| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| * |
| * This code was originally written by: Gregory Maxwell, at the Daala |
| * project. |
| */ |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| |
| #include "./aom_config.h" |
| #include "./aom_dsp_rtcd.h" |
| #include "aom_dsp/psnr.h" |
| #include "aom_dsp/ssim.h" |
| #include "aom_ports/system_state.h" |
| |
| #if !defined(M_PI) |
| #define M_PI (3.141592653589793238462643) |
| #endif |
| #include <string.h> |
| |
| static void od_bin_fdct8x8(tran_low_t *y, int ystride, const int16_t *x, |
| int xstride) { |
| int i, j; |
| (void)xstride; |
| aom_fdct8x8(x, y, ystride); |
| for (i = 0; i < 8; i++) |
| for (j = 0; j < 8; j++) |
| *(y + ystride * i + j) = (*(y + ystride * i + j) + 4) >> 3; |
| } |
| |
| #if CONFIG_HIGHBITDEPTH |
| static void hbd_od_bin_fdct8x8(tran_low_t *y, int ystride, const int16_t *x, |
| int xstride) { |
| int i, j; |
| (void)xstride; |
| aom_highbd_fdct8x8(x, y, ystride); |
| for (i = 0; i < 8; i++) |
| for (j = 0; j < 8; j++) |
| *(y + ystride * i + j) = (*(y + ystride * i + j) + 4) >> 3; |
| } |
| #endif |
| |
| /* Normalized inverse quantization matrix for 8x8 DCT at the point of |
| * transparency. This is not the JPEG based matrix from the paper, |
| this one gives a slightly higher MOS agreement.*/ |
| static const double csf_y[8][8] = { |
| { 1.6193873005, 2.2901594831, 2.08509755623, 1.48366094411, 1.00227514334, |
| 0.678296995242, 0.466224900598, 0.3265091542 }, |
| { 2.2901594831, 1.94321815382, 2.04793073064, 1.68731108984, 1.2305666963, |
| 0.868920337363, 0.61280991668, 0.436405793551 }, |
| { 2.08509755623, 2.04793073064, 1.34329019223, 1.09205635862, 0.875748795257, |
| 0.670882927016, 0.501731932449, 0.372504254596 }, |
| { 1.48366094411, 1.68731108984, 1.09205635862, 0.772819797575, 0.605636379554, |
| 0.48309405692, 0.380429446972, 0.295774038565 }, |
| { 1.00227514334, 1.2305666963, 0.875748795257, 0.605636379554, 0.448996256676, |
| 0.352889268808, 0.283006984131, 0.226951348204 }, |
| { 0.678296995242, 0.868920337363, 0.670882927016, 0.48309405692, |
| 0.352889268808, 0.27032073436, 0.215017739696, 0.17408067321 }, |
| { 0.466224900598, 0.61280991668, 0.501731932449, 0.380429446972, |
| 0.283006984131, 0.215017739696, 0.168869545842, 0.136153931001 }, |
| { 0.3265091542, 0.436405793551, 0.372504254596, 0.295774038565, |
| 0.226951348204, 0.17408067321, 0.136153931001, 0.109083846276 } |
| }; |
| static const double csf_cb420[8][8] = { |
| { 1.91113096927, 2.46074210438, 1.18284184739, 1.14982565193, 1.05017074788, |
| 0.898018824055, 0.74725392039, 0.615105596242 }, |
| { 2.46074210438, 1.58529308355, 1.21363250036, 1.38190029285, 1.33100189972, |
| 1.17428548929, 0.996404342439, 0.830890433625 }, |
| { 1.18284184739, 1.21363250036, 0.978712413627, 1.02624506078, 1.03145147362, |
