| /* | 
 |  * Copyright (c) 2016, Alliance for Open Media. All rights reserved. | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  * | 
 |  *  This code was originally written by: Nathan E. Egge, at the Daala | 
 |  *  project. | 
 |  */ | 
 | #include <assert.h> | 
 | #include <math.h> | 
 | #include <stdlib.h> | 
 | #include <string.h> | 
 |  | 
 | #include "config/aom_config.h" | 
 | #include "config/aom_dsp_rtcd.h" | 
 |  | 
 | #include "aom_dsp/ssim.h" | 
 |  | 
 | typedef struct fs_level fs_level; | 
 | typedef struct fs_ctx fs_ctx; | 
 |  | 
 | #define SSIM_C1 (255 * 255 * 0.01 * 0.01) | 
 | #define SSIM_C2 (255 * 255 * 0.03 * 0.03) | 
 | #define SSIM_C1_10 (1023 * 1023 * 0.01 * 0.01) | 
 | #define SSIM_C1_12 (4095 * 4095 * 0.01 * 0.01) | 
 | #define SSIM_C2_10 (1023 * 1023 * 0.03 * 0.03) | 
 | #define SSIM_C2_12 (4095 * 4095 * 0.03 * 0.03) | 
 | #define MAX_SSIM_DB 100.0 | 
 |  | 
 | #define FS_MINI(_a, _b) ((_a) < (_b) ? (_a) : (_b)) | 
 | #define FS_MAXI(_a, _b) ((_a) > (_b) ? (_a) : (_b)) | 
 |  | 
 | struct fs_level { | 
 |   uint32_t *im1; | 
 |   uint32_t *im2; | 
 |   double *ssim; | 
 |   int w; | 
 |   int h; | 
 | }; | 
 |  | 
 | struct fs_ctx { | 
 |   fs_level *level; | 
 |   int nlevels; | 
 |   unsigned *col_buf; | 
 | }; | 
 |  | 
 | static int fs_ctx_init(fs_ctx *_ctx, int _w, int _h, int _nlevels) { | 
 |   unsigned char *data; | 
 |   size_t data_size; | 
 |   int lw; | 
 |   int lh; | 
 |   int l; | 
 |   lw = (_w + 1) >> 1; | 
 |   lh = (_h + 1) >> 1; | 
 |   data_size = | 
 |       _nlevels * sizeof(fs_level) + 2 * (lw + 8) * 8 * sizeof(*_ctx->col_buf); | 
 |   for (l = 0; l < _nlevels; l++) { | 
 |     size_t im_size; | 
 |     size_t level_size; | 
 |     im_size = lw * (size_t)lh; | 
 |     level_size = 2 * im_size * sizeof(*_ctx->level[l].im1); | 
 |     level_size += sizeof(*_ctx->level[l].ssim) - 1; | 
 |     level_size /= sizeof(*_ctx->level[l].ssim); | 
 |     level_size += im_size; | 
 |     level_size *= sizeof(*_ctx->level[l].ssim); | 
 |     data_size += level_size; | 
 |     lw = (lw + 1) >> 1; | 
 |     lh = (lh + 1) >> 1; | 
 |   } | 
 |   data = (unsigned char *)malloc(data_size); | 
 |   if (!data) return -1; | 
 |   _ctx->level = (fs_level *)data; | 
 |   _ctx->nlevels = _nlevels; | 
 |   data += _nlevels * sizeof(*_ctx->level); | 
 |   lw = (_w + 1) >> 1; | 
 |   lh = (_h + 1) >> 1; | 
 |   for (l = 0; l < _nlevels; l++) { | 
 |     size_t im_size; | 
 |     size_t level_size; | 
 |     _ctx->level[l].w = lw; | 
 |     _ctx->level[l].h = lh; | 
 |     im_size = lw * (size_t)lh; | 
 |     level_size = 2 * im_size * sizeof(*_ctx->level[l].im1); | 
 |     level_size += sizeof(*_ctx->level[l].ssim) - 1; | 
 |     level_size /= sizeof(*_ctx->level[l].ssim); | 
 |     level_size *= sizeof(*_ctx->level[l].ssim); | 
 |     _ctx->level[l].im1 = (uint32_t *)data; | 
 |     _ctx->level[l].im2 = _ctx->level[l].im1 + im_size; | 
 |     data += level_size; | 
 |     _ctx->level[l].ssim = (double *)data; | 
 |     data += im_size * sizeof(*_ctx->level[l].ssim); | 
 |     lw = (lw + 1) >> 1; | 
 |     lh = (lh + 1) >> 1; | 
 |   } | 
