| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <math.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/aom_once.h" |
| |
| #include "av1/common/alloccommon.h" |
| #include "av1/encoder/aq_cyclicrefresh.h" |
| #include "av1/common/common.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/quant_common.h" |
| #include "av1/common/seg_common.h" |
| |
| #include "av1/encoder/encodemv.h" |
| #include "av1/encoder/encode_strategy.h" |
| #include "av1/encoder/gop_structure.h" |
| #include "av1/encoder/random.h" |
| #include "av1/encoder/ratectrl.h" |
| |
| #define USE_UNRESTRICTED_Q_IN_CQ_MODE 0 |
| |
| // Max rate target for 1080P and below encodes under normal circumstances |
| // (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB |
| #define MAX_MB_RATE 250 |
| #define MAXRATE_1080P 2025000 |
| |
| #define MIN_BPB_FACTOR 0.005 |
| #define MAX_BPB_FACTOR 50 |
| |
| #define SUPERRES_QADJ_PER_DENOM_KEYFRAME_SOLO 0 |
| #define SUPERRES_QADJ_PER_DENOM_KEYFRAME 2 |
| #define SUPERRES_QADJ_PER_DENOM_ARFFRAME 0 |
| |
| #define FRAME_OVERHEAD_BITS 200 |
| #define ASSIGN_MINQ_TABLE(bit_depth, name) \ |
| do { \ |
| switch (bit_depth) { \ |
| case AOM_BITS_8: name = name##_8; break; \ |
| case AOM_BITS_10: name = name##_10; break; \ |
| case AOM_BITS_12: name = name##_12; break; \ |
| default: \ |
| assert(0 && \ |
| "bit_depth should be AOM_BITS_8, AOM_BITS_10" \ |
| " or AOM_BITS_12"); \ |
| name = NULL; \ |
| } \ |
| } while (0) |
| |
| // Tables relating active max Q to active min Q |
| static int kf_low_motion_minq_8[QINDEX_RANGE]; |
| static int kf_high_motion_minq_8[QINDEX_RANGE]; |
| static int arfgf_low_motion_minq_8[QINDEX_RANGE]; |
| static int arfgf_high_motion_minq_8[QINDEX_RANGE]; |
| static int inter_minq_8[QINDEX_RANGE]; |
| static int rtc_minq_8[QINDEX_RANGE]; |
| |
| static int kf_low_motion_minq_10[QINDEX_RANGE]; |
| static int kf_high_motion_minq_10[QINDEX_RANGE]; |
| static int arfgf_low_motion_minq_10[QINDEX_RANGE]; |
| static int arfgf_high_motion_minq_10[QINDEX_RANGE]; |
| static int inter_minq_10[QINDEX_RANGE]; |
| static int rtc_minq_10[QINDEX_RANGE]; |
| static int kf_low_motion_minq_12[QINDEX_RANGE]; |
| static int kf_high_motion_minq_12[QINDEX_RANGE]; |
| static int arfgf_low_motion_minq_12[QINDEX_RANGE]; |
| static int arfgf_high_motion_minq_12[QINDEX_RANGE]; |
| static int inter_minq_12[QINDEX_RANGE]; |
| static int rtc_minq_12[QINDEX_RANGE]; |
| |
| static int gf_high = 2400; |
| static int gf_low = 300; |
| #ifdef STRICT_RC |
| static int kf_high = 3200; |
| #else |
| static int kf_high = 5000; |
| #endif |
| static int kf_low = 400; |
| |
| // How many times less pixels there are to encode given the current scaling. |
| // Temporary replacement for rcf_mult and rate_thresh_mult. |
| static double resize_rate_factor(const FrameDimensionCfg *const frm_dim_cfg, |
| int width, int height) { |
| return (double)(frm_dim_cfg->width * frm_dim_cfg->height) / (width * height); |
| } |
| |
| // Functions to compute the active minq lookup table entries based on a |
| // formulaic approach to facilitate easier adjustment of the Q tables. |
| // The formulae were derived from computing a 3rd order polynomial best |
| // fit to the original data (after plotting real maxq vs minq (not q index)) |
| static int get_minq_index(double maxq, double x3, double x2, double x1, |
| aom_bit_depth_t bit_depth) { |
| const double minqtarget = AOMMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq); |
| |
| // Special case handling to deal with the step from q2.0 |
| // down to lossless mode represented by q 1.0. |
| if (minqtarget <= 2.0) return 0; |
| |
| return av1_find_qindex(minqtarget, bit_depth, 0, QINDEX_RANGE - 1); |
| } |
| |
| static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low, |
| int *arfgf_high, int *inter, int *rtc, |
| aom_bit_depth_t bit_depth) { |
| int i; |
| for (i = 0; i < QINDEX_RANGE; i++) { |
| const double maxq = av1_convert_qindex_to_q(i, bit_depth); |
| kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth); |
| kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.45, bit_depth); |
| arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth); |
| arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth); |
| inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth); |
| rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth); |
| } |
| } |
| |
| static void rc_init_minq_luts(void) { |
| init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8, |
| arfgf_low_motion_minq_8, arfgf_high_motion_minq_8, |
| inter_minq_8, rtc_minq_8, AOM_BITS_8); |
| init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10, |
| arfgf_low_motion_minq_10, arfgf_high_motion_minq_10, |
| inter_minq_10, rtc_minq_10, AOM_BITS_10); |
| init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12, |
| arfgf_low_motion_minq_12, arfgf_high_motion_minq_12, |
| inter_minq_12, rtc_minq_12, AOM_BITS_12); |
| } |
| |
| void av1_rc_init_minq_luts(void) { aom_once(rc_init_minq_luts); } |
| |
| // These functions use formulaic calculations to make playing with the |
| // quantizer tables easier. If necessary they can be replaced by lookup |
| // tables if and when things settle down in the experimental bitstream |
| double av1_convert_qindex_to_q(int qindex, aom_bit_depth_t bit_depth) { |
| // Convert the index to a real Q value (scaled down to match old Q values) |
| switch (bit_depth) { |
| case AOM_BITS_8: return av1_ac_quant_QTX(qindex, 0, bit_depth) / 4.0; |
| case AOM_BITS_10: return av1_ac_quant_QTX(qindex, 0, bit_depth) / 16.0; |
| case AOM_BITS_12: return av1_ac_quant_QTX(qindex, 0, bit_depth) / 64.0; |
| default: |
| assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); |
| return -1.0; |
| } |
| } |
| |
| int av1_rc_bits_per_mb(FRAME_TYPE frame_type, int qindex, |
| double correction_factor, aom_bit_depth_t bit_depth, |
| const int is_screen_content_type) { |
| const double q = av1_convert_qindex_to_q(qindex, bit_depth); |
| int enumerator = frame_type == KEY_FRAME ? 2000000 : 1500000; |
| if (is_screen_content_type) { |
| enumerator = frame_type == KEY_FRAME ? 1000000 : 750000; |
| } |
| |
| assert(correction_factor <= MAX_BPB_FACTOR && |
| correction_factor >= MIN_BPB_FACTOR); |
| |
| // q based adjustment to baseline enumerator |
| return (int)(enumerator * correction_factor / q); |
| } |
| |
| int av1_estimate_bits_at_q(FRAME_TYPE frame_type, int q, int mbs, |
| double correction_factor, aom_bit_depth_t bit_depth, |
| const int is_screen_content_type) { |
| const int bpm = (int)(av1_rc_bits_per_mb(frame_type, q, correction_factor, |
| bit_depth, is_screen_content_type)); |
| return AOMMAX(FRAME_OVERHEAD_BITS, |
| (int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS); |
| } |
| |
| int av1_rc_clamp_pframe_target_size(const AV1_COMP *const cpi, int target, |
| FRAME_UPDATE_TYPE frame_update_type) { |
| const RATE_CONTROL *rc = &cpi->rc; |
| const AV1EncoderConfig *oxcf = &cpi->oxcf; |
| const int min_frame_target = |
| AOMMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5); |
| // Clip the frame target to the minimum setup value. |
| if (frame_update_type == OVERLAY_UPDATE || |
| frame_update_type == INTNL_OVERLAY_UPDATE) { |
| // If there is an active ARF at this location use the minimum |
| // bits on this frame even if it is a constructed arf. |
| // The active maximum quantizer insures that an appropriate |
| // number of bits will be spent if needed for constructed ARFs. |
| target = min_frame_target; |
| } else if (target < min_frame_target) { |
| target = min_frame_target; |
| } |
| |
| // Clip the frame target to the maximum allowed value. |
| if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth; |
| if (oxcf->rc_cfg.max_inter_bitrate_pct) { |
| const int max_rate = |
| rc->avg_frame_bandwidth * oxcf->rc_cfg.max_inter_bitrate_pct / 100; |
| target = AOMMIN(target, max_rate); |
| } |
| |
| return target; |
| } |
| |
| int av1_rc_clamp_iframe_target_size(const AV1_COMP *const cpi, int64_t target) { |
| const RATE_CONTROL *rc = &cpi->rc; |
| const RateControlCfg *const rc_cfg = &cpi->oxcf.rc_cfg; |
| if (rc_cfg->max_intra_bitrate_pct) { |
| const int64_t max_rate = |
| (int64_t)rc->avg_frame_bandwidth * rc_cfg->max_intra_bitrate_pct / 100; |
| target = AOMMIN(target, max_rate); |
| } |
| if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth; |
| return (int)target; |
| } |
| |
| // Update the buffer level for higher temporal layers, given the encoded current |
| // temporal layer. |
| static void update_layer_buffer_level(SVC *svc, int encoded_frame_size) { |
| const int current_temporal_layer = svc->temporal_layer_id; |
| for (int i = current_temporal_layer + 1; i < svc->number_temporal_layers; |
| ++i) { |
| const int layer = |
| LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, svc->number_temporal_layers); |
| LAYER_CONTEXT *lc = &svc->layer_context[layer]; |
| PRIMARY_RATE_CONTROL *lp_rc = &lc->p_rc; |
| lp_rc->bits_off_target += |
| (int)round(lc->target_bandwidth / lc->framerate) - encoded_frame_size; |
| // Clip buffer level to maximum buffer size for the layer. |
| lp_rc->bits_off_target = |
| AOMMIN(lp_rc->bits_off_target, lp_rc->maximum_buffer_size); |
| lp_rc->buffer_level = lp_rc->bits_off_target; |
| } |
| } |
| // Update the buffer level: leaky bucket model. |
| static void update_buffer_level(AV1_COMP *cpi, int encoded_frame_size) { |
| const AV1_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| |
| // Non-viewable frames are a special case and are treated as pure overhead. |
| if (!cm->show_frame) |
| p_rc->bits_off_target -= encoded_frame_size; |
| else |
| p_rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size; |
| |
| // Clip the buffer level to the maximum specified buffer size. |
| p_rc->bits_off_target = |
| AOMMIN(p_rc->bits_off_target, p_rc->maximum_buffer_size); |
| // For screen-content mode: don't let buffel level go below threshold, |
| // given here as -rc->maximum_ buffer_size, to allow buffer to come back |
| // up sooner after slide change with big oveshoot. |
| if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) |
| p_rc->bits_off_target = |
| AOMMAX(p_rc->bits_off_target, -p_rc->maximum_buffer_size); |
| p_rc->buffer_level = p_rc->bits_off_target; |
| |
| if (cpi->ppi->use_svc) |
| update_layer_buffer_level(&cpi->svc, encoded_frame_size); |
| |
| #if CONFIG_FPMT_TEST |
| /* The variable temp_buffer_level is introduced for quality |
| * simulation purpose, it retains the value previous to the parallel |
| * encode frames. The variable is updated based on the update flag. |
| * |
| * If there exist show_existing_frames between parallel frames, then to |
| * retain the temp state do not update it. */ |
| int show_existing_between_parallel_frames = |
| (cpi->ppi->gf_group.update_type[cpi->gf_frame_index] == |
| INTNL_OVERLAY_UPDATE && |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index + 1] == 2); |
| |
| if (cpi->do_frame_data_update && !show_existing_between_parallel_frames && |
| cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { |
| p_rc->temp_buffer_level = p_rc->buffer_level; |
| } |
| #endif |
| } |
| |
| int av1_rc_get_default_min_gf_interval(int width, int height, |
| double framerate) { |
| // Assume we do not need any constraint lower than 4K 20 fps |
| static const double factor_safe = 3840 * 2160 * 20.0; |
| const double factor = width * height * framerate; |
| const int default_interval = |
| clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL); |
| |
| if (factor <= factor_safe) |
| return default_interval; |
| else |
| return AOMMAX(default_interval, |
| (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5)); |
| // Note this logic makes: |
| // 4K24: 5 |
| // 4K30: 6 |
| // 4K60: 12 |
| } |
| |
| int av1_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) { |
| int interval = AOMMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75)); |
| interval += (interval & 0x01); // Round to even value |
| interval = AOMMAX(MAX_GF_INTERVAL, interval); |
| return AOMMAX(interval, min_gf_interval); |
| } |
| |
| void av1_primary_rc_init(const AV1EncoderConfig *oxcf, |
| PRIMARY_RATE_CONTROL *p_rc) { |
| const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; |
| |
| int worst_allowed_q = rc_cfg->worst_allowed_q; |
| |
| int min_gf_interval = oxcf->gf_cfg.min_gf_interval; |
| int max_gf_interval = oxcf->gf_cfg.max_gf_interval; |
| if (min_gf_interval == 0) |
| min_gf_interval = av1_rc_get_default_min_gf_interval( |
| oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height, |
| oxcf->input_cfg.init_framerate); |
| if (max_gf_interval == 0) |
| max_gf_interval = av1_rc_get_default_max_gf_interval( |
| oxcf->input_cfg.init_framerate, min_gf_interval); |
| p_rc->baseline_gf_interval = (min_gf_interval + max_gf_interval) / 2; |
| p_rc->this_key_frame_forced = 0; |
| p_rc->next_key_frame_forced = 0; |
| p_rc->ni_frames = 0; |
| |
| p_rc->tot_q = 0.0; |
| p_rc->total_actual_bits = 0; |
| p_rc->total_target_bits = 0; |
| p_rc->buffer_level = p_rc->starting_buffer_level; |
| |
| if (oxcf->target_seq_level_idx[0] < SEQ_LEVELS) { |
| worst_allowed_q = 255; |
| } |
| if (oxcf->pass == AOM_RC_ONE_PASS && rc_cfg->mode == AOM_CBR) { |
| p_rc->avg_frame_qindex[KEY_FRAME] = worst_allowed_q; |
| p_rc->avg_frame_qindex[INTER_FRAME] = worst_allowed_q; |
| } else { |
| p_rc->avg_frame_qindex[KEY_FRAME] = |
| (worst_allowed_q + rc_cfg->best_allowed_q) / 2; |
| p_rc->avg_frame_qindex[INTER_FRAME] = |
| (worst_allowed_q + rc_cfg->best_allowed_q) / 2; |
| } |
| p_rc->avg_q = av1_convert_qindex_to_q(rc_cfg->worst_allowed_q, |
| oxcf->tool_cfg.bit_depth); |
| p_rc->last_q[KEY_FRAME] = rc_cfg->best_allowed_q; |
| p_rc->last_q[INTER_FRAME] = rc_cfg->worst_allowed_q; |
| |
| for (int i = 0; i < RATE_FACTOR_LEVELS; ++i) { |
| p_rc->rate_correction_factors[i] = 0.7; |
| } |
| p_rc->rate_correction_factors[KF_STD] = 1.0; |
| p_rc->bits_off_target = p_rc->starting_buffer_level; |
| |
| p_rc->rolling_target_bits = |
| (int)(oxcf->rc_cfg.target_bandwidth / oxcf->input_cfg.init_framerate); |
| p_rc->rolling_actual_bits = |
| (int)(oxcf->rc_cfg.target_bandwidth / oxcf->input_cfg.init_framerate); |
| } |
| |
| void av1_rc_init(const AV1EncoderConfig *oxcf, RATE_CONTROL *rc) { |
| const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; |
| |
| rc->frames_since_key = 8; // Sensible default for first frame. |
| |
| rc->frames_till_gf_update_due = 0; |
| rc->ni_av_qi = rc_cfg->worst_allowed_q; |
| rc->ni_tot_qi = 0; |
| |
| rc->min_gf_interval = oxcf->gf_cfg.min_gf_interval; |
| rc->max_gf_interval = oxcf->gf_cfg.max_gf_interval; |
| if (rc->min_gf_interval == 0) |
| rc->min_gf_interval = av1_rc_get_default_min_gf_interval( |
| oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height, |
| oxcf->input_cfg.init_framerate); |
| if (rc->max_gf_interval == 0) |
| rc->max_gf_interval = av1_rc_get_default_max_gf_interval( |
| oxcf->input_cfg.init_framerate, rc->min_gf_interval); |
| rc->avg_frame_low_motion = 0; |
| |
| rc->resize_state = ORIG; |
| rc->resize_avg_qp = 0; |
| rc->resize_buffer_underflow = 0; |
| rc->resize_count = 0; |
| rc->rtc_external_ratectrl = 0; |
| rc->frame_level_fast_extra_bits = 0; |
| } |
| |
| int av1_rc_drop_frame(AV1_COMP *cpi) { |
| const AV1EncoderConfig *oxcf = &cpi->oxcf; |
| RATE_CONTROL *const rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| #if CONFIG_FPMT_TEST |
| const int simulate_parallel_frame = |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && |
| cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; |
| int64_t buffer_level = |
| simulate_parallel_frame ? p_rc->temp_buffer_level : p_rc->buffer_level; |
| #else |
| int64_t buffer_level = p_rc->buffer_level; |
| #endif |
| |
| if (!oxcf->rc_cfg.drop_frames_water_mark) { |
| return 0; |
| } else { |
| if (buffer_level < 0) { |
| // Always drop if buffer is below 0. |
| return 1; |
| } else { |
| // If buffer is below drop_mark, for now just drop every other frame |
| // (starting with the next frame) until it increases back over drop_mark. |
