| /* |
| * Copyright (c) 2012 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| |
| #include <limits.h> |
| #include "vpx_mem/vpx_mem.h" |
| #include "vp9/encoder/vp9_segmentation.h" |
| #include "vp9/common/vp9_pred_common.h" |
| #include "vp9/common/vp9_tile_common.h" |
| |
| void vp9_enable_segmentation(VP9_PTR ptr) { |
| VP9_COMP *cpi = (VP9_COMP *)(ptr); |
| |
| // Set the appropriate feature bit |
| cpi->mb.e_mbd.segmentation_enabled = 1; |
| cpi->mb.e_mbd.update_mb_segmentation_map = 1; |
| cpi->mb.e_mbd.update_mb_segmentation_data = 1; |
| } |
| |
| void vp9_disable_segmentation(VP9_PTR ptr) { |
| VP9_COMP *cpi = (VP9_COMP *)(ptr); |
| |
| // Clear the appropriate feature bit |
| cpi->mb.e_mbd.segmentation_enabled = 0; |
| } |
| |
| void vp9_set_segmentation_map(VP9_PTR ptr, |
| unsigned char *segmentation_map) { |
| VP9_COMP *cpi = (VP9_COMP *)(ptr); |
| |
| // Copy in the new segmentation map |
| vpx_memcpy(cpi->segmentation_map, segmentation_map, |
| (cpi->common.mb_rows * cpi->common.mb_cols)); |
| |
| // Signal that the map should be updated. |
| cpi->mb.e_mbd.update_mb_segmentation_map = 1; |
| cpi->mb.e_mbd.update_mb_segmentation_data = 1; |
| } |
| |
| void vp9_set_segment_data(VP9_PTR ptr, |
| signed char *feature_data, |
| unsigned char abs_delta) { |
| VP9_COMP *cpi = (VP9_COMP *)(ptr); |
| |
| cpi->mb.e_mbd.mb_segment_abs_delta = abs_delta; |
| |
| vpx_memcpy(cpi->mb.e_mbd.segment_feature_data, feature_data, |
| sizeof(cpi->mb.e_mbd.segment_feature_data)); |
| |
| // TBD ?? Set the feature mask |
| // vpx_memcpy(cpi->mb.e_mbd.segment_feature_mask, 0, |
| // sizeof(cpi->mb.e_mbd.segment_feature_mask)); |
| } |
| |
| // Based on set of segment counts calculate a probability tree |
| static void calc_segtree_probs(MACROBLOCKD *xd, |
| int *segcounts, |
| vp9_prob *segment_tree_probs) { |
| int count1, count2; |
| |
| // Total count for all segments |
| count1 = segcounts[0] + segcounts[1]; |
| count2 = segcounts[2] + segcounts[3]; |
| |
| // Work out probabilities of each segment |
| segment_tree_probs[0] = get_binary_prob(count1, count2); |
| segment_tree_probs[1] = get_prob(segcounts[0], count1); |
| segment_tree_probs[2] = get_prob(segcounts[2], count2); |
| } |
| |
| // Based on set of segment counts and probabilities calculate a cost estimate |
| static int cost_segmap(MACROBLOCKD *xd, |
| int *segcounts, |
| vp9_prob *probs) { |
| int cost; |
| int count1, count2; |
| |
| // Cost the top node of the tree |
| count1 = segcounts[0] + segcounts[1]; |
| count2 = segcounts[2] + segcounts[3]; |
| cost = count1 * vp9_cost_zero(probs[0]) + |
| count2 * vp9_cost_one(probs[0]); |
| |
| // Now add the cost of each individual segment branch |
| if (count1 > 0) |
| cost += segcounts[0] * vp9_cost_zero(probs[1]) + |
| segcounts[1] * vp9_cost_one(probs[1]); |
| |
| if (count2 > 0) |
| cost += segcounts[2] * vp9_cost_zero(probs[2]) + |
| segcounts[3] * vp9_cost_one(probs[2]); |
| |
| return cost; |
| } |
| |
