blob: 21fdfe04049ed3c578a9fb89ecccc5ba7f5eb956 [file] [log] [blame]
/*
* Copyright (c) 2020, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/encoder/intra_mode_search.h"
#include "av1/encoder/model_rd.h"
#include "av1/encoder/palette.h"
#include "av1/common/pred_common.h"
#include "av1/common/reconintra.h"
#include "av1/encoder/tx_search.h"
static const PREDICTION_MODE intra_rd_search_mode_order[INTRA_MODES] = {
DC_PRED, H_PRED, V_PRED, SMOOTH_PRED, PAETH_PRED,
SMOOTH_V_PRED, SMOOTH_H_PRED, D135_PRED, D203_PRED, D157_PRED,
D67_PRED, D113_PRED, D45_PRED,
};
static const UV_PREDICTION_MODE uv_rd_search_mode_order[UV_INTRA_MODES] = {
UV_DC_PRED, UV_CFL_PRED, UV_H_PRED, UV_V_PRED,
UV_SMOOTH_PRED, UV_PAETH_PRED, UV_SMOOTH_V_PRED, UV_SMOOTH_H_PRED,
UV_D135_PRED, UV_D203_PRED, UV_D157_PRED, UV_D67_PRED,
UV_D113_PRED, UV_D45_PRED,
};
#define BINS 32
static const float intra_hog_model_bias[DIRECTIONAL_MODES] = {
0.450578f, 0.695518f, -0.717944f, -0.639894f,
-0.602019f, -0.453454f, 0.055857f, -0.465480f,
};
static const float intra_hog_model_weights[BINS * DIRECTIONAL_MODES] = {
-3.076402f, -3.757063f, -3.275266f, -3.180665f, -3.452105f, -3.216593f,
-2.871212f, -3.134296f, -1.822324f, -2.401411f, -1.541016f, -1.195322f,
-0.434156f, 0.322868f, 2.260546f, 3.368715f, 3.989290f, 3.308487f,
2.277893f, 0.923793f, 0.026412f, -0.385174f, -0.718622f, -1.408867f,
-1.050558f, -2.323941f, -2.225827f, -2.585453f, -3.054283f, -2.875087f,
-2.985709f, -3.447155f, 3.758139f, 3.204353f, 2.170998f, 0.826587f,
-0.269665f, -0.702068f, -1.085776f, -2.175249f, -1.623180f, -2.975142f,
-2.779629f, -3.190799f, -3.521900f, -3.375480f, -3.319355f, -3.897389f,
-3.172334f, -3.594528f, -2.879132f, -2.547777f, -2.921023f, -2.281844f,
-1.818988f, -2.041771f, -0.618268f, -1.396458f, -0.567153f, -0.285868f,
-0.088058f, 0.753494f, 2.092413f, 3.215266f, -3.300277f, -2.748658f,
-2.315784f, -2.423671f, -2.257283f, -2.269583f, -2.196660f, -2.301076f,
-2.646516f, -2.271319f, -2.254366f, -2.300102f, -2.217960f, -2.473300f,
-2.116866f, -2.528246f, -3.314712f, -1.701010f, -0.589040f, -0.088077f,
0.813112f, 1.702213f, 2.653045f, 3.351749f, 3.243554f, 3.199409f,
2.437856f, 1.468854f, 0.533039f, -0.099065f, -0.622643f, -2.200732f,
-4.228861f, -2.875263f, -1.273956f, -0.433280f, 0.803771f, 1.975043f,
3.179528f, 3.939064f, 3.454379f, 3.689386f, 3.116411f, 1.970991f,
0.798406f, -0.628514f, -1.252546f, -2.825176f, -4.090178f, -3.777448f,
-3.227314f, -3.479403f, -3.320569f, -3.159372f, -2.729202f, -2.722341f,
-3.054913f, -2.742923f, -2.612703f, -2.662632f, -2.907314f, -3.117794f,
-3.102660f, -3.970972f, -4.891357f, -3.935582f, -3.347758f, -2.721924f,
-2.219011f, -1.702391f, -0.866529f, -0.153743f, 0.107733f, 1.416882f,
2.572884f, 3.607755f, 3.974820f, 3.997783f, 2.970459f, 0.791687f,
-1.478921f, -1.228154f, -1.216955f, -1.765932f, -1.951003f, -1.985301f,