| int drop_mark = (int)(oxcf->rc_cfg.drop_frames_water_mark * |
| p_rc->optimal_buffer_level / 100); |
| if ((buffer_level > drop_mark) && (rc->decimation_factor > 0)) { |
| --rc->decimation_factor; |
| } else if (buffer_level <= drop_mark && rc->decimation_factor == 0) { |
| rc->decimation_factor = 1; |
| } |
| if (rc->decimation_factor > 0) { |
| if (rc->decimation_count > 0) { |
| --rc->decimation_count; |
| return 1; |
| } else { |
| rc->decimation_count = rc->decimation_factor; |
| return 0; |
| } |
| } else { |
| rc->decimation_count = 0; |
| return 0; |
| } |
| } |
| } |
| } |
| |
| static int adjust_q_cbr(const AV1_COMP *cpi, int q, int active_worst_quality) { |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| const AV1_COMMON *const cm = &cpi->common; |
| const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; |
| const int max_delta_down = |
| (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) ? 8 : 16; |
| const int max_delta_up = 20; |
| const int change_avg_frame_bandwidth = |
| abs(rc->avg_frame_bandwidth - rc->prev_avg_frame_bandwidth) > |
| 0.1 * (rc->avg_frame_bandwidth); |
| // If resolution changes or avg_frame_bandwidth significantly changed, |
| // then set this flag to indicate change in target bits per macroblock. |
| const int change_target_bits_mb = |
| cm->prev_frame && |
| (cm->width != cm->prev_frame->width || |
| cm->height != cm->prev_frame->height || change_avg_frame_bandwidth); |
| // Apply some control/clamp to QP under certain conditions. |
| if (cm->current_frame.frame_type != KEY_FRAME && !cpi->ppi->use_svc && |
| rc->frames_since_key > 1 && !change_target_bits_mb && |
| (!cpi->oxcf.rc_cfg.gf_cbr_boost_pct || |
| !(refresh_frame->alt_ref_frame || refresh_frame->golden_frame))) { |
| // Make sure q is between oscillating Qs to prevent resonance. |
| if (rc->rc_1_frame * rc->rc_2_frame == -1 && |
| rc->q_1_frame != rc->q_2_frame) { |
| int qclamp = clamp(q, AOMMIN(rc->q_1_frame, rc->q_2_frame), |
| AOMMAX(rc->q_1_frame, rc->q_2_frame)); |
| // If the previous frame had overshoot and the current q needs to |
| // increase above the clamped value, reduce the clamp for faster reaction |
| // to overshoot. |
| if (cpi->rc.rc_1_frame == -1 && q > qclamp && rc->frames_since_key > 10) |
| q = (q + qclamp) >> 1; |
| else |
| q = qclamp; |
| } |
| // Adjust Q base on source content change from scene detection. |
| if (cpi->sf.rt_sf.check_scene_detection && rc->prev_avg_source_sad > 0 && |
| rc->frames_since_key > 10 && rc->frame_source_sad > 0 && |
| !cpi->ppi->use_svc) { |
| const int bit_depth = cm->seq_params->bit_depth; |
| double delta = |
| (double)rc->avg_source_sad / (double)rc->prev_avg_source_sad - 1.0; |
| // Push Q downwards if content change is decreasing and buffer level |
| // is stable (at least 1/4-optimal level), so not overshooting. Do so |
| // only for high Q to avoid excess overshoot. |
| // Else reduce decrease in Q from previous frame if content change is |
| // increasing and buffer is below max (so not undershooting). |
| if (delta < 0.0 && |
| p_rc->buffer_level > (p_rc->optimal_buffer_level >> 2) && |
| q > (rc->worst_quality >> 1)) { |
| double q_adj_factor = 1.0 + 0.5 * tanh(4.0 * delta); |
| double q_val = av1_convert_qindex_to_q(q, bit_depth); |
| q += av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth); |
| } else if (rc->q_1_frame - q > 0 && delta > 0.1 && |
| p_rc->buffer_level < AOMMIN(p_rc->maximum_buffer_size, |
| p_rc->optimal_buffer_level << 1)) { |
| q = (3 * q + rc->q_1_frame) >> 2; |
| } |
| } |
| // Limit the decrease in Q from previous frame. |
| if (rc->q_1_frame - q > max_delta_down) q = rc->q_1_frame - max_delta_down; |
| // Limit the increase in Q from previous frame. |
| else if (q - rc->q_1_frame > max_delta_up && |
| cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN) |
| q = rc->q_1_frame + max_delta_up; |
| } |
| // For single spatial layer: if resolution has increased push q closer |
| // to the active_worst to avoid excess overshoot. |
| if (cpi->svc.number_spatial_layers <= 1 && cm->prev_frame && |
| (cm->width * cm->height > |
| 1.5 * cm->prev_frame->width * cm->prev_frame->height)) |
| q = (q + active_worst_quality) >> 1; |
| return AOMMAX(AOMMIN(q, cpi->rc.worst_quality), cpi->rc.best_quality); |
| } |
| |
| static const RATE_FACTOR_LEVEL rate_factor_levels[FRAME_UPDATE_TYPES] = { |
| KF_STD, // KF_UPDATE |
| INTER_NORMAL, // LF_UPDATE |
| GF_ARF_STD, // GF_UPDATE |
| GF_ARF_STD, // ARF_UPDATE |
| INTER_NORMAL, // OVERLAY_UPDATE |
| INTER_NORMAL, // INTNL_OVERLAY_UPDATE |
| GF_ARF_LOW, // INTNL_ARF_UPDATE |
| }; |
| |
| static RATE_FACTOR_LEVEL get_rate_factor_level(const GF_GROUP *const gf_group, |
| int gf_frame_index) { |
| const FRAME_UPDATE_TYPE update_type = gf_group->update_type[gf_frame_index]; |
| assert(update_type < FRAME_UPDATE_TYPES); |
| return rate_factor_levels[update_type]; |
| } |
| |
| /*!\brief Gets a rate vs Q correction factor |
| * |
| * This function returns the current value of a correction factor used to |
| * dynamilcally adjust the relationship between Q and the expected number |
| * of bits for the frame. |
| * |
| * \ingroup rate_control |
| * \param[in] cpi Top level encoder instance structure |
| * \param[in] width Frame width |
| * \param[in] height Frame height |
| * |
| * \return Returns a correction factor for the current frame |
| */ |
| static double get_rate_correction_factor(const AV1_COMP *cpi, int width, |
| int height) { |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; |
| double rcf; |
| double rate_correction_factors_kfstd; |
| double rate_correction_factors_gfarfstd; |
| double rate_correction_factors_internormal; |
| |
| rate_correction_factors_kfstd = |
| (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) |
| ? rc->frame_level_rate_correction_factors[KF_STD] |
| : p_rc->rate_correction_factors[KF_STD]; |
| rate_correction_factors_gfarfstd = |
| (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) |
| ? rc->frame_level_rate_correction_factors[GF_ARF_STD] |
| : p_rc->rate_correction_factors[GF_ARF_STD]; |
| rate_correction_factors_internormal = |
| (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) |
| ? rc->frame_level_rate_correction_factors[INTER_NORMAL] |
| : p_rc->rate_correction_factors[INTER_NORMAL]; |
| |
| if (cpi->common.current_frame.frame_type == KEY_FRAME) { |
| rcf = rate_correction_factors_kfstd; |
| } else if (is_stat_consumption_stage(cpi)) { |
| const RATE_FACTOR_LEVEL rf_lvl = |
| get_rate_factor_level(&cpi->ppi->gf_group, cpi->gf_frame_index); |
| double rate_correction_factors_rflvl = |
| (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) |
| ? rc->frame_level_rate_correction_factors[rf_lvl] |
| : p_rc->rate_correction_factors[rf_lvl]; |
| rcf = rate_correction_factors_rflvl; |
| } else { |
| if ((refresh_frame->alt_ref_frame || refresh_frame->golden_frame) && |
| !rc->is_src_frame_alt_ref && !cpi->ppi->use_svc && |
| (cpi->oxcf.rc_cfg.mode != AOM_CBR || |
| cpi->oxcf.rc_cfg.gf_cbr_boost_pct > 20)) |
| rcf = rate_correction_factors_gfarfstd; |
| else |
| rcf = rate_correction_factors_internormal; |
| } |
| rcf *= resize_rate_factor(&cpi->oxcf.frm_dim_cfg, width, height); |
| return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR); |
| } |
| |
| /*!\brief Sets a rate vs Q correction factor |
| * |
| * This function updates the current value of a correction factor used to |
| * dynamilcally adjust the relationship between Q and the expected number |
| * of bits for the frame. |
| * |
| * \ingroup rate_control |
| * \param[in] cpi Top level encoder instance structure |
| * \param[in] is_encode_stage Indicates if recode loop or post-encode |
| * \param[in] factor New correction factor |
| * \param[in] width Frame width |
| * \param[in] height Frame height |
| * |
| * \return None but updates the rate correction factor for the |
| * current frame type in cpi->rc. |
| */ |
| static void set_rate_correction_factor(AV1_COMP *cpi, int is_encode_stage, |
| double factor, int width, int height) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; |
| int update_default_rcf = 1; |
| // Normalize RCF to account for the size-dependent scaling factor. |
| factor /= resize_rate_factor(&cpi->oxcf.frm_dim_cfg, width, height); |
| |
| factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR); |
| |
| if (cpi->common.current_frame.frame_type == KEY_FRAME) { |
| p_rc->rate_correction_factors[KF_STD] = factor; |
| } else if (is_stat_consumption_stage(cpi)) { |
| const RATE_FACTOR_LEVEL rf_lvl = |
| get_rate_factor_level(&cpi->ppi->gf_group, cpi->gf_frame_index); |
| if (is_encode_stage && |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { |
| rc->frame_level_rate_correction_factors[rf_lvl] = factor; |
| update_default_rcf = 0; |
| } |
| if (update_default_rcf) p_rc->rate_correction_factors[rf_lvl] = factor; |
| } else { |
| if ((refresh_frame->alt_ref_frame || refresh_frame->golden_frame) && |
| !rc->is_src_frame_alt_ref && !cpi->ppi->use_svc && |
| (cpi->oxcf.rc_cfg.mode != AOM_CBR || |
| cpi->oxcf.rc_cfg.gf_cbr_boost_pct > 20)) { |
| p_rc->rate_correction_factors[GF_ARF_STD] = factor; |
| } else { |
| if (is_encode_stage && |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { |
| rc->frame_level_rate_correction_factors[INTER_NORMAL] = factor; |
| update_default_rcf = 0; |
| } |
| if (update_default_rcf) |
| p_rc->rate_correction_factors[INTER_NORMAL] = factor; |
| } |
| } |
| } |
| |
| void av1_rc_update_rate_correction_factors(AV1_COMP *cpi, int is_encode_stage, |
| int width, int height) { |
| const AV1_COMMON *const cm = &cpi->common; |
| double correction_factor = 1.0; |
| double rate_correction_factor = |
| get_rate_correction_factor(cpi, width, height); |
| double adjustment_limit; |
| const int MBs = av1_get_MBs(width, height); |
| int projected_size_based_on_q = 0; |
| |
| // Do not update the rate factors for arf overlay frames. |
| if (cpi->rc.is_src_frame_alt_ref) return; |
| |
| // Clear down mmx registers to allow floating point in what follows |
| |
| // Work out how big we would have expected the frame to be at this Q given |
| // the current correction factor. |
| // Stay in double to avoid int overflow when values are large |
| if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled) { |
| projected_size_based_on_q = |
| av1_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor); |
| } else { |
| projected_size_based_on_q = av1_estimate_bits_at_q( |
| cm->current_frame.frame_type, cm->quant_params.base_qindex, MBs, |
| rate_correction_factor, cm->seq_params->bit_depth, |
| cpi->is_screen_content_type); |
| } |
| // Work out a size correction factor. |
| if (projected_size_based_on_q > FRAME_OVERHEAD_BITS) |
| correction_factor = (double)cpi->rc.projected_frame_size / |
| (double)projected_size_based_on_q; |
| |
| // Clamp correction factor to prevent anything too extreme |
| correction_factor = AOMMIN(AOMMAX(correction_factor, 0.25), 4.0); |
| |
| // Decide how heavily to dampen the adjustment |
| if (correction_factor > 0.0) { |
| if (cpi->is_screen_content_type) { |
| adjustment_limit = |
| 0.25 + 0.5 * AOMMIN(0.5, fabs(log10(correction_factor))); |
| } else { |
| adjustment_limit = |
| 0.25 + 0.75 * AOMMIN(0.5, fabs(log10(correction_factor))); |
| } |
| } else { |
| adjustment_limit = 0.75; |
| } |
| |
| cpi->rc.q_2_frame = cpi->rc.q_1_frame; |
| cpi->rc.q_1_frame = cm->quant_params.base_qindex; |
| cpi->rc.rc_2_frame = cpi->rc.rc_1_frame; |
| if (correction_factor > 1.1) |
| cpi->rc.rc_1_frame = -1; |
| else if (correction_factor < 0.9) |
| cpi->rc.rc_1_frame = 1; |
| else |
| cpi->rc.rc_1_frame = 0; |
| |
| if (correction_factor > 1.01) { |
| // We are not already at the worst allowable quality |
| correction_factor = (1.0 + ((correction_factor - 1.0) * adjustment_limit)); |
| rate_correction_factor = rate_correction_factor * correction_factor; |
| // Keep rate_correction_factor within limits |
| if (rate_correction_factor > MAX_BPB_FACTOR) |
| rate_correction_factor = MAX_BPB_FACTOR; |
| } else if (correction_factor < 0.99) { |
| // We are not already at the best allowable quality |
| correction_factor = 1.0 / correction_factor; |
| correction_factor = (1.0 + ((correction_factor - 1.0) * adjustment_limit)); |
| correction_factor = 1.0 / correction_factor; |
| |
| rate_correction_factor = rate_correction_factor * correction_factor; |
| |
| // Keep rate_correction_factor within limits |
| if (rate_correction_factor < MIN_BPB_FACTOR) |
| rate_correction_factor = MIN_BPB_FACTOR; |
| } |
| |
| set_rate_correction_factor(cpi, is_encode_stage, rate_correction_factor, |
| width, height); |
| } |
| |
| // Calculate rate for the given 'q'. |
| static int get_bits_per_mb(const AV1_COMP *cpi, int use_cyclic_refresh, |
| double correction_factor, int q) { |
| const AV1_COMMON *const cm = &cpi->common; |
| return use_cyclic_refresh |
| ? av1_cyclic_refresh_rc_bits_per_mb(cpi, q, correction_factor) |
| : av1_rc_bits_per_mb(cm->current_frame.frame_type, q, |
| correction_factor, cm->seq_params->bit_depth, |
| cpi->is_screen_content_type); |
| } |
| |
| /*!\brief Searches for a Q index value predicted to give an average macro |
| * block rate closest to the target value. |
| * |
| * Similar to find_qindex_by_rate() function, but returns a q index with a |
| * rate just above or below the desired rate, depending on which of the two |
| * rates is closer to the desired rate. |
| * Also, respects the selected aq_mode when computing the rate. |
| * |
| * \ingroup rate_control |
| * \param[in] desired_bits_per_mb Target bits per mb |
| * \param[in] cpi Top level encoder instance structure |
| * \param[in] correction_factor Current Q to rate correction factor |
| * \param[in] best_qindex Min allowed Q value. |
| * \param[in] worst_qindex Max allowed Q value. |
| * |
| * \return Returns a correction factor for the current frame |
| */ |
| static int find_closest_qindex_by_rate(int desired_bits_per_mb, |
| const AV1_COMP *cpi, |
| double correction_factor, |
| int best_qindex, int worst_qindex) { |
| const int use_cyclic_refresh = cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && |
| cpi->cyclic_refresh->apply_cyclic_refresh; |
| |
| // Find 'qindex' based on 'desired_bits_per_mb'. |
| assert(best_qindex <= worst_qindex); |
| int low = best_qindex; |
| int high = worst_qindex; |
| while (low < high) { |
| const int mid = (low + high) >> 1; |
| const int mid_bits_per_mb = |
| get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, mid); |
| if (mid_bits_per_mb > desired_bits_per_mb) { |
| low = mid + 1; |
| } else { |
| high = mid; |
| } |
| } |
| assert(low == high); |
| |
| // Calculate rate difference of this q index from the desired rate. |
| const int curr_q = low; |
| const int curr_bits_per_mb = |
| get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, curr_q); |
| const int curr_bit_diff = (curr_bits_per_mb <= desired_bits_per_mb) |
| ? desired_bits_per_mb - curr_bits_per_mb |
| : INT_MAX; |
| assert((curr_bit_diff != INT_MAX && curr_bit_diff >= 0) || |
| curr_q == worst_qindex); |
| |
| // Calculate rate difference for previous q index too. |
| const int prev_q = curr_q - 1; |
| int prev_bit_diff; |
| if (curr_bit_diff == INT_MAX || curr_q == best_qindex) { |
| prev_bit_diff = INT_MAX; |
| } else { |
| const int prev_bits_per_mb = |
| get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, prev_q); |
| assert(prev_bits_per_mb > desired_bits_per_mb); |
| prev_bit_diff = prev_bits_per_mb - desired_bits_per_mb; |
| } |
| |
| // Pick one of the two q indices, depending on which one has rate closer to |
| // the desired rate. |
| return (curr_bit_diff <= prev_bit_diff) ? curr_q : prev_q; |
| } |
| |
| int av1_rc_regulate_q(const AV1_COMP *cpi, int target_bits_per_frame, |
| int active_best_quality, int active_worst_quality, |
| int width, int height) { |
| const int MBs = av1_get_MBs(width, height); |
| const double correction_factor = |
| get_rate_correction_factor(cpi, width, height); |
| const int target_bits_per_mb = |
