| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "config/aom_config.h" |
| #include "config/aom_scale_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_mem/aom_mem.h" |
| #include "av1/common/av1_loopfilter.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/thread_common.h" |
| #include "av1/common/reconinter.h" |
| |
| // Set up nsync by width. |
| static INLINE int get_sync_range(int width) { |
| // nsync numbers are picked by testing. For example, for 4k |
| // video, using 4 gives best performance. |
| if (width < 640) |
| return 1; |
| else if (width <= 1280) |
| return 2; |
| else if (width <= 4096) |
| return 4; |
| else |
| return 8; |
| } |
| |
| static INLINE int get_lr_sync_range(int width) { |
| #if 0 |
| // nsync numbers are picked by testing. For example, for 4k |
| // video, using 4 gives best performance. |
| if (width < 640) |
| return 1; |
| else if (width <= 1280) |
| return 2; |
| else if (width <= 4096) |
| return 4; |
| else |
| return 8; |
| #else |
| (void)width; |
| return 1; |
| #endif |
| } |
| |
| // Allocate memory for lf row synchronization |
| static void loop_filter_alloc(AV1LfSync *lf_sync, AV1_COMMON *cm, int rows, |
| int width, int num_workers) { |
| lf_sync->rows = rows; |
| #if CONFIG_MULTITHREAD |
| { |
| int i, j; |
| |
| for (j = 0; j < MAX_MB_PLANE; j++) { |
| CHECK_MEM_ERROR(cm, lf_sync->mutex_[j], |
| aom_malloc(sizeof(*(lf_sync->mutex_[j])) * rows)); |
| if (lf_sync->mutex_[j]) { |
| for (i = 0; i < rows; ++i) { |
| pthread_mutex_init(&lf_sync->mutex_[j][i], NULL); |
| } |
| } |
| |
| CHECK_MEM_ERROR(cm, lf_sync->cond_[j], |
| aom_malloc(sizeof(*(lf_sync->cond_[j])) * rows)); |
| if (lf_sync->cond_[j]) { |
| for (i = 0; i < rows; ++i) { |
| pthread_cond_init(&lf_sync->cond_[j][i], NULL); |
| } |
| } |
| } |
| |
| CHECK_MEM_ERROR(cm, lf_sync->job_mutex, |
| aom_malloc(sizeof(*(lf_sync->job_mutex)))); |
| if (lf_sync->job_mutex) { |
| pthread_mutex_init(lf_sync->job_mutex, NULL); |
| } |
| } |
| #endif // CONFIG_MULTITHREAD |
| CHECK_MEM_ERROR(cm, lf_sync->lfdata, |
| aom_malloc(num_workers * sizeof(*(lf_sync->lfdata)))); |
| lf_sync->num_workers = num_workers; |
| |
| for (int j = 0; j < MAX_MB_PLANE; j++) { |
| CHECK_MEM_ERROR(cm, lf_sync->cur_sb_col[j], |
| aom_malloc(sizeof(*(lf_sync->cur_sb_col[j])) * rows)); |
| } |
| CHECK_MEM_ERROR( |
| cm, lf_sync->job_queue, |
| aom_malloc(sizeof(*(lf_sync->job_queue)) * rows * MAX_MB_PLANE * 2)); |
| // Set up nsync. |
| lf_sync->sync_range = get_sync_range(width); |
| } |
| |
| // Deallocate lf synchronization related mutex and data |
| void av1_loop_filter_dealloc(AV1LfSync *lf_sync) { |
| if (lf_sync != NULL) { |
| int j; |
| #if CONFIG_MULTITHREAD |
| int i; |
| for (j = 0; j < MAX_MB_PLANE; j++) { |
| if (lf_sync->mutex_[j] != NULL) { |
| for (i = 0; i < lf_sync->rows; ++i) { |
| pthread_mutex_destroy(&lf_sync->mutex_[j][i]); |
| } |
| aom_free(lf_sync->mutex_[j]); |
| } |
| if (lf_sync->cond_[j] != NULL) { |
| for (i = 0; i < lf_sync->rows; ++i) { |
| pthread_cond_destroy(&lf_sync->cond_[j][i]); |
| } |
| aom_free(lf_sync->cond_[j]); |
| } |
| } |
| if (lf_sync->job_mutex != NULL) { |
| pthread_mutex_destroy(lf_sync->job_mutex); |
| aom_free(lf_sync->job_mutex); |
| } |
| #endif // CONFIG_MULTITHREAD |
| aom_free(lf_sync->lfdata); |
| for (j = 0; j < MAX_MB_PLANE; j++) { |
| aom_free(lf_sync->cur_sb_col[j]); |
| } |
| |
| aom_free(lf_sync->job_queue); |
| // clear the structure as the source of this call may be a resize in which |
| // case this call will be followed by an _alloc() which may fail. |