-1.975881f, -1.985593f, -2.422371f, -2.419978f, -2.531288f, -2.951853f,
-3.071380f, -3.277027f, -3.373539f, -4.462010f, -0.967888f, 0.805524f,
2.794130f, 3.685984f, 3.745195f, 3.252444f, 2.316108f, 1.399146f,
-0.136519f, -0.162811f, -1.004357f, -1.667911f, -1.964662f, -2.937579f,
-3.019533f, -3.942766f, -5.102767f, -3.882073f, -3.532027f, -3.451956f,
-2.944015f, -2.643064f, -2.529872f, -2.077290f, -2.809965f, -1.803734f,
-1.783593f, -1.662585f, -1.415484f, -1.392673f, -0.788794f, -1.204819f,
-1.998864f, -1.182102f, -0.892110f, -1.317415f, -1.359112f, -1.522867f,
-1.468552f, -1.779072f, -2.332959f, -2.160346f, -2.329387f, -2.631259f,
-2.744936f, -3.052494f, -2.787363f, -3.442548f, -4.245075f, -3.032172f,
-2.061609f, -1.768116f, -1.286072f, -0.706587f, -0.192413f, 0.386938f,
0.716997f, 1.481393f, 2.216702f, 2.737986f, 3.109809f, 3.226084f,
2.490098f, -0.095827f, -3.864816f, -3.507248f, -3.128925f, -2.908251f,
-2.883836f, -2.881411f, -2.524377f, -2.624478f, -2.399573f, -2.367718f,
-1.918255f, -1.926277f, -1.694584f, -1.723790f, -0.966491f, -1.183115f,
-1.430687f, 0.872896f, 2.766550f, 3.610080f, 3.578041f, 3.334928f,
2.586680f, 1.895721f, 1.122195f, 0.488519f, -0.140689f, -0.799076f,
-1.222860f, -1.502437f, -1.900969f, -3.206816f,
};
static void generate_hog(const uint8_t *src, int stride, int rows, int cols,
float *hist) {
const float step = (float)PI / BINS;
float total = 0.1f;
src += stride;
for (int r = 1; r < rows - 1; ++r) {
for (int c = 1; c < cols - 1; ++c) {
const uint8_t *above = &src[c - stride];
const uint8_t *below = &src[c + stride];
const uint8_t *left = &src[c - 1];
const uint8_t *right = &src[c + 1];
// Calculate gradient using Sobel fitlers.
const int dx = (right[-stride] + 2 * right[0] + right[stride]) -
(left[-stride] + 2 * left[0] + left[stride]);
const int dy = (below[-1] + 2 * below[0] + below[1]) -
(above[-1] + 2 * above[0] + above[1]);
if (dx == 0 && dy == 0) continue;
const int temp = abs(dx) + abs(dy);
if (!temp) continue;
total += temp;
if (dx == 0) {
hist[0] += temp / 2;
hist[BINS - 1] += temp / 2;
} else {
const float angle = atanf(dy * 1.0f / dx);
int idx = (int)roundf(angle / step) + BINS / 2;
idx = AOMMIN(idx, BINS - 1);
idx = AOMMAX(idx, 0);
hist[idx] += temp;
}
}
src += stride;
}
for (int i = 0; i < BINS; ++i) hist[i] /= total;
}
static void generate_hog_hbd(const uint8_t *src8, int stride, int rows,
int cols, float *hist) {
const float step = (float)PI / BINS;
float total = 0.1f;
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
src += stride;
for (int r = 1; r < rows - 1; ++r) {
for (int c = 1; c < cols - 1; ++c) {
const uint16_t *above = &src[c - stride];
const uint16_t *below = &src[c + stride];
const uint16_t *left = &src[c - 1];
const uint16_t *right = &src[c + 1];
// Calculate gradient using Sobel fitlers.
