|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <immintrin.h> | 
|  |  | 
|  | #include "./aom_dsp_rtcd.h" | 
|  | #include "aom_dsp/x86/convolve.h" | 
|  | #include "aom_ports/mem.h" | 
|  |  | 
|  | // filters for 16_h8 and 16_v8 | 
|  | DECLARE_ALIGNED(32, static const uint8_t, filt1_global_avx2[32]) = { | 
|  | 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, | 
|  | 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8 | 
|  | }; | 
|  |  | 
|  | DECLARE_ALIGNED(32, static const uint8_t, filt2_global_avx2[32]) = { | 
|  | 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, | 
|  | 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10 | 
|  | }; | 
|  |  | 
|  | DECLARE_ALIGNED(32, static const uint8_t, filt3_global_avx2[32]) = { | 
|  | 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, | 
|  | 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12 | 
|  | }; | 
|  |  | 
|  | DECLARE_ALIGNED(32, static const uint8_t, filt4_global_avx2[32]) = { | 
|  | 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, | 
|  | 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14 | 
|  | }; | 
|  |  | 
|  | #if defined(__clang__) | 
|  | #if (__clang_major__ > 0 && __clang_major__ < 3) ||            \ | 
|  | (__clang_major__ == 3 && __clang_minor__ <= 3) ||          \ | 
|  | (defined(__APPLE__) && defined(__apple_build_version__) && \ | 
|  | ((__clang_major__ == 4 && __clang_minor__ <= 2) ||        \ | 
|  | (__clang_major__ == 5 && __clang_minor__ == 0))) | 
|  | #define MM256_BROADCASTSI128_SI256(x) \ | 
|  | _mm_broadcastsi128_si256((__m128i const *)&(x)) | 
|  | #else  // clang > 3.3, and not 5.0 on macosx. | 
|  | #define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x) | 
|  | #endif  // clang <= 3.3 | 
|  | #elif defined(__GNUC__) | 
|  | #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ <= 6) | 
|  | #define MM256_BROADCASTSI128_SI256(x) \ | 
|  | _mm_broadcastsi128_si256((__m128i const *)&(x)) | 
|  | #elif __GNUC__ == 4 && __GNUC_MINOR__ == 7 | 
|  | #define MM256_BROADCASTSI128_SI256(x) _mm_broadcastsi128_si256(x) | 
|  | #else  // gcc > 4.7 | 
|  | #define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x) | 
|  | #endif  // gcc <= 4.6 | 
|  | #else   // !(gcc || clang) | 
|  | #define MM256_BROADCASTSI128_SI256(x) _mm256_broadcastsi128_si256(x) | 
|  | #endif  // __clang__ | 
|  |  | 
|  | static void aom_filter_block1d16_h8_avx2( | 
|  | const uint8_t *src_ptr, ptrdiff_t src_pixels_per_line, uint8_t *output_ptr, | 
|  | ptrdiff_t output_pitch, uint32_t output_height, const int16_t *filter) { | 
|  | __m128i filtersReg; | 
|  | __m256i addFilterReg64, filt1Reg, filt2Reg, filt3Reg, filt4Reg; | 
|  | __m256i firstFilters, secondFilters, thirdFilters, forthFilters; | 
|  | __m256i srcRegFilt32b1_1, srcRegFilt32b2_1, srcRegFilt32b2, srcRegFilt32b3; | 
|  | __m256i srcReg32b1, srcReg32b2, filtersReg32; | 
|  | unsigned int i; | 
|  | ptrdiff_t src_stride, dst_stride; | 
|  |  | 
|  | // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 | 
|  | addFilterReg64 = _mm256_set1_epi32((int)0x0400040u); | 
|  | filtersReg = _mm_loadu_si128((const __m128i *)filter); | 
|  | // converting the 16 bit (short) to 8 bit (byte) and have the same data | 
|  | // in both lanes of 128 bit register. | 
|  | filtersReg = _mm_packs_epi16(filtersReg, filtersReg); | 
