|  | /* | 
|  | *  Copyright (c) 2015 The WebM project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "./av1_rtcd.h" | 
|  | #include "av1/common/enums.h" | 
|  | #include "av1/common/av1_txfm.h" | 
|  | #include "av1/common/av1_inv_txfm1d.h" | 
|  | #include "av1/common/av1_inv_txfm2d_cfg.h" | 
|  |  | 
|  | static INLINE TxfmFunc inv_txfm_type_to_func(TXFM_TYPE txfm_type) { | 
|  | switch (txfm_type) { | 
|  | case TXFM_TYPE_DCT4: return av1_idct4_new; | 
|  | case TXFM_TYPE_DCT8: return av1_idct8_new; | 
|  | case TXFM_TYPE_DCT16: return av1_idct16_new; | 
|  | case TXFM_TYPE_DCT32: return av1_idct32_new; | 
|  | case TXFM_TYPE_ADST4: return av1_iadst4_new; | 
|  | case TXFM_TYPE_ADST8: return av1_iadst8_new; | 
|  | case TXFM_TYPE_ADST16: return av1_iadst16_new; | 
|  | case TXFM_TYPE_ADST32: return av1_iadst32_new; | 
|  | default: assert(0); return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if CONFIG_EXT_TX | 
|  | static const TXFM_2D_CFG *inv_txfm_cfg_ls[FLIPADST_ADST + 1][TX_SIZES] = { | 
|  | { &inv_txfm_2d_cfg_dct_dct_4, &inv_txfm_2d_cfg_dct_dct_8, | 
|  | &inv_txfm_2d_cfg_dct_dct_16, &inv_txfm_2d_cfg_dct_dct_32 }, | 
|  | { &inv_txfm_2d_cfg_adst_dct_4, &inv_txfm_2d_cfg_adst_dct_8, | 
|  | &inv_txfm_2d_cfg_adst_dct_16, &inv_txfm_2d_cfg_adst_dct_32 }, | 
|  | { &inv_txfm_2d_cfg_dct_adst_4, &inv_txfm_2d_cfg_dct_adst_8, | 
|  | &inv_txfm_2d_cfg_dct_adst_16, &inv_txfm_2d_cfg_dct_adst_32 }, | 
|  | { &inv_txfm_2d_cfg_adst_adst_4, &inv_txfm_2d_cfg_adst_adst_8, | 
|  | &inv_txfm_2d_cfg_adst_adst_16, &inv_txfm_2d_cfg_adst_adst_32 }, | 
|  | { &inv_txfm_2d_cfg_adst_dct_4, &inv_txfm_2d_cfg_adst_dct_8, | 
|  | &inv_txfm_2d_cfg_adst_dct_16, &inv_txfm_2d_cfg_adst_dct_32 }, | 
|  | { &inv_txfm_2d_cfg_dct_adst_4, &inv_txfm_2d_cfg_dct_adst_8, | 
|  | &inv_txfm_2d_cfg_dct_adst_16, &inv_txfm_2d_cfg_dct_adst_32 }, | 
|  | { &inv_txfm_2d_cfg_adst_adst_4, &inv_txfm_2d_cfg_adst_adst_8, | 
|  | &inv_txfm_2d_cfg_adst_adst_16, &inv_txfm_2d_cfg_adst_adst_32 }, | 
|  | { &inv_txfm_2d_cfg_adst_adst_4, &inv_txfm_2d_cfg_adst_adst_8, | 
|  | &inv_txfm_2d_cfg_adst_adst_16, &inv_txfm_2d_cfg_adst_adst_32 }, | 
|  | { &inv_txfm_2d_cfg_adst_adst_4, &inv_txfm_2d_cfg_adst_adst_8, | 
|  | &inv_txfm_2d_cfg_adst_adst_16, &inv_txfm_2d_cfg_adst_adst_32 }, | 
|  | }; | 
|  | #else | 
|  | static const TXFM_2D_CFG *inv_txfm_cfg_ls[TX_TYPES][TX_SIZES] = { | 
|  | { &inv_txfm_2d_cfg_dct_dct_4, &inv_txfm_2d_cfg_dct_dct_8, | 
|  | &inv_txfm_2d_cfg_dct_dct_16, &inv_txfm_2d_cfg_dct_dct_32 }, | 
|  | { &inv_txfm_2d_cfg_adst_dct_4, &inv_txfm_2d_cfg_adst_dct_8, | 
|  | &inv_txfm_2d_cfg_adst_dct_16, &inv_txfm_2d_cfg_adst_dct_32 }, | 
|  | { &inv_txfm_2d_cfg_dct_adst_4, &inv_txfm_2d_cfg_dct_adst_8, | 
|  | &inv_txfm_2d_cfg_dct_adst_16, &inv_txfm_2d_cfg_dct_adst_32 }, | 
|  | { &inv_txfm_2d_cfg_adst_adst_4, &inv_txfm_2d_cfg_adst_adst_8, | 