const int dx = (right[-stride] + 2 * right[0] + right[stride]) -
(left[-stride] + 2 * left[0] + left[stride]);
const int dy = (below[-1] + 2 * below[0] + below[1]) -
(above[-1] + 2 * above[0] + above[1]);
if (dx == 0 && dy == 0) continue;
const int temp = abs(dx) + abs(dy);
if (!temp) continue;
total += temp;
if (dx == 0) {
hist[0] += temp / 2;
hist[BINS - 1] += temp / 2;
} else {
const float angle = atanf(dy * 1.0f / dx);
int idx = (int)roundf(angle / step) + BINS / 2;
idx = AOMMIN(idx, BINS - 1);
idx = AOMMAX(idx, 0);
hist[idx] += temp;
}
}
src += stride;
}
for (int i = 0; i < BINS; ++i) hist[i] /= total;
}
static void prune_intra_mode_with_hog(const MACROBLOCK *x, BLOCK_SIZE bsize,
float th,
uint8_t *directional_mode_skip_mask) {
aom_clear_system_state();
const int bh = block_size_high[bsize];
const int bw = block_size_wide[bsize];
const MACROBLOCKD *xd = &x->e_mbd;
const int rows =
(xd->mb_to_bottom_edge >= 0) ? bh : (xd->mb_to_bottom_edge >> 3) + bh;
const int cols =
(xd->mb_to_right_edge >= 0) ? bw : (xd->mb_to_right_edge >> 3) + bw;
const int src_stride = x->plane[0].src.stride;
const uint8_t *src = x->plane[0].src.buf;
float hist[BINS] = { 0.0f };
if (is_cur_buf_hbd(xd)) {
generate_hog_hbd(src, src_stride, rows, cols, hist);
} else {
generate_hog(src, src_stride, rows, cols, hist);
}
for (int i = 0; i < DIRECTIONAL_MODES; ++i) {
float this_score = intra_hog_model_bias[i];
const float *weights = &intra_hog_model_weights[i * BINS];
for (int j = 0; j < BINS; ++j) {
this_score += weights[j] * hist[j];
}
if (this_score < th) directional_mode_skip_mask[i + 1] = 1;
}
aom_clear_system_state();
}
#undef BINS
// Model based RD estimation for luma intra blocks.
static int64_t intra_model_yrd(const AV1_COMP *const cpi, MACROBLOCK *const x,
BLOCK_SIZE bsize, int mode_cost) {
const AV1_COMMON *cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
assert(!is_inter_block(mbmi));
RD_STATS this_rd_stats;
int row, col;
int64_t temp_sse, this_rd;
TX_SIZE tx_size = tx_size_from_tx_mode(bsize, x->tx_mode_search_type);
const int stepr = tx_size_high_unit[tx_size];
const int stepc = tx_size_wide_unit[tx_size];
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
const int max_blocks_high = max_block_high(xd, bsize, 0);
mbmi->tx_size = tx_size;
// Prediction.
for (row = 0; row < max_blocks_high; row += stepr) {
for (col = 0; col < max_blocks_wide; col += stepc) {
av1_predict_intra_block_facade(cm, xd, 0, col, row, tx_size);
}
}
// RD estimation.
model_rd_sb_fn[cpi->sf.rt_sf.use_simple_rd_model ? MODELRD_LEGACY
: MODELRD_TYPE_INTRA](
cpi, bsize, x, xd, 0, 0, &this_rd_stats.rate, &this_rd_stats.dist,
&this_rd_stats.skip, &temp_sse, NULL, NULL, NULL);
if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) {
mode_cost +=
x->angle_delta_cost[mbmi->mode - V_PRED]
[MAX_ANGLE_DELTA + mbmi->angle_delta[PLANE_TYPE_Y]];
}
if (mbmi->mode == DC_PRED &&
av1_filter_intra_allowed_bsize(cm, mbmi->sb_type)) {
if (mbmi->filter_intra_mode_info.use_filter_intra) {
const int mode = mbmi->filter_intra_mode_info.filter_intra_mode;
mode_cost += x->filter_intra_cost[mbmi->sb_type][1] +
x->filter_intra_mode_cost[mode];
} else {
mode_cost += x->filter_intra_cost[mbmi->sb_type][0];
}
}
this_rd =
RDCOST(x->rdmult, this_rd_stats.rate + mode_cost, this_rd_stats.dist);
return this_rd;
}
// Update the intra model yrd and prune the current mode if the new estimate
// y_rd > 1.5 * best_model_rd.
static AOM_INLINE int model_intra_yrd_and_prune(const AV1_COMP *const cpi,
MACROBLOCK *x, BLOCK_SIZE bsize,
int mode_info_cost,
int64_t *best_model_rd) {
const int64_t this_model_rd = intra_model_yrd(cpi, x, bsize, mode_info_cost);
if (*best_model_rd != INT64_MAX &&
this_model_rd > *best_model_rd + (*best_model_rd >> 1)) {
return 1;
} else if (this_model_rd < *best_model_rd) {
*best_model_rd = this_model_rd;
}
return 0;
}
// Run RD calculation with given luma intra prediction angle., and return
// the RD cost. Update the best mode info. if the RD cost is the best so far.