| (int)(((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / MBs); |
| |
| int q = |
| find_closest_qindex_by_rate(target_bits_per_mb, cpi, correction_factor, |
| active_best_quality, active_worst_quality); |
| if (cpi->oxcf.rc_cfg.mode == AOM_CBR && has_no_stats_stage(cpi)) |
| return adjust_q_cbr(cpi, q, active_worst_quality); |
| |
| return q; |
| } |
| |
| static int get_active_quality(int q, int gfu_boost, int low, int high, |
| int *low_motion_minq, int *high_motion_minq) { |
| if (gfu_boost > high) { |
| return low_motion_minq[q]; |
| } else if (gfu_boost < low) { |
| return high_motion_minq[q]; |
| } else { |
| const int gap = high - low; |
| const int offset = high - gfu_boost; |
| const int qdiff = high_motion_minq[q] - low_motion_minq[q]; |
| const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap; |
| return low_motion_minq[q] + adjustment; |
| } |
| } |
| |
| static int get_kf_active_quality(const PRIMARY_RATE_CONTROL *const p_rc, int q, |
| aom_bit_depth_t bit_depth) { |
| int *kf_low_motion_minq; |
| int *kf_high_motion_minq; |
| ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq); |
| ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq); |
| return get_active_quality(q, p_rc->kf_boost, kf_low, kf_high, |
| kf_low_motion_minq, kf_high_motion_minq); |
| } |
| |
| static int get_gf_active_quality_no_rc(int gfu_boost, int q, |
| aom_bit_depth_t bit_depth) { |
| int *arfgf_low_motion_minq; |
| int *arfgf_high_motion_minq; |
| ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq); |
| ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq); |
| return get_active_quality(q, gfu_boost, gf_low, gf_high, |
| arfgf_low_motion_minq, arfgf_high_motion_minq); |
| } |
| |
| static int get_gf_active_quality(const PRIMARY_RATE_CONTROL *const p_rc, int q, |
| aom_bit_depth_t bit_depth) { |
| return get_gf_active_quality_no_rc(p_rc->gfu_boost, q, bit_depth); |
| } |
| |
| static int get_gf_high_motion_quality(int q, aom_bit_depth_t bit_depth) { |
| int *arfgf_high_motion_minq; |
| ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq); |
| return arfgf_high_motion_minq[q]; |
| } |
| |
| static int calc_active_worst_quality_no_stats_vbr(const AV1_COMP *cpi) { |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; |
| const unsigned int curr_frame = cpi->common.current_frame.frame_number; |
| int active_worst_quality; |
| int last_q_key_frame; |
| int last_q_inter_frame; |
| #if CONFIG_FPMT_TEST |
| const int simulate_parallel_frame = |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && |
| cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; |
| last_q_key_frame = simulate_parallel_frame ? p_rc->temp_last_q[KEY_FRAME] |
| : p_rc->last_q[KEY_FRAME]; |
| last_q_inter_frame = simulate_parallel_frame ? p_rc->temp_last_q[INTER_FRAME] |
| : p_rc->last_q[INTER_FRAME]; |
| #else |
| last_q_key_frame = p_rc->last_q[KEY_FRAME]; |
| last_q_inter_frame = p_rc->last_q[INTER_FRAME]; |
| #endif |
| |
| if (cpi->common.current_frame.frame_type == KEY_FRAME) { |
| active_worst_quality = |
| curr_frame == 0 ? rc->worst_quality : last_q_key_frame * 2; |
| } else { |
| if (!rc->is_src_frame_alt_ref && |
| (refresh_frame->golden_frame || refresh_frame->bwd_ref_frame || |
| refresh_frame->alt_ref_frame)) { |
| active_worst_quality = |
| curr_frame == 1 ? last_q_key_frame * 5 / 4 : last_q_inter_frame; |
| } else { |
| active_worst_quality = |
| curr_frame == 1 ? last_q_key_frame * 2 : last_q_inter_frame * 2; |
| } |
| } |
| return AOMMIN(active_worst_quality, rc->worst_quality); |
| } |
| |
| // Adjust active_worst_quality level based on buffer level. |
| static int calc_active_worst_quality_no_stats_cbr(const AV1_COMP *cpi) { |
| // Adjust active_worst_quality: If buffer is above the optimal/target level, |
| // bring active_worst_quality down depending on fullness of buffer. |
| // If buffer is below the optimal level, let the active_worst_quality go from |
| // ambient Q (at buffer = optimal level) to worst_quality level |
| // (at buffer = critical level). |
| const AV1_COMMON *const cm = &cpi->common; |
| const RATE_CONTROL *rc = &cpi->rc; |
| const PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc; |
| const SVC *const svc = &cpi->svc; |
| unsigned int num_frames_weight_key = 5 * cpi->svc.number_temporal_layers; |
| // Buffer level below which we push active_worst to worst_quality. |
| int64_t critical_level = p_rc->optimal_buffer_level >> 3; |
| int64_t buff_lvl_step = 0; |
| int adjustment = 0; |
| int active_worst_quality; |
| int ambient_qp; |
| if (cm->current_frame.frame_type == KEY_FRAME) return rc->worst_quality; |
| // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME] |
| // for the first few frames following key frame. These are both initialized |
| // to worst_quality and updated with (3/4, 1/4) average in postencode_update. |
| // So for first few frames following key, the qp of that key frame is weighted |
| // into the active_worst_quality setting. For SVC the key frame should |
| // correspond to layer (0, 0), so use that for layer context. |
| int avg_qindex_key = p_rc->avg_frame_qindex[KEY_FRAME]; |
| if (svc->number_temporal_layers > 1) { |
| int layer = LAYER_IDS_TO_IDX(0, 0, svc->number_temporal_layers); |
| const LAYER_CONTEXT *lc = &svc->layer_context[layer]; |
| const PRIMARY_RATE_CONTROL *const lp_rc = &lc->p_rc; |
| avg_qindex_key = lp_rc->avg_frame_qindex[KEY_FRAME]; |
| if (svc->temporal_layer_id == 0) |
| avg_qindex_key = |
| AOMMIN(lp_rc->avg_frame_qindex[KEY_FRAME], lp_rc->last_q[KEY_FRAME]); |
| } |
| ambient_qp = (cm->current_frame.frame_number < num_frames_weight_key) |
| ? AOMMIN(p_rc->avg_frame_qindex[INTER_FRAME], avg_qindex_key) |
| : p_rc->avg_frame_qindex[INTER_FRAME]; |
| active_worst_quality = AOMMIN(rc->worst_quality, ambient_qp * 5 / 4); |
| if (p_rc->buffer_level > p_rc->optimal_buffer_level) { |
| // Adjust down. |
| // Maximum limit for down adjustment, ~30%. |
| int max_adjustment_down = active_worst_quality / 3; |
| if (max_adjustment_down) { |
| buff_lvl_step = |
| ((p_rc->maximum_buffer_size - p_rc->optimal_buffer_level) / |
| max_adjustment_down); |
| if (buff_lvl_step) |
| adjustment = (int)((p_rc->buffer_level - p_rc->optimal_buffer_level) / |
| buff_lvl_step); |
| active_worst_quality -= adjustment; |
| } |
| } else if (p_rc->buffer_level > critical_level) { |
| // Adjust up from ambient Q. |
| if (critical_level) { |
| buff_lvl_step = (p_rc->optimal_buffer_level - critical_level); |
| if (buff_lvl_step) { |
| adjustment = (int)((rc->worst_quality - ambient_qp) * |
| (p_rc->optimal_buffer_level - p_rc->buffer_level) / |
| buff_lvl_step); |
| } |
| active_worst_quality = ambient_qp + adjustment; |
| } |
| } else { |
| // Set to worst_quality if buffer is below critical level. |
| active_worst_quality = rc->worst_quality; |
| } |
| return active_worst_quality; |
| } |
| |
| // Calculate the active_best_quality level. |
| static int calc_active_best_quality_no_stats_cbr(const AV1_COMP *cpi, |
| int active_worst_quality, |
| int width, int height) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; |
| const CurrentFrame *const current_frame = &cm->current_frame; |
| int *rtc_minq; |
| const int bit_depth = cm->seq_params->bit_depth; |
| int active_best_quality = rc->best_quality; |
| ASSIGN_MINQ_TABLE(bit_depth, rtc_minq); |
| |
| if (frame_is_intra_only(cm)) { |
| // Handle the special case for key frames forced when we have reached |
| // the maximum key frame interval. Here force the Q to a range |
| // based on the ambient Q to reduce the risk of popping. |
| if (p_rc->this_key_frame_forced) { |
| int qindex = p_rc->last_boosted_qindex; |
| double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); |
| int delta_qindex = av1_compute_qdelta(rc, last_boosted_q, |
| (last_boosted_q * 0.75), bit_depth); |
| active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); |
| } else if (current_frame->frame_number > 0) { |
| // not first frame of one pass and kf_boost is set |
| double q_adj_factor = 1.0; |
| double q_val; |
| active_best_quality = get_kf_active_quality( |
| p_rc, p_rc->avg_frame_qindex[KEY_FRAME], bit_depth); |
| // Allow somewhat lower kf minq with small image formats. |
| if ((width * height) <= (352 * 288)) { |
| q_adj_factor -= 0.25; |
| } |
| // Convert the adjustment factor to a qindex delta |
| // on active_best_quality. |
| q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth); |
| active_best_quality += |
| av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth); |
| } |
| } else if (!rc->is_src_frame_alt_ref && !cpi->ppi->use_svc && |
| cpi->oxcf.rc_cfg.gf_cbr_boost_pct && |
| (refresh_frame->golden_frame || refresh_frame->alt_ref_frame)) { |
| // Use the lower of active_worst_quality and recent |
| // average Q as basis for GF/ARF best Q limit unless last frame was |
| // a key frame. |
| int q = active_worst_quality; |
| if (rc->frames_since_key > 1 && |
| p_rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { |
| q = p_rc->avg_frame_qindex[INTER_FRAME]; |
| } |
| active_best_quality = get_gf_active_quality(p_rc, q, bit_depth); |
| } else { |
| // Use the lower of active_worst_quality and recent/average Q. |
| FRAME_TYPE frame_type = |
| (current_frame->frame_number > 1) ? INTER_FRAME : KEY_FRAME; |
| if (p_rc->avg_frame_qindex[frame_type] < active_worst_quality) |
| active_best_quality = rtc_minq[p_rc->avg_frame_qindex[frame_type]]; |
| else |
| active_best_quality = rtc_minq[active_worst_quality]; |
| } |
| return active_best_quality; |
| } |
| |
| #if RT_PASSIVE_STRATEGY |
| static int get_q_passive_strategy(const AV1_COMP *const cpi, |
| const int q_candidate, const int threshold) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| const CurrentFrame *const current_frame = &cm->current_frame; |
| int sum = 0; |
| int count = 0; |
| int i = 1; |
| while (i < MAX_Q_HISTORY) { |
| int frame_id = current_frame->frame_number - i; |
| if (frame_id <= 0) break; |
| sum += p_rc->q_history[frame_id % MAX_Q_HISTORY]; |
| ++count; |
| ++i; |
| } |
| if (count > 0) { |
| const int avg_q = sum / count; |
| if (abs(avg_q - q_candidate) <= threshold) return avg_q; |
| } |
| return q_candidate; |
| } |
| #endif // RT_PASSIVE_STRATEGY |
| |
| /*!\brief Picks q and q bounds given CBR rate control parameters in \c cpi->rc. |
| * |
| * Handles the special case when using: |
| * - Constant bit-rate mode: \c cpi->oxcf.rc_cfg.mode == \ref AOM_CBR, and |
| * - 1-pass encoding without LAP (look-ahead processing), so 1st pass stats are |
| * NOT available. |
| * |
| * \ingroup rate_control |
| * \param[in] cpi Top level encoder structure |
| * \param[in] width Coded frame width |
| * \param[in] height Coded frame height |
| * \param[out] bottom_index Bottom bound for q index (best quality) |
| * \param[out] top_index Top bound for q index (worst quality) |
| * \return Returns selected q index to be used for encoding this frame. |
| */ |
| static int rc_pick_q_and_bounds_no_stats_cbr(const AV1_COMP *cpi, int width, |
| int height, int *bottom_index, |
| int *top_index) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| const CurrentFrame *const current_frame = &cm->current_frame; |
| int q; |
| const int bit_depth = cm->seq_params->bit_depth; |
| int active_worst_quality = calc_active_worst_quality_no_stats_cbr(cpi); |
| int active_best_quality = calc_active_best_quality_no_stats_cbr( |
| cpi, active_worst_quality, width, height); |
| assert(has_no_stats_stage(cpi)); |
| assert(cpi->oxcf.rc_cfg.mode == AOM_CBR); |
| |
| // Clip the active best and worst quality values to limits |
| active_best_quality = |
| clamp(active_best_quality, rc->best_quality, rc->worst_quality); |
| active_worst_quality = |
| clamp(active_worst_quality, active_best_quality, rc->worst_quality); |
| |
| *top_index = active_worst_quality; |
| *bottom_index = active_best_quality; |
| |
| // Limit Q range for the adaptive loop. |
| if (current_frame->frame_type == KEY_FRAME && !p_rc->this_key_frame_forced && |
| current_frame->frame_number != 0) { |
| int qdelta = 0; |
| qdelta = av1_compute_qdelta_by_rate(&cpi->rc, current_frame->frame_type, |
| active_worst_quality, 2.0, |
| cpi->is_screen_content_type, bit_depth); |
| *top_index = active_worst_quality + qdelta; |
| *top_index = AOMMAX(*top_index, *bottom_index); |
| } |
| |
| // Special case code to try and match quality with forced key frames |
| if (current_frame->frame_type == KEY_FRAME && p_rc->this_key_frame_forced) { |
| q = p_rc->last_boosted_qindex; |
| } else { |
| q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, |
| active_worst_quality, width, height); |
| #if RT_PASSIVE_STRATEGY |
| if (current_frame->frame_type != KEY_FRAME && |
| cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) { |
| q = get_q_passive_strategy(cpi, q, 50); |
| } |
| #endif // RT_PASSIVE_STRATEGY |
| if (q > *top_index) { |
| // Special case when we are targeting the max allowed rate |
| if (rc->this_frame_target >= rc->max_frame_bandwidth) |
| *top_index = q; |
| else |
| q = *top_index; |
| } |
| } |
| // Special case: we force the first few frames to use low q such that |
| // these frames are encoded at a high quality, which provides good |
| // references for following frames. |
| if (current_frame->frame_type != KEY_FRAME && !cpi->ppi->use_svc && |
| current_frame->frame_number >= 10 && current_frame->frame_number <= 15) { |
| q = AOMMIN(p_rc->last_kf_qindex + 108, AOMMAX(5, q - 9)); |
| q = AOMMAX(q, rc->best_quality); |
| } |
| |
| assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); |
| assert(*bottom_index <= rc->worst_quality && |
| *bottom_index >= rc->best_quality); |
| assert(q <= rc->worst_quality && q >= rc->best_quality); |
| return q; |
| } |
| |
| static int gf_group_pyramid_level(const GF_GROUP *gf_group, int gf_index) { |
| return gf_group->layer_depth[gf_index]; |
| } |
| |
| static int get_active_cq_level(const RATE_CONTROL *rc, |
| const PRIMARY_RATE_CONTROL *p_rc, |
| const AV1EncoderConfig *const oxcf, |
| int intra_only, aom_superres_mode superres_mode, |
| int superres_denom) { |
| const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; |
| static const double cq_adjust_threshold = 0.1; |
| int active_cq_level = rc_cfg->cq_level; |
| if (rc_cfg->mode == AOM_CQ || rc_cfg->mode == AOM_Q) { |
| // printf("Superres %d %d %d = %d\n", superres_denom, intra_only, |
| // rc->frames_to_key, !(intra_only && rc->frames_to_key <= 1)); |
| if ((superres_mode == AOM_SUPERRES_QTHRESH || |
| superres_mode == AOM_SUPERRES_AUTO) && |
| superres_denom != SCALE_NUMERATOR) { |
| int mult = SUPERRES_QADJ_PER_DENOM_KEYFRAME_SOLO; |
| if (intra_only && rc->frames_to_key <= 1) { |
| mult = 0; |
| } else if (intra_only) { |
| mult = SUPERRES_QADJ_PER_DENOM_KEYFRAME; |
| } else { |
| mult = SUPERRES_QADJ_PER_DENOM_ARFFRAME; |
| } |
| active_cq_level = AOMMAX( |
| active_cq_level - ((superres_denom - SCALE_NUMERATOR) * mult), 0); |
| } |
| } |
| if (rc_cfg->mode == AOM_CQ && p_rc->total_target_bits > 0) { |
| const double x = (double)p_rc->total_actual_bits / p_rc->total_target_bits; |
| if (x < cq_adjust_threshold) { |
| active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold); |
| } |
| } |
| return active_cq_level; |
| } |
| |
| /*!\brief Picks q and q bounds given non-CBR rate control params in \c cpi->rc. |
| * |
| * Handles the special case when using: |
| * - Any rate control other than constant bit-rate mode: |
| * \c cpi->oxcf.rc_cfg.mode != \ref AOM_CBR, and |
| * - 1-pass encoding without LAP (look-ahead processing), so 1st pass stats are |
| * NOT available. |
| * |
| * \ingroup rate_control |
| * \param[in] cpi Top level encoder structure |
| * \param[in] width Coded frame width |
| * \param[in] height Coded frame height |
| * \param[out] bottom_index Bottom bound for q index (best quality) |
| * \param[out] top_index Top bound for q index (worst quality) |
| * \return Returns selected q index to be used for encoding this frame. |
| */ |
| static int rc_pick_q_and_bounds_no_stats(const AV1_COMP *cpi, int width, |
| int height, int *bottom_index, |