|  | // have the same data in both lanes of a 256 bit register | 
|  | filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); | 
|  |  | 
|  | // duplicate only the first 16 bits (first and second byte) | 
|  | // across 256 bit register | 
|  | firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x100u)); | 
|  | // duplicate only the second 16 bits (third and forth byte) | 
|  | // across 256 bit register | 
|  | secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u)); | 
|  | // duplicate only the third 16 bits (fifth and sixth byte) | 
|  | // across 256 bit register | 
|  | thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u)); | 
|  | // duplicate only the forth 16 bits (seventh and eighth byte) | 
|  | // across 256 bit register | 
|  | forthFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x706u)); | 
|  |  | 
|  | filt1Reg = _mm256_load_si256((__m256i const *)filt1_global_avx2); | 
|  | filt2Reg = _mm256_load_si256((__m256i const *)filt2_global_avx2); | 
|  | filt3Reg = _mm256_load_si256((__m256i const *)filt3_global_avx2); | 
|  | filt4Reg = _mm256_load_si256((__m256i const *)filt4_global_avx2); | 
|  |  | 
|  | // multiple the size of the source and destination stride by two | 
|  | src_stride = src_pixels_per_line << 1; | 
|  | dst_stride = output_pitch << 1; | 
|  | for (i = output_height; i > 1; i -= 2) { | 
|  | // load the 2 strides of source | 
|  | srcReg32b1 = | 
|  | _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)(src_ptr - 3))); | 
|  | srcReg32b1 = _mm256_inserti128_si256( | 
|  | srcReg32b1, | 
|  | _mm_loadu_si128((const __m128i *)(src_ptr + src_pixels_per_line - 3)), | 
|  | 1); | 
|  |  | 
|  | // filter the source buffer | 
|  | srcRegFilt32b1_1 = _mm256_shuffle_epi8(srcReg32b1, filt1Reg); | 
|  | srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt4Reg); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | srcRegFilt32b1_1 = _mm256_maddubs_epi16(srcRegFilt32b1_1, firstFilters); | 
|  | srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters); | 
|  |  | 
|  | // add and saturate the results together | 
|  | srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, srcRegFilt32b2); | 
|  |  | 
|  | // filter the source buffer | 
|  | srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b1, filt2Reg); | 
|  | srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b1, filt3Reg); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters); | 
|  | srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters); | 
|  |  | 
|  | // add and saturate the results together | 
|  | srcRegFilt32b1_1 = _mm256_adds_epi16( | 
|  | srcRegFilt32b1_1, _mm256_min_epi16(srcRegFilt32b3, srcRegFilt32b2)); | 
|  |  | 
|  | // reading 2 strides of the next 16 bytes | 
|  | // (part of it was being read by earlier read) | 
|  | srcReg32b2 = | 
|  | _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)(src_ptr + 5))); | 
|  | srcReg32b2 = _mm256_inserti128_si256( | 
|  | srcReg32b2, | 
|  | _mm_loadu_si128((const __m128i *)(src_ptr + src_pixels_per_line + 5)), | 
|  | 1); | 
|  |  | 
|  | // add and saturate the results together | 
|  | srcRegFilt32b1_1 = _mm256_adds_epi16( | 
|  | srcRegFilt32b1_1, _mm256_max_epi16(srcRegFilt32b3, srcRegFilt32b2)); | 
|  |  | 
|  | // filter the source buffer | 