|  | &inv_txfm_2d_cfg_adst_adst_16, &inv_txfm_2d_cfg_adst_adst_32 }, | 
|  | }; | 
|  | #endif | 
|  |  | 
|  | TXFM_2D_FLIP_CFG av1_get_inv_txfm_cfg(int tx_type, int tx_size) { | 
|  | TXFM_2D_FLIP_CFG cfg; | 
|  | set_flip_cfg(tx_type, &cfg); | 
|  | cfg.cfg = inv_txfm_cfg_ls[tx_type][tx_size]; | 
|  | return cfg; | 
|  | } | 
|  |  | 
|  | TXFM_2D_FLIP_CFG av1_get_inv_txfm_64x64_cfg(int tx_type) { | 
|  | TXFM_2D_FLIP_CFG cfg = { 0, 0, NULL }; | 
|  | switch (tx_type) { | 
|  | case DCT_DCT: | 
|  | cfg.cfg = &inv_txfm_2d_cfg_dct_dct_64; | 
|  | set_flip_cfg(tx_type, &cfg); | 
|  | break; | 
|  | default: assert(0); | 
|  | } | 
|  | return cfg; | 
|  | } | 
|  |  | 
|  | static INLINE void inv_txfm2d_add_c(const int32_t *input, int16_t *output, | 
|  | int stride, TXFM_2D_FLIP_CFG *cfg, | 
|  | int32_t *txfm_buf) { | 
|  | const int txfm_size = cfg->cfg->txfm_size; | 
|  | const int8_t *shift = cfg->cfg->shift; | 
|  | const int8_t *stage_range_col = cfg->cfg->stage_range_col; | 
|  | const int8_t *stage_range_row = cfg->cfg->stage_range_row; | 
|  | const int8_t *cos_bit_col = cfg->cfg->cos_bit_col; | 
|  | const int8_t *cos_bit_row = cfg->cfg->cos_bit_row; | 
|  | const TxfmFunc txfm_func_col = inv_txfm_type_to_func(cfg->cfg->txfm_type_col); | 
|  | const TxfmFunc txfm_func_row = inv_txfm_type_to_func(cfg->cfg->txfm_type_row); | 
|  |  | 
|  | // txfm_buf's length is  txfm_size * txfm_size + 2 * txfm_size | 
|  | // it is used for intermediate data buffering | 
|  | int32_t *temp_in = txfm_buf; | 
|  | int32_t *temp_out = temp_in + txfm_size; | 
|  | int32_t *buf = temp_out + txfm_size; | 
|  | int32_t *buf_ptr = buf; | 
|  | int c, r; | 
|  |  | 
|  | // Rows | 
|  | for (r = 0; r < txfm_size; ++r) { | 
|  | txfm_func_row(input, buf_ptr, cos_bit_row, stage_range_row); | 
|  | round_shift_array(buf_ptr, txfm_size, -shift[0]); | 
|  | input += txfm_size; | 
|  | buf_ptr += txfm_size; | 
|  | } | 
|  |  | 
|  | // Columns | 
|  | for (c = 0; c < txfm_size; ++c) { | 
|  | if (cfg->lr_flip == 0) { | 
|  | for (r = 0; r < txfm_size; ++r) temp_in[r] = buf[r * txfm_size + c]; | 
|  | } else { | 
|  | // flip left right | 
|  | for (r = 0; r < txfm_size; ++r) | 
|  | temp_in[r] = buf[r * txfm_size + (txfm_size - c - 1)]; | 
|  | } | 
|  | txfm_func_col(temp_in, temp_out, cos_bit_col, stage_range_col); | 
|  | round_shift_array(temp_out, txfm_size, -shift[1]); | 
|  | if (cfg->ud_flip == 0) { | 
|  | for (r = 0; r < txfm_size; ++r) output[r * stride + c] += temp_out[r]; | 
|  | } else { | 
|  | // flip upside down | 
|  | for (r = 0; r < txfm_size; ++r) | 
|  | output[r * stride + c] += temp_out[txfm_size - r - 1]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_inv_txfm2d_add_4x4_c(const int32_t *input, uint16_t *output, | 
|  | int stride, int tx_type, int bd) { | 
|  | int txfm_buf[4 * 4 + 4 + 4]; | 