| int *top_index) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| const CurrentFrame *const current_frame = &cm->current_frame; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; |
| const enum aom_rc_mode rc_mode = oxcf->rc_cfg.mode; |
| |
| assert(has_no_stats_stage(cpi)); |
| assert(rc_mode == AOM_VBR || |
| (!USE_UNRESTRICTED_Q_IN_CQ_MODE && rc_mode == AOM_CQ) || |
| rc_mode == AOM_Q); |
| |
| const int cq_level = |
| get_active_cq_level(rc, p_rc, oxcf, frame_is_intra_only(cm), |
| cpi->superres_mode, cm->superres_scale_denominator); |
| const int bit_depth = cm->seq_params->bit_depth; |
| |
| int active_best_quality; |
| int active_worst_quality = calc_active_worst_quality_no_stats_vbr(cpi); |
| int q; |
| int *inter_minq; |
| ASSIGN_MINQ_TABLE(bit_depth, inter_minq); |
| |
| if (frame_is_intra_only(cm)) { |
| if (rc_mode == AOM_Q) { |
| const int qindex = cq_level; |
| const double q_val = av1_convert_qindex_to_q(qindex, bit_depth); |
| const int delta_qindex = |
| av1_compute_qdelta(rc, q_val, q_val * 0.25, bit_depth); |
| active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); |
| } else if (p_rc->this_key_frame_forced) { |
| #if CONFIG_FPMT_TEST |
| const int simulate_parallel_frame = |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && |
| cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; |
| int qindex = simulate_parallel_frame ? p_rc->temp_last_boosted_qindex |
| : p_rc->last_boosted_qindex; |
| #else |
| int qindex = p_rc->last_boosted_qindex; |
| #endif |
| const double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); |
| const int delta_qindex = av1_compute_qdelta( |
| rc, last_boosted_q, last_boosted_q * 0.75, bit_depth); |
| active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); |
| } else { // not first frame of one pass and kf_boost is set |
| double q_adj_factor = 1.0; |
| |
| active_best_quality = get_kf_active_quality( |
| p_rc, p_rc->avg_frame_qindex[KEY_FRAME], bit_depth); |
| |
| // Allow somewhat lower kf minq with small image formats. |
| if ((width * height) <= (352 * 288)) { |
| q_adj_factor -= 0.25; |
| } |
| |
| // Convert the adjustment factor to a qindex delta on active_best_quality. |
| { |
| const double q_val = |
| av1_convert_qindex_to_q(active_best_quality, bit_depth); |
| active_best_quality += |
| av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth); |
| } |
| } |
| } else if (!rc->is_src_frame_alt_ref && |
| (refresh_frame->golden_frame || refresh_frame->alt_ref_frame)) { |
| // Use the lower of active_worst_quality and recent |
| // average Q as basis for GF/ARF best Q limit unless last frame was |
| // a key frame. |
| q = (rc->frames_since_key > 1 && |
| p_rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) |
| ? p_rc->avg_frame_qindex[INTER_FRAME] |
| : p_rc->avg_frame_qindex[KEY_FRAME]; |
| // For constrained quality dont allow Q less than the cq level |
| if (rc_mode == AOM_CQ) { |
| if (q < cq_level) q = cq_level; |
| active_best_quality = get_gf_active_quality(p_rc, q, bit_depth); |
| // Constrained quality use slightly lower active best. |
| active_best_quality = active_best_quality * 15 / 16; |
| } else if (rc_mode == AOM_Q) { |
| const int qindex = cq_level; |
| const double q_val = av1_convert_qindex_to_q(qindex, bit_depth); |
| const int delta_qindex = |
| (refresh_frame->alt_ref_frame) |
| ? av1_compute_qdelta(rc, q_val, q_val * 0.40, bit_depth) |
| : av1_compute_qdelta(rc, q_val, q_val * 0.50, bit_depth); |
| active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); |
| } else { |
| active_best_quality = get_gf_active_quality(p_rc, q, bit_depth); |
| } |
| } else { |
| if (rc_mode == AOM_Q) { |
| const int qindex = cq_level; |
| const double q_val = av1_convert_qindex_to_q(qindex, bit_depth); |
| const double delta_rate[FIXED_GF_INTERVAL] = { 0.50, 1.0, 0.85, 1.0, |
| 0.70, 1.0, 0.85, 1.0 }; |
| const int delta_qindex = av1_compute_qdelta( |
| rc, q_val, |
| q_val * delta_rate[current_frame->frame_number % FIXED_GF_INTERVAL], |
| bit_depth); |
| active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); |
| } else { |
| // Use the lower of active_worst_quality and recent/average Q. |
| active_best_quality = |
| (current_frame->frame_number > 1) |
| ? inter_minq[p_rc->avg_frame_qindex[INTER_FRAME]] |
| : inter_minq[p_rc->avg_frame_qindex[KEY_FRAME]]; |
| // For the constrained quality mode we don't want |
| // q to fall below the cq level. |
| if ((rc_mode == AOM_CQ) && (active_best_quality < cq_level)) { |
| active_best_quality = cq_level; |
| } |
| } |
| } |
| |
| // Clip the active best and worst quality values to limits |
| active_best_quality = |
| clamp(active_best_quality, rc->best_quality, rc->worst_quality); |
| active_worst_quality = |
| clamp(active_worst_quality, active_best_quality, rc->worst_quality); |
| |
| *top_index = active_worst_quality; |
| *bottom_index = active_best_quality; |
| |
| // Limit Q range for the adaptive loop. |
| { |
| int qdelta = 0; |
| if (current_frame->frame_type == KEY_FRAME && |
| !p_rc->this_key_frame_forced && current_frame->frame_number != 0) { |
| qdelta = av1_compute_qdelta_by_rate( |
| &cpi->rc, current_frame->frame_type, active_worst_quality, 2.0, |
| cpi->is_screen_content_type, bit_depth); |
| } else if (!rc->is_src_frame_alt_ref && |
| (refresh_frame->golden_frame || refresh_frame->alt_ref_frame)) { |
| qdelta = av1_compute_qdelta_by_rate( |
| &cpi->rc, current_frame->frame_type, active_worst_quality, 1.75, |
| cpi->is_screen_content_type, bit_depth); |
| } |
| *top_index = active_worst_quality + qdelta; |
| *top_index = AOMMAX(*top_index, *bottom_index); |
| } |
| |
| if (rc_mode == AOM_Q) { |
| q = active_best_quality; |
| // Special case code to try and match quality with forced key frames |
| } else if ((current_frame->frame_type == KEY_FRAME) && |
| p_rc->this_key_frame_forced) { |
| #if CONFIG_FPMT_TEST |
| const int simulate_parallel_frame = |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && |
| cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; |
| q = simulate_parallel_frame ? p_rc->temp_last_boosted_qindex |
| : p_rc->last_boosted_qindex; |
| #else |
| q = p_rc->last_boosted_qindex; |
| #endif |
| } else { |
| q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, |
| active_worst_quality, width, height); |
| if (q > *top_index) { |
| // Special case when we are targeting the max allowed rate |
| if (rc->this_frame_target >= rc->max_frame_bandwidth) |
| *top_index = q; |
| else |
| q = *top_index; |
| } |
| } |
| |
| assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); |
| assert(*bottom_index <= rc->worst_quality && |
| *bottom_index >= rc->best_quality); |
| assert(q <= rc->worst_quality && q >= rc->best_quality); |
| return q; |
| } |
| |
| static const double arf_layer_deltas[MAX_ARF_LAYERS + 1] = { 2.50, 2.00, 1.75, |
| 1.50, 1.25, 1.15, |
| 1.0 }; |
| int av1_frame_type_qdelta(const AV1_COMP *cpi, int q) { |
| const GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
| const RATE_FACTOR_LEVEL rf_lvl = |
| get_rate_factor_level(gf_group, cpi->gf_frame_index); |
| const FRAME_TYPE frame_type = gf_group->frame_type[cpi->gf_frame_index]; |
| const int arf_layer = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6); |
| const double rate_factor = |
| (rf_lvl == INTER_NORMAL) ? 1.0 : arf_layer_deltas[arf_layer]; |
| |
| return av1_compute_qdelta_by_rate(&cpi->rc, frame_type, q, rate_factor, |
| cpi->is_screen_content_type, |
| cpi->common.seq_params->bit_depth); |
| } |
| |
| // This unrestricted Q selection on CQ mode is useful when testing new features, |
| // but may lead to Q being out of range on current RC restrictions |
| #if USE_UNRESTRICTED_Q_IN_CQ_MODE |
| static int rc_pick_q_and_bounds_no_stats_cq(const AV1_COMP *cpi, int width, |
| int height, int *bottom_index, |
| int *top_index) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| const int cq_level = |
| get_active_cq_level(rc, oxcf, frame_is_intra_only(cm), cpi->superres_mode, |
| cm->superres_scale_denominator); |
| const int bit_depth = cm->seq_params->bit_depth; |
| const int q = (int)av1_convert_qindex_to_q(cq_level, bit_depth); |
| (void)width; |
| (void)height; |
| assert(has_no_stats_stage(cpi)); |
| assert(cpi->oxcf.rc_cfg.mode == AOM_CQ); |
| |
| *top_index = q; |
| *bottom_index = q; |
| |
| return q; |
| } |
| #endif // USE_UNRESTRICTED_Q_IN_CQ_MODE |
| |
| #define STATIC_MOTION_THRESH 95 |
| static void get_intra_q_and_bounds(const AV1_COMP *cpi, int width, int height, |
| int *active_best, int *active_worst, |
| int cq_level) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| int active_best_quality; |
| int active_worst_quality = *active_worst; |
| const int bit_depth = cm->seq_params->bit_depth; |
| |
| if (rc->frames_to_key <= 1 && oxcf->rc_cfg.mode == AOM_Q) { |
| // If the next frame is also a key frame or the current frame is the |
| // only frame in the sequence in AOM_Q mode, just use the cq_level |
| // as q. |
| active_best_quality = cq_level; |
| active_worst_quality = cq_level; |
| } else if (p_rc->this_key_frame_forced) { |
| // Handle the special case for key frames forced when we have reached |
| // the maximum key frame interval. Here force the Q to a range |
| // based on the ambient Q to reduce the risk of popping. |
| double last_boosted_q; |
| int delta_qindex; |
| int qindex; |
| #if CONFIG_FPMT_TEST |
| const int simulate_parallel_frame = |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && |
| cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; |
| int last_boosted_qindex = simulate_parallel_frame |
| ? p_rc->temp_last_boosted_qindex |
| : p_rc->last_boosted_qindex; |
| #else |
| int last_boosted_qindex = p_rc->last_boosted_qindex; |
| #endif |
| if (is_stat_consumption_stage_twopass(cpi) && |
| cpi->ppi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) { |
| qindex = AOMMIN(p_rc->last_kf_qindex, last_boosted_qindex); |
| active_best_quality = qindex; |
| last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); |
| delta_qindex = av1_compute_qdelta(rc, last_boosted_q, |
| last_boosted_q * 1.25, bit_depth); |
| active_worst_quality = |
| AOMMIN(qindex + delta_qindex, active_worst_quality); |
| } else { |
| qindex = last_boosted_qindex; |
| last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); |
| delta_qindex = av1_compute_qdelta(rc, last_boosted_q, |
| last_boosted_q * 0.50, bit_depth); |
| active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); |
| } |
| } else { |
| // Not forced keyframe. |
| double q_adj_factor = 1.0; |
| double q_val; |
| |
| // Baseline value derived from cpi->active_worst_quality and kf boost. |
| active_best_quality = |
| get_kf_active_quality(p_rc, active_worst_quality, bit_depth); |
| if (cpi->is_screen_content_type) { |
| active_best_quality /= 2; |
| } |
| |
| if (is_stat_consumption_stage_twopass(cpi) && |
| cpi->ppi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH) { |
| active_best_quality /= 3; |
| } |
| |
| // Allow somewhat lower kf minq with small image formats. |
| if ((width * height) <= (352 * 288)) { |
| q_adj_factor -= 0.25; |
| } |
| |
| // Make a further adjustment based on the kf zero motion measure. |
| if (is_stat_consumption_stage_twopass(cpi)) |
| q_adj_factor += |
| 0.05 - (0.001 * (double)cpi->ppi->twopass.kf_zeromotion_pct); |
| |
| // Convert the adjustment factor to a qindex delta |
| // on active_best_quality. |
| q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth); |
| active_best_quality += |
| av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth); |
| |
| // Tweak active_best_quality for AOM_Q mode when superres is on, as this |
| // will be used directly as 'q' later. |
| if (oxcf->rc_cfg.mode == AOM_Q && |
| (cpi->superres_mode == AOM_SUPERRES_QTHRESH || |
| cpi->superres_mode == AOM_SUPERRES_AUTO) && |
| cm->superres_scale_denominator != SCALE_NUMERATOR) { |
| active_best_quality = |
| AOMMAX(active_best_quality - |
| ((cm->superres_scale_denominator - SCALE_NUMERATOR) * |
| SUPERRES_QADJ_PER_DENOM_KEYFRAME), |
| 0); |
| } |
| } |
| *active_best = active_best_quality; |
| *active_worst = active_worst_quality; |
| } |
| |
| static void adjust_active_best_and_worst_quality(const AV1_COMP *cpi, |
| const int is_intrl_arf_boost, |
| int *active_worst, |
| int *active_best) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; |
| const int bit_depth = cpi->common.seq_params->bit_depth; |
| int active_best_quality = *active_best; |
| int active_worst_quality = *active_worst; |
| #if CONFIG_FPMT_TEST |
| const int simulate_parallel_frame = |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && |
| cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; |
| int extend_minq_fast = simulate_parallel_frame |
| ? p_rc->temp_extend_minq_fast |
| : cpi->ppi->twopass.extend_minq_fast; |
| int extend_minq = simulate_parallel_frame ? p_rc->temp_extend_minq |
| : cpi->ppi->twopass.extend_minq; |
| int extend_maxq = simulate_parallel_frame ? p_rc->temp_extend_maxq |
| : cpi->ppi->twopass.extend_maxq; |
| #endif |
| // Extension to max or min Q if undershoot or overshoot is outside |
| // the permitted range. |
| if (cpi->oxcf.rc_cfg.mode != AOM_Q) { |
| if (frame_is_intra_only(cm) || |
| (!rc->is_src_frame_alt_ref && |
| (refresh_frame->golden_frame || is_intrl_arf_boost || |
| refresh_frame->alt_ref_frame))) { |
| #if CONFIG_FPMT_TEST |
| active_best_quality -= (extend_minq + extend_minq_fast); |
| active_worst_quality += (extend_maxq / 2); |
| #else |
| active_best_quality -= |
| (cpi->ppi->twopass.extend_minq + cpi->ppi->twopass.extend_minq_fast); |
| active_worst_quality += (cpi->ppi->twopass.extend_maxq / 2); |
| #endif |
| } else { |
| #if CONFIG_FPMT_TEST |
| active_best_quality -= (extend_minq + extend_minq_fast) / 2; |
| active_worst_quality += extend_maxq; |
| #else |
| active_best_quality -= |
| (cpi->ppi->twopass.extend_minq + cpi->ppi->twopass.extend_minq_fast) / |
| 2; |
| active_worst_quality += cpi->ppi->twopass.extend_maxq; |
| #endif |
| } |
| } |
| |
| #ifndef STRICT_RC |
| // Static forced key frames Q restrictions dealt with elsewhere. |
| if (!(frame_is_intra_only(cm)) || !p_rc->this_key_frame_forced || |
| (cpi->ppi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) { |
| const int qdelta = av1_frame_type_qdelta(cpi, active_worst_quality); |
| active_worst_quality = |
| AOMMAX(active_worst_quality + qdelta, active_best_quality); |
| } |
| #endif |
| |
| // Modify active_best_quality for downscaled normal frames. |
| if (av1_frame_scaled(cm) && !frame_is_kf_gf_arf(cpi)) { |
| int qdelta = av1_compute_qdelta_by_rate( |
| rc, cm->current_frame.frame_type, active_best_quality, 2.0, |
| cpi->is_screen_content_type, bit_depth); |
| active_best_quality = |
| AOMMAX(active_best_quality + qdelta, rc->best_quality); |
| } |
| |
| active_best_quality = |
| clamp(active_best_quality, rc->best_quality, rc->worst_quality); |
| active_worst_quality = |
| clamp(active_worst_quality, active_best_quality, rc->worst_quality); |
| |
| *active_best = active_best_quality; |
| *active_worst = active_worst_quality; |
| } |
| |
| /*!\brief Gets a Q value to use for the current frame |
| * |
| * |
| * Selects a Q value from a permitted range that we estimate |
| * will result in approximately the target number of bits. |
| * |
| * \ingroup rate_control |
| * \param[in] cpi Top level encoder instance structure |
| * \param[in] width Width of frame |
| * \param[in] height Height of frame |
| * \param[in] active_worst_quality Max Q allowed |
| * \param[in] active_best_quality Min Q allowed |
| * |
| * \return The suggested Q for this frame. |
| */ |
| static int get_q(const AV1_COMP *cpi, const int width, const int height, |
| const int active_worst_quality, |
| const int active_best_quality) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| int q; |
| #if CONFIG_FPMT_TEST |
| const int simulate_parallel_frame = |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && |
| cpi->ppi->fpmt_unit_test_cfg; |
| int last_boosted_qindex = simulate_parallel_frame |
| ? p_rc->temp_last_boosted_qindex |