 |   _ctx->col_buf = (unsigned *)data; | 
 |   return 0; | 
 | } | 
 |  | 
 | static void fs_ctx_clear(fs_ctx *_ctx) { free(_ctx->level); } | 
 |  | 
 | static void fs_downsample_level(fs_ctx *_ctx, int _l) { | 
 |   const uint32_t *src1; | 
 |   const uint32_t *src2; | 
 |   uint32_t *dst1; | 
 |   uint32_t *dst2; | 
 |   int w2; | 
 |   int h2; | 
 |   int w; | 
 |   int h; | 
 |   int i; | 
 |   int j; | 
 |   w = _ctx->level[_l].w; | 
 |   h = _ctx->level[_l].h; | 
 |   dst1 = _ctx->level[_l].im1; | 
 |   dst2 = _ctx->level[_l].im2; | 
 |   w2 = _ctx->level[_l - 1].w; | 
 |   h2 = _ctx->level[_l - 1].h; | 
 |   src1 = _ctx->level[_l - 1].im1; | 
 |   src2 = _ctx->level[_l - 1].im2; | 
 |   for (j = 0; j < h; j++) { | 
 |     int j0offs; | 
 |     int j1offs; | 
 |     j0offs = 2 * j * w2; | 
 |     j1offs = FS_MINI(2 * j + 1, h2) * w2; | 
 |     for (i = 0; i < w; i++) { | 
 |       int i0; | 
 |       int i1; | 
 |       i0 = 2 * i; | 
 |       i1 = FS_MINI(i0 + 1, w2); | 
 |       dst1[j * w + i] = src1[j0offs + i0] + src1[j0offs + i1] + | 
 |                         src1[j1offs + i0] + src1[j1offs + i1]; | 
 |       dst2[j * w + i] = src2[j0offs + i0] + src2[j0offs + i1] + | 
 |                         src2[j1offs + i0] + src2[j1offs + i1]; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void fs_downsample_level0(fs_ctx *_ctx, const uint8_t *_src1, | 
 |                                  int _s1ystride, const uint8_t *_src2, | 
 |                                  int _s2ystride, int _w, int _h, uint32_t shift, | 
 |                                  int buf_is_hbd) { | 
 |   uint32_t *dst1; | 
 |   uint32_t *dst2; | 
 |   int w; | 
 |   int h; | 
 |   int i; | 
 |   int j; | 
 |   w = _ctx->level[0].w; | 
 |   h = _ctx->level[0].h; | 
 |   dst1 = _ctx->level[0].im1; | 
 |   dst2 = _ctx->level[0].im2; | 
 |   for (j = 0; j < h; j++) { | 
 |     int j0; | 
 |     int j1; | 
 |     j0 = 2 * j; | 
 |     j1 = FS_MINI(j0 + 1, _h); | 
 |     for (i = 0; i < w; i++) { | 
 |       int i0; | 
 |       int i1; | 
 |       i0 = 2 * i; | 
 |       i1 = FS_MINI(i0 + 1, _w); | 
 |       if (!buf_is_hbd) { | 
 |         dst1[j * w + i] = | 
 |             _src1[j0 * _s1ystride + i0] + _src1[j0 * _s1ystride + i1] + | 
 |             _src1[j1 * _s1ystride + i0] + _src1[j1 * _s1ystride + i1]; | 
 |         dst2[j * w + i] = | 
 |             _src2[j0 * _s2ystride + i0] + _src2[j0 * _s2ystride + i1] + | 
 |             _src2[j1 * _s2ystride + i0] + _src2[j1 * _s2ystride + i1]; | 
 |       } else { | 
 |         uint16_t *src1s = CONVERT_TO_SHORTPTR(_src1); | 
 |         uint16_t *src2s = CONVERT_TO_SHORTPTR(_src2); | 
 |         dst1[j * w + i] = (src1s[j0 * _s1ystride + i0] >> shift) + | 
 |                           (src1s[j0 * _s1ystride + i1] >> shift) + | 
 |                           (src1s[j1 * _s1ystride + i0] >> shift) + | 
 |                           (src1s[j1 * _s1ystride + i1] >> shift); | 
 |         dst2[j * w + i] = (src2s[j0 * _s2ystride + i0] >> shift) + | 
 |                           (src2s[j0 * _s2ystride + i1] >> shift) + | 
 |                           (src2s[j1 * _s2ystride + i0] >> shift) + | 