| // Based on set of segment counts calculate a probability tree |
| static void calc_segtree_probs_pred(MACROBLOCKD *xd, |
| int (*segcounts)[MAX_MB_SEGMENTS], |
| vp9_prob *segment_tree_probs) { |
| int count[4]; |
| |
| assert(!segcounts[0][0] && !segcounts[1][1] && |
| !segcounts[2][2] && !segcounts[3][3]); |
| |
| // Total count for all segments |
| count[0] = segcounts[3][0] + segcounts[1][0] + segcounts[2][0]; |
| count[1] = segcounts[2][1] + segcounts[0][1] + segcounts[3][1]; |
| count[2] = segcounts[0][2] + segcounts[3][2] + segcounts[1][2]; |
| count[3] = segcounts[1][3] + segcounts[2][3] + segcounts[0][3]; |
| |
| // Work out probabilities of each segment |
| segment_tree_probs[0] = get_binary_prob(count[0] + count[1], |
| count[2] + count[3]); |
| segment_tree_probs[1] = get_binary_prob(count[0], count[1]); |
| segment_tree_probs[2] = get_binary_prob(count[2], count[3]); |
| } |
| |
| // Based on set of segment counts and probabilities calculate a cost estimate |
| static int cost_segmap_pred(MACROBLOCKD *xd, |
| int (*segcounts)[MAX_MB_SEGMENTS], |
| vp9_prob *probs) { |
| int pred_seg, cost = 0; |
| |
| for (pred_seg = 0; pred_seg < MAX_MB_SEGMENTS; pred_seg++) { |
| int count1, count2; |
| |
| // Cost the top node of the tree |
| count1 = segcounts[pred_seg][0] + segcounts[pred_seg][1]; |
| count2 = segcounts[pred_seg][2] + segcounts[pred_seg][3]; |
| cost += count1 * vp9_cost_zero(probs[0]) + |
| count2 * vp9_cost_one(probs[0]); |
| |
| // Now add the cost of each individual segment branch |
| if (pred_seg >= 2 && count1) { |
| cost += segcounts[pred_seg][0] * vp9_cost_zero(probs[1]) + |
| segcounts[pred_seg][1] * vp9_cost_one(probs[1]); |
| } else if (pred_seg < 2 && count2 > 0) { |
| cost += segcounts[pred_seg][2] * vp9_cost_zero(probs[2]) + |
| segcounts[pred_seg][3] * vp9_cost_one(probs[2]); |
| } |
| } |
| |
| return cost; |
| } |
| |
| static void count_segs(VP9_COMP *cpi, |
| MODE_INFO *mi, |
| int *no_pred_segcounts, |
| int (*temporal_predictor_count)[2], |
| int (*t_unpred_seg_counts)[MAX_MB_SEGMENTS], |
| int bw, int bh, int mb_row, int mb_col) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
| const int segment_id = mi->mbmi.segment_id; |
| |
| xd->mode_info_context = mi; |
| set_mb_row(cm, xd, mb_row, bh); |
| set_mb_col(cm, xd, mb_col, bw); |
| |
| // Count the number of hits on each segment with no prediction |
| no_pred_segcounts[segment_id]++; |
| |
| // Temporal prediction not allowed on key frames |
| if (cm->frame_type != KEY_FRAME) { |
| // Test to see if the segment id matches the predicted value. |
| const int pred_seg_id = vp9_get_pred_mb_segid(cm, mi->mbmi.sb_type, |
| mb_row, mb_col); |
| const int seg_predicted = (segment_id == pred_seg_id); |
| |
| // Get the segment id prediction context |
| const int pred_context = vp9_get_pred_context(cm, xd, PRED_SEG_ID); |
| |
| // Store the prediction status for this mb and update counts |
| // as appropriate |
| vp9_set_pred_flag(xd, PRED_SEG_ID, seg_predicted); |