|  | srcRegFilt32b2_1 = _mm256_shuffle_epi8(srcReg32b2, filt1Reg); | 
|  | srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt4Reg); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | srcRegFilt32b2_1 = _mm256_maddubs_epi16(srcRegFilt32b2_1, firstFilters); | 
|  | srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, forthFilters); | 
|  |  | 
|  | // add and saturate the results together | 
|  | srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, srcRegFilt32b2); | 
|  |  | 
|  | // filter the source buffer | 
|  | srcRegFilt32b3 = _mm256_shuffle_epi8(srcReg32b2, filt2Reg); | 
|  | srcRegFilt32b2 = _mm256_shuffle_epi8(srcReg32b2, filt3Reg); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | srcRegFilt32b3 = _mm256_maddubs_epi16(srcRegFilt32b3, secondFilters); | 
|  | srcRegFilt32b2 = _mm256_maddubs_epi16(srcRegFilt32b2, thirdFilters); | 
|  |  | 
|  | // add and saturate the results together | 
|  | srcRegFilt32b2_1 = _mm256_adds_epi16( | 
|  | srcRegFilt32b2_1, _mm256_min_epi16(srcRegFilt32b3, srcRegFilt32b2)); | 
|  | srcRegFilt32b2_1 = _mm256_adds_epi16( | 
|  | srcRegFilt32b2_1, _mm256_max_epi16(srcRegFilt32b3, srcRegFilt32b2)); | 
|  |  | 
|  | srcRegFilt32b1_1 = _mm256_adds_epi16(srcRegFilt32b1_1, addFilterReg64); | 
|  |  | 
|  | srcRegFilt32b2_1 = _mm256_adds_epi16(srcRegFilt32b2_1, addFilterReg64); | 
|  |  | 
|  | // shift by 7 bit each 16 bit | 
|  | srcRegFilt32b1_1 = _mm256_srai_epi16(srcRegFilt32b1_1, 7); | 
|  | srcRegFilt32b2_1 = _mm256_srai_epi16(srcRegFilt32b2_1, 7); | 
|  |  | 
|  | // shrink to 8 bit each 16 bits, the first lane contain the first | 
|  | // convolve result and the second lane contain the second convolve | 
|  | // result | 
|  | srcRegFilt32b1_1 = _mm256_packus_epi16(srcRegFilt32b1_1, srcRegFilt32b2_1); | 
|  |  | 
|  | src_ptr += src_stride; | 
|  |  | 
|  | // save 16 bytes | 
|  | _mm_store_si128((__m128i *)output_ptr, | 
|  | _mm256_castsi256_si128(srcRegFilt32b1_1)); | 
|  |  | 
|  | // save the next 16 bits | 
|  | _mm_store_si128((__m128i *)(output_ptr + output_pitch), | 
|  | _mm256_extractf128_si256(srcRegFilt32b1_1, 1)); | 
|  | output_ptr += dst_stride; | 
|  | } | 
|  |  | 
|  | // if the number of strides is odd. | 
|  | // process only 16 bytes | 
|  | if (i > 0) { | 
|  | __m128i srcReg1, srcReg2, srcRegFilt1_1, srcRegFilt2_1; | 
|  | __m128i srcRegFilt2, srcRegFilt3; | 
|  |  | 
|  | srcReg1 = _mm_loadu_si128((const __m128i *)(src_ptr - 3)); | 
|  |  | 
|  | // filter the source buffer | 
|  | srcRegFilt1_1 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt1Reg)); | 
|  | srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt4Reg)); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | srcRegFilt1_1 = | 
|  | _mm_maddubs_epi16(srcRegFilt1_1, _mm256_castsi256_si128(firstFilters)); | 
|  | srcRegFilt2 = | 
|  | _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(forthFilters)); | 
|  |  | 
|  | // add and saturate the results together | 
|  | srcRegFilt1_1 = _mm_adds_epi16(srcRegFilt1_1, srcRegFilt2); | 
|  |  | 
|  | // filter the source buffer | 
|  | srcRegFilt3 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt2Reg)); | 
|  | srcRegFilt2 = _mm_shuffle_epi8(srcReg1, _mm256_castsi256_si128(filt3Reg)); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | srcRegFilt3 = | 