| : p_rc->last_boosted_qindex; |
| #else |
| int last_boosted_qindex = p_rc->last_boosted_qindex; |
| #endif |
| |
| if (cpi->oxcf.rc_cfg.mode == AOM_Q || |
| (frame_is_intra_only(cm) && !p_rc->this_key_frame_forced && |
| cpi->ppi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH && |
| rc->frames_to_key > 1)) { |
| q = active_best_quality; |
| // Special case code to try and match quality with forced key frames. |
| } else if (frame_is_intra_only(cm) && p_rc->this_key_frame_forced) { |
| // If static since last kf use better of last boosted and last kf q. |
| if (cpi->ppi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) { |
| q = AOMMIN(p_rc->last_kf_qindex, last_boosted_qindex); |
| } else { |
| q = AOMMIN(last_boosted_qindex, |
| (active_best_quality + active_worst_quality) / 2); |
| } |
| q = clamp(q, active_best_quality, active_worst_quality); |
| } else { |
| q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, |
| active_worst_quality, width, height); |
| if (q > active_worst_quality) { |
| // Special case when we are targeting the max allowed rate. |
| if (rc->this_frame_target < rc->max_frame_bandwidth) { |
| q = active_worst_quality; |
| } |
| } |
| q = AOMMAX(q, active_best_quality); |
| } |
| return q; |
| } |
| |
| // Returns |active_best_quality| for an inter frame. |
| // The |active_best_quality| depends on different rate control modes: |
| // VBR, Q, CQ, CBR. |
| // The returning active_best_quality could further be adjusted in |
| // adjust_active_best_and_worst_quality(). |
| static int get_active_best_quality(const AV1_COMP *const cpi, |
| const int active_worst_quality, |
| const int cq_level, const int gf_index) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int bit_depth = cm->seq_params->bit_depth; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; |
| const GF_GROUP *gf_group = &cpi->ppi->gf_group; |
| const enum aom_rc_mode rc_mode = oxcf->rc_cfg.mode; |
| int *inter_minq; |
| ASSIGN_MINQ_TABLE(bit_depth, inter_minq); |
| int active_best_quality = 0; |
| const int is_intrl_arf_boost = |
| gf_group->update_type[gf_index] == INTNL_ARF_UPDATE; |
| int is_leaf_frame = |
| !(gf_group->update_type[gf_index] == ARF_UPDATE || |
| gf_group->update_type[gf_index] == GF_UPDATE || is_intrl_arf_boost); |
| |
| // TODO(jingning): Consider to rework this hack that covers issues incurred |
| // in lightfield setting. |
| if (cm->tiles.large_scale) { |
| is_leaf_frame = !(refresh_frame->golden_frame || |
| refresh_frame->alt_ref_frame || is_intrl_arf_boost); |
| } |
| const int is_overlay_frame = rc->is_src_frame_alt_ref; |
| |
| if (is_leaf_frame || is_overlay_frame) { |
| if (rc_mode == AOM_Q) return cq_level; |
| |
| active_best_quality = inter_minq[active_worst_quality]; |
| // For the constrained quality mode we don't want |
| // q to fall below the cq level. |
| if ((rc_mode == AOM_CQ) && (active_best_quality < cq_level)) { |
| active_best_quality = cq_level; |
| } |
| return active_best_quality; |
| } |
| |
| // Determine active_best_quality for frames that are not leaf or overlay. |
| int q = active_worst_quality; |
| // Use the lower of active_worst_quality and recent |
| // average Q as basis for GF/ARF best Q limit unless last frame was |
| // a key frame. |
| if (rc->frames_since_key > 1 && |
| p_rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { |
| q = p_rc->avg_frame_qindex[INTER_FRAME]; |
| } |
| if (rc_mode == AOM_CQ && q < cq_level) q = cq_level; |
| active_best_quality = get_gf_active_quality(p_rc, q, bit_depth); |
| // Constrained quality use slightly lower active best. |
| if (rc_mode == AOM_CQ) active_best_quality = active_best_quality * 15 / 16; |
| const int min_boost = get_gf_high_motion_quality(q, bit_depth); |
| const int boost = min_boost - active_best_quality; |
| active_best_quality = min_boost - (int)(boost * p_rc->arf_boost_factor); |
| if (!is_intrl_arf_boost) return active_best_quality; |
| |
| if (rc_mode == AOM_Q || rc_mode == AOM_CQ) active_best_quality = p_rc->arf_q; |
| int this_height = gf_group_pyramid_level(gf_group, gf_index); |
| while (this_height > 1) { |
| active_best_quality = (active_best_quality + active_worst_quality + 1) / 2; |
| --this_height; |
| } |
| return active_best_quality; |
| } |
| |
| // Returns the q_index for a single frame in the GOP. |
| // This function assumes that rc_mode == AOM_Q mode. |
| int av1_q_mode_get_q_index(int base_q_index, int gf_update_type, |
| int gf_pyramid_level, int arf_q) { |
| const int is_intrl_arf_boost = gf_update_type == INTNL_ARF_UPDATE; |
| int is_leaf_or_overlay_frame = gf_update_type == LF_UPDATE || |
| gf_update_type == OVERLAY_UPDATE || |
| gf_update_type == INTNL_OVERLAY_UPDATE; |
| |
| if (is_leaf_or_overlay_frame) return base_q_index; |
| |
| if (!is_intrl_arf_boost) return arf_q; |
| |
| int active_best_quality = arf_q; |
| int active_worst_quality = base_q_index; |
| |
| while (gf_pyramid_level > 1) { |
| active_best_quality = (active_best_quality + active_worst_quality + 1) / 2; |
| --gf_pyramid_level; |
| } |
| return active_best_quality; |
| } |
| |
| // Returns the q_index for the ARF in the GOP. |
| int av1_get_arf_q_index(int base_q_index, int gfu_boost, int bit_depth, |
| double arf_boost_factor) { |
| int active_best_quality = |
| get_gf_active_quality_no_rc(gfu_boost, base_q_index, bit_depth); |
| const int min_boost = get_gf_high_motion_quality(base_q_index, bit_depth); |
| const int boost = min_boost - active_best_quality; |
| return min_boost - (int)(boost * arf_boost_factor); |
| } |
| |
| static int rc_pick_q_and_bounds_q_mode(const AV1_COMP *cpi, int width, |
| int height, int gf_index, |
| int *bottom_index, int *top_index) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| const int cq_level = |
| get_active_cq_level(rc, p_rc, oxcf, frame_is_intra_only(cm), |
| cpi->superres_mode, cm->superres_scale_denominator); |
| int active_best_quality = 0; |
| int active_worst_quality = rc->active_worst_quality; |
| int q; |
| |
| if (frame_is_intra_only(cm)) { |
| get_intra_q_and_bounds(cpi, width, height, &active_best_quality, |
| &active_worst_quality, cq_level); |
| } else { |
| // Active best quality limited by previous layer. |
| active_best_quality = |
| get_active_best_quality(cpi, active_worst_quality, cq_level, gf_index); |
| } |
| |
| *top_index = active_worst_quality; |
| *bottom_index = active_best_quality; |
| |
| *top_index = AOMMAX(*top_index, rc->best_quality); |
| *top_index = AOMMIN(*top_index, rc->worst_quality); |
| |
| *bottom_index = AOMMAX(*bottom_index, rc->best_quality); |
| *bottom_index = AOMMIN(*bottom_index, rc->worst_quality); |
| |
| q = active_best_quality; |
| |
| q = AOMMAX(q, rc->best_quality); |
| q = AOMMIN(q, rc->worst_quality); |
| |
| assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); |
| assert(*bottom_index <= rc->worst_quality && |
| *bottom_index >= rc->best_quality); |
| assert(q <= rc->worst_quality && q >= rc->best_quality); |
| |
| return q; |
| } |
| |
| /*!\brief Picks q and q bounds given rate control parameters in \c cpi->rc. |
| * |
| * Handles the the general cases not covered by |
| * \ref rc_pick_q_and_bounds_no_stats_cbr() and |
| * \ref rc_pick_q_and_bounds_no_stats() |
| * |
| * \ingroup rate_control |
| * \param[in] cpi Top level encoder structure |
| * \param[in] width Coded frame width |
| * \param[in] height Coded frame height |
| * \param[in] gf_index Index of this frame in the golden frame group |
| * \param[out] bottom_index Bottom bound for q index (best quality) |
| * \param[out] top_index Top bound for q index (worst quality) |
| * \return Returns selected q index to be used for encoding this frame. |
| */ |
| static int rc_pick_q_and_bounds(const AV1_COMP *cpi, int width, int height, |
| int gf_index, int *bottom_index, |
| int *top_index) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; |
| const GF_GROUP *gf_group = &cpi->ppi->gf_group; |
| assert(IMPLIES(has_no_stats_stage(cpi), |
| cpi->oxcf.rc_cfg.mode == AOM_Q && |
| gf_group->update_type[gf_index] != ARF_UPDATE)); |
| const int cq_level = |
| get_active_cq_level(rc, p_rc, oxcf, frame_is_intra_only(cm), |
| cpi->superres_mode, cm->superres_scale_denominator); |
| |
| if (oxcf->rc_cfg.mode == AOM_Q) { |
| return rc_pick_q_and_bounds_q_mode(cpi, width, height, gf_index, |
| bottom_index, top_index); |
| } |
| |
| int active_best_quality = 0; |
| int active_worst_quality = rc->active_worst_quality; |
| int q; |
| |
| const int is_intrl_arf_boost = |
| gf_group->update_type[gf_index] == INTNL_ARF_UPDATE; |
| |
| if (frame_is_intra_only(cm)) { |
| get_intra_q_and_bounds(cpi, width, height, &active_best_quality, |
| &active_worst_quality, cq_level); |
| #ifdef STRICT_RC |
| active_best_quality = 0; |
| #endif |
| } else { |
| // Active best quality limited by previous layer. |
| const int pyramid_level = gf_group_pyramid_level(gf_group, gf_index); |
| |
| if ((pyramid_level <= 1) || (pyramid_level > MAX_ARF_LAYERS)) { |
| active_best_quality = get_active_best_quality(cpi, active_worst_quality, |
| cq_level, gf_index); |
| } else { |
| #if CONFIG_FPMT_TEST |
| const int simulate_parallel_frame = |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && |
| cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; |
| int local_active_best_quality = |
| simulate_parallel_frame |
| ? p_rc->temp_active_best_quality[pyramid_level - 1] |
| : p_rc->active_best_quality[pyramid_level - 1]; |
| active_best_quality = local_active_best_quality + 1; |
| #else |
| active_best_quality = p_rc->active_best_quality[pyramid_level - 1] + 1; |
| #endif |
| |
| active_best_quality = AOMMIN(active_best_quality, active_worst_quality); |
| #ifdef STRICT_RC |
| active_best_quality += (active_worst_quality - active_best_quality) / 16; |
| #else |
| active_best_quality += (active_worst_quality - active_best_quality) / 2; |
| #endif |
| } |
| |
| // For alt_ref and GF frames (including internal arf frames) adjust the |
| // worst allowed quality as well. This insures that even on hard |
| // sections we dont clamp the Q at the same value for arf frames and |
| // leaf (non arf) frames. This is important to the TPL model which assumes |
| // Q drops with each arf level. |
| if (!(rc->is_src_frame_alt_ref) && |
| (refresh_frame->golden_frame || refresh_frame->alt_ref_frame || |
| is_intrl_arf_boost)) { |
| active_worst_quality = |
| (active_best_quality + (3 * active_worst_quality) + 2) / 4; |
| } |
| } |
| |
| adjust_active_best_and_worst_quality( |
| cpi, is_intrl_arf_boost, &active_worst_quality, &active_best_quality); |
| q = get_q(cpi, width, height, active_worst_quality, active_best_quality); |
| |
| // Special case when we are targeting the max allowed rate. |
| if (rc->this_frame_target >= rc->max_frame_bandwidth && |
| q > active_worst_quality) { |
| active_worst_quality = q; |
| } |
| |
| *top_index = active_worst_quality; |
| *bottom_index = active_best_quality; |
| |
| assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); |
| assert(*bottom_index <= rc->worst_quality && |
| *bottom_index >= rc->best_quality); |
| assert(q <= rc->worst_quality && q >= rc->best_quality); |
| |
| return q; |
| } |
| |
| int av1_rc_pick_q_and_bounds(const AV1_COMP *cpi, int width, int height, |
| int gf_index, int *bottom_index, int *top_index) { |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| int q; |
| // TODO(sarahparker) merge no-stats vbr and altref q computation |
| // with rc_pick_q_and_bounds(). |
| const GF_GROUP *gf_group = &cpi->ppi->gf_group; |
| if ((cpi->oxcf.rc_cfg.mode != AOM_Q || |
| gf_group->update_type[gf_index] == ARF_UPDATE) && |
| has_no_stats_stage(cpi)) { |
| if (cpi->oxcf.rc_cfg.mode == AOM_CBR) { |
| q = rc_pick_q_and_bounds_no_stats_cbr(cpi, width, height, bottom_index, |
| top_index); |
| #if USE_UNRESTRICTED_Q_IN_CQ_MODE |
| } else if (cpi->oxcf.rc_cfg.mode == AOM_CQ) { |
| q = rc_pick_q_and_bounds_no_stats_cq(cpi, width, height, bottom_index, |
| top_index); |
| #endif // USE_UNRESTRICTED_Q_IN_CQ_MODE |
| } else { |
| q = rc_pick_q_and_bounds_no_stats(cpi, width, height, bottom_index, |
| top_index); |
| } |
| } else { |
| q = rc_pick_q_and_bounds(cpi, width, height, gf_index, bottom_index, |
| top_index); |
| } |
| if (gf_group->update_type[gf_index] == ARF_UPDATE) p_rc->arf_q = q; |
| |
| return q; |
| } |
| |
| void av1_rc_compute_frame_size_bounds(const AV1_COMP *cpi, int frame_target, |
| int *frame_under_shoot_limit, |
| int *frame_over_shoot_limit) { |
| if (cpi->oxcf.rc_cfg.mode == AOM_Q) { |
| *frame_under_shoot_limit = 0; |
| *frame_over_shoot_limit = INT_MAX; |
| } else { |
| // For very small rate targets where the fractional adjustment |
| // may be tiny make sure there is at least a minimum range. |
| assert(cpi->sf.hl_sf.recode_tolerance <= 100); |
| const int tolerance = (int)AOMMAX( |
| 100, ((int64_t)cpi->sf.hl_sf.recode_tolerance * frame_target) / 100); |
| *frame_under_shoot_limit = AOMMAX(frame_target - tolerance, 0); |
| *frame_over_shoot_limit = |
| AOMMIN(frame_target + tolerance, cpi->rc.max_frame_bandwidth); |
| } |
| } |
| |
| void av1_rc_set_frame_target(AV1_COMP *cpi, int target, int width, int height) { |
| const AV1_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| |
| rc->this_frame_target = target; |
| |
| // Modify frame size target when down-scaled. |
| if (av1_frame_scaled(cm) && cpi->oxcf.rc_cfg.mode != AOM_CBR) { |
| rc->this_frame_target = |
| (int)(rc->this_frame_target * |
| resize_rate_factor(&cpi->oxcf.frm_dim_cfg, width, height)); |
| } |
| |
| // Target rate per SB64 (including partial SB64s. |
| rc->sb64_target_rate = |
| (int)(((int64_t)rc->this_frame_target << 12) / (width * height)); |
| } |
| |
| static void update_alt_ref_frame_stats(AV1_COMP *cpi) { |
| // this frame refreshes means next frames don't unless specified by user |
| RATE_CONTROL *const rc = &cpi->rc; |
| rc->frames_since_golden = 0; |
| } |
| |
| static void update_golden_frame_stats(AV1_COMP *cpi) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| |
| // Update the Golden frame usage counts. |
| if (cpi->refresh_frame.golden_frame || rc->is_src_frame_alt_ref) { |
| rc->frames_since_golden = 0; |
| } else if (cpi->common.show_frame) { |
| rc->frames_since_golden++; |
| } |
| } |
| |
| void av1_rc_postencode_update(AV1_COMP *cpi, uint64_t bytes_used) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const CurrentFrame *const current_frame = &cm->current_frame; |
| RATE_CONTROL *const rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| const GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
| const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; |
| |
| const int is_intrnl_arf = |
| gf_group->update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE; |
| |
| const int qindex = cm->quant_params.base_qindex; |
| |
| #if RT_PASSIVE_STRATEGY |
| const int frame_number = current_frame->frame_number % MAX_Q_HISTORY; |
| p_rc->q_history[frame_number] = qindex; |
| #endif // RT_PASSIVE_STRATEGY |
| |
| // Update rate control heuristics |
| rc->projected_frame_size = (int)(bytes_used << 3); |
| |
| // Post encode loop adjustment of Q prediction. |
| av1_rc_update_rate_correction_factors(cpi, 0, cm->width, cm->height); |
| |
| // Keep a record of last Q and ambient average Q. |
| if (current_frame->frame_type == KEY_FRAME) { |
| p_rc->last_q[KEY_FRAME] = qindex; |
| p_rc->avg_frame_qindex[KEY_FRAME] = |
| ROUND_POWER_OF_TWO(3 * p_rc->avg_frame_qindex[KEY_FRAME] + qindex, 2); |
| } else { |
| if ((cpi->ppi->use_svc && cpi->oxcf.rc_cfg.mode == AOM_CBR) || |
| (!rc->is_src_frame_alt_ref && |
| !(refresh_frame->golden_frame || is_intrnl_arf || |
| refresh_frame->alt_ref_frame))) { |
| p_rc->last_q[INTER_FRAME] = qindex; |
| p_rc->avg_frame_qindex[INTER_FRAME] = ROUND_POWER_OF_TWO( |
| 3 * p_rc->avg_frame_qindex[INTER_FRAME] + qindex, 2); |
| p_rc->ni_frames++; |
| p_rc->tot_q += av1_convert_qindex_to_q(qindex, cm->seq_params->bit_depth); |
| p_rc->avg_q = p_rc->tot_q / p_rc->ni_frames; |
| // Calculate the average Q for normal inter frames (not key or GFU |
