0;
}
static int check_supertx_b(TX_SIZE supertx_size, PICK_MODE_CONTEXT *ctx) {
return ctx->mic.mbmi.tx_size == supertx_size;
}
static int check_supertx_sb(BLOCK_SIZE bsize, TX_SIZE supertx_size,
PC_TREE *pc_tree) {
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
partition = pc_tree->partitioning;
subsize = get_subsize(bsize, partition);
switch (partition) {
case PARTITION_NONE: return check_supertx_b(supertx_size, &pc_tree->none);
case PARTITION_VERT:
return check_supertx_b(supertx_size, &pc_tree->vertical[0]);
case PARTITION_HORZ:
return check_supertx_b(supertx_size, &pc_tree->horizontal[0]);
case PARTITION_SPLIT:
if (bsize == BLOCK_8X8)
return check_supertx_b(supertx_size, pc_tree->leaf_split[0]);
else
return check_supertx_sb(subsize, supertx_size, pc_tree->split[0]);
#if CONFIG_EXT_PARTITION_TYPES
case PARTITION_HORZ_A:
return check_supertx_b(supertx_size, &pc_tree->horizontala[0]);
case PARTITION_HORZ_B:
return check_supertx_b(supertx_size, &pc_tree->horizontalb[0]);
case PARTITION_VERT_A:
return check_supertx_b(supertx_size, &pc_tree->verticala[0]);
case PARTITION_VERT_B:
return check_supertx_b(supertx_size, &pc_tree->verticalb[0]);
#endif // CONFIG_EXT_PARTITION_TYPES
default: assert(0); return 0;
}
}
static void predict_superblock(const AV1_COMP *const cpi, ThreadData *td,
#if CONFIG_EXT_INTER
int mi_row_ori, int mi_col_ori,
#endif // CONFIG_EXT_INTER
int mi_row_pred, int mi_col_pred,
BLOCK_SIZE bsize_pred, int b_sub8x8, int block) {
// Used in supertx
// (mi_row_ori, mi_col_ori): location for mv
// (mi_row_pred, mi_col_pred, bsize_pred): region to predict
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MODE_INFO *mi_8x8 = xd->mi[0];
MODE_INFO *mi = mi_8x8;
MB_MODE_INFO *mbmi = &mi->mbmi;
int ref;
const int is_compound = has_second_ref(mbmi);
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
for (ref = 0; ref < 1 + is_compound; ++ref) {
YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mbmi->ref_frame[ref]);
av1_setup_pre_planes(xd, ref, cfg, mi_row_pred, mi_col_pred,
&xd->block_refs[ref]->sf);
}
if (!b_sub8x8)
av1_build_inter_predictors_sb_extend(xd,
#if CONFIG_EXT_INTER
mi_row_ori, mi_col_ori,
#endif // CONFIG_EXT_INTER
mi_row_pred, mi_col_pred, bsize_pred);
else
av1_build_inter_predictors_sb_sub8x8_extend(xd,
#if CONFIG_EXT_INTER
mi_row_ori, mi_col_ori,
#endif // CONFIG_EXT_INTER
mi_row_pred, mi_col_pred,
bsize_pred, block);
}
static void predict_b_extend(const AV1_COMP *const cpi, ThreadData *td,
const TileInfo *const tile, int block,
int mi_row_ori, int mi_col_ori, int mi_row_pred,
int mi_col_pred, int mi_row_top, int mi_col_top,
uint8_t *dst_buf[3], int dst_stride[3],
BLOCK_SIZE bsize_top, BLOCK_SIZE bsize_pred,
RUN_TYPE dry_run, int b_sub8x8, int bextend) {
// Used in supertx
// (mi_row_ori, mi_col_ori): location for mv
// (mi_row_pred, mi_col_pred, bsize_pred): region to predict
// (mi_row_top, mi_col_top, bsize_top): region of the top partition size