| 0.960060382087, 0.849823426169, 0.731221236837 }, |
| { 1.14982565193, 1.38190029285, 1.02624506078, 0.861317501629, 0.801821139099, |
| 0.751437590932, 0.685398513368, 0.608694761374 }, |
| { 1.05017074788, 1.33100189972, 1.03145147362, 0.801821139099, 0.676555426187, |
| 0.605503172737, 0.55002013668, 0.495804539034 }, |
| { 0.898018824055, 1.17428548929, 0.960060382087, 0.751437590932, |
| 0.605503172737, 0.514674450957, 0.454353482512, 0.407050308965 }, |
| { 0.74725392039, 0.996404342439, 0.849823426169, 0.685398513368, |
| 0.55002013668, 0.454353482512, 0.389234902883, 0.342353999733 }, |
| { 0.615105596242, 0.830890433625, 0.731221236837, 0.608694761374, |
| 0.495804539034, 0.407050308965, 0.342353999733, 0.295530605237 } |
| }; |
| static const double csf_cr420[8][8] = { |
| { 2.03871978502, 2.62502345193, 1.26180942886, 1.11019789803, 1.01397751469, |
| 0.867069376285, 0.721500455585, 0.593906509971 }, |
| { 2.62502345193, 1.69112867013, 1.17180569821, 1.3342742857, 1.28513006198, |
| 1.13381474809, 0.962064122248, 0.802254508198 }, |
| { 1.26180942886, 1.17180569821, 0.944981930573, 0.990876405848, |
| 0.995903384143, 0.926972725286, 0.820534991409, 0.706020324706 }, |
| { 1.11019789803, 1.3342742857, 0.990876405848, 0.831632933426, 0.77418706195, |
| 0.725539939514, 0.661776842059, 0.587716619023 }, |
| { 1.01397751469, 1.28513006198, 0.995903384143, 0.77418706195, 0.653238524286, |
| 0.584635025748, 0.531064164893, 0.478717061273 }, |
| { 0.867069376285, 1.13381474809, 0.926972725286, 0.725539939514, |
| 0.584635025748, 0.496936637883, 0.438694579826, 0.393021669543 }, |
| { 0.721500455585, 0.962064122248, 0.820534991409, 0.661776842059, |
| 0.531064164893, 0.438694579826, 0.375820256136, 0.330555063063 }, |
| { 0.593906509971, 0.802254508198, 0.706020324706, 0.587716619023, |
| 0.478717061273, 0.393021669543, 0.330555063063, 0.285345396658 } |
| }; |
| |
| static double convert_score_db(double _score, double _weight, int bit_depth) { |
| int16_t pix_max = 255; |
| assert(_score * _weight >= 0.0); |
| if (bit_depth == 10) |
| pix_max = 1023; |
| else if (bit_depth == 12) |
| pix_max = 4095; |
| |
| if (_weight * _score < pix_max * pix_max * 1e-10) return MAX_PSNR; |
| return 10 * (log10(pix_max * pix_max) - log10(_weight * _score)); |
| } |
| |
| static double calc_psnrhvs(const unsigned char *src, int _systride, |
| const unsigned char *dst, int _dystride, double _par, |
| int _w, int _h, int _step, const double _csf[8][8], |
| uint32_t bit_depth, uint32_t _shift) { |
| double ret; |
| const uint8_t *_src8 = src; |
| const uint8_t *_dst8 = dst; |
| const uint16_t *_src16 = CONVERT_TO_SHORTPTR(src); |
| const uint16_t *_dst16 = CONVERT_TO_SHORTPTR(dst); |
| DECLARE_ALIGNED(16, int16_t, dct_s[8 * 8]); |
| DECLARE_ALIGNED(16, int16_t, dct_d[8 * 8]); |