|  | _mm_maddubs_epi16(srcRegFilt3, _mm256_castsi256_si128(secondFilters)); | 
|  | srcRegFilt2 = | 
|  | _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(thirdFilters)); | 
|  |  | 
|  | // add and saturate the results together | 
|  | srcRegFilt1_1 = | 
|  | _mm_adds_epi16(srcRegFilt1_1, _mm_min_epi16(srcRegFilt3, srcRegFilt2)); | 
|  |  | 
|  | // reading the next 16 bytes | 
|  | // (part of it was being read by earlier read) | 
|  | srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + 5)); | 
|  |  | 
|  | // add and saturate the results together | 
|  | srcRegFilt1_1 = | 
|  | _mm_adds_epi16(srcRegFilt1_1, _mm_max_epi16(srcRegFilt3, srcRegFilt2)); | 
|  |  | 
|  | // filter the source buffer | 
|  | srcRegFilt2_1 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt1Reg)); | 
|  | srcRegFilt2 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt4Reg)); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | srcRegFilt2_1 = | 
|  | _mm_maddubs_epi16(srcRegFilt2_1, _mm256_castsi256_si128(firstFilters)); | 
|  | srcRegFilt2 = | 
|  | _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(forthFilters)); | 
|  |  | 
|  | // add and saturate the results together | 
|  | srcRegFilt2_1 = _mm_adds_epi16(srcRegFilt2_1, srcRegFilt2); | 
|  |  | 
|  | // filter the source buffer | 
|  | srcRegFilt3 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt2Reg)); | 
|  | srcRegFilt2 = _mm_shuffle_epi8(srcReg2, _mm256_castsi256_si128(filt3Reg)); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | srcRegFilt3 = | 
|  | _mm_maddubs_epi16(srcRegFilt3, _mm256_castsi256_si128(secondFilters)); | 
|  | srcRegFilt2 = | 
|  | _mm_maddubs_epi16(srcRegFilt2, _mm256_castsi256_si128(thirdFilters)); | 
|  |  | 
|  | // add and saturate the results together | 
|  | srcRegFilt2_1 = | 
|  | _mm_adds_epi16(srcRegFilt2_1, _mm_min_epi16(srcRegFilt3, srcRegFilt2)); | 
|  | srcRegFilt2_1 = | 
|  | _mm_adds_epi16(srcRegFilt2_1, _mm_max_epi16(srcRegFilt3, srcRegFilt2)); | 
|  |  | 
|  | srcRegFilt1_1 = | 
|  | _mm_adds_epi16(srcRegFilt1_1, _mm256_castsi256_si128(addFilterReg64)); | 
|  |  | 
|  | srcRegFilt2_1 = | 
|  | _mm_adds_epi16(srcRegFilt2_1, _mm256_castsi256_si128(addFilterReg64)); | 
|  |  | 
|  | // shift by 7 bit each 16 bit | 
|  | srcRegFilt1_1 = _mm_srai_epi16(srcRegFilt1_1, 7); | 
|  | srcRegFilt2_1 = _mm_srai_epi16(srcRegFilt2_1, 7); | 
|  |  | 
|  | // shrink to 8 bit each 16 bits, the first lane contain the first | 
|  | // convolve result and the second lane contain the second convolve | 
|  | // result | 
|  | srcRegFilt1_1 = _mm_packus_epi16(srcRegFilt1_1, srcRegFilt2_1); | 
|  |  | 
|  | // save 16 bytes | 
|  | _mm_store_si128((__m128i *)output_ptr, srcRegFilt1_1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void aom_filter_block1d16_v8_avx2( | 
|  | const uint8_t *src_ptr, ptrdiff_t src_pitch, uint8_t *output_ptr, | 
|  | ptrdiff_t out_pitch, uint32_t output_height, const int16_t *filter) { | 
|  | __m128i filtersReg; | 
|  | __m256i addFilterReg64; | 
|  | __m256i srcReg32b1, srcReg32b2, srcReg32b3, srcReg32b4, srcReg32b5; | 
|  | __m256i srcReg32b6, srcReg32b7, srcReg32b8, srcReg32b9, srcReg32b10; | 
|  | __m256i srcReg32b11, srcReg32b12, filtersReg32; | 
|  | __m256i firstFilters, secondFilters, thirdFilters, forthFilters; | 
|  | unsigned int i; | 
|  | ptrdiff_t src_stride, dst_stride; | 
|  |  | 