| av1_zero(*lf_sync); |
| } |
| } |
| |
| static void loop_filter_data_reset(LFWorkerData *lf_data, |
| YV12_BUFFER_CONFIG *frame_buffer, |
| struct AV1Common *cm, MACROBLOCKD *xd) { |
| struct macroblockd_plane *pd = xd->plane; |
| lf_data->frame_buffer = frame_buffer; |
| lf_data->cm = cm; |
| lf_data->xd = xd; |
| for (int i = 0; i < MAX_MB_PLANE; i++) { |
| memcpy(&lf_data->planes[i].dst, &pd[i].dst, sizeof(lf_data->planes[i].dst)); |
| lf_data->planes[i].subsampling_x = pd[i].subsampling_x; |
| lf_data->planes[i].subsampling_y = pd[i].subsampling_y; |
| } |
| } |
| |
| static INLINE void sync_read(AV1LfSync *const lf_sync, int r, int c, |
| int plane) { |
| #if CONFIG_MULTITHREAD |
| const int nsync = lf_sync->sync_range; |
| |
| if (r && !(c & (nsync - 1))) { |
| pthread_mutex_t *const mutex = &lf_sync->mutex_[plane][r - 1]; |
| pthread_mutex_lock(mutex); |
| |
| while (c > lf_sync->cur_sb_col[plane][r - 1] - nsync) { |
| pthread_cond_wait(&lf_sync->cond_[plane][r - 1], mutex); |
| } |
| pthread_mutex_unlock(mutex); |
| } |
| #else |
| (void)lf_sync; |
| (void)r; |
| (void)c; |
| (void)plane; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| static INLINE void sync_write(AV1LfSync *const lf_sync, int r, int c, |
| const int sb_cols, int plane) { |
| #if CONFIG_MULTITHREAD |
| const int nsync = lf_sync->sync_range; |
| int cur; |
| // Only signal when there are enough filtered SB for next row to run. |
| int sig = 1; |
| |
| if (c < sb_cols - 1) { |
| cur = c; |
| if (c % nsync) sig = 0; |
| } else { |
| cur = sb_cols + nsync; |
| } |
| |
| if (sig) { |
| pthread_mutex_lock(&lf_sync->mutex_[plane][r]); |
| |
| lf_sync->cur_sb_col[plane][r] = cur; |
| |
| pthread_cond_broadcast(&lf_sync->cond_[plane][r]); |
| pthread_mutex_unlock(&lf_sync->mutex_[plane][r]); |
| } |
| #else |
| (void)lf_sync; |
| (void)r; |
| (void)c; |
| (void)sb_cols; |
| (void)plane; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| static void enqueue_lf_jobs(AV1LfSync *lf_sync, AV1_COMMON *cm, int start, |
| int stop, |
| #if CONFIG_LPF_MASK |
| int is_decoding, |
| #endif |
| int plane_start, int plane_end) { |
| int mi_row, plane, dir; |
| AV1LfMTInfo *lf_job_queue = lf_sync->job_queue; |
| lf_sync->jobs_enqueued = 0; |
| lf_sync->jobs_dequeued = 0; |
| |
| for (dir = 0; dir < 2; dir++) { |
| for (plane = plane_start; plane < plane_end; plane++) { |
| if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1])) |
| break; |
| else if (plane == 1 && !(cm->lf.filter_level_u)) |
| continue; |
| else if (plane == 2 && !(cm->lf.filter_level_v)) |
| continue; |
| #if CONFIG_LPF_MASK |
| int step = MAX_MIB_SIZE; |
| if (is_decoding) { |
| step = MI_SIZE_64X64; |
| } |
| for (mi_row = start; mi_row < stop; mi_row += step) |
| #else |
| for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) |
| #endif |
| { |
| lf_job_queue->mi_row = mi_row; |
| lf_job_queue->plane = plane; |
| lf_job_queue->dir = dir; |
| lf_job_queue++; |
| lf_sync->jobs_enqueued++; |
| } |
| } |
| } |
| } |
| |
| static AV1LfMTInfo *get_lf_job_info(AV1LfSync *lf_sync) { |
| AV1LfMTInfo *cur_job_info = NULL; |
| |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(lf_sync->job_mutex); |
| |
| if (lf_sync->jobs_dequeued < lf_sync->jobs_enqueued) { |
| cur_job_info = lf_sync->job_queue + lf_sync->jobs_dequeued; |
| lf_sync->jobs_dequeued++; |
| } |
| |
| pthread_mutex_unlock(lf_sync->job_mutex); |
| #else |
| (void)lf_sync; |
| #endif |
| |
| return cur_job_info; |
| } |
| |
| // Implement row loopfiltering for each thread. |
| static INLINE void thread_loop_filter_rows( |