| // frames). |
| rc->ni_tot_qi += qindex; |
| rc->ni_av_qi = rc->ni_tot_qi / p_rc->ni_frames; |
| } |
| } |
| // Keep record of last boosted (KF/GF/ARF) Q value. |
| // If the current frame is coded at a lower Q then we also update it. |
| // If all mbs in this group are skipped only update if the Q value is |
| // better than that already stored. |
| // This is used to help set quality in forced key frames to reduce popping |
| if ((qindex < p_rc->last_boosted_qindex) || |
| (current_frame->frame_type == KEY_FRAME) || |
| (!p_rc->constrained_gf_group && |
| (refresh_frame->alt_ref_frame || is_intrnl_arf || |
| (refresh_frame->golden_frame && !rc->is_src_frame_alt_ref)))) { |
| p_rc->last_boosted_qindex = qindex; |
| } |
| if (current_frame->frame_type == KEY_FRAME) p_rc->last_kf_qindex = qindex; |
| |
| update_buffer_level(cpi, rc->projected_frame_size); |
| rc->prev_avg_frame_bandwidth = rc->avg_frame_bandwidth; |
| |
| // Rolling monitors of whether we are over or underspending used to help |
| // regulate min and Max Q in two pass. |
| if (av1_frame_scaled(cm)) |
| rc->this_frame_target = (int)(rc->this_frame_target / |
| resize_rate_factor(&cpi->oxcf.frm_dim_cfg, |
| cm->width, cm->height)); |
| if (current_frame->frame_type != KEY_FRAME) { |
| p_rc->rolling_target_bits = (int)ROUND_POWER_OF_TWO_64( |
| p_rc->rolling_target_bits * 3 + rc->this_frame_target, 2); |
| p_rc->rolling_actual_bits = (int)ROUND_POWER_OF_TWO_64( |
| p_rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2); |
| } |
| |
| // Actual bits spent |
| p_rc->total_actual_bits += rc->projected_frame_size; |
| p_rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0; |
| |
| if (is_altref_enabled(cpi->oxcf.gf_cfg.lag_in_frames, |
| cpi->oxcf.gf_cfg.enable_auto_arf) && |
| refresh_frame->alt_ref_frame && |
| (current_frame->frame_type != KEY_FRAME && !frame_is_sframe(cm))) |
| // Update the alternate reference frame stats as appropriate. |
| update_alt_ref_frame_stats(cpi); |
| else |
| // Update the Golden frame stats as appropriate. |
| update_golden_frame_stats(cpi); |
| |
| #if CONFIG_FPMT_TEST |
| /*The variables temp_avg_frame_qindex, temp_last_q, temp_avg_q, |
| * temp_last_boosted_qindex are introduced only for quality simulation |
| * purpose, it retains the value previous to the parallel encode frames. The |
| * variables are updated based on the update flag. |
| * |
| * If there exist show_existing_frames between parallel frames, then to |
| * retain the temp state do not update it. */ |
| int show_existing_between_parallel_frames = |
| (cpi->ppi->gf_group.update_type[cpi->gf_frame_index] == |
| INTNL_OVERLAY_UPDATE && |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index + 1] == 2); |
| |
| if (cpi->do_frame_data_update && !show_existing_between_parallel_frames && |
| cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { |
| for (int i = 0; i < FRAME_TYPES; i++) { |
| p_rc->temp_last_q[i] = p_rc->last_q[i]; |
| } |
| p_rc->temp_avg_q = p_rc->avg_q; |
| p_rc->temp_last_boosted_qindex = p_rc->last_boosted_qindex; |
| p_rc->temp_total_actual_bits = p_rc->total_actual_bits; |
| p_rc->temp_projected_frame_size = rc->projected_frame_size; |
| for (int i = 0; i < RATE_FACTOR_LEVELS; i++) |
| p_rc->temp_rate_correction_factors[i] = p_rc->rate_correction_factors[i]; |
| } |
| #endif |
| if (current_frame->frame_type == KEY_FRAME) rc->frames_since_key = 0; |
| // if (current_frame->frame_number == 1 && cm->show_frame) |
| /* |
| rc->this_frame_target = |
| (int)(rc->this_frame_target / resize_rate_factor(&cpi->oxcf.frm_dim_cfg, |
| cm->width, cm->height)); |
| */ |
| } |
| |
| void av1_rc_postencode_update_drop_frame(AV1_COMP *cpi) { |
| // Update buffer level with zero size, update frame counters, and return. |
| update_buffer_level(cpi, 0); |
| cpi->rc.frames_since_key++; |
| cpi->rc.frames_to_key--; |
| cpi->rc.rc_2_frame = 0; |
| cpi->rc.rc_1_frame = 0; |
| cpi->rc.prev_avg_frame_bandwidth = cpi->rc.avg_frame_bandwidth; |
| } |
| |
| int av1_find_qindex(double desired_q, aom_bit_depth_t bit_depth, |
| int best_qindex, int worst_qindex) { |
| assert(best_qindex <= worst_qindex); |
| int low = best_qindex; |
| int high = worst_qindex; |
| while (low < high) { |
| const int mid = (low + high) >> 1; |
| const double mid_q = av1_convert_qindex_to_q(mid, bit_depth); |
| if (mid_q < desired_q) { |
| low = mid + 1; |
| } else { |
| high = mid; |
| } |
| } |
| assert(low == high); |
| assert(av1_convert_qindex_to_q(low, bit_depth) >= desired_q || |
| low == worst_qindex); |
| return low; |
| } |
| |
| int av1_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget, |
| aom_bit_depth_t bit_depth) { |
| const int start_index = |
| av1_find_qindex(qstart, bit_depth, rc->best_quality, rc->worst_quality); |
| const int target_index = |
| av1_find_qindex(qtarget, bit_depth, rc->best_quality, rc->worst_quality); |
| return target_index - start_index; |
| } |
| |
| // Find q_index for the desired_bits_per_mb, within [best_qindex, worst_qindex], |
| // assuming 'correction_factor' is 1.0. |
| // To be precise, 'q_index' is the smallest integer, for which the corresponding |
| // bits per mb <= desired_bits_per_mb. |
| // If no such q index is found, returns 'worst_qindex'. |
| static int find_qindex_by_rate(int desired_bits_per_mb, |
| aom_bit_depth_t bit_depth, FRAME_TYPE frame_type, |
| const int is_screen_content_type, |
| int best_qindex, int worst_qindex) { |
| assert(best_qindex <= worst_qindex); |
| int low = best_qindex; |
| int high = worst_qindex; |
| while (low < high) { |
| const int mid = (low + high) >> 1; |
| const int mid_bits_per_mb = av1_rc_bits_per_mb( |
| frame_type, mid, 1.0, bit_depth, is_screen_content_type); |
| if (mid_bits_per_mb > desired_bits_per_mb) { |
| low = mid + 1; |
| } else { |
| high = mid; |
| } |
| } |
| assert(low == high); |
| assert(av1_rc_bits_per_mb(frame_type, low, 1.0, bit_depth, |
| is_screen_content_type) <= desired_bits_per_mb || |
| low == worst_qindex); |
| return low; |
| } |
| |
| int av1_compute_qdelta_by_rate(const RATE_CONTROL *rc, FRAME_TYPE frame_type, |
| int qindex, double rate_target_ratio, |
| const int is_screen_content_type, |
| aom_bit_depth_t bit_depth) { |
| // Look up the current projected bits per block for the base index |
| const int base_bits_per_mb = av1_rc_bits_per_mb( |
| frame_type, qindex, 1.0, bit_depth, is_screen_content_type); |
| |
| // Find the target bits per mb based on the base value and given ratio. |
| const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb); |
| |
| const int target_index = find_qindex_by_rate( |
| target_bits_per_mb, bit_depth, frame_type, is_screen_content_type, |
| rc->best_quality, rc->worst_quality); |
| return target_index - qindex; |
| } |
| |
| void av1_rc_set_gf_interval_range(const AV1_COMP *const cpi, |
| RATE_CONTROL *const rc) { |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| |
| // Special case code for 1 pass fixed Q mode tests |
| if ((has_no_stats_stage(cpi)) && (oxcf->rc_cfg.mode == AOM_Q)) { |
| rc->max_gf_interval = oxcf->gf_cfg.max_gf_interval; |
| rc->min_gf_interval = oxcf->gf_cfg.min_gf_interval; |
| rc->static_scene_max_gf_interval = rc->min_gf_interval + 1; |
| } else { |
| // Set Maximum gf/arf interval |
| rc->max_gf_interval = oxcf->gf_cfg.max_gf_interval; |
| rc->min_gf_interval = oxcf->gf_cfg.min_gf_interval; |
| if (rc->min_gf_interval == 0) |
| rc->min_gf_interval = av1_rc_get_default_min_gf_interval( |
| oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height, cpi->framerate); |
| if (rc->max_gf_interval == 0) |
| rc->max_gf_interval = av1_rc_get_default_max_gf_interval( |
| cpi->framerate, rc->min_gf_interval); |
| /* |
| * Extended max interval for genuinely static scenes like slide shows. |
| * The no.of.stats available in the case of LAP is limited, |
| * hence setting to max_gf_interval. |
| */ |
| if (cpi->ppi->lap_enabled) |
| rc->static_scene_max_gf_interval = rc->max_gf_interval + 1; |
| else |
| rc->static_scene_max_gf_interval = MAX_STATIC_GF_GROUP_LENGTH; |
| |
| if (rc->max_gf_interval > rc->static_scene_max_gf_interval) |
| rc->max_gf_interval = rc->static_scene_max_gf_interval; |
| |
| // Clamp min to max |
| rc->min_gf_interval = AOMMIN(rc->min_gf_interval, rc->max_gf_interval); |
| } |
| } |
| |
| void av1_rc_update_framerate(AV1_COMP *cpi, int width, int height) { |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| RATE_CONTROL *const rc = &cpi->rc; |
| int vbr_max_bits; |
| const int MBs = av1_get_MBs(width, height); |
| |
| rc->avg_frame_bandwidth = |
| (int)round(oxcf->rc_cfg.target_bandwidth / cpi->framerate); |
| rc->min_frame_bandwidth = |
| (int)(rc->avg_frame_bandwidth * oxcf->rc_cfg.vbrmin_section / 100); |
| |
| rc->min_frame_bandwidth = |
| AOMMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS); |
| |
| // A maximum bitrate for a frame is defined. |
| // The baseline for this aligns with HW implementations that |
| // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits |
| // per 16x16 MB (averaged over a frame). However this limit is extended if |
| // a very high rate is given on the command line or the the rate cannnot |
| // be acheived because of a user specificed max q (e.g. when the user |
| // specifies lossless encode. |
| vbr_max_bits = |
| (int)(((int64_t)rc->avg_frame_bandwidth * oxcf->rc_cfg.vbrmax_section) / |
| 100); |
| rc->max_frame_bandwidth = |
| AOMMAX(AOMMAX((MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits); |
| |
| av1_rc_set_gf_interval_range(cpi, rc); |
| } |
| |
| #define VBR_PCT_ADJUSTMENT_LIMIT 50 |
| // For VBR...adjustment to the frame target based on error from previous frames |
| static void vbr_rate_correction(AV1_COMP *cpi, int *this_frame_target) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| #if CONFIG_FPMT_TEST |
| const int simulate_parallel_frame = |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && |
| cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; |
| int64_t vbr_bits_off_target = simulate_parallel_frame |
| ? cpi->ppi->p_rc.temp_vbr_bits_off_target |
| : p_rc->vbr_bits_off_target; |
| #else |
| int64_t vbr_bits_off_target = p_rc->vbr_bits_off_target; |
| #endif |
| const int stats_count = |
| cpi->ppi->twopass.stats_buf_ctx->total_stats != NULL |
| ? (int)cpi->ppi->twopass.stats_buf_ctx->total_stats->count |
| : 0; |
| const int frame_window = AOMMIN( |
| 16, (int)(stats_count - (int)cpi->common.current_frame.frame_number)); |
| assert(VBR_PCT_ADJUSTMENT_LIMIT <= 100); |
| if (frame_window > 0) { |
| const int max_delta = (int)AOMMIN( |
| abs((int)(vbr_bits_off_target / frame_window)), |
| ((int64_t)(*this_frame_target) * VBR_PCT_ADJUSTMENT_LIMIT) / 100); |
| |
| // vbr_bits_off_target > 0 means we have extra bits to spend |
| // vbr_bits_off_target < 0 we are currently overshooting |
| *this_frame_target += (vbr_bits_off_target >= 0) ? max_delta : -max_delta; |
| } |
| |
| #if CONFIG_FPMT_TEST |
| int64_t vbr_bits_off_target_fast = |
| simulate_parallel_frame ? cpi->ppi->p_rc.temp_vbr_bits_off_target_fast |
| : p_rc->vbr_bits_off_target_fast; |
| #endif |
| // Fast redistribution of bits arising from massive local undershoot. |
| // Dont do it for kf,arf,gf or overlay frames. |
| if (!frame_is_kf_gf_arf(cpi) && |
| #if CONFIG_FPMT_TEST |
| vbr_bits_off_target_fast && |
| #else |
| p_rc->vbr_bits_off_target_fast && |
| #endif |
| !rc->is_src_frame_alt_ref) { |
| int one_frame_bits = AOMMAX(rc->avg_frame_bandwidth, *this_frame_target); |
| int fast_extra_bits; |
| #if CONFIG_FPMT_TEST |
| fast_extra_bits = (int)AOMMIN(vbr_bits_off_target_fast, one_frame_bits); |
| fast_extra_bits = |
| (int)AOMMIN(fast_extra_bits, |
| AOMMAX(one_frame_bits / 8, vbr_bits_off_target_fast / 8)); |
| #else |
| fast_extra_bits = |
| (int)AOMMIN(p_rc->vbr_bits_off_target_fast, one_frame_bits); |
| fast_extra_bits = (int)AOMMIN( |
| fast_extra_bits, |
| AOMMAX(one_frame_bits / 8, p_rc->vbr_bits_off_target_fast / 8)); |
| #endif |
| if (fast_extra_bits > 0) { |
| // Update this_frame_target only if additional bits are available from |
| // local undershoot. |
| *this_frame_target += (int)fast_extra_bits; |
| } |
| // Store the fast_extra_bits of the frame and reduce it from |
| // vbr_bits_off_target_fast during postencode stage. |
| rc->frame_level_fast_extra_bits = fast_extra_bits; |
| // Retaining the condition to udpate during postencode stage since |
| // fast_extra_bits are calculated based on vbr_bits_off_target_fast. |
| cpi->do_update_vbr_bits_off_target_fast = 1; |
| } |
| } |
| |
| void av1_set_target_rate(AV1_COMP *cpi, int width, int height) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| int target_rate = rc->base_frame_target; |
| |
| // Correction to rate target based on prior over or under shoot. |
| if (cpi->oxcf.rc_cfg.mode == AOM_VBR || cpi->oxcf.rc_cfg.mode == AOM_CQ) |
| vbr_rate_correction(cpi, &target_rate); |
| av1_rc_set_frame_target(cpi, target_rate, width, height); |
| } |
| |
| int av1_calc_pframe_target_size_one_pass_vbr( |
| const AV1_COMP *const cpi, FRAME_UPDATE_TYPE frame_update_type) { |
| static const int af_ratio = 10; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| int64_t target; |
| #if USE_ALTREF_FOR_ONE_PASS |
| if (frame_update_type == KF_UPDATE || frame_update_type == GF_UPDATE || |
| frame_update_type == ARF_UPDATE) { |
| target = ((int64_t)rc->avg_frame_bandwidth * p_rc->baseline_gf_interval * |
| af_ratio) / |
| (p_rc->baseline_gf_interval + af_ratio - 1); |
| } else { |
| target = ((int64_t)rc->avg_frame_bandwidth * p_rc->baseline_gf_interval) / |
| (p_rc->baseline_gf_interval + af_ratio - 1); |
| } |
| if (target > INT_MAX) target = INT_MAX; |
| #else |
| target = rc->avg_frame_bandwidth; |
| #endif |
| return av1_rc_clamp_pframe_target_size(cpi, (int)target, frame_update_type); |
| } |
| |
| int av1_calc_iframe_target_size_one_pass_vbr(const AV1_COMP *const cpi) { |
| static const int kf_ratio = 25; |
| const RATE_CONTROL *rc = &cpi->rc; |
| const int64_t target = (int64_t)rc->avg_frame_bandwidth * kf_ratio; |
| return av1_rc_clamp_iframe_target_size(cpi, target); |
| } |
| |
| int av1_calc_pframe_target_size_one_pass_cbr( |
| const AV1_COMP *cpi, FRAME_UPDATE_TYPE frame_update_type) { |
| const AV1EncoderConfig *oxcf = &cpi->oxcf; |
| const RATE_CONTROL *rc = &cpi->rc; |
| const PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc; |
| const RateControlCfg *rc_cfg = &oxcf->rc_cfg; |
| const int64_t diff = p_rc->optimal_buffer_level - p_rc->buffer_level; |
| const int64_t one_pct_bits = 1 + p_rc->optimal_buffer_level / 100; |
| int min_frame_target = |
| AOMMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS); |
| int target; |
| |
| if (rc_cfg->gf_cbr_boost_pct) { |
| const int af_ratio_pct = rc_cfg->gf_cbr_boost_pct + 100; |
| if (frame_update_type == GF_UPDATE || frame_update_type == OVERLAY_UPDATE) { |
| target = (rc->avg_frame_bandwidth * p_rc->baseline_gf_interval * |
| af_ratio_pct) / |
| (p_rc->baseline_gf_interval * 100 + af_ratio_pct - 100); |
| } else { |
| target = (rc->avg_frame_bandwidth * p_rc->baseline_gf_interval * 100) / |
| (p_rc->baseline_gf_interval * 100 + af_ratio_pct - 100); |
| } |
| } else { |
| target = rc->avg_frame_bandwidth; |
| } |
| if (cpi->ppi->use_svc) { |
| // Note that for layers, avg_frame_bandwidth is the cumulative |
| // per-frame-bandwidth. For the target size of this frame, use the |
| // layer average frame size (i.e., non-cumulative per-frame-bw). |
| int layer = |
| LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id, cpi->svc.temporal_layer_id, |
| cpi->svc.number_temporal_layers); |
| const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; |
| target = lc->avg_frame_size; |
| min_frame_target = AOMMAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS); |
| } |
| if (diff > 0) { |
| // Lower the target bandwidth for this frame. |
| const int pct_low = |
| (int)AOMMIN(diff / one_pct_bits, rc_cfg->under_shoot_pct); |
| target -= (target * pct_low) / 200; |
| } else if (diff < 0) { |
| // Increase the target bandwidth for this frame. |