|  | // create a register with 0,64,0,64,0,64,0,64,0,64,0,64,0,64,0,64 | 
|  | addFilterReg64 = _mm256_set1_epi32((int)0x0400040u); | 
|  | filtersReg = _mm_loadu_si128((const __m128i *)filter); | 
|  | // converting the 16 bit (short) to  8 bit (byte) and have the | 
|  | // same data in both lanes of 128 bit register. | 
|  | filtersReg = _mm_packs_epi16(filtersReg, filtersReg); | 
|  | // have the same data in both lanes of a 256 bit register | 
|  | filtersReg32 = MM256_BROADCASTSI128_SI256(filtersReg); | 
|  |  | 
|  | // duplicate only the first 16 bits (first and second byte) | 
|  | // across 256 bit register | 
|  | firstFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x100u)); | 
|  | // duplicate only the second 16 bits (third and forth byte) | 
|  | // across 256 bit register | 
|  | secondFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x302u)); | 
|  | // duplicate only the third 16 bits (fifth and sixth byte) | 
|  | // across 256 bit register | 
|  | thirdFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x504u)); | 
|  | // duplicate only the forth 16 bits (seventh and eighth byte) | 
|  | // across 256 bit register | 
|  | forthFilters = _mm256_shuffle_epi8(filtersReg32, _mm256_set1_epi16(0x706u)); | 
|  |  | 
|  | // multiple the size of the source and destination stride by two | 
|  | src_stride = src_pitch << 1; | 
|  | dst_stride = out_pitch << 1; | 
|  |  | 
|  | // load 16 bytes 7 times in stride of src_pitch | 
|  | srcReg32b1 = | 
|  | _mm256_castsi128_si256(_mm_loadu_si128((const __m128i *)(src_ptr))); | 
|  | srcReg32b2 = _mm256_castsi128_si256( | 
|  | _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch))); | 
|  | srcReg32b3 = _mm256_castsi128_si256( | 
|  | _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2))); | 
|  | srcReg32b4 = _mm256_castsi128_si256( | 
|  | _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3))); | 
|  | srcReg32b5 = _mm256_castsi128_si256( | 
|  | _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4))); | 
|  | srcReg32b6 = _mm256_castsi128_si256( | 
|  | _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5))); | 
|  | srcReg32b7 = _mm256_castsi128_si256( | 
|  | _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6))); | 
|  |  | 
|  | // have each consecutive loads on the same 256 register | 
|  | srcReg32b1 = _mm256_inserti128_si256(srcReg32b1, | 
|  | _mm256_castsi256_si128(srcReg32b2), 1); | 
|  | srcReg32b2 = _mm256_inserti128_si256(srcReg32b2, | 
|  | _mm256_castsi256_si128(srcReg32b3), 1); | 
|  | srcReg32b3 = _mm256_inserti128_si256(srcReg32b3, | 
|  | _mm256_castsi256_si128(srcReg32b4), 1); | 
|  | srcReg32b4 = _mm256_inserti128_si256(srcReg32b4, | 
|  | _mm256_castsi256_si128(srcReg32b5), 1); | 
|  | srcReg32b5 = _mm256_inserti128_si256(srcReg32b5, | 
|  | _mm256_castsi256_si128(srcReg32b6), 1); | 
|  | srcReg32b6 = _mm256_inserti128_si256(srcReg32b6, | 
|  | _mm256_castsi256_si128(srcReg32b7), 1); | 
|  |  | 
|  | // merge every two consecutive registers except the last one | 
|  | srcReg32b10 = _mm256_unpacklo_epi8(srcReg32b1, srcReg32b2); | 
|  | srcReg32b1 = _mm256_unpackhi_epi8(srcReg32b1, srcReg32b2); | 
|  |  | 
|  | // save | 
|  | srcReg32b11 = _mm256_unpacklo_epi8(srcReg32b3, srcReg32b4); | 
|  |  | 
|  | // save | 
|  | srcReg32b3 = _mm256_unpackhi_epi8(srcReg32b3, srcReg32b4); | 