| const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm, |
| struct macroblockd_plane *planes, MACROBLOCKD *xd, |
| AV1LfSync *const lf_sync) { |
| const int sb_cols = |
| ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2) >> MAX_MIB_SIZE_LOG2; |
| int mi_row, mi_col, plane, dir; |
| int r, c; |
| |
| while (1) { |
| AV1LfMTInfo *cur_job_info = get_lf_job_info(lf_sync); |
| |
| if (cur_job_info != NULL) { |
| mi_row = cur_job_info->mi_row; |
| plane = cur_job_info->plane; |
| dir = cur_job_info->dir; |
| r = mi_row >> MAX_MIB_SIZE_LOG2; |
| |
| if (dir == 0) { |
| for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MAX_MIB_SIZE) { |
| c = mi_col >> MAX_MIB_SIZE_LOG2; |
| |
| av1_setup_dst_planes(planes, cm->seq_params.sb_size, frame_buffer, |
| mi_row, mi_col, plane, plane + 1); |
| |
| av1_filter_block_plane_vert(cm, xd, plane, &planes[plane], mi_row, |
| mi_col); |
| sync_write(lf_sync, r, c, sb_cols, plane); |
| } |
| } else if (dir == 1) { |
| for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MAX_MIB_SIZE) { |
| c = mi_col >> MAX_MIB_SIZE_LOG2; |
| |
| // Wait for vertical edge filtering of the top-right block to be |
| // completed |
| sync_read(lf_sync, r, c, plane); |
| |
| // Wait for vertical edge filtering of the right block to be |
| // completed |
| sync_read(lf_sync, r + 1, c, plane); |
| |
| av1_setup_dst_planes(planes, cm->seq_params.sb_size, frame_buffer, |
| mi_row, mi_col, plane, plane + 1); |
| av1_filter_block_plane_horz(cm, xd, plane, &planes[plane], mi_row, |
| mi_col); |
| } |
| } |
| } else { |
| break; |
| } |
| } |
| } |
| |
| // Row-based multi-threaded loopfilter hook |
| static int loop_filter_row_worker(void *arg1, void *arg2) { |
| AV1LfSync *const lf_sync = (AV1LfSync *)arg1; |
| LFWorkerData *const lf_data = (LFWorkerData *)arg2; |
| thread_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes, |
| lf_data->xd, lf_sync); |
| return 1; |
| } |
| |
| #if CONFIG_LPF_MASK |
| static INLINE void thread_loop_filter_bitmask_rows( |
| const YV12_BUFFER_CONFIG *const frame_buffer, AV1_COMMON *const cm, |
| struct macroblockd_plane *planes, MACROBLOCKD *xd, |
| AV1LfSync *const lf_sync) { |
| const int sb_cols = |
| ALIGN_POWER_OF_TWO(cm->mi_cols, MIN_MIB_SIZE_LOG2) >> MIN_MIB_SIZE_LOG2; |
| int mi_row, mi_col, plane, dir; |
| int r, c; |
| (void)xd; |
| |
| while (1) { |
| AV1LfMTInfo *cur_job_info = get_lf_job_info(lf_sync); |
| |
| if (cur_job_info != NULL) { |
| mi_row = cur_job_info->mi_row; |
| plane = cur_job_info->plane; |
| dir = cur_job_info->dir; |
| r = mi_row >> MIN_MIB_SIZE_LOG2; |
| |
| if (dir == 0) { |
| for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_SIZE_64X64) { |
| c = mi_col >> MIN_MIB_SIZE_LOG2; |
| |
| av1_setup_dst_planes(planes, BLOCK_64X64, frame_buffer, mi_row, |
| mi_col, plane, plane + 1); |
| |
| av1_filter_block_plane_bitmask_vert(cm, &planes[plane], plane, mi_row, |
| mi_col); |
| sync_write(lf_sync, r, c, sb_cols, plane); |
| } |
| } else if (dir == 1) { |
| for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_SIZE_64X64) { |
| c = mi_col >> MIN_MIB_SIZE_LOG2; |
| |
| // Wait for vertical edge filtering of the top-right block to be |
| // completed |
| sync_read(lf_sync, r, c, plane); |
| |
| // Wait for vertical edge filtering of the right block to be |
| // completed |
| sync_read(lf_sync, r + 1, c, plane); |
| |
| av1_setup_dst_planes(planes, BLOCK_64X64, frame_buffer, mi_row, |
| mi_col, plane, plane + 1); |
| av1_filter_block_plane_bitmask_horz(cm, &planes[plane], plane, mi_row, |
