| /* |
| * Copyright (c) 2018, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/fft_common.h" |
| #include "config/aom_dsp_rtcd.h" |
| |
| static inline void simple_transpose(const float *A, float *B, int n) { |
| for (int y = 0; y < n; y++) { |
| for (int x = 0; x < n; x++) { |
| B[y * n + x] = A[x * n + y]; |
| } |
| } |
| } |
| |
| // The 1d transform is real to complex and packs the complex results in |
| // a way to take advantage of conjugate symmetry (e.g., the n/2 + 1 real |
| // components, followed by the n/2 - 1 imaginary components). After the |
| // transform is done on the rows, the first n/2 + 1 columns are real, and |
| // the remaining are the imaginary components. After the transform on the |
| // columns, the region of [0, n/2]x[0, n/2] contains the real part of |
| // fft of the real columns. The real part of the 2d fft also includes the |
| // imaginary part of transformed imaginary columns. This function assembles |
| // the correct outputs while putting the real and imaginary components |
| // next to each other. |
| static inline void unpack_2d_output(const float *col_fft, float *output, |
| int n) { |
| for (int y = 0; y <= n / 2; ++y) { |
| const int y2 = y + n / 2; |
| const int y_extra = y2 > n / 2 && y2 < n; |
| |
| for (int x = 0; x <= n / 2; ++x) { |
| const int x2 = x + n / 2; |
| const int x_extra = x2 > n / 2 && x2 < n; |
| output[2 * (y * n + x)] = |
| col_fft[y * n + x] - (x_extra && y_extra ? col_fft[y2 * n + x2] : 0); |
| output[2 * (y * n + x) + 1] = (y_extra ? col_fft[y2 * n + x] : 0) + |
| (x_extra ? col_fft[y * n + x2] : 0); |
| if (y_extra) { |
| output[2 * ((n - y) * n + x)] = |
| col_fft[y * n + x] + |
| (x_extra && y_extra ? col_fft[y2 * n + x2] : 0); |
| output[2 * ((n - y) * n + x) + 1] = |
| -(y_extra ? col_fft[y2 * n + x] : 0) + |
| (x_extra ? col_fft[y * n + x2] : 0); |
| } |
| } |
| } |
| } |
| |
| void aom_fft_2d_gen(const float *input, float *temp, float *output, int n, |
| aom_fft_1d_func_t tform, aom_fft_transpose_func_t transpose, |
| aom_fft_unpack_func_t unpack, int vec_size) { |
| for (int x = 0; x < n; x += vec_size) { |
| tform(input + x, output + x, n); |
| } |
| transpose(output, temp, n); |
| |
| for (int x = 0; x < n; x += vec_size) { |
| tform(temp + x, output + x, n); |
| } |
| transpose(output, temp, n); |
| |
| unpack(temp, output, n); |
| } |
| |
| static inline void store_float(float *output, float input) { *output = input; } |
| static inline float add_float(float a, float b) { return a + b; } |
| static inline float sub_float(float a, float b) { return a - b; } |
| static inline float mul_float(float a, float b) { return a * b; } |
| |
| GEN_FFT_2(void, float, float, float, *, store_float) |
| GEN_FFT_4(void, float, float, float, *, store_float, (float), add_float, |
| sub_float) |
| GEN_FFT_8(void, float, float, float, *, store_float, (float), add_float, |
| sub_float, mul_float) |
| GEN_FFT_16(void, float, float, float, *, store_float, (float), add_float, |
| sub_float, mul_float) |
| GEN_FFT_32(void, float, float, float, *, store_float, (float), add_float, |
| sub_float, mul_float) |
| |
| void aom_fft2x2_float_c(const float *input, float *temp, float *output) { |
| aom_fft_2d_gen(input, temp, output, 2, aom_fft1d_2_float, simple_transpose, |
| unpack_2d_output, 1); |
| } |
| |
| void aom_fft4x4_float_c(const float *input, float *temp, float *output) { |
| aom_fft_2d_gen(input, temp, output, 4, aom_fft1d_4_float, simple_transpose, |
| unpack_2d_output, 1); |
| } |
| |
| void aom_fft8x8_float_c(const float *input, float *temp, float *output) { |
| aom_fft_2d_gen(input, temp, output, 8, aom_fft1d_8_float, simple_transpose, |
| unpack_2d_output, 1); |
| } |
| |
| void aom_fft16x16_float_c(const float *input, float *temp, float *output) { |
| aom_fft_2d_gen(input, temp, output, 16, aom_fft1d_16_float, simple_transpose, |
| unpack_2d_output, 1); |
| } |
| |
| void aom_fft32x32_float_c(const float *input, float *temp, float *output) { |
| aom_fft_2d_gen(input, temp, output, 32, aom_fft1d_32_float, simple_transpose, |
| unpack_2d_output, 1); |
| } |
| |