|  |  | 
|  | // save | 
|  | srcReg32b2 = _mm256_unpacklo_epi8(srcReg32b5, srcReg32b6); | 
|  |  | 
|  | // save | 
|  | srcReg32b5 = _mm256_unpackhi_epi8(srcReg32b5, srcReg32b6); | 
|  |  | 
|  | for (i = output_height; i > 1; i -= 2) { | 
|  | // load the last 2 loads of 16 bytes and have every two | 
|  | // consecutive loads in the same 256 bit register | 
|  | srcReg32b8 = _mm256_castsi128_si256( | 
|  | _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7))); | 
|  | srcReg32b7 = _mm256_inserti128_si256(srcReg32b7, | 
|  | _mm256_castsi256_si128(srcReg32b8), 1); | 
|  | srcReg32b9 = _mm256_castsi128_si256( | 
|  | _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 8))); | 
|  | srcReg32b8 = _mm256_inserti128_si256(srcReg32b8, | 
|  | _mm256_castsi256_si128(srcReg32b9), 1); | 
|  |  | 
|  | // merge every two consecutive registers | 
|  | // save | 
|  | srcReg32b4 = _mm256_unpacklo_epi8(srcReg32b7, srcReg32b8); | 
|  | srcReg32b7 = _mm256_unpackhi_epi8(srcReg32b7, srcReg32b8); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | srcReg32b10 = _mm256_maddubs_epi16(srcReg32b10, firstFilters); | 
|  | srcReg32b6 = _mm256_maddubs_epi16(srcReg32b4, forthFilters); | 
|  |  | 
|  | // add and saturate the results together | 
|  | srcReg32b10 = _mm256_adds_epi16(srcReg32b10, srcReg32b6); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | srcReg32b8 = _mm256_maddubs_epi16(srcReg32b11, secondFilters); | 
|  | srcReg32b12 = _mm256_maddubs_epi16(srcReg32b2, thirdFilters); | 
|  |  | 
|  | // add and saturate the results together | 
|  | srcReg32b10 = _mm256_adds_epi16(srcReg32b10, | 
|  | _mm256_min_epi16(srcReg32b8, srcReg32b12)); | 
|  | srcReg32b10 = _mm256_adds_epi16(srcReg32b10, | 
|  | _mm256_max_epi16(srcReg32b8, srcReg32b12)); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | srcReg32b1 = _mm256_maddubs_epi16(srcReg32b1, firstFilters); | 
|  | srcReg32b6 = _mm256_maddubs_epi16(srcReg32b7, forthFilters); | 
|  |  | 
|  | srcReg32b1 = _mm256_adds_epi16(srcReg32b1, srcReg32b6); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | srcReg32b8 = _mm256_maddubs_epi16(srcReg32b3, secondFilters); | 
|  | srcReg32b12 = _mm256_maddubs_epi16(srcReg32b5, thirdFilters); | 
|  |  | 
|  | // add and saturate the results together | 
|  | srcReg32b1 = _mm256_adds_epi16(srcReg32b1, | 
|  | _mm256_min_epi16(srcReg32b8, srcReg32b12)); | 
|  | srcReg32b1 = _mm256_adds_epi16(srcReg32b1, | 
|  | _mm256_max_epi16(srcReg32b8, srcReg32b12)); | 
|  |  | 
|  | srcReg32b10 = _mm256_adds_epi16(srcReg32b10, addFilterReg64); | 
|  | srcReg32b1 = _mm256_adds_epi16(srcReg32b1, addFilterReg64); | 
|  |  | 
|  | // shift by 7 bit each 16 bit | 
|  | srcReg32b10 = _mm256_srai_epi16(srcReg32b10, 7); | 
|  | srcReg32b1 = _mm256_srai_epi16(srcReg32b1, 7); | 
|  |  | 
|  | // shrink to 8 bit each 16 bits, the first lane contain the first | 
|  | // convolve result and the second lane contain the second convolve | 
|  | // result | 
|  | srcReg32b1 = _mm256_packus_epi16(srcReg32b10, srcReg32b1); | 
|  |  | 
|  | src_ptr += src_stride; | 
|  |  | 
|  | // save 16 bytes | 
|  | _mm_store_si128((__m128i *)output_ptr, _mm256_castsi256_si128(srcReg32b1)); | 
|  |  | 
|  | // save the next 16 bits | 
|  | _mm_store_si128((__m128i *)(output_ptr + out_pitch), | 