| mi_col); |
| } |
| } |
| } else { |
| break; |
| } |
| } |
| } |
| |
| // Row-based multi-threaded loopfilter hook |
| static int loop_filter_bitmask_row_worker(void *arg1, void *arg2) { |
| AV1LfSync *const lf_sync = (AV1LfSync *)arg1; |
| LFWorkerData *const lf_data = (LFWorkerData *)arg2; |
| thread_loop_filter_bitmask_rows(lf_data->frame_buffer, lf_data->cm, |
| lf_data->planes, lf_data->xd, lf_sync); |
| return 1; |
| } |
| #endif // CONFIG_LPF_MASK |
| |
| static void loop_filter_rows_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, |
| MACROBLOCKD *xd, int start, int stop, |
| int plane_start, int plane_end, |
| #if CONFIG_LPF_MASK |
| int is_decoding, |
| #endif |
| AVxWorker *workers, int nworkers, |
| AV1LfSync *lf_sync) { |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| #if CONFIG_LPF_MASK |
| int sb_rows; |
| if (is_decoding) { |
| sb_rows = |
| ALIGN_POWER_OF_TWO(cm->mi_rows, MIN_MIB_SIZE_LOG2) >> MIN_MIB_SIZE_LOG2; |
| } else { |
| sb_rows = |
| ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2) >> MAX_MIB_SIZE_LOG2; |
| } |
| #else |
| // Number of superblock rows and cols |
| const int sb_rows = |
| ALIGN_POWER_OF_TWO(cm->mi_rows, MAX_MIB_SIZE_LOG2) >> MAX_MIB_SIZE_LOG2; |
| #endif |
| const int num_workers = nworkers; |
| int i; |
| |
| if (!lf_sync->sync_range || sb_rows != lf_sync->rows || |
| num_workers > lf_sync->num_workers) { |
| av1_loop_filter_dealloc(lf_sync); |
| loop_filter_alloc(lf_sync, cm, sb_rows, cm->width, num_workers); |
| } |
| |
| // Initialize cur_sb_col to -1 for all SB rows. |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| memset(lf_sync->cur_sb_col[i], -1, |
| sizeof(*(lf_sync->cur_sb_col[i])) * sb_rows); |
| } |
| |
| enqueue_lf_jobs(lf_sync, cm, start, stop, |
| #if CONFIG_LPF_MASK |
| is_decoding, |
| #endif |
| plane_start, plane_end); |
| |
| // Set up loopfilter thread data. |
| for (i = 0; i < num_workers; ++i) { |
| AVxWorker *const worker = &workers[i]; |
| LFWorkerData *const lf_data = &lf_sync->lfdata[i]; |
| |
| #if CONFIG_LPF_MASK |
| if (is_decoding) { |
| worker->hook = loop_filter_bitmask_row_worker; |
| } else { |
| worker->hook = loop_filter_row_worker; |
| } |
| #else |
| worker->hook = loop_filter_row_worker; |
| #endif |
| worker->data1 = lf_sync; |
| worker->data2 = lf_data; |
| |
| // Loopfilter data |
| loop_filter_data_reset(lf_data, frame, cm, xd); |
| |
| // Start loopfiltering |
| if (i == num_workers - 1) { |
| winterface->execute(worker); |
| } else { |
| winterface->launch(worker); |
| } |
| } |
| |
| // Wait till all rows are finished |
| for (i = 0; i < num_workers; ++i) { |
| winterface->sync(&workers[i]); |
| } |
| } |
| |
| void av1_loop_filter_frame_mt(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, |
| MACROBLOCKD *xd, int plane_start, int plane_end, |
| int partial_frame, |
| #if CONFIG_LPF_MASK |
| int is_decoding, |
| #endif |
| AVxWorker *workers, int num_workers, |
| AV1LfSync *lf_sync) { |
| int start_mi_row, end_mi_row, mi_rows_to_filter; |
| |
| start_mi_row = 0; |
| mi_rows_to_filter = cm->mi_rows; |
| if (partial_frame && cm->mi_rows > 8) { |
| start_mi_row = cm->mi_rows >> 1; |
| start_mi_row &= 0xfffffff8; |
| mi_rows_to_filter = AOMMAX(cm->mi_rows / 8, 8); |
| } |
| end_mi_row = start_mi_row + mi_rows_to_filter; |
| av1_loop_filter_frame_init(cm, plane_start, plane_end); |
| |
| #if CONFIG_LPF_MASK |
| if (is_decoding) { |
| cm->is_decoding = is_decoding; |
| // TODO(chengchen): currently use one thread to build bitmasks for the |
| // frame. Make it support multi-thread later. |