| const int pct_high = |
| (int)AOMMIN(-diff / one_pct_bits, rc_cfg->over_shoot_pct); |
| target += (target * pct_high) / 200; |
| } |
| if (rc_cfg->max_inter_bitrate_pct) { |
| const int max_rate = |
| rc->avg_frame_bandwidth * rc_cfg->max_inter_bitrate_pct / 100; |
| target = AOMMIN(target, max_rate); |
| } |
| return AOMMAX(min_frame_target, target); |
| } |
| |
| int av1_calc_iframe_target_size_one_pass_cbr(const AV1_COMP *cpi) { |
| const RATE_CONTROL *rc = &cpi->rc; |
| const PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc; |
| int64_t target; |
| if (cpi->common.current_frame.frame_number == 0) { |
| target = ((p_rc->starting_buffer_level / 2) > INT_MAX) |
| ? INT_MAX |
| : (int)(p_rc->starting_buffer_level / 2); |
| if (cpi->svc.number_temporal_layers > 1 && target < (INT_MAX >> 2)) { |
| target = target << AOMMIN(2, (cpi->svc.number_temporal_layers - 1)); |
| } |
| } else { |
| int kf_boost = 32; |
| double framerate = cpi->framerate; |
| |
| kf_boost = AOMMAX(kf_boost, (int)(2 * framerate - 16)); |
| if (rc->frames_since_key < framerate / 2) { |
| kf_boost = (int)(kf_boost * rc->frames_since_key / (framerate / 2)); |
| } |
| target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4; |
| } |
| return av1_rc_clamp_iframe_target_size(cpi, target); |
| } |
| |
| static void set_baseline_gf_interval(AV1_COMP *cpi, FRAME_TYPE frame_type) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
| if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ) |
| av1_cyclic_refresh_set_golden_update(cpi); |
| else |
| p_rc->baseline_gf_interval = FIXED_GF_INTERVAL; |
| if (p_rc->baseline_gf_interval > rc->frames_to_key && |
| cpi->oxcf.kf_cfg.auto_key) |
| p_rc->baseline_gf_interval = rc->frames_to_key; |
| p_rc->gfu_boost = DEFAULT_GF_BOOST_RT; |
| p_rc->constrained_gf_group = |
| (p_rc->baseline_gf_interval >= rc->frames_to_key && |
| cpi->oxcf.kf_cfg.auto_key) |
| ? 1 |
| : 0; |
| rc->frames_till_gf_update_due = p_rc->baseline_gf_interval; |
| cpi->gf_frame_index = 0; |
| // SVC does not use GF as periodic boost. |
| // TODO(marpan): Find better way to disable this for SVC. |
| if (cpi->ppi->use_svc) { |
| SVC *const svc = &cpi->svc; |
| p_rc->baseline_gf_interval = MAX_STATIC_GF_GROUP_LENGTH - 1; |
| p_rc->gfu_boost = 1; |
| p_rc->constrained_gf_group = 0; |
| rc->frames_till_gf_update_due = p_rc->baseline_gf_interval; |
| for (int layer = 0; |
| layer < svc->number_spatial_layers * svc->number_temporal_layers; |
| ++layer) { |
| LAYER_CONTEXT *const lc = &svc->layer_context[layer]; |
| lc->p_rc.baseline_gf_interval = p_rc->baseline_gf_interval; |
| lc->p_rc.gfu_boost = p_rc->gfu_boost; |
| lc->p_rc.constrained_gf_group = p_rc->constrained_gf_group; |
| lc->rc.frames_till_gf_update_due = rc->frames_till_gf_update_due; |
| lc->group_index = 0; |
| } |
| } |
| gf_group->size = p_rc->baseline_gf_interval; |
| gf_group->update_type[0] = (frame_type == KEY_FRAME) ? KF_UPDATE : GF_UPDATE; |
| gf_group->refbuf_state[cpi->gf_frame_index] = |
| (frame_type == KEY_FRAME) ? REFBUF_RESET : REFBUF_UPDATE; |
| } |
| |
| void av1_adjust_gf_refresh_qp_one_pass_rt(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| SVC *const svc = &cpi->svc; |
| const int resize_pending = is_frame_resize_pending(cpi); |
| if (!resize_pending && !rc->high_source_sad) { |
| // Check if we should disable GF refresh (if period is up), |
| // or force a GF refresh update (if we are at least halfway through |
| // period) based on QP. Look into add info on segment deltaq. |
| PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc; |
| const int avg_qp = p_rc->avg_frame_qindex[INTER_FRAME]; |
| const int allow_gf_update = |
| rc->frames_till_gf_update_due <= (p_rc->baseline_gf_interval - 10); |
| int gf_update_changed = 0; |
| int thresh = 87; |
| if (rc->frames_till_gf_update_due == 1 && |
| cm->quant_params.base_qindex > avg_qp) { |
| // Disable GF refresh since QP is above the runninhg average QP. |
| svc->refresh[svc->gld_idx_1layer] = 0; |
| gf_update_changed = 1; |
| cpi->refresh_frame.golden_frame = 0; |
| } else if (allow_gf_update && |
| ((cm->quant_params.base_qindex < thresh * avg_qp / 100) || |
| (rc->avg_frame_low_motion && rc->avg_frame_low_motion < 20))) { |
| // Force refresh since QP is well below average QP or this is a high |
| // motion frame. |
| svc->refresh[svc->gld_idx_1layer] = 1; |
| gf_update_changed = 1; |
| cpi->refresh_frame.golden_frame = 1; |
| } |
| if (gf_update_changed) { |
| set_baseline_gf_interval(cpi, INTER_FRAME); |
| int refresh_mask = 0; |
| for (unsigned int i = 0; i < INTER_REFS_PER_FRAME; i++) { |
| int ref_frame_map_idx = svc->ref_idx[i]; |
| refresh_mask |= svc->refresh[ref_frame_map_idx] << ref_frame_map_idx; |
| } |
| cm->current_frame.refresh_frame_flags = refresh_mask; |
| } |
| } |
| } |
| |
| /*!\brief Setup the reference prediction structure for 1 pass real-time |
| * |
| * Set the reference prediction structure for 1 layer. |
| * Current structue is to use 3 references (LAST, GOLDEN, ALTREF), |
| * where ALT_REF always behind current by lag_alt frames, and GOLDEN is |
| * either updated on LAST with period baseline_gf_interval (fixed slot) |
| * or always behind current by lag_gld (gld_fixed_slot = 0, lag_gld <= 7). |
| * |
| * \ingroup rate_control |
| * \param[in] cpi Top level encoder structure |
| * \param[in] gf_update Flag to indicate if GF is updated |
| * |
| * \return Nothing is returned. Instead the settings for the prediction |
| * structure are set in \c cpi-ext_flags; and the buffer slot index |
| * (for each of 7 references) and refresh flags (for each of the 8 slots) |
| * are set in \c cpi->svc.ref_idx[] and \c cpi->svc.refresh[]. |
| */ |
| void av1_set_reference_structure_one_pass_rt(AV1_COMP *cpi, int gf_update) { |
| AV1_COMMON *const cm = &cpi->common; |
| ExternalFlags *const ext_flags = &cpi->ext_flags; |
| RATE_CONTROL *const rc = &cpi->rc; |
| ExtRefreshFrameFlagsInfo *const ext_refresh_frame_flags = |
| &ext_flags->refresh_frame; |
| SVC *const svc = &cpi->svc; |
| const int gld_fixed_slot = 1; |
| unsigned int lag_alt = 4; |
| int last_idx = 0; |
| int last_idx_refresh = 0; |
| int gld_idx = 0; |
| int alt_ref_idx = 0; |
| int last2_idx = 0; |
| ext_refresh_frame_flags->update_pending = 1; |
| svc->set_ref_frame_config = 1; |
| ext_flags->ref_frame_flags = 0; |
| ext_refresh_frame_flags->last_frame = 1; |
| ext_refresh_frame_flags->golden_frame = 0; |
| ext_refresh_frame_flags->alt_ref_frame = 0; |
| // Decide altref lag adaptively for rt |
| if (cpi->sf.rt_sf.sad_based_adp_altref_lag) { |
| lag_alt = 6; |
| const uint64_t th_frame_sad[4][3] = { |
| { 18000, 18000, 18000 }, // HDRES CPU 9 |
| { 25000, 25000, 25000 }, // MIDRES CPU 9 |
| { 40000, 30000, 20000 }, // HDRES CPU10 |
| { 30000, 25000, 20000 } // MIDRES CPU 10 |
| }; |
| int th_idx = cpi->sf.rt_sf.sad_based_adp_altref_lag - 1; |
| assert(th_idx < 4); |
| if (rc->avg_source_sad > th_frame_sad[th_idx][0]) |
| lag_alt = 3; |
| else if (rc->avg_source_sad > th_frame_sad[th_idx][1]) |
| lag_alt = 4; |
| else if (rc->avg_source_sad > th_frame_sad[th_idx][2]) |
| lag_alt = 5; |
| } |
| for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) svc->ref_idx[i] = 7; |
| for (int i = 0; i < REF_FRAMES; ++i) svc->refresh[i] = 0; |
| // Set the reference frame flags. |
| ext_flags->ref_frame_flags ^= AOM_LAST_FLAG; |
| ext_flags->ref_frame_flags ^= AOM_ALT_FLAG; |
| ext_flags->ref_frame_flags ^= AOM_GOLD_FLAG; |
| if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1]) |
| ext_flags->ref_frame_flags ^= AOM_LAST2_FLAG; |
| const int sh = 7 - gld_fixed_slot; |
| // Moving index slot for last: 0 - (sh - 1). |
| if (cm->current_frame.frame_number > 1) |
| last_idx = ((cm->current_frame.frame_number - 1) % sh); |
| // Moving index for refresh of last: one ahead for next frame. |
| last_idx_refresh = (cm->current_frame.frame_number % sh); |
| gld_idx = 6; |
| if (!gld_fixed_slot) { |
| gld_idx = 7; |
| const unsigned int lag_gld = 7; // Must be <= 7. |
| // Moving index for gld_ref, lag behind current by gld_interval frames. |
| if (cm->current_frame.frame_number > lag_gld) |
| gld_idx = ((cm->current_frame.frame_number - lag_gld) % sh); |
| } |
| // Moving index for alt_ref, lag behind LAST by lag_alt frames. |
| if (cm->current_frame.frame_number > lag_alt) |
| alt_ref_idx = ((cm->current_frame.frame_number - lag_alt) % sh); |
| if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1]) { |
| // Moving index for LAST2, lag behind LAST by 2 frames. |
| if (cm->current_frame.frame_number > 2) |
| last2_idx = ((cm->current_frame.frame_number - 2) % sh); |
| } |
| svc->ref_idx[0] = last_idx; // LAST |
| svc->ref_idx[1] = last_idx_refresh; // LAST2 (for refresh of last). |
| if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1]) { |
| svc->ref_idx[1] = last2_idx; // LAST2 |
| svc->ref_idx[2] = last_idx_refresh; // LAST3 (for refresh of last). |
| } |
| svc->ref_idx[3] = gld_idx; // GOLDEN |
| svc->ref_idx[6] = alt_ref_idx; // ALT_REF |
| // Refresh this slot, which will become LAST on next frame. |
| svc->refresh[last_idx_refresh] = 1; |
| // Update GOLDEN on period for fixed slot case. |
| if (gld_fixed_slot && gf_update && |
| cm->current_frame.frame_type != KEY_FRAME) { |
| ext_refresh_frame_flags->golden_frame = 1; |
| svc->refresh[gld_idx] = 1; |
| } |
| svc->gld_idx_1layer = gld_idx; |
| } |
| |
| /*!\brief Check for scene detection, for 1 pass real-time mode. |
| * |
| * Compute average source sad (temporal sad: between current source and |
| * previous source) over a subset of superblocks. Use this is detect big changes |
| * in content and set the \c cpi->rc.high_source_sad flag. |
| * |
| * \ingroup rate_control |
| * \param[in] cpi Top level encoder structure |
| * |
| * \return Nothing is returned. Instead the flag \c cpi->rc.high_source_sad |
| * is set if scene change is detected, and \c cpi->rc.avg_source_sad is updated. |
| */ |
| static void rc_scene_detection_onepass_rt(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| YV12_BUFFER_CONFIG const *unscaled_src = cpi->unscaled_source; |
| YV12_BUFFER_CONFIG const *unscaled_last_src = cpi->unscaled_last_source; |
| uint8_t *src_y; |
| int src_ystride; |
| int src_width; |
| int src_height; |
| uint8_t *last_src_y; |
| int last_src_ystride; |
| int last_src_width; |
| int last_src_height; |
| if (cm->spatial_layer_id != 0 || cm->width != cm->render_width || |
| cm->height != cm->render_height || cpi->unscaled_source == NULL || |
| cpi->unscaled_last_source == NULL) { |
| if (cpi->src_sad_blk_64x64) { |
| aom_free(cpi->src_sad_blk_64x64); |
| cpi->src_sad_blk_64x64 = NULL; |
| } |
| } |
| if (cpi->unscaled_source == NULL || cpi->unscaled_last_source == NULL) return; |
| src_y = unscaled_src->y_buffer; |
| src_ystride = unscaled_src->y_stride; |
| src_width = unscaled_src->y_width; |
| src_height = unscaled_src->y_height; |
| last_src_y = unscaled_last_src->y_buffer; |
| last_src_ystride = unscaled_last_src->y_stride; |
| last_src_width = unscaled_last_src->y_width; |
| last_src_height = unscaled_last_src->y_height; |
| if (src_width != last_src_width || src_height != last_src_height) { |
| if (cpi->src_sad_blk_64x64) { |
| aom_free(cpi->src_sad_blk_64x64); |
| cpi->src_sad_blk_64x64 = NULL; |
| } |
| return; |
| } |
| rc->high_source_sad = 0; |
| rc->high_num_blocks_with_motion = 0; |
| rc->prev_avg_source_sad = rc->avg_source_sad; |
| if (src_width == last_src_width && src_height == last_src_height) { |
| const int num_mi_cols = cm->mi_params.mi_cols; |
| const int num_mi_rows = cm->mi_params.mi_rows; |
| int num_zero_temp_sad = 0; |
| uint32_t min_thresh = 10000; |
| if (cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN) min_thresh = 100000; |
| const BLOCK_SIZE bsize = BLOCK_64X64; |
| int full_sampling = (cm->width * cm->height < 640 * 360) ? 1 : 0; |
| // Loop over sub-sample of frame, compute average sad over 64x64 blocks. |
| uint64_t avg_sad = 0; |
| uint64_t tmp_sad = 0; |
| int num_samples = 0; |
| const int thresh = 6; |
| // SAD is computed on 64x64 blocks |
| const int sb_size_by_mb = (cm->seq_params->sb_size == BLOCK_128X128) |
| ? (cm->seq_params->mib_size >> 1) |
| : cm->seq_params->mib_size; |
| const int sb_cols = (num_mi_cols + sb_size_by_mb - 1) / sb_size_by_mb; |
| const int sb_rows = (num_mi_rows + sb_size_by_mb - 1) / sb_size_by_mb; |
| uint64_t sum_sq_thresh = 10000; // sum = sqrt(thresh / 64*64)) ~1.5 |
| int num_low_var_high_sumdiff = 0; |
| int light_change = 0; |
| // Flag to check light change or not. |
| const int check_light_change = 0; |
| // Store blkwise SAD for later use |
| if (cpi->sf.rt_sf.sad_based_comp_prune && (cm->spatial_layer_id == 0) && |
| (cm->width == cm->render_width) && (cm->height == cm->render_height)) { |
| full_sampling = 1; |
| if (cpi->src_sad_blk_64x64 == NULL) { |
| CHECK_MEM_ERROR( |
| cm, cpi->src_sad_blk_64x64, |
| (uint64_t *)aom_calloc(sb_cols * sb_rows, |
| sizeof(*cpi->src_sad_blk_64x64))); |
| } |
| } |
| for (int sbi_row = 0; sbi_row < sb_rows; ++sbi_row) { |
| for (int sbi_col = 0; sbi_col < sb_cols; ++sbi_col) { |
| // Checker-board pattern, ignore boundary. |
| if (full_sampling || |
| ((sbi_row > 0 && sbi_col > 0) && |
| (sbi_row < sb_rows - 1 && sbi_col < sb_cols - 1) && |
| ((sbi_row % 2 == 0 && sbi_col % 2 == 0) || |
| (sbi_row % 2 != 0 && sbi_col % 2 != 0)))) { |
| tmp_sad = cpi->ppi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y, |
| last_src_ystride); |
| if (cpi->src_sad_blk_64x64 != NULL) |
| cpi->src_sad_blk_64x64[sbi_col + sbi_row * sb_cols] = tmp_sad; |
| if (check_light_change) { |
| unsigned int sse, variance; |
| variance = cpi->ppi->fn_ptr[bsize].vf( |
| src_y, src_ystride, last_src_y, last_src_ystride, &sse); |
| // Note: sse - variance = ((sum * sum) >> 12) |
| // Detect large lighting change. |
| if (variance < (sse >> 1) && (sse - variance) > sum_sq_thresh) { |
| num_low_var_high_sumdiff++; |
| } |
| } |
| avg_sad += tmp_sad; |
| num_samples++; |
| if (tmp_sad == 0) num_zero_temp_sad++; |
| } |
| src_y += 64; |
| last_src_y += 64; |
| } |
| src_y += (src_ystride << 6) - (sb_cols << 6); |
| last_src_y += (last_src_ystride << 6) - (sb_cols << 6); |
| } |
| if (check_light_change && num_samples > 0 && |
| num_low_var_high_sumdiff > (num_samples >> 1)) |
| light_change = 1; |
| if (num_samples > 0) avg_sad = avg_sad / num_samples; |
| // Set high_source_sad flag if we detect very high increase in avg_sad |
| // between current and previous frame value(s). Use minimum threshold |
| // for cases where there is small change from content that is completely |
| // static. |
| if (!light_change && |
| avg_sad > |
| AOMMAX(min_thresh, (unsigned int)(rc->avg_source_sad * thresh)) && |
| rc->frames_since_key > 1 + cpi->svc.number_spatial_layers && |
| num_zero_temp_sad < 3 * (num_samples >> 2)) |
| rc->high_source_sad = 1; |
| else |
| rc->high_source_sad = 0; |
| rc->avg_source_sad = (3 * rc->avg_source_sad + avg_sad) >> 2; |
| rc->frame_source_sad = avg_sad; |
| |
| if (num_zero_temp_sad < (3 * num_samples >> 2)) |
| rc->high_num_blocks_with_motion = 1; |
| } |
| cpi->svc.high_source_sad_superframe = rc->high_source_sad; |
| } |
| |
| /*!\brief Set the GF baseline interval for 1 pass real-time mode. |
| * |
| * |
| * \ingroup rate_control |
| * \param[in] cpi Top level encoder structure |
| * \param[in] frame_type frame type |
| * |
| * \return Return GF update flag, and update the \c cpi->rc with |
| * the next GF interval settings. |
| */ |
| static int set_gf_interval_update_onepass_rt(AV1_COMP *cpi, |
| FRAME_TYPE frame_type) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| int gf_update = 0; |
| const int resize_pending = is_frame_resize_pending(cpi); |
| // GF update based on frames_till_gf_update_due, also |
| // force upddate on resize pending frame or for scene change. |
| if ((resize_pending || rc->high_source_sad || |
| rc->frames_till_gf_update_due == 0) && |
| cpi->svc.temporal_layer_id == 0 && cpi->svc.spatial_layer_id == 0) { |
| set_baseline_gf_interval(cpi, frame_type); |