| temporal_predictor_count[pred_context][seg_predicted]++; |
| |
| if (!seg_predicted) |
| // Update the "unpredicted" segment count |
| t_unpred_seg_counts[pred_seg_id][segment_id]++; |
| } |
| } |
| |
| void vp9_choose_segmap_coding_method(VP9_COMP *cpi) { |
| VP9_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->mb.e_mbd; |
| |
| int no_pred_cost; |
| int t_pred_cost = INT_MAX; |
| |
| int i; |
| int tile_col, mb_row, mb_col; |
| |
| int temporal_predictor_count[PREDICTION_PROBS][2]; |
| int no_pred_segcounts[MAX_MB_SEGMENTS]; |
| int t_unpred_seg_counts[MAX_MB_SEGMENTS][MAX_MB_SEGMENTS]; |
| |
| vp9_prob no_pred_tree[MB_FEATURE_TREE_PROBS]; |
| vp9_prob t_pred_tree[MB_FEATURE_TREE_PROBS]; |
| vp9_prob t_nopred_prob[PREDICTION_PROBS]; |
| |
| const int mis = cm->mode_info_stride; |
| MODE_INFO *mi_ptr, *mi; |
| |
| // Set default state for the segment tree probabilities and the |
| // temporal coding probabilities |
| vpx_memset(xd->mb_segment_tree_probs, 255, |
| sizeof(xd->mb_segment_tree_probs)); |
| vpx_memset(cm->segment_pred_probs, 255, |
| sizeof(cm->segment_pred_probs)); |
| |
| vpx_memset(no_pred_segcounts, 0, sizeof(no_pred_segcounts)); |
| vpx_memset(t_unpred_seg_counts, 0, sizeof(t_unpred_seg_counts)); |
| vpx_memset(temporal_predictor_count, 0, sizeof(temporal_predictor_count)); |
| |
| // First of all generate stats regarding how well the last segment map |
| // predicts this one |
| |
| for (tile_col = 0; tile_col < cm->tile_columns; tile_col++) { |
| vp9_get_tile_col_offsets(cm, tile_col); |
| mi_ptr = cm->mi + cm->cur_tile_mb_col_start; |
| for (mb_row = 0; mb_row < cm->mb_rows; mb_row += 4, mi_ptr += 4 * mis) { |
| mi = mi_ptr; |
| for (mb_col = cm->cur_tile_mb_col_start; |
| mb_col < cm->cur_tile_mb_col_end; mb_col += 4, mi += 4) { |
| if (mi->mbmi.sb_type == BLOCK_SIZE_SB64X64) { |
| count_segs(cpi, mi, no_pred_segcounts, temporal_predictor_count, |
| t_unpred_seg_counts, 4, 4, mb_row, mb_col); |
| #if CONFIG_SBSEGMENT |
| } else if (mi->mbmi.sb_type == BLOCK_SIZE_SB64X32) { |
| count_segs(cpi, mi, no_pred_segcounts, temporal_predictor_count, |
| t_unpred_seg_counts, 4, 2, mb_row, mb_col); |
| if (mb_row + 2 != cm->mb_rows) |
| count_segs(cpi, mi + 2 * mis, no_pred_segcounts, |
| temporal_predictor_count, |
| t_unpred_seg_counts, 4, 2, mb_row + 2, mb_col); |
| } else if (mi->mbmi.sb_type == BLOCK_SIZE_SB32X64) { |
| count_segs(cpi, mi, no_pred_segcounts, temporal_predictor_count, |
| t_unpred_seg_counts, 2, 4, mb_row, mb_col); |
| if (mb_col + 2 != cm->mb_cols) |
| count_segs(cpi, mi + 2, no_pred_segcounts, temporal_predictor_count, |
| t_unpred_seg_counts, 2, 4, mb_row, mb_col + 2); |
| #endif |
| } else { |
| for (i = 0; i < 4; i++) { |
| int x_idx = (i & 1) << 1, y_idx = i & 2; |
| MODE_INFO *sb_mi = mi + y_idx * mis + x_idx; |
| |
| if (mb_col + x_idx >= cm->mb_cols || |
| mb_row + y_idx >= cm->mb_rows) { |
| continue; |
| } |
| |
| if (sb_mi->mbmi.sb_type == BLOCK_SIZE_SB32X32) { |