 |                           (src2s[j1 * _s2ystride + i1] >> shift); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | static void fs_apply_luminance(fs_ctx *_ctx, int _l, int bit_depth) { | 
 |   unsigned *col_sums_x; | 
 |   unsigned *col_sums_y; | 
 |   uint32_t *im1; | 
 |   uint32_t *im2; | 
 |   double *ssim; | 
 |   double c1; | 
 |   int w; | 
 |   int h; | 
 |   int j0offs; | 
 |   int j1offs; | 
 |   int i; | 
 |   int j; | 
 |   double ssim_c1 = SSIM_C1; | 
 |  | 
 |   if (bit_depth == 10) ssim_c1 = SSIM_C1_10; | 
 |   if (bit_depth == 12) ssim_c1 = SSIM_C1_12; | 
 |  | 
 |   w = _ctx->level[_l].w; | 
 |   h = _ctx->level[_l].h; | 
 |   col_sums_x = _ctx->col_buf; | 
 |   col_sums_y = col_sums_x + w; | 
 |   im1 = _ctx->level[_l].im1; | 
 |   im2 = _ctx->level[_l].im2; | 
 |   for (i = 0; i < w; i++) col_sums_x[i] = 5 * im1[i]; | 
 |   for (i = 0; i < w; i++) col_sums_y[i] = 5 * im2[i]; | 
 |   for (j = 1; j < 4; j++) { | 
 |     j1offs = FS_MINI(j, h - 1) * w; | 
 |     for (i = 0; i < w; i++) col_sums_x[i] += im1[j1offs + i]; | 
 |     for (i = 0; i < w; i++) col_sums_y[i] += im2[j1offs + i]; | 
 |   } | 
 |   ssim = _ctx->level[_l].ssim; | 
 |   c1 = (double)(ssim_c1 * 4096 * (1 << 4 * _l)); | 
 |   for (j = 0; j < h; j++) { | 
 |     unsigned mux; | 
 |     unsigned muy; | 
 |     int i0; | 
 |     int i1; | 
 |     mux = 5 * col_sums_x[0]; | 
 |     muy = 5 * col_sums_y[0]; | 
 |     for (i = 1; i < 4; i++) { | 
 |       i1 = FS_MINI(i, w - 1); | 
 |       mux += col_sums_x[i1]; | 
 |       muy += col_sums_y[i1]; | 
 |     } | 
 |     for (i = 0; i < w; i++) { | 
 |       ssim[j * w + i] *= (2 * mux * (double)muy + c1) / | 
 |                          (mux * (double)mux + muy * (double)muy + c1); | 
 |       if (i + 1 < w) { | 
 |         i0 = FS_MAXI(0, i - 4); | 
 |         i1 = FS_MINI(i + 4, w - 1); | 
 |         mux += col_sums_x[i1] - col_sums_x[i0]; | 
 |         muy += col_sums_x[i1] - col_sums_x[i0]; | 
 |       } | 
 |     } | 
 |     if (j + 1 < h) { | 
 |       j0offs = FS_MAXI(0, j - 4) * w; | 
 |       for (i = 0; i < w; i++) col_sums_x[i] -= im1[j0offs + i]; | 
 |       for (i = 0; i < w; i++) col_sums_y[i] -= im2[j0offs + i]; | 
 |       j1offs = FS_MINI(j + 4, h - 1) * w; | 
 |       for (i = 0; i < w; i++) col_sums_x[i] += im1[j1offs + i]; | 
 |       for (i = 0; i < w; i++) col_sums_y[i] += im2[j1offs + i]; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #define FS_COL_SET(_col, _joffs, _ioffs)                       \ | 
 |   do {                                                         \ | 
 |     unsigned gx;                                               \ | 
 |     unsigned gy;                                               \ | 
 |     gx = gx_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ | 
 |     gy = gy_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ | 
 |     col_sums_gx2[(_col)] = gx * (double)gx;                    \ | 
 |     col_sums_gy2[(_col)] = gy * (double)gy;                    \ | 
 |     col_sums_gxgy[(_col)] = gx * (double)gy;                   \ | 
 |   } while (0) | 
 |  | 