| DECLARE_ALIGNED(16, tran_low_t, dct_s_coef[8 * 8]); |
| DECLARE_ALIGNED(16, tran_low_t, dct_d_coef[8 * 8]); |
| double mask[8][8]; |
| int pixels; |
| int x; |
| int y; |
| (void)_par; |
| ret = pixels = 0; |
| /*In the PSNR-HVS-M paper[1] the authors describe the construction of |
| their masking table as "we have used the quantization table for the |
| color component Y of JPEG [6] that has been also obtained on the |
| basis of CSF. Note that the values in quantization table JPEG have |
| been normalized and then squared." Their CSF matrix (from PSNR-HVS) |
| was also constructed from the JPEG matrices. I can not find any obvious |
| scheme of normalizing to produce their table, but if I multiply their |
| CSF by 0.38857 and square the result I get their masking table. |
| I have no idea where this constant comes from, but deviating from it |
| too greatly hurts MOS agreement. |
| |
| [1] Nikolay Ponomarenko, Flavia Silvestri, Karen Egiazarian, Marco Carli, |
| Jaakko Astola, Vladimir Lukin, "On between-coefficient contrast masking |
| of DCT basis functions", CD-ROM Proceedings of the Third |
| International Workshop on Video Processing and Quality Metrics for Consumer |
| Electronics VPQM-07, Scottsdale, Arizona, USA, 25-26 January, 2007, 4 p.*/ |
| for (x = 0; x < 8; x++) |
| for (y = 0; y < 8; y++) |
| mask[x][y] = |
| (_csf[x][y] * 0.3885746225901003) * (_csf[x][y] * 0.3885746225901003); |
| for (y = 0; y < _h - 7; y += _step) { |
| for (x = 0; x < _w - 7; x += _step) { |
| int i; |
| int j; |
| double s_means[4]; |
| double d_means[4]; |
| double s_vars[4]; |
| double d_vars[4]; |
| double s_gmean = 0; |
| double d_gmean = 0; |
| double s_gvar = 0; |
| double d_gvar = 0; |
| double s_mask = 0; |
| double d_mask = 0; |
| for (i = 0; i < 4; i++) |
| s_means[i] = d_means[i] = s_vars[i] = d_vars[i] = 0; |
| for (i = 0; i < 8; i++) { |
| for (j = 0; j < 8; j++) { |
| int sub = ((i & 12) >> 2) + ((j & 12) >> 1); |
| if (bit_depth == 8 && _shift == 0) { |
| dct_s[i * 8 + j] = _src8[(y + i) * _systride + (j + x)]; |
| dct_d[i * 8 + j] = _dst8[(y + i) * _dystride + (j + x)]; |
| } else if (bit_depth == 10 || bit_depth == 12) { |
| dct_s[i * 8 + j] = _src16[(y + i) * _systride + (j + x)] >> _shift; |
| dct_d[i * 8 + j] = _dst16[(y + i) * _dystride + (j + x)] >> _shift; |
| } |
| s_gmean += dct_s[i * 8 + j]; |
| d_gmean += dct_d[i * 8 + j]; |
| s_means[sub] += dct_s[i * 8 + j]; |
| d_means[sub] += dct_d[i * 8 + j]; |
| } |
| } |
| s_gmean /= 64.f; |
| d_gmean /= 64.f; |
| for (i = 0; i < 4; i++) s_means[i] /= 16.f; |
| for (i = 0; i < 4; i++) d_means[i] /= 16.f; |
| for (i = 0; i < 8; i++) { |
| for (j = 0; j < 8; j++) { |
| int sub = ((i & 12) >> 2) + ((j & 12) >> 1); |
| s_gvar += (dct_s[i * 8 + j] - s_gmean) * (dct_s[i * 8 + j] - s_gmean); |