|  | // output contains the prediction signal which is always positive and smaller | 
|  | // than (1 << bd) - 1 | 
|  | // since bd < 16-1, therefore we can treat the uint16_t* output buffer as an | 
|  | // int16_t* | 
|  | TXFM_2D_FLIP_CFG cfg = av1_get_inv_txfm_cfg(tx_type, TX_4X4); | 
|  | inv_txfm2d_add_c(input, (int16_t *)output, stride, &cfg, txfm_buf); | 
|  | clamp_block((int16_t *)output, 4, stride, 0, (1 << bd) - 1); | 
|  | } | 
|  |  | 
|  | void av1_inv_txfm2d_add_8x8_c(const int32_t *input, uint16_t *output, | 
|  | int stride, int tx_type, int bd) { | 
|  | int txfm_buf[8 * 8 + 8 + 8]; | 
|  | // output contains the prediction signal which is always positive and smaller | 
|  | // than (1 << bd) - 1 | 
|  | // since bd < 16-1, therefore we can treat the uint16_t* output buffer as an | 
|  | // int16_t* | 
|  | TXFM_2D_FLIP_CFG cfg = av1_get_inv_txfm_cfg(tx_type, TX_8X8); | 
|  | inv_txfm2d_add_c(input, (int16_t *)output, stride, &cfg, txfm_buf); | 
|  | clamp_block((int16_t *)output, 8, stride, 0, (1 << bd) - 1); | 
|  | } | 
|  |  | 
|  | void av1_inv_txfm2d_add_16x16_c(const int32_t *input, uint16_t *output, | 
|  | int stride, int tx_type, int bd) { | 
|  | int txfm_buf[16 * 16 + 16 + 16]; | 
|  | // output contains the prediction signal which is always positive and smaller | 
|  | // than (1 << bd) - 1 | 
|  | // since bd < 16-1, therefore we can treat the uint16_t* output buffer as an | 
|  | // int16_t* | 
|  | TXFM_2D_FLIP_CFG cfg = av1_get_inv_txfm_cfg(tx_type, TX_16X16); | 
|  | inv_txfm2d_add_c(input, (int16_t *)output, stride, &cfg, txfm_buf); | 
|  | clamp_block((int16_t *)output, 16, stride, 0, (1 << bd) - 1); | 
|  | } | 
|  |  | 
|  | void av1_inv_txfm2d_add_32x32_c(const int32_t *input, uint16_t *output, | 
|  | int stride, int tx_type, int bd) { | 
|  | int txfm_buf[32 * 32 + 32 + 32]; | 
|  | // output contains the prediction signal which is always positive and smaller | 
|  | // than (1 << bd) - 1 | 
|  | // since bd < 16-1, therefore we can treat the uint16_t* output buffer as an | 
|  | // int16_t* | 
|  | TXFM_2D_FLIP_CFG cfg = av1_get_inv_txfm_cfg(tx_type, TX_32X32); | 
|  | inv_txfm2d_add_c(input, (int16_t *)output, stride, &cfg, txfm_buf); | 
|  | clamp_block((int16_t *)output, 32, stride, 0, (1 << bd) - 1); | 
|  | } | 
|  |  | 
|  | void av1_inv_txfm2d_add_64x64_c(const int32_t *input, uint16_t *output, | 
|  | int stride, int tx_type, int bd) { | 
|  | int txfm_buf[64 * 64 + 64 + 64]; | 
|  | // output contains the prediction signal which is always positive and smaller | 
|  | // than (1 << bd) - 1 | 
|  | // since bd < 16-1, therefore we can treat the uint16_t* output buffer as an | 
|  | // int16_t* | 
|  | TXFM_2D_FLIP_CFG cfg = av1_get_inv_txfm_64x64_cfg(tx_type); | 
|  | inv_txfm2d_add_c(input, (int16_t *)output, stride, &cfg, txfm_buf); | 
|  | clamp_block((int16_t *)output, 64, stride, 0, (1 << bd) - 1); | 
|  | } |