| for (int plane = plane_start; plane < plane_end; plane++) { |
| if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1])) |
| break; |
| else if (plane == 1 && !(cm->lf.filter_level_u)) |
| continue; |
| else if (plane == 2 && !(cm->lf.filter_level_v)) |
| continue; |
| |
| // TODO(chengchen): can we remove this? |
| struct macroblockd_plane *pd = xd->plane; |
| av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame, 0, 0, plane, |
| plane + 1); |
| |
| av1_build_bitmask_vert_info(cm, &pd[plane], plane); |
| av1_build_bitmask_horz_info(cm, &pd[plane], plane); |
| } |
| loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, plane_start, |
| plane_end, 1, workers, num_workers, lf_sync); |
| } else { |
| loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, plane_start, |
| plane_end, 0, workers, num_workers, lf_sync); |
| } |
| #else |
| loop_filter_rows_mt(frame, cm, xd, start_mi_row, end_mi_row, plane_start, |
| plane_end, workers, num_workers, lf_sync); |
| #endif |
| } |
| |
| static INLINE void lr_sync_read(void *const lr_sync, int r, int c, int plane) { |
| #if CONFIG_MULTITHREAD |
| AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync; |
| const int nsync = loop_res_sync->sync_range; |
| |
| if (r && !(c & (nsync - 1))) { |
| pthread_mutex_t *const mutex = &loop_res_sync->mutex_[plane][r - 1]; |
| pthread_mutex_lock(mutex); |
| |
| while (c > loop_res_sync->cur_sb_col[plane][r - 1] - nsync) { |
| pthread_cond_wait(&loop_res_sync->cond_[plane][r - 1], mutex); |
| } |
| pthread_mutex_unlock(mutex); |
| } |
| #else |
| (void)lr_sync; |
| (void)r; |
| (void)c; |
| (void)plane; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| static INLINE void lr_sync_write(void *const lr_sync, int r, int c, |
| const int sb_cols, int plane) { |
| #if CONFIG_MULTITHREAD |
| AV1LrSync *const loop_res_sync = (AV1LrSync *)lr_sync; |
| const int nsync = loop_res_sync->sync_range; |
| int cur; |
| // Only signal when there are enough filtered SB for next row to run. |
| int sig = 1; |
| |
| if (c < sb_cols - 1) { |
| cur = c; |
| if (c % nsync) sig = 0; |
| } else { |
| cur = sb_cols + nsync; |
| } |
| |
| if (sig) { |
| pthread_mutex_lock(&loop_res_sync->mutex_[plane][r]); |
| |
| loop_res_sync->cur_sb_col[plane][r] = cur; |
| |
| pthread_cond_broadcast(&loop_res_sync->cond_[plane][r]); |
| pthread_mutex_unlock(&loop_res_sync->mutex_[plane][r]); |
| } |
| #else |
| (void)lr_sync; |
| (void)r; |
| (void)c; |
| (void)sb_cols; |
| (void)plane; |
| #endif // CONFIG_MULTITHREAD |
| } |
| |
| // Allocate memory for loop restoration row synchronization |
| static void loop_restoration_alloc(AV1LrSync *lr_sync, AV1_COMMON *cm, |
| int num_workers, int num_rows_lr, |
| int num_planes, int width) { |
| lr_sync->rows = num_rows_lr; |
| lr_sync->num_planes = num_planes; |
| #if CONFIG_MULTITHREAD |
| { |
| int i, j; |
| |
| for (j = 0; j < num_planes; j++) { |
| CHECK_MEM_ERROR(cm, lr_sync->mutex_[j], |
| aom_malloc(sizeof(*(lr_sync->mutex_[j])) * num_rows_lr)); |
| if (lr_sync->mutex_[j]) { |
| for (i = 0; i < num_rows_lr; ++i) { |
| pthread_mutex_init(&lr_sync->mutex_[j][i], NULL); |
| } |
| } |
| |
| CHECK_MEM_ERROR(cm, lr_sync->cond_[j], |
| aom_malloc(sizeof(*(lr_sync->cond_[j])) * num_rows_lr)); |
| if (lr_sync->cond_[j]) { |
| for (i = 0; i < num_rows_lr; ++i) { |
| pthread_cond_init(&lr_sync->cond_[j][i], NULL); |
| } |
| } |
| } |
| |
| CHECK_MEM_ERROR(cm, lr_sync->job_mutex, |
| aom_malloc(sizeof(*(lr_sync->job_mutex)))); |
| if (lr_sync->job_mutex) { |
| pthread_mutex_init(lr_sync->job_mutex, NULL); |