// block: sub location of sub8x8 blocks
// b_sub8x8: 1: ori is sub8x8; 0: ori is not sub8x8
// bextend: 1: region to predict is an extension of ori; 0: not
MACROBLOCK *const x = &td->mb;
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
int r = (mi_row_pred - mi_row_top) * MI_SIZE;
int c = (mi_col_pred - mi_col_top) * MI_SIZE;
const int mi_width_top = num_8x8_blocks_wide_lookup[bsize_top];
const int mi_height_top = num_8x8_blocks_high_lookup[bsize_top];
if (mi_row_pred < mi_row_top || mi_col_pred < mi_col_top ||
mi_row_pred >= mi_row_top + mi_height_top ||
mi_col_pred >= mi_col_top + mi_width_top || mi_row_pred >= cm->mi_rows ||
mi_col_pred >= cm->mi_cols)
return;
set_offsets_extend(cpi, td, tile, mi_row_pred, mi_col_pred, mi_row_ori,
mi_col_ori, bsize_pred);
xd->plane[0].dst.stride = dst_stride[0];
xd->plane[1].dst.stride = dst_stride[1];
xd->plane[2].dst.stride = dst_stride[2];
xd->plane[0].dst.buf = dst_buf[0] +
(r >> xd->plane[0].subsampling_y) * dst_stride[0] +
(c >> xd->plane[0].subsampling_x);
xd->plane[1].dst.buf = dst_buf[1] +
(r >> xd->plane[1].subsampling_y) * dst_stride[1] +
(c >> xd->plane[1].subsampling_x);
xd->plane[2].dst.buf = dst_buf[2] +
(r >> xd->plane[2].subsampling_y) * dst_stride[2] +
(c >> xd->plane[2].subsampling_x);
predict_superblock(cpi, td,
#if CONFIG_EXT_INTER
mi_row_ori, mi_col_ori,
#endif // CONFIG_EXT_INTER
mi_row_pred, mi_col_pred, bsize_pred, b_sub8x8, block);
if (!dry_run && !bextend) {
#if CONFIG_SUPERTX
update_stats(&cpi->common, td, mi_row_pred, mi_col_pred, 1);
#else
update_stats(&cpi->common, td, mi_row_pred, mi_col_pred);
#endif
}
}
static void extend_dir(const AV1_COMP *const cpi, ThreadData *td,
const TileInfo *const tile, int block, BLOCK_SIZE bsize,
BLOCK_SIZE top_bsize, int mi_row, int mi_col,
int mi_row_top, int mi_col_top, RUN_TYPE dry_run,
uint8_t *dst_buf[3], int dst_stride[3], int dir) {
// dir: 0-lower, 1-upper, 2-left, 3-right
// 4-lowerleft, 5-upperleft, 6-lowerright, 7-upperright
MACROBLOCKD *xd = &td->mb.e_mbd;
const int mi_width = num_8x8_blocks_wide_lookup[bsize];
const int mi_height = num_8x8_blocks_high_lookup[bsize];
int xss = xd->plane[1].subsampling_x;
int yss = xd->plane[1].subsampling_y;
int b_sub8x8 = (bsize < BLOCK_8X8) ? 1 : 0;
BLOCK_SIZE extend_bsize;
int unit, mi_row_pred, mi_col_pred;
if (dir == 0 || dir == 1) { // lower and upper
extend_bsize = (mi_width == 1 || bsize < BLOCK_8X8 || xss < yss)
? BLOCK_8X8
: BLOCK_16X8;
unit = num_8x8_blocks_wide_lookup[extend_bsize];
mi_row_pred = mi_row + ((dir == 0) ? mi_height : -1);
mi_col_pred = mi_col;
predict_b_extend(cpi, td, tile, block, mi_row, mi_col, mi_row_pred,
mi_col_pred, mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, extend_bsize, dry_run, b_sub8x8, 1);
if (mi_width > unit) {
int i;
for (i = 0; i < mi_width / unit - 1; i++) {
mi_col_pred += unit;
predict_b_extend(cpi, td, tile, block, mi_row, mi_col, mi_row_pred,