|  | _mm256_extractf128_si256(srcReg32b1, 1)); | 
|  |  | 
|  | output_ptr += dst_stride; | 
|  |  | 
|  | // save part of the registers for next strides | 
|  | srcReg32b10 = srcReg32b11; | 
|  | srcReg32b1 = srcReg32b3; | 
|  | srcReg32b11 = srcReg32b2; | 
|  | srcReg32b3 = srcReg32b5; | 
|  | srcReg32b2 = srcReg32b4; | 
|  | srcReg32b5 = srcReg32b7; | 
|  | srcReg32b7 = srcReg32b9; | 
|  | } | 
|  | if (i > 0) { | 
|  | __m128i srcRegFilt1, srcRegFilt3, srcRegFilt4, srcRegFilt5; | 
|  | __m128i srcRegFilt6, srcRegFilt7, srcRegFilt8; | 
|  | // load the last 16 bytes | 
|  | srcRegFilt8 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 7)); | 
|  |  | 
|  | // merge the last 2 results together | 
|  | srcRegFilt4 = | 
|  | _mm_unpacklo_epi8(_mm256_castsi256_si128(srcReg32b7), srcRegFilt8); | 
|  | srcRegFilt7 = | 
|  | _mm_unpackhi_epi8(_mm256_castsi256_si128(srcReg32b7), srcRegFilt8); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | srcRegFilt1 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b10), | 
|  | _mm256_castsi256_si128(firstFilters)); | 
|  | srcRegFilt4 = | 
|  | _mm_maddubs_epi16(srcRegFilt4, _mm256_castsi256_si128(forthFilters)); | 
|  | srcRegFilt3 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b1), | 
|  | _mm256_castsi256_si128(firstFilters)); | 
|  | srcRegFilt7 = | 
|  | _mm_maddubs_epi16(srcRegFilt7, _mm256_castsi256_si128(forthFilters)); | 
|  |  | 
|  | // add and saturate the results together | 
|  | srcRegFilt1 = _mm_adds_epi16(srcRegFilt1, srcRegFilt4); | 
|  | srcRegFilt3 = _mm_adds_epi16(srcRegFilt3, srcRegFilt7); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | srcRegFilt4 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b11), | 
|  | _mm256_castsi256_si128(secondFilters)); | 
|  | srcRegFilt5 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b3), | 
|  | _mm256_castsi256_si128(secondFilters)); | 
|  |  | 
|  | // multiply 2 adjacent elements with the filter and add the result | 
|  | srcRegFilt6 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b2), | 
|  | _mm256_castsi256_si128(thirdFilters)); | 
|  | srcRegFilt7 = _mm_maddubs_epi16(_mm256_castsi256_si128(srcReg32b5), | 
|  | _mm256_castsi256_si128(thirdFilters)); | 
|  |  | 
|  | // add and saturate the results together | 
|  | srcRegFilt1 = | 
|  | _mm_adds_epi16(srcRegFilt1, _mm_min_epi16(srcRegFilt4, srcRegFilt6)); | 
|  | srcRegFilt3 = | 
|  | _mm_adds_epi16(srcRegFilt3, _mm_min_epi16(srcRegFilt5, srcRegFilt7)); | 
|  |  | 
|  | // add and saturate the results together | 
|  | srcRegFilt1 = | 
|  | _mm_adds_epi16(srcRegFilt1, _mm_max_epi16(srcRegFilt4, srcRegFilt6)); | 
|  | srcRegFilt3 = | 
|  | _mm_adds_epi16(srcRegFilt3, _mm_max_epi16(srcRegFilt5, srcRegFilt7)); | 
|  |  | 
|  | srcRegFilt1 = | 
|  | _mm_adds_epi16(srcRegFilt1, _mm256_castsi256_si128(addFilterReg64)); | 
|  | srcRegFilt3 = | 
|  | _mm_adds_epi16(srcRegFilt3, _mm256_castsi256_si128(addFilterReg64)); | 
|  |  | 
|  | // shift by 7 bit each 16 bit | 
|  | srcRegFilt1 = _mm_srai_epi16(srcRegFilt1, 7); | 
|  | srcRegFilt3 = _mm_srai_epi16(srcRegFilt3, 7); | 
|  |  | 
|  | // shrink to 8 bit each 16 bits, the first lane contain the first | 
|  | // convolve result and the second lane contain the second convolve | 
|  | // result | 
|  | srcRegFilt1 = _mm_packus_epi16(srcRegFilt1, srcRegFilt3); | 
|  |  | 