| } |
| } |
| #endif // CONFIG_MULTITHREAD |
| CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata, |
| aom_malloc(num_workers * sizeof(*(lr_sync->lrworkerdata)))); |
| |
| for (int worker_idx = 0; worker_idx < num_workers; ++worker_idx) { |
| if (worker_idx < num_workers - 1) { |
| CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rst_tmpbuf, |
| (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE)); |
| CHECK_MEM_ERROR(cm, lr_sync->lrworkerdata[worker_idx].rlbs, |
| aom_malloc(sizeof(RestorationLineBuffers))); |
| |
| } else { |
| lr_sync->lrworkerdata[worker_idx].rst_tmpbuf = cm->rst_tmpbuf; |
| lr_sync->lrworkerdata[worker_idx].rlbs = cm->rlbs; |
| } |
| } |
| |
| lr_sync->num_workers = num_workers; |
| |
| for (int j = 0; j < num_planes; j++) { |
| CHECK_MEM_ERROR( |
| cm, lr_sync->cur_sb_col[j], |
| aom_malloc(sizeof(*(lr_sync->cur_sb_col[j])) * num_rows_lr)); |
| } |
| CHECK_MEM_ERROR( |
| cm, lr_sync->job_queue, |
| aom_malloc(sizeof(*(lr_sync->job_queue)) * num_rows_lr * num_planes)); |
| // Set up nsync. |
| lr_sync->sync_range = get_lr_sync_range(width); |
| } |
| |
| // Deallocate loop restoration synchronization related mutex and data |
| void av1_loop_restoration_dealloc(AV1LrSync *lr_sync, int num_workers) { |
| if (lr_sync != NULL) { |
| int j; |
| #if CONFIG_MULTITHREAD |
| int i; |
| for (j = 0; j < MAX_MB_PLANE; j++) { |
| if (lr_sync->mutex_[j] != NULL) { |
| for (i = 0; i < lr_sync->rows; ++i) { |
| pthread_mutex_destroy(&lr_sync->mutex_[j][i]); |
| } |
| aom_free(lr_sync->mutex_[j]); |
| } |
| if (lr_sync->cond_[j] != NULL) { |
| for (i = 0; i < lr_sync->rows; ++i) { |
| pthread_cond_destroy(&lr_sync->cond_[j][i]); |
| } |
| aom_free(lr_sync->cond_[j]); |
| } |
| } |
| if (lr_sync->job_mutex != NULL) { |
| pthread_mutex_destroy(lr_sync->job_mutex); |
| aom_free(lr_sync->job_mutex); |
| } |
| #endif // CONFIG_MULTITHREAD |
| for (j = 0; j < MAX_MB_PLANE; j++) { |
| aom_free(lr_sync->cur_sb_col[j]); |
| } |
| |
| aom_free(lr_sync->job_queue); |
| |
| if (lr_sync->lrworkerdata) { |
| for (int worker_idx = 0; worker_idx < num_workers - 1; worker_idx++) { |
| LRWorkerData *const workerdata_data = |
| lr_sync->lrworkerdata + worker_idx; |
| |
| aom_free(workerdata_data->rst_tmpbuf); |
| aom_free(workerdata_data->rlbs); |
| } |
| aom_free(lr_sync->lrworkerdata); |
| } |
| |
| // clear the structure as the source of this call may be a resize in which |
| // case this call will be followed by an _alloc() which may fail. |
| av1_zero(*lr_sync); |
| } |
| } |
| |
| static void enqueue_lr_jobs(AV1LrSync *lr_sync, AV1LrStruct *lr_ctxt, |
| AV1_COMMON *cm) { |
| FilterFrameCtxt *ctxt = lr_ctxt->ctxt; |
| |
| const int num_planes = av1_num_planes(cm); |
| AV1LrMTInfo *lr_job_queue = lr_sync->job_queue; |
| int32_t lr_job_counter[2], num_even_lr_jobs = 0; |
| lr_sync->jobs_enqueued = 0; |
| lr_sync->jobs_dequeued = 0; |
| |
| for (int plane = 0; plane < num_planes; plane++) { |
| if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; |
| num_even_lr_jobs = |
| num_even_lr_jobs + ((ctxt[plane].rsi->vert_units_per_tile + 1) >> 1); |
| } |
| lr_job_counter[0] = 0; |
| lr_job_counter[1] = num_even_lr_jobs; |
| |
| for (int plane = 0; plane < num_planes; plane++) { |
| if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; |
| const int is_uv = plane > 0; |
| const int ss_y = is_uv && cm->seq_params.subsampling_y; |
| |
| AV1PixelRect tile_rect = ctxt[plane].tile_rect; |
| const int unit_size = ctxt[plane].rsi->restoration_unit_size; |
| |
| const int tile_h = tile_rect.bottom - tile_rect.top; |