mi_col_pred, mi_row_top, mi_col_top, dst_buf,
dst_stride, top_bsize, extend_bsize, dry_run, b_sub8x8,
1);
}
}
} else if (dir == 2 || dir == 3) { // left and right
extend_bsize = (mi_height == 1 || bsize < BLOCK_8X8 || yss < xss)
? BLOCK_8X8
: BLOCK_8X16;
unit = num_8x8_blocks_high_lookup[extend_bsize];
mi_row_pred = mi_row;
mi_col_pred = mi_col + ((dir == 3) ? mi_width : -1);
predict_b_extend(cpi, td, tile, block, mi_row, mi_col, mi_row_pred,
mi_col_pred, mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, extend_bsize, dry_run, b_sub8x8, 1);
if (mi_height > unit) {
int i;
for (i = 0; i < mi_height / unit - 1; i++) {
mi_row_pred += unit;
predict_b_extend(cpi, td, tile, block, mi_row, mi_col, mi_row_pred,
mi_col_pred, mi_row_top, mi_col_top, dst_buf,
dst_stride, top_bsize, extend_bsize, dry_run, b_sub8x8,
1);
}
}
} else {
extend_bsize = BLOCK_8X8;
mi_row_pred = mi_row + ((dir == 4 || dir == 6) ? mi_height : -1);
mi_col_pred = mi_col + ((dir == 6 || dir == 7) ? mi_width : -1);
predict_b_extend(cpi, td, tile, block, mi_row, mi_col, mi_row_pred,
mi_col_pred, mi_row_top, mi_col_top, dst_buf, dst_stride,
top_bsize, extend_bsize, dry_run, b_sub8x8, 1);
}
}
static void extend_all(const AV1_COMP *const cpi, ThreadData *td,
const TileInfo *const tile, int block, BLOCK_SIZE bsize,
BLOCK_SIZE top_bsize, int mi_row, int mi_col,
int mi_row_top, int mi_col_top, RUN_TYPE dry_run,
uint8_t *dst_buf[3], int dst_stride[3]) {
assert(block >= 0 && block < 4);
extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
mi_col_top, dry_run, dst_buf, dst_stride, 0);
extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
mi_col_top, dry_run, dst_buf, dst_stride, 1);
extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
mi_col_top, dry_run, dst_buf, dst_stride, 2);
extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
mi_col_top, dry_run, dst_buf, dst_stride, 3);
extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
mi_col_top, dry_run, dst_buf, dst_stride, 4);
extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
mi_col_top, dry_run, dst_buf, dst_stride, 5);
extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
mi_col_top, dry_run, dst_buf, dst_stride, 6);
extend_dir(cpi, td, tile, block, bsize, top_bsize, mi_row, mi_col, mi_row_top,
mi_col_top, dry_run, dst_buf, dst_stride, 7);
}
// This function generates prediction for multiple blocks, between which
// discontinuity around boundary is reduced by smoothing masks. The basic
// smoothing mask is a soft step function along horz/vert direction. In more
// complicated case when a block is split into 4 subblocks, the basic mask is
// first applied to neighboring subblocks (2 pairs) in horizontal direction and
// then applied to the 2 masked prediction mentioned above in vertical direction
// If the block is split into more than one level, at every stage, masked
// prediction is stored in dst_buf[] passed from higher level.