| gf_update = 1; |
| } |
| return gf_update; |
| } |
| |
| static void resize_reset_rc(AV1_COMP *cpi, int resize_width, int resize_height, |
| int prev_width, int prev_height) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| SVC *const svc = &cpi->svc; |
| double tot_scale_change = 1.0; |
| int target_bits_per_frame; |
| int active_worst_quality; |
| int qindex; |
| tot_scale_change = (double)(resize_width * resize_height) / |
| (double)(prev_width * prev_height); |
| // Reset buffer level to optimal, update target size. |
| p_rc->buffer_level = p_rc->optimal_buffer_level; |
| p_rc->bits_off_target = p_rc->optimal_buffer_level; |
| rc->this_frame_target = |
| av1_calc_pframe_target_size_one_pass_cbr(cpi, INTER_FRAME); |
| target_bits_per_frame = rc->this_frame_target; |
| if (tot_scale_change > 4.0) |
| p_rc->avg_frame_qindex[INTER_FRAME] = rc->worst_quality; |
| else if (tot_scale_change > 1.0) |
| p_rc->avg_frame_qindex[INTER_FRAME] = |
| (p_rc->avg_frame_qindex[INTER_FRAME] + rc->worst_quality) >> 1; |
| active_worst_quality = calc_active_worst_quality_no_stats_cbr(cpi); |
| qindex = av1_rc_regulate_q(cpi, target_bits_per_frame, rc->best_quality, |
| active_worst_quality, resize_width, resize_height); |
| // If resize is down, check if projected q index is close to worst_quality, |
| // and if so, reduce the rate correction factor (since likely can afford |
| // lower q for resized frame). |
| if (tot_scale_change < 1.0 && qindex > 90 * cpi->rc.worst_quality / 100) |
| p_rc->rate_correction_factors[INTER_NORMAL] *= 0.85; |
| // Apply the same rate control reset to all temporal layers. |
| for (int tl = 0; tl < svc->number_temporal_layers; tl++) { |
| LAYER_CONTEXT *lc = NULL; |
| lc = &svc->layer_context[svc->spatial_layer_id * |
| svc->number_temporal_layers + |
| tl]; |
| lc->rc.resize_state = rc->resize_state; |
| lc->p_rc.buffer_level = lc->p_rc.optimal_buffer_level; |
| lc->p_rc.bits_off_target = lc->p_rc.optimal_buffer_level; |
| lc->p_rc.rate_correction_factors[INTER_FRAME] = |
| p_rc->rate_correction_factors[INTER_FRAME]; |
| } |
| // If resize is back up: check if projected q index is too much above the |
| // previous index, and if so, reduce the rate correction factor |
| // (since prefer to keep q for resized frame at least closet to previous q). |
| // Also check if projected qindex is close to previous qindex, if so |
| // increase correction factor (to push qindex higher and avoid overshoot). |
| if (tot_scale_change >= 1.0) { |
| if (tot_scale_change < 4.0 && |
| qindex > 130 * p_rc->last_q[INTER_FRAME] / 100) |
| p_rc->rate_correction_factors[INTER_NORMAL] *= 0.8; |
| if (qindex <= 120 * p_rc->last_q[INTER_FRAME] / 100) |
| p_rc->rate_correction_factors[INTER_NORMAL] *= 2.0; |
| } |
| } |
| |
| /*!\brief ChecK for resize based on Q, for 1 pass real-time mode. |
| * |
| * Check if we should resize, based on average QP from past x frames. |
| * Only allow for resize at most 1/2 scale down for now, Scaling factor |
| * for each step may be 3/4 or 1/2. |
| * |
| * \ingroup rate_control |
| * \param[in] cpi Top level encoder structure |
| * |
| * \return Return resized width/height in \c cpi->resize_pending_params, |
| * and update some resize counters in \c rc. |
| */ |
| static void dynamic_resize_one_pass_cbr(AV1_COMP *cpi) { |
| const AV1_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| RESIZE_ACTION resize_action = NO_RESIZE; |
| const int avg_qp_thr1 = 70; |
| const int avg_qp_thr2 = 50; |
| // Don't allow for resized frame to go below 160x90, resize in steps of 3/4. |
| const int min_width = (160 * 4) / 3; |
| const int min_height = (90 * 4) / 3; |
| int down_size_on = 1; |
| // Don't resize on key frame; reset the counters on key frame. |
| if (cm->current_frame.frame_type == KEY_FRAME) { |
| rc->resize_avg_qp = 0; |
| rc->resize_count = 0; |
| rc->resize_buffer_underflow = 0; |
| return; |
| } |
| // No resizing down if frame size is below some limit. |
| if ((cm->width * cm->height) < min_width * min_height) down_size_on = 0; |
| |
| // Resize based on average buffer underflow and QP over some window. |
| // Ignore samples close to key frame, since QP is usually high after key. |
| if (cpi->rc.frames_since_key > cpi->framerate) { |
| const int window = AOMMIN(30, (int)(2 * cpi->framerate)); |
| rc->resize_avg_qp += p_rc->last_q[INTER_FRAME]; |
| if (cpi->ppi->p_rc.buffer_level < |
| (int)(30 * p_rc->optimal_buffer_level / 100)) |
| ++rc->resize_buffer_underflow; |
| ++rc->resize_count; |
| // Check for resize action every "window" frames. |
| if (rc->resize_count >= window) { |
| int avg_qp = rc->resize_avg_qp / rc->resize_count; |
| // Resize down if buffer level has underflowed sufficient amount in past |
| // window, and we are at original or 3/4 of original resolution. |
| // Resize back up if average QP is low, and we are currently in a resized |
| // down state, i.e. 1/2 or 3/4 of original resolution. |
| // Currently, use a flag to turn 3/4 resizing feature on/off. |
| if (rc->resize_buffer_underflow > (rc->resize_count >> 2) && |
| down_size_on) { |
| if (rc->resize_state == THREE_QUARTER) { |
| resize_action = DOWN_ONEHALF; |
| rc->resize_state = ONE_HALF; |
| } else if (rc->resize_state == ORIG) { |
| resize_action = DOWN_THREEFOUR; |
| rc->resize_state = THREE_QUARTER; |
| } |
| } else if (rc->resize_state != ORIG && |
| avg_qp < avg_qp_thr1 * cpi->rc.worst_quality / 100) { |
| if (rc->resize_state == THREE_QUARTER || |
| avg_qp < avg_qp_thr2 * cpi->rc.worst_quality / 100) { |
| resize_action = UP_ORIG; |
| rc->resize_state = ORIG; |
| } else if (rc->resize_state == ONE_HALF) { |
| resize_action = UP_THREEFOUR; |
| rc->resize_state = THREE_QUARTER; |
| } |
| } |
| // Reset for next window measurement. |
| rc->resize_avg_qp = 0; |
| rc->resize_count = 0; |
| rc->resize_buffer_underflow = 0; |
| } |
| } |
| // If decision is to resize, reset some quantities, and check is we should |
| // reduce rate correction factor, |
| if (resize_action != NO_RESIZE) { |
| int resize_width = cpi->oxcf.frm_dim_cfg.width; |
| int resize_height = cpi->oxcf.frm_dim_cfg.height; |
| int resize_scale_num = 1; |
| int resize_scale_den = 1; |
| if (resize_action == DOWN_THREEFOUR || resize_action == UP_THREEFOUR) { |
| resize_scale_num = 3; |
| resize_scale_den = 4; |
| } else if (resize_action == DOWN_ONEHALF) { |
| resize_scale_num = 1; |
| resize_scale_den = 2; |
| } |
| resize_width = resize_width * resize_scale_num / resize_scale_den; |
| resize_height = resize_height * resize_scale_num / resize_scale_den; |
| resize_reset_rc(cpi, resize_width, resize_height, cm->width, cm->height); |
| } |
| return; |
| } |
| |
| static INLINE int set_key_frame(AV1_COMP *cpi, unsigned int frame_flags) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| AV1_COMMON *const cm = &cpi->common; |
| SVC *const svc = &cpi->svc; |
| |
| // Very first frame has to be key frame. |
| if (cm->current_frame.frame_number == 0) return 1; |
| // Set key frame if forced by frame flags. |
| if (frame_flags & FRAMEFLAGS_KEY) return 1; |
| if (!cpi->ppi->use_svc) { |
| // Non-SVC |
| if (cpi->oxcf.kf_cfg.auto_key && rc->frames_to_key == 0) return 1; |
| } else { |
| // SVC |
| if (svc->spatial_layer_id == 0 && |
| (cpi->oxcf.kf_cfg.auto_key && |
| (cpi->oxcf.kf_cfg.key_freq_max == 0 || |
| svc->current_superframe % cpi->oxcf.kf_cfg.key_freq_max == 0))) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| void av1_get_one_pass_rt_params(AV1_COMP *cpi, |
| EncodeFrameParams *const frame_params, |
| unsigned int frame_flags) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| AV1_COMMON *const cm = &cpi->common; |
| GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
| SVC *const svc = &cpi->svc; |
| ResizePendingParams *const resize_pending_params = |
| &cpi->resize_pending_params; |
| int target; |
| const int layer = |
| LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id, |
| svc->number_temporal_layers); |
| // Turn this on to explicitly set the reference structure rather than |
| // relying on internal/default structure. |
| if (cpi->ppi->use_svc) { |
| av1_update_temporal_layer_framerate(cpi); |
| av1_restore_layer_context(cpi); |
| } |
| // Set frame type. |
| if (set_key_frame(cpi, frame_flags)) { |
| frame_params->frame_type = KEY_FRAME; |
| p_rc->this_key_frame_forced = |
| cm->current_frame.frame_number != 0 && rc->frames_to_key == 0; |
| rc->frames_to_key = cpi->oxcf.kf_cfg.key_freq_max; |
| p_rc->kf_boost = DEFAULT_KF_BOOST_RT; |
| gf_group->update_type[cpi->gf_frame_index] = KF_UPDATE; |
| gf_group->frame_type[cpi->gf_frame_index] = KEY_FRAME; |
| gf_group->refbuf_state[cpi->gf_frame_index] = REFBUF_RESET; |
| if (cpi->ppi->use_svc) { |
| if (cm->current_frame.frame_number > 0) |
| av1_svc_reset_temporal_layers(cpi, 1); |
| svc->layer_context[layer].is_key_frame = 1; |
| } |
| } else { |
| frame_params->frame_type = INTER_FRAME; |
| gf_group->update_type[cpi->gf_frame_index] = LF_UPDATE; |
| gf_group->frame_type[cpi->gf_frame_index] = INTER_FRAME; |
| gf_group->refbuf_state[cpi->gf_frame_index] = REFBUF_UPDATE; |
| if (cpi->ppi->use_svc) { |
| LAYER_CONTEXT *lc = &svc->layer_context[layer]; |
| lc->is_key_frame = |
| svc->spatial_layer_id == 0 |
| ? 0 |
| : svc->layer_context[svc->temporal_layer_id].is_key_frame; |
| // If the user is setting the SVC pattern with set_ref_frame_config and |
| // did not set any references, set the frame type to Intra-only. |
| if (svc->set_ref_frame_config) { |
| int no_references_set = 1; |
| for (int i = 0; i < INTER_REFS_PER_FRAME; i++) { |
| if (svc->reference[i]) { |
| no_references_set = 0; |
| break; |
| } |
| } |
| // Set to intra_only_frame if no references are set. |
| // The stream can start decoding on INTRA_ONLY_FRAME so long as the |
| // layer with the intra_only_frame doesn't signal a reference to a slot |
| // that hasn't been set yet. |
| if (no_references_set) frame_params->frame_type = INTRA_ONLY_FRAME; |
| } |
| } |
| } |
| // Check for scene change: for SVC check on base spatial layer only. |
| if (cpi->sf.rt_sf.check_scene_detection && svc->spatial_layer_id == 0) |
| rc_scene_detection_onepass_rt(cpi); |
| // Check for dynamic resize, for single spatial layer for now. |
| // For temporal layers only check on base temporal layer. |
| if (cpi->oxcf.resize_cfg.resize_mode == RESIZE_DYNAMIC) { |
| if (svc->number_spatial_layers == 1 && svc->temporal_layer_id == 0) |
| dynamic_resize_one_pass_cbr(cpi); |
| if (rc->resize_state == THREE_QUARTER) { |
| resize_pending_params->width = (3 + cpi->oxcf.frm_dim_cfg.width * 3) >> 2; |
| resize_pending_params->height = |
| (3 + cpi->oxcf.frm_dim_cfg.height * 3) >> 2; |
| } else if (rc->resize_state == ONE_HALF) { |
| resize_pending_params->width = (1 + cpi->oxcf.frm_dim_cfg.width) >> 1; |
| resize_pending_params->height = (1 + cpi->oxcf.frm_dim_cfg.height) >> 1; |
| } else { |
| resize_pending_params->width = cpi->oxcf.frm_dim_cfg.width; |
| resize_pending_params->height = cpi->oxcf.frm_dim_cfg.height; |
| } |
| } else if (is_frame_resize_pending(cpi)) { |
| resize_reset_rc(cpi, resize_pending_params->width, |
| resize_pending_params->height, cm->width, cm->height); |
| } |
| // Set the GF interval and update flag. |
| if (!rc->rtc_external_ratectrl) |
| set_gf_interval_update_onepass_rt(cpi, frame_params->frame_type); |
| // Set target size. |
| if (cpi->oxcf.rc_cfg.mode == AOM_CBR) { |
| if (frame_params->frame_type == KEY_FRAME || |
| frame_params->frame_type == INTRA_ONLY_FRAME) { |
| target = av1_calc_iframe_target_size_one_pass_cbr(cpi); |
| } else { |
| target = av1_calc_pframe_target_size_one_pass_cbr( |
| cpi, gf_group->update_type[cpi->gf_frame_index]); |
| } |
| } else { |
| if (frame_params->frame_type == KEY_FRAME || |
| frame_params->frame_type == INTRA_ONLY_FRAME) { |
| target = av1_calc_iframe_target_size_one_pass_vbr(cpi); |
| } else { |
| target = av1_calc_pframe_target_size_one_pass_vbr( |
| cpi, gf_group->update_type[cpi->gf_frame_index]); |
| } |
| } |
| if (cpi->oxcf.rc_cfg.mode == AOM_Q) |
| rc->active_worst_quality = cpi->oxcf.rc_cfg.cq_level; |
| |
| av1_rc_set_frame_target(cpi, target, cm->width, cm->height); |
| rc->base_frame_target = target; |
| cm->current_frame.frame_type = frame_params->frame_type; |
| // For fixed mode SVC: if KSVC is enabled remove inter layer |
| // prediction on spatial enhancement layer frames for frames |
| // whose base is not KEY frame. |
| if (cpi->ppi->use_svc && !svc->use_flexible_mode && svc->ksvc_fixed_mode && |
| svc->number_spatial_layers > 1 && |
| !svc->layer_context[layer].is_key_frame) { |
| ExternalFlags *const ext_flags = &cpi->ext_flags; |
| ext_flags->ref_frame_flags ^= AOM_GOLD_FLAG; |
| } |
| } |
| |
| int av1_encodedframe_overshoot_cbr(AV1_COMP *cpi, int *q) { |
| AV1_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| SPEED_FEATURES *const sf = &cpi->sf; |
| int thresh_qp = 7 * (rc->worst_quality >> 3); |
| // Lower thresh_qp for video (more overshoot at lower Q) to be |
| // more conservative for video. |
| if (cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN) |
| thresh_qp = 3 * (rc->worst_quality >> 2); |
| if (sf->rt_sf.overshoot_detection_cbr == FAST_DETECTION_MAXQ && |
| cm->quant_params.base_qindex < thresh_qp) { |
| double rate_correction_factor = |
| cpi->ppi->p_rc.rate_correction_factors[INTER_NORMAL]; |
| const int target_size = cpi->rc.avg_frame_bandwidth; |
| double new_correction_factor; |
| int target_bits_per_mb; |
| double q2; |
| int enumerator; |
| *q = (3 * cpi->rc.worst_quality + *q) >> 2; |
| // For screen content use the max-q set by the user to allow for less |
| // overshoot on slide changes. |
| if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) |
| *q = cpi->rc.worst_quality; |
| cpi->cyclic_refresh->counter_encode_maxq_scene_change = 0; |
| // Adjust avg_frame_qindex, buffer_level, and rate correction factors, as |
| // these parameters will affect QP selection for subsequent frames. If they |
| // have settled down to a very different (low QP) state, then not adjusting |
| // them may cause next frame to select low QP and overshoot again. |
| p_rc->avg_frame_qindex[INTER_FRAME] = *q; |
| p_rc->buffer_level = p_rc->optimal_buffer_level; |
| p_rc->bits_off_target = p_rc->optimal_buffer_level; |
| // Reset rate under/over-shoot flags. |
| cpi->rc.rc_1_frame = 0; |
| cpi->rc.rc_2_frame = 0; |
| // Adjust rate correction factor. |
| target_bits_per_mb = |
| (int)(((uint64_t)target_size << BPER_MB_NORMBITS) / cm->mi_params.MBs); |
| // Rate correction factor based on target_bits_per_mb and qp (==max_QP). |
| // This comes from the inverse computation of vp9_rc_bits_per_mb(). |
| q2 = av1_convert_qindex_to_q(*q, cm->seq_params->bit_depth); |
| enumerator = 1800000; // Factor for inter frame. |
| enumerator += (int)(enumerator * q2) >> 12; |
| new_correction_factor = (double)target_bits_per_mb * q2 / enumerator; |
| if (new_correction_factor > rate_correction_factor) { |
| rate_correction_factor = |
| AOMMIN(2.0 * rate_correction_factor, new_correction_factor); |
| if (rate_correction_factor > MAX_BPB_FACTOR) |
| rate_correction_factor = MAX_BPB_FACTOR; |
| cpi->ppi->p_rc.rate_correction_factors[INTER_NORMAL] = |
| rate_correction_factor; |
| } |
| // For temporal layers: reset the rate control parameters across all |
| // temporal layers. |
| if (cpi->svc.number_temporal_layers > 1) { |
| SVC *svc = &cpi->svc; |
| for (int tl = 0; tl < svc->number_temporal_layers; ++tl) { |
| int sl = svc->spatial_layer_id; |
| const int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers); |
| LAYER_CONTEXT *lc = &svc->layer_context[layer]; |
| RATE_CONTROL *lrc = &lc->rc; |
| PRIMARY_RATE_CONTROL *lp_rc = &lc->p_rc; |
| lp_rc->avg_frame_qindex[INTER_FRAME] = *q; |
| lp_rc->buffer_level = lp_rc->optimal_buffer_level; |
| lp_rc->bits_off_target = lp_rc->optimal_buffer_level; |
| lrc->rc_1_frame = 0; |
| lrc->rc_2_frame = 0; |
| lp_rc->rate_correction_factors[INTER_NORMAL] = rate_correction_factor; |
| } |
| } |
| return 1; |
| } else { |
| return 0; |
| } |
| } |