| const int ext_size = unit_size * 3 / 2; |
| |
| int y0 = 0, i = 0; |
| while (y0 < tile_h) { |
| int remaining_h = tile_h - y0; |
| int h = (remaining_h < ext_size) ? remaining_h : unit_size; |
| |
| RestorationTileLimits limits; |
| limits.v_start = tile_rect.top + y0; |
| limits.v_end = tile_rect.top + y0 + h; |
| assert(limits.v_end <= tile_rect.bottom); |
| // Offset the tile upwards to align with the restoration processing stripe |
| const int voffset = RESTORATION_UNIT_OFFSET >> ss_y; |
| limits.v_start = AOMMAX(tile_rect.top, limits.v_start - voffset); |
| if (limits.v_end < tile_rect.bottom) limits.v_end -= voffset; |
| |
| assert(lr_job_counter[0] <= num_even_lr_jobs); |
| |
| lr_job_queue[lr_job_counter[i & 1]].lr_unit_row = i; |
| lr_job_queue[lr_job_counter[i & 1]].plane = plane; |
| lr_job_queue[lr_job_counter[i & 1]].v_start = limits.v_start; |
| lr_job_queue[lr_job_counter[i & 1]].v_end = limits.v_end; |
| lr_job_queue[lr_job_counter[i & 1]].sync_mode = i & 1; |
| if ((i & 1) == 0) { |
| lr_job_queue[lr_job_counter[i & 1]].v_copy_start = |
| limits.v_start + RESTORATION_BORDER; |
| lr_job_queue[lr_job_counter[i & 1]].v_copy_end = |
| limits.v_end - RESTORATION_BORDER; |
| if (i == 0) { |
| assert(limits.v_start == tile_rect.top); |
| lr_job_queue[lr_job_counter[i & 1]].v_copy_start = tile_rect.top; |
| } |
| if (i == (ctxt[plane].rsi->vert_units_per_tile - 1)) { |
| assert(limits.v_end == tile_rect.bottom); |
| lr_job_queue[lr_job_counter[i & 1]].v_copy_end = tile_rect.bottom; |
| } |
| } else { |
| lr_job_queue[lr_job_counter[i & 1]].v_copy_start = |
| AOMMAX(limits.v_start - RESTORATION_BORDER, tile_rect.top); |
| lr_job_queue[lr_job_counter[i & 1]].v_copy_end = |
| AOMMIN(limits.v_end + RESTORATION_BORDER, tile_rect.bottom); |
| } |
| lr_job_counter[i & 1]++; |
| lr_sync->jobs_enqueued++; |
| |
| y0 += h; |
| ++i; |
| } |
| } |
| } |
| |
| static AV1LrMTInfo *get_lr_job_info(AV1LrSync *lr_sync) { |
| AV1LrMTInfo *cur_job_info = NULL; |
| |
| #if CONFIG_MULTITHREAD |
| pthread_mutex_lock(lr_sync->job_mutex); |
| |
| if (lr_sync->jobs_dequeued < lr_sync->jobs_enqueued) { |
| cur_job_info = lr_sync->job_queue + lr_sync->jobs_dequeued; |
| lr_sync->jobs_dequeued++; |
| } |
| |
| pthread_mutex_unlock(lr_sync->job_mutex); |
| #else |
| (void)lr_sync; |
| #endif |
| |
| return cur_job_info; |
| } |
| |
| // Implement row loop restoration for each thread. |
| static int loop_restoration_row_worker(void *arg1, void *arg2) { |
| AV1LrSync *const lr_sync = (AV1LrSync *)arg1; |
| LRWorkerData *lrworkerdata = (LRWorkerData *)arg2; |
| AV1LrStruct *lr_ctxt = (AV1LrStruct *)lrworkerdata->lr_ctxt; |
| FilterFrameCtxt *ctxt = lr_ctxt->ctxt; |
| int lr_unit_row; |
| int plane; |
| const int tile_row = LR_TILE_ROW; |
| const int tile_col = LR_TILE_COL; |
| const int tile_cols = LR_TILE_COLS; |
| const int tile_idx = tile_col + tile_row * tile_cols; |
| typedef void (*copy_fun)(const YV12_BUFFER_CONFIG *src_ybc, |
| YV12_BUFFER_CONFIG *dst_ybc, int hstart, int hend, |
| int vstart, int vend); |
| static const copy_fun copy_funs[3] = { aom_yv12_partial_coloc_copy_y, |
| aom_yv12_partial_coloc_copy_u, |
| aom_yv12_partial_coloc_copy_v }; |
| |
| while (1) { |
| AV1LrMTInfo *cur_job_info = get_lr_job_info(lr_sync); |
| if (cur_job_info != NULL) { |
| RestorationTileLimits limits; |
| sync_read_fn_t on_sync_read; |
| sync_write_fn_t on_sync_write; |
| limits.v_start = cur_job_info->v_start; |
| limits.v_end = cur_job_info->v_end; |
| lr_unit_row = cur_job_info->lr_unit_row; |
| plane = cur_job_info->plane; |