 | #define FS_COL_ADD(_col, _joffs, _ioffs)                       \ | 
 |   do {                                                         \ | 
 |     unsigned gx;                                               \ | 
 |     unsigned gy;                                               \ | 
 |     gx = gx_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ | 
 |     gy = gy_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ | 
 |     col_sums_gx2[(_col)] += gx * (double)gx;                   \ | 
 |     col_sums_gy2[(_col)] += gy * (double)gy;                   \ | 
 |     col_sums_gxgy[(_col)] += gx * (double)gy;                  \ | 
 |   } while (0) | 
 |  | 
 | #define FS_COL_SUB(_col, _joffs, _ioffs)                       \ | 
 |   do {                                                         \ | 
 |     unsigned gx;                                               \ | 
 |     unsigned gy;                                               \ | 
 |     gx = gx_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ | 
 |     gy = gy_buf[((j + (_joffs)) & 7) * stride + i + (_ioffs)]; \ | 
 |     col_sums_gx2[(_col)] -= gx * (double)gx;                   \ | 
 |     col_sums_gy2[(_col)] -= gy * (double)gy;                   \ | 
 |     col_sums_gxgy[(_col)] -= gx * (double)gy;                  \ | 
 |   } while (0) | 
 |  | 
 | #define FS_COL_COPY(_col1, _col2)                    \ | 
 |   do {                                               \ | 
 |     col_sums_gx2[(_col1)] = col_sums_gx2[(_col2)];   \ | 
 |     col_sums_gy2[(_col1)] = col_sums_gy2[(_col2)];   \ | 
 |     col_sums_gxgy[(_col1)] = col_sums_gxgy[(_col2)]; \ | 
 |   } while (0) | 
 |  | 
 | #define FS_COL_HALVE(_col1, _col2)                         \ | 
 |   do {                                                     \ | 
 |     col_sums_gx2[(_col1)] = col_sums_gx2[(_col2)] * 0.5;   \ | 
 |     col_sums_gy2[(_col1)] = col_sums_gy2[(_col2)] * 0.5;   \ | 
 |     col_sums_gxgy[(_col1)] = col_sums_gxgy[(_col2)] * 0.5; \ | 
 |   } while (0) | 
 |  | 
 | #define FS_COL_DOUBLE(_col1, _col2)                      \ | 
 |   do {                                                   \ | 
 |     col_sums_gx2[(_col1)] = col_sums_gx2[(_col2)] * 2;   \ | 
 |     col_sums_gy2[(_col1)] = col_sums_gy2[(_col2)] * 2;   \ | 
 |     col_sums_gxgy[(_col1)] = col_sums_gxgy[(_col2)] * 2; \ | 
 |   } while (0) | 
 |  | 
 | static void fs_calc_structure(fs_ctx *_ctx, int _l, int bit_depth) { | 
 |   uint32_t *im1; | 
 |   uint32_t *im2; | 
 |   unsigned *gx_buf; | 
 |   unsigned *gy_buf; | 
 |   double *ssim; | 
 |   double col_sums_gx2[8]; | 
 |   double col_sums_gy2[8]; | 
 |   double col_sums_gxgy[8]; | 
 |   double c2; | 
 |   int stride; | 
 |   int w; | 
 |   int h; | 
 |   int i; | 
 |   int j; | 
 |   double ssim_c2 = SSIM_C2; | 
 |   if (bit_depth == 10) ssim_c2 = SSIM_C2_10; | 
 |   if (bit_depth == 12) ssim_c2 = SSIM_C2_12; | 
 |  | 
 |   w = _ctx->level[_l].w; | 
 |   h = _ctx->level[_l].h; | 
 |   im1 = _ctx->level[_l].im1; | 
 |   im2 = _ctx->level[_l].im2; | 
 |   ssim = _ctx->level[_l].ssim; | 
 |   gx_buf = _ctx->col_buf; | 
 |   stride = w + 8; | 