static void predict_sb_complex(const AV1_COMP *const cpi, ThreadData *td,
const TileInfo *const tile, int mi_row,
int mi_col, int mi_row_top, int mi_col_top,
RUN_TYPE dry_run, BLOCK_SIZE bsize,
BLOCK_SIZE top_bsize, uint8_t *dst_buf[3],
int dst_stride[3], PC_TREE *pc_tree) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2;
const PARTITION_TYPE partition = pc_tree->partitioning;
const BLOCK_SIZE subsize = get_subsize(bsize, partition);
#if CONFIG_EXT_PARTITION_TYPES
const BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
#endif
int i;
uint8_t *dst_buf1[3], *dst_buf2[3], *dst_buf3[3];
DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_TX_SQUARE * 2]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_TX_SQUARE * 2]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf3[MAX_MB_PLANE * MAX_TX_SQUARE * 2]);
int dst_stride1[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE };
int dst_stride2[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE };
int dst_stride3[3] = { MAX_TX_SIZE, MAX_TX_SIZE, MAX_TX_SIZE };
assert(bsize >= BLOCK_8X8);
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
int len = sizeof(uint16_t);
dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1);
dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_TX_SQUARE * len);
dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + 2 * MAX_TX_SQUARE * len);
dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2);
dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_TX_SQUARE * len);
dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + 2 * MAX_TX_SQUARE * len);
dst_buf3[0] = CONVERT_TO_BYTEPTR(tmp_buf3);
dst_buf3[1] = CONVERT_TO_BYTEPTR(tmp_buf3 + MAX_TX_SQUARE * len);
dst_buf3[2] = CONVERT_TO_BYTEPTR(tmp_buf3 + 2 * MAX_TX_SQUARE * len);
} else {
#endif // CONFIG_AOM_HIGHBITDEPTH
dst_buf1[0] = tmp_buf1;
dst_buf1[1] = tmp_buf1 + MAX_TX_SQUARE;
dst_buf1[2] = tmp_buf1 + 2 * MAX_TX_SQUARE;
dst_buf2[0] = tmp_buf2;
dst_buf2[1] = tmp_buf2 + MAX_TX_SQUARE;
dst_buf2[2] = tmp_buf2 + 2 * MAX_TX_SQUARE;
dst_buf3[0] = tmp_buf3;
dst_buf3[1] = tmp_buf3 + MAX_TX_SQUARE;
dst_buf3[2] = tmp_buf3 + 2 * MAX_TX_SQUARE;
#if CONFIG_AOM_HIGHBITDEPTH
}
#endif // CONFIG_AOM_HIGHBITDEPTH
if (!dry_run && bsize < top_bsize) {
// Explicitly cast away const.
FRAME_COUNTS *const frame_counts = (FRAME_COUNTS *)&cm->counts;
frame_counts->partition[ctx][partition]++;
}
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
}
switch (partition) {
case PARTITION_NONE:
assert(bsize < top_bsize);
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
bsize, dry_run, 0, 0);
extend_all(cpi, td, tile, 0, bsize, top_bsize, mi_row, mi_col, mi_row_top,
mi_col_top, dry_run, dst_buf, dst_stride);
break;
case PARTITION_HORZ:
if (bsize == BLOCK_8X8) {
// Fisrt half
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
BLOCK_8X8, dry_run, 1, 0);
if (bsize < top_bsize)
extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride);
// Second half
predict_b_extend(cpi, td, tile, 2, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1,
top_bsize, BLOCK_8X8, dry_run, 1, 1);
if (bsize < top_bsize)
extend_all(cpi, td, tile, 2, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1);
// Smooth
xd->plane[0].dst.buf = dst_buf[0];
xd->plane[0].dst.stride = dst_stride[0];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
0);
} else {
// First half
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
subsize, dry_run, 0, 0);
if (bsize < top_bsize)
extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride);
else
extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 0);
if (mi_row + hbs < cm->mi_rows) {
// Second half
predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, top_bsize, subsize, dry_run, 0, 0);
if (bsize < top_bsize)
extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dry_run, dst_buf1,
dst_stride1);
else
extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dry_run, dst_buf1,
dst_stride1, 1);
// Smooth
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_HORZ, i);
}
}
}
break;
case PARTITION_VERT:
if (bsize == BLOCK_8X8) {
// First half
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
BLOCK_8X8, dry_run, 1, 0);
if (bsize < top_bsize)
extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride);
// Second half
predict_b_extend(cpi, td, tile, 1, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1,
top_bsize, BLOCK_8X8, dry_run, 1, 1);
if (bsize < top_bsize)
extend_all(cpi, td, tile, 1, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1);
// Smooth
xd->plane[0].dst.buf = dst_buf[0];
xd->plane[0].dst.stride = dst_stride[0];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[0], dst_stride[0], dst_buf1[0], dst_stride1[0], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
0);
} else {
// bsize: not important, not useful
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
subsize, dry_run, 0, 0);
if (bsize < top_bsize)
extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride);
else
extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 3);
if (mi_col + hbs < cm->mi_cols) {
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col + hbs, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, top_bsize, subsize, dry_run, 0, 0);
if (bsize < top_bsize)
extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dry_run, dst_buf1,
dst_stride1);
else
extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dry_run, dst_buf1,
dst_stride1, 2);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_VERT, i);
}
}
}
break;
case PARTITION_SPLIT:
if (bsize == BLOCK_8X8) {
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
BLOCK_8X8, dry_run, 1, 0);
predict_b_extend(cpi, td, tile, 1, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf1, dst_stride1,
top_bsize, BLOCK_8X8, dry_run, 1, 1);
predict_b_extend(cpi, td, tile, 2, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf2, dst_stride2,
top_bsize, BLOCK_8X8, dry_run, 1, 1);
predict_b_extend(cpi, td, tile, 3, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf3, dst_stride3,
top_bsize, BLOCK_8X8, dry_run, 1, 1);
if (bsize < top_bsize) {
extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride);
extend_all(cpi, td, tile, 1, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1);
extend_all(cpi, td, tile, 2, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dry_run, dst_buf2, dst_stride2);
extend_all(cpi, td, tile, 3, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dry_run, dst_buf3, dst_stride3);
}
} else {
predict_sb_complex(cpi, td, tile, mi_row, mi_col, mi_row_top,
mi_col_top, dry_run, subsize, top_bsize, dst_buf,
dst_stride, pc_tree->split[0]);
if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols)
predict_sb_complex(cpi, td, tile, mi_row, mi_col + hbs, mi_row_top,
mi_col_top, dry_run, subsize, top_bsize, dst_buf1,
dst_stride1, pc_tree->split[1]);
if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols)
predict_sb_complex(cpi, td, tile, mi_row + hbs, mi_col, mi_row_top,
mi_col_top, dry_run, subsize, top_bsize, dst_buf2,
dst_stride2, pc_tree->split[2]);
if (mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols)
predict_sb_complex(cpi, td, tile, mi_row + hbs, mi_col + hbs,
mi_row_top, mi_col_top, dry_run, subsize,
top_bsize, dst_buf3, dst_stride3,
pc_tree->split[3]);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