| const int unit_idx0 = tile_idx * ctxt[plane].rsi->units_per_tile; |
| |
| // sync_mode == 1 implies only sync read is required in LR Multi-threading |
| // sync_mode == 0 implies only sync write is required. |
| on_sync_read = |
| cur_job_info->sync_mode == 1 ? lr_sync_read : av1_lr_sync_read_dummy; |
| on_sync_write = cur_job_info->sync_mode == 0 ? lr_sync_write |
| : av1_lr_sync_write_dummy; |
| |
| av1_foreach_rest_unit_in_row( |
| &limits, &(ctxt[plane].tile_rect), lr_ctxt->on_rest_unit, lr_unit_row, |
| ctxt[plane].rsi->restoration_unit_size, unit_idx0, |
| ctxt[plane].rsi->horz_units_per_tile, |
| ctxt[plane].rsi->vert_units_per_tile, plane, &ctxt[plane], |
| lrworkerdata->rst_tmpbuf, lrworkerdata->rlbs, on_sync_read, |
| on_sync_write, lr_sync); |
| |
| copy_funs[plane](lr_ctxt->dst, lr_ctxt->frame, ctxt[plane].tile_rect.left, |
| ctxt[plane].tile_rect.right, cur_job_info->v_copy_start, |
| cur_job_info->v_copy_end); |
| } else { |
| break; |
| } |
| } |
| return 1; |
| } |
| |
| static void foreach_rest_unit_in_planes_mt(AV1LrStruct *lr_ctxt, |
| AVxWorker *workers, int nworkers, |
| AV1LrSync *lr_sync, AV1_COMMON *cm) { |
| FilterFrameCtxt *ctxt = lr_ctxt->ctxt; |
| |
| const int num_planes = av1_num_planes(cm); |
| |
| const AVxWorkerInterface *const winterface = aom_get_worker_interface(); |
| int num_rows_lr = 0; |
| |
| for (int plane = 0; plane < num_planes; plane++) { |
| if (cm->rst_info[plane].frame_restoration_type == RESTORE_NONE) continue; |
| |
| const AV1PixelRect tile_rect = ctxt[plane].tile_rect; |
| const int max_tile_h = tile_rect.bottom - tile_rect.top; |
| |
| const int unit_size = cm->rst_info[plane].restoration_unit_size; |
| |
| num_rows_lr = |
| AOMMAX(num_rows_lr, av1_lr_count_units_in_tile(unit_size, max_tile_h)); |
| } |
| |
| const int num_workers = nworkers; |
| int i; |
| assert(MAX_MB_PLANE == 3); |
| |
| if (!lr_sync->sync_range || num_rows_lr != lr_sync->rows || |
| num_workers > lr_sync->num_workers || num_planes != lr_sync->num_planes) { |
| av1_loop_restoration_dealloc(lr_sync, num_workers); |
| loop_restoration_alloc(lr_sync, cm, num_workers, num_rows_lr, num_planes, |
| cm->width); |
| } |
| |
| // Initialize cur_sb_col to -1 for all SB rows. |
| for (i = 0; i < num_planes; i++) { |
| memset(lr_sync->cur_sb_col[i], -1, |
| sizeof(*(lr_sync->cur_sb_col[i])) * num_rows_lr); |
| } |
| |
| enqueue_lr_jobs(lr_sync, lr_ctxt, cm); |
| |
| // Set up looprestoration thread data. |
| for (i = 0; i < num_workers; ++i) { |
| AVxWorker *const worker = &workers[i]; |
| lr_sync->lrworkerdata[i].lr_ctxt = (void *)lr_ctxt; |
| worker->hook = loop_restoration_row_worker; |
| worker->data1 = lr_sync; |
| worker->data2 = &lr_sync->lrworkerdata[i]; |
| |
| // Start loopfiltering |
| if (i == num_workers - 1) { |
| winterface->execute(worker); |
| } else { |
| winterface->launch(worker); |
| } |
| } |
| |
| // Wait till all rows are finished |
| for (i = 0; i < num_workers; ++i) { |
| winterface->sync(&workers[i]); |
| } |
| } |
| |
| void av1_loop_restoration_filter_frame_mt(YV12_BUFFER_CONFIG *frame, |
| AV1_COMMON *cm, int optimized_lr, |
| AVxWorker *workers, int num_workers, |
| AV1LrSync *lr_sync, void *lr_ctxt) { |
| assert(!cm->all_lossless); |
| |
| const int num_planes = av1_num_planes(cm); |
| |
| AV1LrStruct *loop_rest_ctxt = (AV1LrStruct *)lr_ctxt; |
| |
| av1_loop_restoration_filter_frame_init(loop_rest_ctxt, frame, cm, |
| optimized_lr, num_planes); |
| |
| foreach_rest_unit_in_planes_mt(loop_rest_ctxt, workers, num_workers, lr_sync, |
| cm); |
| } |