 |   gy_buf = gx_buf + 8 * stride; | 
 |   memset(gx_buf, 0, 2 * 8 * stride * sizeof(*gx_buf)); | 
 |   c2 = ssim_c2 * (1 << 4 * _l) * 16 * 104; | 
 |   for (j = 0; j < h + 4; j++) { | 
 |     if (j < h - 1) { | 
 |       for (i = 0; i < w - 1; i++) { | 
 |         unsigned g1; | 
 |         unsigned g2; | 
 |         unsigned gx; | 
 |         unsigned gy; | 
 |         g1 = abs((int)im1[(j + 1) * w + i + 1] - (int)im1[j * w + i]); | 
 |         g2 = abs((int)im1[(j + 1) * w + i] - (int)im1[j * w + i + 1]); | 
 |         gx = 4 * FS_MAXI(g1, g2) + FS_MINI(g1, g2); | 
 |         g1 = abs((int)im2[(j + 1) * w + i + 1] - (int)im2[j * w + i]); | 
 |         g2 = abs((int)im2[(j + 1) * w + i] - (int)im2[j * w + i + 1]); | 
 |         gy = 4 * FS_MAXI(g1, g2) + FS_MINI(g1, g2); | 
 |         gx_buf[(j & 7) * stride + i + 4] = gx; | 
 |         gy_buf[(j & 7) * stride + i + 4] = gy; | 
 |       } | 
 |     } else { | 
 |       memset(gx_buf + (j & 7) * stride, 0, stride * sizeof(*gx_buf)); | 
 |       memset(gy_buf + (j & 7) * stride, 0, stride * sizeof(*gy_buf)); | 
 |     } | 
 |     if (j >= 4) { | 
 |       int k; | 
 |       col_sums_gx2[3] = col_sums_gx2[2] = col_sums_gx2[1] = col_sums_gx2[0] = 0; | 
 |       col_sums_gy2[3] = col_sums_gy2[2] = col_sums_gy2[1] = col_sums_gy2[0] = 0; | 
 |       col_sums_gxgy[3] = col_sums_gxgy[2] = col_sums_gxgy[1] = | 
 |           col_sums_gxgy[0] = 0; | 
 |       for (i = 4; i < 8; i++) { | 
 |         FS_COL_SET(i, -1, 0); | 
 |         FS_COL_ADD(i, 0, 0); | 
 |         for (k = 1; k < 8 - i; k++) { | 
 |           FS_COL_DOUBLE(i, i); | 
 |           FS_COL_ADD(i, -k - 1, 0); | 
 |           FS_COL_ADD(i, k, 0); | 
 |         } | 
 |       } | 
 |       for (i = 0; i < w; i++) { | 
 |         double mugx2; | 
 |         double mugy2; | 
 |         double mugxgy; | 
 |         mugx2 = col_sums_gx2[0]; | 
 |         for (k = 1; k < 8; k++) mugx2 += col_sums_gx2[k]; | 
 |         mugy2 = col_sums_gy2[0]; | 
 |         for (k = 1; k < 8; k++) mugy2 += col_sums_gy2[k]; | 
 |         mugxgy = col_sums_gxgy[0]; | 
 |         for (k = 1; k < 8; k++) mugxgy += col_sums_gxgy[k]; | 
 |         ssim[(j - 4) * w + i] = (2 * mugxgy + c2) / (mugx2 + mugy2 + c2); | 
 |         if (i + 1 < w) { | 
 |           FS_COL_SET(0, -1, 1); | 
 |           FS_COL_ADD(0, 0, 1); | 
 |           FS_COL_SUB(2, -3, 2); | 
 |           FS_COL_SUB(2, 2, 2); | 
 |           FS_COL_HALVE(1, 2); | 
 |           FS_COL_SUB(3, -4, 3); | 
 |           FS_COL_SUB(3, 3, 3); | 
 |           FS_COL_HALVE(2, 3); | 
 |           FS_COL_COPY(3, 4); | 
 |           FS_COL_DOUBLE(4, 5); | 
 |           FS_COL_ADD(4, -4, 5); | 
 |           FS_COL_ADD(4, 3, 5); | 
 |           FS_COL_DOUBLE(5, 6); | 
 |           FS_COL_ADD(5, -3, 6); | 
 |           FS_COL_ADD(5, 2, 6); | 
 |           FS_COL_DOUBLE(6, 7); | 
 |           FS_COL_ADD(6, -2, 7); | 
 |           FS_COL_ADD(6, 1, 7); | 
 |           FS_COL_SET(7, -1, 8); | 
 |           FS_COL_ADD(7, 0, 8); | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #define FS_NLEVELS (4) | 
 |  | 
 | /*These weights were derived from the default weights found in Wang's original | 