| count_segs(cpi, sb_mi, no_pred_segcounts, |
| temporal_predictor_count, t_unpred_seg_counts, 2, 2, |
| mb_row + y_idx, mb_col + x_idx); |
| #if CONFIG_SBSEGMENT |
| } else if (sb_mi->mbmi.sb_type == BLOCK_SIZE_SB32X16) { |
| count_segs(cpi, sb_mi, no_pred_segcounts, |
| temporal_predictor_count, |
| t_unpred_seg_counts, 2, 1, |
| mb_row + y_idx, mb_col + x_idx); |
| if (mb_row + y_idx + 1 != cm->mb_rows) |
| count_segs(cpi, sb_mi + mis, no_pred_segcounts, |
| temporal_predictor_count, |
| t_unpred_seg_counts, 2, 1, |
| mb_row + y_idx + 1, mb_col + x_idx); |
| } else if (sb_mi->mbmi.sb_type == BLOCK_SIZE_SB16X32) { |
| count_segs(cpi, sb_mi, no_pred_segcounts, |
| temporal_predictor_count, |
| t_unpred_seg_counts, 1, 2, |
| mb_row + y_idx, mb_col + x_idx); |
| if (mb_col + x_idx + 1 != cm->mb_cols) |
| count_segs(cpi, sb_mi + 1, no_pred_segcounts, |
| temporal_predictor_count, |
| t_unpred_seg_counts, 1, 2, |
| mb_row + y_idx, mb_col + x_idx + 1); |
| #endif |
| } else { |
| int j; |
| |
| for (j = 0; j < 4; j++) { |
| const int x_idx_mb = x_idx + (j & 1); |
| const int y_idx_mb = y_idx + (j >> 1); |
| MODE_INFO *mb_mi = mi + x_idx_mb + y_idx_mb * mis; |
| |
| if (mb_col + x_idx_mb >= cm->mb_cols || |
| mb_row + y_idx_mb >= cm->mb_rows) { |
| continue; |
| } |
| |
| assert(mb_mi->mbmi.sb_type == BLOCK_SIZE_MB16X16); |
| count_segs(cpi, mb_mi, no_pred_segcounts, |
| temporal_predictor_count, t_unpred_seg_counts, |
| 1, 1, mb_row + y_idx_mb, mb_col + x_idx_mb); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| // Work out probability tree for coding segments without prediction |
| // and the cost. |
| calc_segtree_probs(xd, no_pred_segcounts, no_pred_tree); |
| no_pred_cost = cost_segmap(xd, no_pred_segcounts, no_pred_tree); |
| |
| // Key frames cannot use temporal prediction |
| if (cm->frame_type != KEY_FRAME) { |
| // Work out probability tree for coding those segments not |
| // predicted using the temporal method and the cost. |
| calc_segtree_probs_pred(xd, t_unpred_seg_counts, t_pred_tree); |
| t_pred_cost = cost_segmap_pred(xd, t_unpred_seg_counts, t_pred_tree); |
| |
| // Add in the cost of the signalling for each prediction context |
| for (i = 0; i < PREDICTION_PROBS; i++) { |
| t_nopred_prob[i] = get_binary_prob(temporal_predictor_count[i][0], |
| temporal_predictor_count[i][1]); |
| |
| // Add in the predictor signaling cost |
| t_pred_cost += (temporal_predictor_count[i][0] * |
| vp9_cost_zero(t_nopred_prob[i])) + |
| (temporal_predictor_count[i][1] * |
| vp9_cost_one(t_nopred_prob[i])); |
| } |
| } |
| |
| // Now choose which coding method to use. |
| if (t_pred_cost < no_pred_cost) { |
| cm->temporal_update = 1; |
| vpx_memcpy(xd->mb_segment_tree_probs, |
| t_pred_tree, sizeof(t_pred_tree)); |
| vpx_memcpy(&cm->segment_pred_probs, |
| t_nopred_prob, sizeof(t_nopred_prob)); |
| } else { |
| cm->temporal_update = 0; |
| vpx_memcpy(xd->mb_segment_tree_probs, |
| no_pred_tree, sizeof(no_pred_tree)); |
| } |
| } |