if (bsize == BLOCK_8X8 && i != 0)
continue; // Skip <4x4 chroma smoothing
if (mi_row < cm->mi_rows && mi_col + hbs < cm->mi_cols) {
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_VERT, i);
if (mi_row + hbs < cm->mi_rows) {
av1_build_masked_inter_predictor_complex(
xd, dst_buf2[i], dst_stride2[i], dst_buf3[i], dst_stride3[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_VERT, i);
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_HORZ, i);
}
} else if (mi_row + hbs < cm->mi_rows && mi_col < cm->mi_cols) {
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_HORZ, i);
}
}
break;
#if CONFIG_EXT_PARTITION_TYPES
case PARTITION_HORZ_A:
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
bsize2, dry_run, 0, 0);
extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride);
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col + hbs, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, top_bsize, bsize2, dry_run, 0, 0);
extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs,
mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1);
predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf2, dst_stride2,
top_bsize, subsize, dry_run, 0, 0);
if (bsize < top_bsize)
extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col,
mi_row_top, mi_col_top, dry_run, dst_buf2, dst_stride2);
else
extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row + hbs, mi_col,
mi_row_top, mi_col_top, dry_run, dst_buf2, dst_stride2, 1);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
i);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
i);
}
break;
case PARTITION_VERT_A:
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
bsize2, dry_run, 0, 0);
extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride);
predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1,
top_bsize, bsize2, dry_run, 0, 0);
extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col,
mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1);
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col + hbs, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf2,
dst_stride2, top_bsize, subsize, dry_run, 0, 0);
if (bsize < top_bsize)
extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs,
mi_row_top, mi_col_top, dry_run, dst_buf2, dst_stride2);
else
extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col + hbs,
mi_row_top, mi_col_top, dry_run, dst_buf2, dst_stride2, 2);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
i);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf2[i], dst_stride2[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
i);
}
break;
case PARTITION_HORZ_B:
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
subsize, dry_run, 0, 0);
if (bsize < top_bsize)
extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride);
else
extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 0);
predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col, mi_row + hbs,
mi_col, mi_row_top, mi_col_top, dst_buf1, dst_stride1,
top_bsize, bsize2, dry_run, 0, 0);
extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row + hbs, mi_col,
mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1);
predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col + hbs,
mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top,
dst_buf2, dst_stride2, top_bsize, bsize2, dry_run, 0, 0);
extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row + hbs,
mi_col + hbs, mi_row_top, mi_col_top, dry_run, dst_buf2,
dst_stride2);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf1[i];