 |  Matlab implementation: {0.0448, 0.2856, 0.2363, 0.1333}. | 
 |  We drop the finest scale and renormalize the rest to sum to 1.*/ | 
 |  | 
 | static const double FS_WEIGHTS[FS_NLEVELS] = { | 
 |   0.2989654541015625, 0.3141326904296875, 0.2473602294921875, 0.1395416259765625 | 
 | }; | 
 |  | 
 | static double fs_average(fs_ctx *_ctx, int _l) { | 
 |   double *ssim; | 
 |   double ret; | 
 |   int w; | 
 |   int h; | 
 |   int i; | 
 |   int j; | 
 |   w = _ctx->level[_l].w; | 
 |   h = _ctx->level[_l].h; | 
 |   ssim = _ctx->level[_l].ssim; | 
 |   ret = 0; | 
 |   for (j = 0; j < h; j++) | 
 |     for (i = 0; i < w; i++) ret += ssim[j * w + i]; | 
 |   return pow(ret / (w * h), FS_WEIGHTS[_l]); | 
 | } | 
 |  | 
 | static double convert_ssim_db(double _ssim, double _weight) { | 
 |   assert(_weight >= _ssim); | 
 |   if ((_weight - _ssim) < 1e-10) return MAX_SSIM_DB; | 
 |   return 10 * (log10(_weight) - log10(_weight - _ssim)); | 
 | } | 
 |  | 
 | static double calc_ssim(const uint8_t *_src, int _systride, const uint8_t *_dst, | 
 |                         int _dystride, int _w, int _h, uint32_t _bd, | 
 |                         uint32_t _shift, int buf_is_hbd) { | 
 |   fs_ctx ctx; | 
 |   double ret; | 
 |   int l; | 
 |   ret = 1; | 
 |   if (fs_ctx_init(&ctx, _w, _h, FS_NLEVELS)) return 99.0; | 
 |   fs_downsample_level0(&ctx, _src, _systride, _dst, _dystride, _w, _h, _shift, | 
 |                        buf_is_hbd); | 
 |   for (l = 0; l < FS_NLEVELS - 1; l++) { | 
 |     fs_calc_structure(&ctx, l, _bd); | 
 |     ret *= fs_average(&ctx, l); | 
 |     fs_downsample_level(&ctx, l + 1); | 
 |   } | 
 |   fs_calc_structure(&ctx, l, _bd); | 
 |   fs_apply_luminance(&ctx, l, _bd); | 
 |   ret *= fs_average(&ctx, l); | 
 |   fs_ctx_clear(&ctx); | 
 |   return ret; | 
 | } | 
 |  | 
 | double aom_calc_fastssim(const YV12_BUFFER_CONFIG *source, | 
 |                          const YV12_BUFFER_CONFIG *dest, double *ssim_y, | 
 |                          double *ssim_u, double *ssim_v, uint32_t bd, | 
 |                          uint32_t in_bd) { | 
 |   double ssimv; | 
 |   uint32_t bd_shift = 0; | 
 |   assert(bd >= in_bd); | 
 |   assert(source->flags == dest->flags); | 
 |   int buf_is_hbd = source->flags & YV12_FLAG_HIGHBITDEPTH; | 
 |   bd_shift = bd - in_bd; | 
 |  | 
 |   *ssim_y = calc_ssim(source->y_buffer, source->y_stride, dest->y_buffer, | 
 |                       dest->y_stride, source->y_crop_width, | 
 |                       source->y_crop_height, in_bd, bd_shift, buf_is_hbd); | 
 |   *ssim_u = calc_ssim(source->u_buffer, source->uv_stride, dest->u_buffer, | 
 |                       dest->uv_stride, source->uv_crop_width, | 
 |                       source->uv_crop_height, in_bd, bd_shift, buf_is_hbd); | 
 |   *ssim_v = calc_ssim(source->v_buffer, source->uv_stride, dest->v_buffer, | 
 |                       dest->uv_stride, source->uv_crop_width, | 
 |                       source->uv_crop_height, in_bd, bd_shift, buf_is_hbd); | 
 |   ssimv = (*ssim_y) * .8 + .1 * ((*ssim_u) + (*ssim_v)); | 
 |   return convert_ssim_db(ssimv, 1.0); | 
 | } |