| d_gvar += (dct_d[i * 8 + j] - d_gmean) * (dct_d[i * 8 + j] - d_gmean); |
| s_vars[sub] += (dct_s[i * 8 + j] - s_means[sub]) * |
| (dct_s[i * 8 + j] - s_means[sub]); |
| d_vars[sub] += (dct_d[i * 8 + j] - d_means[sub]) * |
| (dct_d[i * 8 + j] - d_means[sub]); |
| } |
| } |
| s_gvar *= 1 / 63.f * 64; |
| d_gvar *= 1 / 63.f * 64; |
| for (i = 0; i < 4; i++) s_vars[i] *= 1 / 15.f * 16; |
| for (i = 0; i < 4; i++) d_vars[i] *= 1 / 15.f * 16; |
| if (s_gvar > 0) |
| s_gvar = (s_vars[0] + s_vars[1] + s_vars[2] + s_vars[3]) / s_gvar; |
| if (d_gvar > 0) |
| d_gvar = (d_vars[0] + d_vars[1] + d_vars[2] + d_vars[3]) / d_gvar; |
| #if CONFIG_HIGHBITDEPTH |
| if (bit_depth == 10 || bit_depth == 12) { |
| hbd_od_bin_fdct8x8(dct_s_coef, 8, dct_s, 8); |
| hbd_od_bin_fdct8x8(dct_d_coef, 8, dct_d, 8); |
| } |
| #endif |
| if (bit_depth == 8) { |
| od_bin_fdct8x8(dct_s_coef, 8, dct_s, 8); |
| od_bin_fdct8x8(dct_d_coef, 8, dct_d, 8); |
| } |
| for (i = 0; i < 8; i++) |
| for (j = (i == 0); j < 8; j++) |
| s_mask += dct_s_coef[i * 8 + j] * dct_s_coef[i * 8 + j] * mask[i][j]; |
| for (i = 0; i < 8; i++) |
| for (j = (i == 0); j < 8; j++) |
| d_mask += dct_d_coef[i * 8 + j] * dct_d_coef[i * 8 + j] * mask[i][j]; |
| s_mask = sqrt(s_mask * s_gvar) / 32.f; |
| d_mask = sqrt(d_mask * d_gvar) / 32.f; |
| if (d_mask > s_mask) s_mask = d_mask; |
| for (i = 0; i < 8; i++) { |
| for (j = 0; j < 8; j++) { |
| double err; |
| err = fabs((double)(dct_s_coef[i * 8 + j] - dct_d_coef[i * 8 + j])); |
| if (i != 0 || j != 0) |
| err = err < s_mask / mask[i][j] ? 0 : err - s_mask / mask[i][j]; |
| ret += (err * _csf[i][j]) * (err * _csf[i][j]); |
| pixels++; |
| } |
| } |
| } |
| } |
| if (pixels <= 0) return 0; |
| ret /= pixels; |
| return ret; |
| } |
| |
| double aom_psnrhvs(const YV12_BUFFER_CONFIG *src, const YV12_BUFFER_CONFIG *dst, |
| double *y_psnrhvs, double *u_psnrhvs, double *v_psnrhvs, |
| uint32_t bd, uint32_t in_bd) { |
| double psnrhvs; |
| const double par = 1.0; |
| const int step = 7; |
| uint32_t bd_shift = 0; |
| aom_clear_system_state(); |
| |
| assert(bd == 8 || bd == 10 || bd == 12); |
| assert(bd >= in_bd); |
| |
| bd_shift = bd - in_bd; |
| |
| *y_psnrhvs = calc_psnrhvs(src->y_buffer, src->y_stride, dst->y_buffer, |
| dst->y_stride, par, src->y_crop_width, |
| src->y_crop_height, step, csf_y, bd, bd_shift); |
| *u_psnrhvs = calc_psnrhvs(src->u_buffer, src->uv_stride, dst->u_buffer, |
| dst->uv_stride, par, src->uv_crop_width, |
| src->uv_crop_height, step, csf_cb420, bd, bd_shift); |
| *v_psnrhvs = calc_psnrhvs(src->v_buffer, src->uv_stride, dst->v_buffer, |
| dst->uv_stride, par, src->uv_crop_width, |
| src->uv_crop_height, step, csf_cr420, bd, bd_shift); |
| psnrhvs = (*y_psnrhvs) * .8 + .1 * ((*u_psnrhvs) + (*v_psnrhvs)); |
| return convert_score_db(psnrhvs, 1.0, in_bd); |
| } |