| void aom_ifft_2d_gen(const float *input, float *temp, float *output, int n, |
| aom_fft_1d_func_t fft_single, aom_fft_1d_func_t fft_multi, |
| aom_fft_1d_func_t ifft_multi, |
| aom_fft_transpose_func_t transpose, int vec_size) { |
| // Column 0 and n/2 have conjugate symmetry, so we can directly do the ifft |
| // and get real outputs. |
| for (int y = 0; y <= n / 2; ++y) { |
| output[y * n] = input[2 * y * n]; |
| output[y * n + 1] = input[2 * (y * n + n / 2)]; |
| } |
| for (int y = n / 2 + 1; y < n; ++y) { |
| output[y * n] = input[2 * (y - n / 2) * n + 1]; |
| output[y * n + 1] = input[2 * ((y - n / 2) * n + n / 2) + 1]; |
| } |
| |
| for (int i = 0; i < 2; i += vec_size) { |
| ifft_multi(output + i, temp + i, n); |
| } |
| |
| // For the other columns, since we don't have a full ifft for complex inputs |
| // we have to split them into the real and imaginary counterparts. |
| // Pack the real component, then the imaginary components. |
| for (int y = 0; y < n; ++y) { |
| for (int x = 1; x < n / 2; ++x) { |
| output[y * n + (x + 1)] = input[2 * (y * n + x)]; |
| } |
| for (int x = 1; x < n / 2; ++x) { |
| output[y * n + (x + n / 2)] = input[2 * (y * n + x) + 1]; |
| } |
| } |
| for (int y = 2; y < vec_size; y++) { |
| fft_single(output + y, temp + y, n); |
| } |
| // This is the part that can be sped up with SIMD |
| for (int y = AOMMAX(2, vec_size); y < n; y += vec_size) { |
| fft_multi(output + y, temp + y, n); |
| } |
| |
| // Put the 0 and n/2 th results in the correct place. |
| for (int x = 0; x < n; ++x) { |
| output[x] = temp[x * n]; |
| output[(n / 2) * n + x] = temp[x * n + 1]; |
| } |
| // This rearranges and transposes. |
| for (int y = 1; y < n / 2; ++y) { |
| // Fill in the real columns |
| for (int x = 0; x <= n / 2; ++x) { |
| output[x + y * n] = |
| temp[(y + 1) + x * n] + |
| ((x > 0 && x < n / 2) ? temp[(y + n / 2) + (x + n / 2) * n] : 0); |
| } |
| for (int x = n / 2 + 1; x < n; ++x) { |
| output[x + y * n] = temp[(y + 1) + (n - x) * n] - |
| temp[(y + n / 2) + ((n - x) + n / 2) * n]; |
| } |
| // Fill in the imag columns |
| for (int x = 0; x <= n / 2; ++x) { |
| output[x + (y + n / 2) * n] = |
| temp[(y + n / 2) + x * n] - |
| ((x > 0 && x < n / 2) ? temp[(y + 1) + (x + n / 2) * n] : 0); |
| } |
| for (int x = n / 2 + 1; x < n; ++x) { |
| output[x + (y + n / 2) * n] = temp[(y + 1) + ((n - x) + n / 2) * n] + |
| temp[(y + n / 2) + (n - x) * n]; |
| } |
| } |
| for (int y = 0; y < n; y += vec_size) { |
| ifft_multi(output + y, temp + y, n); |
| } |
| transpose(temp, output, n); |
| } |
| |
| GEN_IFFT_2(static void, float, float, float, *, store_float) |
| GEN_IFFT_4(static void, float, float, float, *, store_float, (float), add_float, |
| sub_float) |
| GEN_IFFT_8(static void, float, float, float, *, store_float, (float), add_float, |
| sub_float, mul_float) |
| GEN_IFFT_16(static void, float, float, float, *, store_float, (float), |
| add_float, sub_float, mul_float) |
| GEN_IFFT_32(static void, float, float, float, *, store_float, (float), |
| add_float, sub_float, mul_float) |
| |
| void aom_ifft2x2_float_c(const float *input, float *temp, float *output) { |
| aom_ifft_2d_gen(input, temp, output, 2, aom_fft1d_2_float, aom_fft1d_2_float, |
| aom_ifft1d_2_float, simple_transpose, 1); |
| } |
| |
| void aom_ifft4x4_float_c(const float *input, float *temp, float *output) { |
| aom_ifft_2d_gen(input, temp, output, 4, aom_fft1d_4_float, aom_fft1d_4_float, |
| aom_ifft1d_4_float, simple_transpose, 1); |
| } |
| |
| void aom_ifft8x8_float_c(const float *input, float *temp, float *output) { |
| aom_ifft_2d_gen(input, temp, output, 8, aom_fft1d_8_float, aom_fft1d_8_float, |
| aom_ifft1d_8_float, simple_transpose, 1); |
| } |
| |
| void aom_ifft16x16_float_c(const float *input, float *temp, float *output) { |
| aom_ifft_2d_gen(input, temp, output, 16, aom_fft1d_16_float, |
| aom_fft1d_16_float, aom_ifft1d_16_float, simple_transpose, 1); |
| } |
| |
| void aom_ifft32x32_float_c(const float *input, float *temp, float *output) { |
| aom_ifft_2d_gen(input, temp, output, 32, aom_fft1d_32_float, |
| aom_fft1d_32_float, aom_ifft1d_32_float, simple_transpose, 1); |
| } |