| /* | 
 |  * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #ifndef AOM_DSP_ANSWRITER_H_ | 
 | #define AOM_DSP_ANSWRITER_H_ | 
 | // An implementation of Asymmetric Numeral Systems | 
 | // http://arxiv.org/abs/1311.2540v2 | 
 | // Implements encoding of: | 
 | // * rABS (range Asymmetric Binary Systems), a boolean coder | 
 | // * rANS (range Asymmetric Numeral Systems), a multi-symbol coder | 
 |  | 
 | #include <assert.h> | 
 | #include "./aom_config.h" | 
 | #include "aom/aom_integer.h" | 
 | #include "aom_dsp/ans.h" | 
 | #include "aom_dsp/prob.h" | 
 | #include "aom_ports/mem_ops.h" | 
 | #include "av1/common/odintrin.h" | 
 |  | 
 | #if RANS_PRECISION <= OD_DIVU_DMAX | 
 | #define ANS_DIVREM(quotient, remainder, dividend, divisor) \ | 
 |   do {                                                     \ | 
 |     quotient = OD_DIVU_SMALL((dividend), (divisor));       \ | 
 |     remainder = (dividend) - (quotient) * (divisor);       \ | 
 |   } while (0) | 
 | #else | 
 | #define ANS_DIVREM(quotient, remainder, dividend, divisor) \ | 
 |   do {                                                     \ | 
 |     quotient = (dividend) / (divisor);                     \ | 
 |     remainder = (dividend) % (divisor);                    \ | 
 |   } while (0) | 
 | #endif | 
 |  | 
 | #define ANS_DIV8(dividend, divisor) OD_DIVU_SMALL((dividend), (divisor)) | 
 |  | 
 | #ifdef __cplusplus | 
 | extern "C" { | 
 | #endif  // __cplusplus | 
 |  | 
 | struct AnsCoder { | 
 |   uint8_t *buf; | 
 |   int buf_offset; | 
 |   uint32_t state; | 
 | }; | 
 |  | 
 | static INLINE void ans_write_init(struct AnsCoder *const ans, | 
 |                                   uint8_t *const buf) { | 
 |   ans->buf = buf; | 
 |   ans->buf_offset = 0; | 
 |   ans->state = L_BASE; | 
 | } | 
 |  | 
 | static INLINE int ans_write_end(struct AnsCoder *const ans) { | 
 |   uint32_t state; | 
 |   int ans_size; | 
 |   assert(ans->state >= L_BASE); | 
 |   assert(ans->state < L_BASE * IO_BASE); | 
 |   state = ans->state - L_BASE; | 
 |   if (state < (1u << 15)) { | 
 |     mem_put_le16(ans->buf + ans->buf_offset, (0x00u << 15) + state); | 
 |     ans_size = ans->buf_offset + 2; | 
 | #if ANS_REVERSE | 
 | #if L_BASE * IO_BASE > (1 << 23) | 
 |   } else if (state < (1u << 22)) { | 
 |     mem_put_le24(ans->buf + ans->buf_offset, (0x02u << 22) + state); | 
 |     ans_size = ans->buf_offset + 3; | 
 |   } else if (state < (1u << 30)) { | 
 |     mem_put_le32(ans->buf + ans->buf_offset, (0x03u << 30) + state); | 
 |     ans_size = ans->buf_offset + 4; | 
 | #else | 
 |   } else if (state < (1u << 23)) { | 
 |     mem_put_le24(ans->buf + ans->buf_offset, (0x01u << 23) + state); | 
 |     ans_size = ans->buf_offset + 3; | 
 | #endif | 
 | #else | 
 |   } else if (state < (1u << 22)) { | 
 |     mem_put_le24(ans->buf + ans->buf_offset, (0x02u << 22) + state); | 
 |     ans_size = ans->buf_offset + 3; | 
 |   } else if (state < (1u << 29)) { | 
 |     mem_put_le32(ans->buf + ans->buf_offset, (0x07u << 29) + state); | 
 |     ans_size = ans->buf_offset + 4; | 
 | #endif | 
 |   } else { | 
 |     assert(0 && "State is too large to be serialized"); | 
 |     return ans->buf_offset; | 
 |   } | 
 | #if ANS_REVERSE | 
 |   { | 
 |     int i; | 
 |     uint8_t tmp; | 
 |     for (i = 0; i < (ans_size >> 1); i++) { | 
 |       tmp = ans->buf[i]; | 
 |       ans->buf[i] = ans->buf[ans_size - 1 - i]; | 
 |       ans->buf[ans_size - 1 - i] = tmp; | 
 |     } | 
 |     ans->buf += ans_size; | 
 |     ans->buf_offset = 0; | 
 |     ans->state = L_BASE; | 
 |   } | 
 | #endif | 
 |   return ans_size; | 
 | } | 
 |  | 
 | // Write one boolean using rABS where p0 is the probability of the value being | 
 | // zero. | 
 | static INLINE void rabs_write(struct AnsCoder *ans, int value, AnsP8 p0) { | 
 |   const AnsP8 p = ANS_P8_PRECISION - p0; | 
 |   const unsigned l_s = value ? p : p0; | 
 |   unsigned state = ans->state; | 
 |   while (state >= L_BASE / ANS_P8_PRECISION * IO_BASE * l_s) { | 
 |     ans->buf[ans->buf_offset++] = state % IO_BASE; | 
 |     state /= IO_BASE; | 
 |   } | 
 |   const unsigned quotient = ANS_DIV8(state, l_s); | 
 |   const unsigned remainder = state - quotient * l_s; | 
 |   ans->state = quotient * ANS_P8_PRECISION + remainder + (value ? p0 : 0); | 
 | } | 
 |  | 
 | // Encode one symbol using rANS. | 
 | // cum_prob: The cumulative probability before this symbol (the offset of | 
 | // the symbol in the symbol cycle) | 
 | // prob: The probability of this symbol (l_s from the paper) | 
 | // RANS_PRECISION takes the place of m from the paper. | 
 | static INLINE void rans_write(struct AnsCoder *ans, aom_cdf_prob cum_prob, | 
 |                               aom_cdf_prob prob) { | 
 |   unsigned quotient, remainder; | 
 |   while (ans->state >= L_BASE / RANS_PRECISION * IO_BASE * prob) { | 
 |     ans->buf[ans->buf_offset++] = ans->state % IO_BASE; | 
 |     ans->state /= IO_BASE; | 
 |   } | 
 |   ANS_DIVREM(quotient, remainder, ans->state, prob); | 
 |   ans->state = quotient * RANS_PRECISION + remainder + cum_prob; | 
 | } | 
 |  | 
 | #undef ANS_DIV8 | 
 | #undef ANS_DIVREM | 
 | #ifdef __cplusplus | 
 | }  // extern "C" | 
 | #endif  // __cplusplus | 
 | #endif  // AOM_DSP_ANSWRITER_H_ |