xd->plane[i].dst.stride = dst_stride1[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_VERT, i);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_HORZ,
i);
}
break;
case PARTITION_VERT_B:
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col, mi_row, mi_col,
mi_row_top, mi_col_top, dst_buf, dst_stride, top_bsize,
subsize, dry_run, 0, 0);
if (bsize < top_bsize)
extend_all(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride);
else
extend_dir(cpi, td, tile, 0, subsize, top_bsize, mi_row, mi_col,
mi_row_top, mi_col_top, dry_run, dst_buf, dst_stride, 3);
predict_b_extend(cpi, td, tile, 0, mi_row, mi_col + hbs, mi_row,
mi_col + hbs, mi_row_top, mi_col_top, dst_buf1,
dst_stride1, top_bsize, bsize2, dry_run, 0, 0);
extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row, mi_col + hbs,
mi_row_top, mi_col_top, dry_run, dst_buf1, dst_stride1);
predict_b_extend(cpi, td, tile, 0, mi_row + hbs, mi_col + hbs,
mi_row + hbs, mi_col + hbs, mi_row_top, mi_col_top,
dst_buf2, dst_stride2, top_bsize, bsize2, dry_run, 0, 0);
extend_all(cpi, td, tile, 0, bsize2, top_bsize, mi_row + hbs,
mi_col + hbs, mi_row_top, mi_col_top, dry_run, dst_buf2,
dst_stride2);
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf1[i];
xd->plane[i].dst.stride = dst_stride1[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf1[i], dst_stride1[i], dst_buf2[i], dst_stride2[i],
mi_row, mi_col, mi_row_top, mi_col_top, bsize, top_bsize,
PARTITION_HORZ, i);
}
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].dst.buf = dst_buf[i];
xd->plane[i].dst.stride = dst_stride[i];
av1_build_masked_inter_predictor_complex(
xd, dst_buf[i], dst_stride[i], dst_buf1[i], dst_stride1[i], mi_row,
mi_col, mi_row_top, mi_col_top, bsize, top_bsize, PARTITION_VERT,
i);
}
break;
#endif // CONFIG_EXT_PARTITION_TYPES
default: assert(0);
}
#if CONFIG_EXT_PARTITION_TYPES
if (bsize < top_bsize)
update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
#else
if (bsize < top_bsize && (partition != PARTITION_SPLIT || bsize == BLOCK_8X8))
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
#endif // CONFIG_EXT_PARTITION_TYPES
}
static void rd_supertx_sb(const AV1_COMP *const cpi, ThreadData *td,
const TileInfo *const tile, int mi_row, int mi_col,
BLOCK_SIZE bsize, int *tmp_rate, int64_t *tmp_dist,
TX_TYPE *best_tx, PC_TREE *pc_tree) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
int plane, pnskip, skippable, skippable_uv, rate_uv, this_rate,
base_rate = *tmp_rate;
int64_t sse, pnsse, sse_uv, this_dist, dist_uv;
uint8_t *dst_buf[3];
int dst_stride[3];
TX_SIZE tx_size;
MB_MODE_INFO *mbmi;
TX_TYPE tx_type, best_tx_nostx;
#if CONFIG_EXT_TX
int ext_tx_set;
#endif // CONFIG_EXT_TX
int tmp_rate_tx = 0, skip_tx = 0;
int64_t tmp_dist_tx = 0, rd_tx, bestrd_tx = INT64_MAX;
set_skip_context(xd, mi_row, mi_col);
set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
update_state_sb_supertx(cpi, td, tile, mi_row, mi_col, bsize, 1, pc_tree);
av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
for (plane = 0; plane < MAX_MB_PLANE; plane++) {
dst_buf[plane] = xd->plane[plane].dst.buf;
dst_stride[plane] = xd->plane[plane].dst.stride;
}
predict_sb_complex(cpi, td, tile, mi_row, mi_col, mi_row, mi_col, 1, bsize,
bsize, dst_buf, dst_stride, pc_tree);
set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
set_segment_id_supertx(cpi, x, mi_row, mi_col, bsize);
mbmi = &xd->mi[0]->mbmi;
best_tx_nostx = mbmi->tx_type;
*best_tx = DCT_DCT;
// chroma
skippable_uv = 1;
rate_uv = 0;
dist_uv = 0;
sse_uv = 0;
for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
#if CONFIG_VAR_TX
ENTROPY_CONTEXT ctxa[2 * MAX_MIB_SIZE];
ENTROPY_CONTEXT ctxl[2 * MAX_MIB_SIZE];
const struct macroblockd_plane *const pd = &xd->plane[plane];