|  | // save 16 bytes | 
|  | _mm_store_si128((__m128i *)output_ptr, srcRegFilt1); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if HAVE_AVX2 && HAVE_SSSE3 | 
|  | filter8_1dfunction aom_filter_block1d4_v8_ssse3; | 
|  | #if ARCH_X86_64 | 
|  | filter8_1dfunction aom_filter_block1d8_v8_intrin_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d8_h8_intrin_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d4_h8_intrin_ssse3; | 
|  | #define aom_filter_block1d8_v8_avx2 aom_filter_block1d8_v8_intrin_ssse3 | 
|  | #define aom_filter_block1d8_h8_avx2 aom_filter_block1d8_h8_intrin_ssse3 | 
|  | #define aom_filter_block1d4_h8_avx2 aom_filter_block1d4_h8_intrin_ssse3 | 
|  | #else  // ARCH_X86 | 
|  | filter8_1dfunction aom_filter_block1d8_v8_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d8_h8_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d4_h8_ssse3; | 
|  | #define aom_filter_block1d8_v8_avx2 aom_filter_block1d8_v8_ssse3 | 
|  | #define aom_filter_block1d8_h8_avx2 aom_filter_block1d8_h8_ssse3 | 
|  | #define aom_filter_block1d4_h8_avx2 aom_filter_block1d4_h8_ssse3 | 
|  | #endif  // ARCH_X86_64 | 
|  | filter8_1dfunction aom_filter_block1d16_v2_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d16_h2_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d8_v2_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d8_h2_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d4_v2_ssse3; | 
|  | filter8_1dfunction aom_filter_block1d4_h2_ssse3; | 
|  | #define aom_filter_block1d4_v8_avx2 aom_filter_block1d4_v8_ssse3 | 
|  | #define aom_filter_block1d16_v2_avx2 aom_filter_block1d16_v2_ssse3 | 
|  | #define aom_filter_block1d16_h2_avx2 aom_filter_block1d16_h2_ssse3 | 
|  | #define aom_filter_block1d8_v2_avx2 aom_filter_block1d8_v2_ssse3 | 
|  | #define aom_filter_block1d8_h2_avx2 aom_filter_block1d8_h2_ssse3 | 
|  | #define aom_filter_block1d4_v2_avx2 aom_filter_block1d4_v2_ssse3 | 
|  | #define aom_filter_block1d4_h2_avx2 aom_filter_block1d4_h2_ssse3 | 
|  | // void aom_convolve8_horiz_avx2(const uint8_t *src, ptrdiff_t src_stride, | 
|  | //                                uint8_t *dst, ptrdiff_t dst_stride, | 
|  | //                                const int16_t *filter_x, int x_step_q4, | 
|  | //                                const int16_t *filter_y, int y_step_q4, | 
|  | //                                int w, int h); | 
|  | // void aom_convolve8_vert_avx2(const uint8_t *src, ptrdiff_t src_stride, | 
|  | //                               uint8_t *dst, ptrdiff_t dst_stride, | 
|  | //                               const int16_t *filter_x, int x_step_q4, | 
|  | //                               const int16_t *filter_y, int y_step_q4, | 
|  | //                               int w, int h); | 
|  | FUN_CONV_1D(horiz, x_step_q4, filter_x, h, src, , avx2); | 
|  | FUN_CONV_1D(vert, y_step_q4, filter_y, v, src - src_stride * 3, , avx2); | 
|  |  | 
|  | // void aom_convolve8_avx2(const uint8_t *src, ptrdiff_t src_stride, | 
|  | //                          uint8_t *dst, ptrdiff_t dst_stride, | 
|  | //                          const int16_t *filter_x, int x_step_q4, | 
|  | //                          const int16_t *filter_y, int y_step_q4, | 
|  | //                          int w, int h); | 
|  | FUN_CONV_2D(, avx2); | 
|  | #endif  // HAVE_AX2 && HAVE_SSSE3 |