int coeff_ctx = 1;
RD_STATS this_rd_stats;
av1_init_rd_stats(&this_rd_stats);
tx_size = max_txsize_lookup[bsize];
tx_size =
uv_txsize_lookup[bsize][tx_size][cm->subsampling_x][cm->subsampling_y];
av1_get_entropy_contexts(bsize, tx_size, pd, ctxa, ctxl);
coeff_ctx = combine_entropy_contexts(ctxa[0], ctxl[0]);
av1_subtract_plane(x, bsize, plane);
av1_tx_block_rd_b(cpi, x, tx_size, 0, 0, plane, 0,
get_plane_block_size(bsize, pd), coeff_ctx,
&this_rd_stats);
this_rate = this_rd_stats.rate;
this_dist = this_rd_stats.dist;
pnsse = this_rd_stats.sse;
pnskip = this_rd_stats.skip;
#else
tx_size = max_txsize_lookup[bsize];
tx_size =
uv_txsize_lookup[bsize][tx_size][cm->subsampling_x][cm->subsampling_y];
av1_subtract_plane(x, bsize, plane);
av1_txfm_rd_in_plane_supertx(x, cpi, &this_rate, &this_dist, &pnskip,
&pnsse, INT64_MAX, plane, bsize, tx_size, 0);
#endif // CONFIG_VAR_TX
rate_uv += this_rate;
dist_uv += this_dist;
sse_uv += pnsse;
skippable_uv &= pnskip;
}
// luma
tx_size = max_txsize_lookup[bsize];
av1_subtract_plane(x, bsize, 0);
#if CONFIG_EXT_TX
ext_tx_set = get_ext_tx_set(tx_size, bsize, 1);
#endif // CONFIG_EXT_TX
for (tx_type = DCT_DCT; tx_type < TX_TYPES; ++tx_type) {
#if CONFIG_VAR_TX
ENTROPY_CONTEXT ctxa[2 * MAX_MIB_SIZE];
ENTROPY_CONTEXT ctxl[2 * MAX_MIB_SIZE];
const struct macroblockd_plane *const pd = &xd->plane[0];
int coeff_ctx = 1;
RD_STATS this_rd_stats;
#endif // CONFIG_VAR_TX
#if CONFIG_EXT_TX
if (!ext_tx_used_inter[ext_tx_set][tx_type]) continue;
#else
if (tx_size >= TX_32X32 && tx_type != DCT_DCT) continue;
#endif // CONFIG_EXT_TX
mbmi->tx_type = tx_type;
#if CONFIG_VAR_TX
av1_init_rd_stats(&this_rd_stats);
av1_get_entropy_contexts(bsize, tx_size, pd, ctxa, ctxl);
coeff_ctx = combine_entropy_contexts(ctxa[0], ctxl[0]);
av1_tx_block_rd_b(cpi, x, tx_size, 0, 0, 0, 0, bsize, coeff_ctx,
&this_rd_stats);
this_rate = this_rd_stats.rate;
this_dist = this_rd_stats.dist;
pnsse = this_rd_stats.sse;
pnskip = this_rd_stats.skip;
#else
av1_txfm_rd_in_plane_supertx(x, cpi, &this_rate, &this_dist, &pnskip,
&pnsse, INT64_MAX, 0, bsize, tx_size, 0);
#endif // CONFIG_VAR_TX
#if CONFIG_EXT_TX
if (get_ext_tx_types(tx_size, bsize, 1) > 1 &&
!xd->lossless[xd->mi[0]->mbmi.segment_id] && this_rate != INT_MAX) {
if (ext_tx_set > 0)
this_rate +=
cpi->inter_tx_type_costs[ext_tx_set][mbmi->tx_size][mbmi->tx_type];
}
#else
if (tx_size < TX_32X32 && !xd->lossless[xd->mi[0]->mbmi.segment_id] &&
this_rate != INT_MAX) {
this_rate += cpi->inter_tx_type_costs[tx_size][mbmi->tx_type];
}
#endif // CONFIG_EXT_TX
*tmp_rate = rate_uv + this_rate;
*tmp_dist = dist_uv + this_dist;
sse = sse_uv + pnsse;
skippable = skippable_uv && pnskip;
if (skippable) {
*tmp_rate = av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
x->skip = 1;
} else {
if (RDCOST(x->rdmult, x->rddiv, *tmp_rate, *tmp_dist) <
RDCOST(x->rdmult, x->rddiv, 0, sse)) {
*tmp_rate += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
x->skip = 0;
} else {
*tmp_dist = sse;
*tmp_rate = av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
x->skip = 1;
}
}
*tmp_rate += base_rate;
rd_tx = RDCOST(x->rdmult, x->rddiv, *tmp_rate, *tmp_dist);
if (rd_tx < bestrd_tx * 0.99 || tx_type == DCT_DCT) {
*best_tx = tx_type;
bestrd_tx = rd_tx;
tmp_rate_tx = *tmp_rate;
tmp_dist_tx = *tmp_dist;
skip_tx = x->skip;
}
}
*tmp_rate = tmp_rate_tx;
*tmp_dist = tmp_dist_tx;
x->skip = skip_tx;
#if CONFIG_VAR_TX
for (plane = 0; plane < 1; ++plane)
memset(x->blk_skip[plane], x->skip,
sizeof(uint8_t) * pc_tree->none.num_4x4_blk);
#endif // CONFIG_VAR_TX
xd->mi[0]->mbmi.tx_type = best_tx_nostx;
}
#endif // CONFIG_SUPERTX