static int64_t calc_rd_given_intra_angle(
const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mode_cost,
int64_t best_rd_in, int8_t angle_delta, int max_angle_delta, int *rate,
RD_STATS *rd_stats, int *best_angle_delta, TX_SIZE *best_tx_size,
int64_t *best_rd, int64_t *best_model_rd, uint8_t *best_tx_type_map,
uint8_t *best_blk_skip, int skip_model_rd) {
RD_STATS tokenonly_rd_stats;
int64_t this_rd;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
const int n4 = bsize_to_num_blk(bsize);
assert(!is_inter_block(mbmi));
mbmi->angle_delta[PLANE_TYPE_Y] = angle_delta;
if (!skip_model_rd) {
if (model_intra_yrd_and_prune(cpi, x, bsize, mode_cost, best_model_rd)) {
return INT64_MAX;
}
}
av1_super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd_in);
if (tokenonly_rd_stats.rate == INT_MAX) return INT64_MAX;
int this_rate =
mode_cost + tokenonly_rd_stats.rate +
x->angle_delta_cost[mbmi->mode - V_PRED][max_angle_delta + angle_delta];
this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
if (this_rd < *best_rd) {
memcpy(best_blk_skip, x->blk_skip, sizeof(best_blk_skip[0]) * n4);
av1_copy_array(best_tx_type_map, xd->tx_type_map, n4);
*best_rd = this_rd;
*best_angle_delta = mbmi->angle_delta[PLANE_TYPE_Y];
*best_tx_size = mbmi->tx_size;
*rate = this_rate;
rd_stats->rate = tokenonly_rd_stats.rate;
rd_stats->dist = tokenonly_rd_stats.dist;
rd_stats->skip = tokenonly_rd_stats.skip;
}
return this_rd;
}
static INLINE int write_uniform_cost(int n, int v) {
const int l = get_unsigned_bits(n);
const int m = (1 << l) - n;
if (l == 0) return 0;
if (v < m)
return av1_cost_literal(l - 1);
else
return av1_cost_literal(l);
}
// Return the rate cost for luma prediction mode info. of intra blocks.
static int intra_mode_info_cost_y(const AV1_COMP *cpi, const MACROBLOCK *x,
const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize,
int mode_cost) {
int total_rate = mode_cost;
const int use_palette = mbmi->palette_mode_info.palette_size[0] > 0;
const int use_filter_intra = mbmi->filter_intra_mode_info.use_filter_intra;
const int use_intrabc = mbmi->use_intrabc;
// Can only activate one mode.
assert(((mbmi->mode != DC_PRED) + use_palette + use_intrabc +
use_filter_intra) <= 1);
const int try_palette = av1_allow_palette(
cpi->common.features.allow_screen_content_tools, mbmi->sb_type);
if (try_palette && mbmi->mode == DC_PRED) {
const MACROBLOCKD *xd = &x->e_mbd;
const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
const int mode_ctx = av1_get_palette_mode_ctx(xd);
total_rate += x->palette_y_mode_cost[bsize_ctx][mode_ctx][use_palette];
if (use_palette) {
const uint8_t *const color_map = xd->plane[0].color_index_map;
int block_width, block_height, rows, cols;
av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows,
&cols);
const int plt_size = mbmi->palette_mode_info.palette_size[0];
int palette_mode_cost =
x->palette_y_size_cost[bsize_ctx][plt_size - PALETTE_MIN_SIZE] +
write_uniform_cost(plt_size, color_map[0]);
uint16_t color_cache[2 * PALETTE_MAX_SIZE];
const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
palette_mode_cost +=
av1_palette_color_cost_y(&mbmi->palette_mode_info, color_cache,
n_cache, cpi->common.seq_params.bit_depth);
palette_mode_cost +=
av1_cost_color_map(x, 0, bsize, mbmi->tx_size, PALETTE_MAP);
total_rate += palette_mode_cost;
}
}
if (av1_filter_intra_allowed(&cpi->common, mbmi)) {
total_rate += x->filter_intra_cost[mbmi->sb_type][use_filter_intra];
if (use_filter_intra) {
total_rate += x->filter_intra_mode_cost[mbmi->filter_intra_mode_info
.filter_intra_mode];
}
}
if (av1_is_directional_mode(mbmi->mode)) {
if (av1_use_angle_delta(bsize)) {
total_rate += x->angle_delta_cost[mbmi->mode - V_PRED]
[MAX_ANGLE_DELTA +
mbmi->angle_delta[PLANE_TYPE_Y]];
}
}
if (av1_allow_intrabc(&cpi->common))
total_rate += x->intrabc_cost[use_intrabc];
return total_rate;
}
// Return the rate cost for chroma prediction mode info. of intra blocks.
static int intra_mode_info_cost_uv(const AV1_COMP *cpi, const MACROBLOCK *x,
const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize,
int mode_cost) {
int total_rate = mode_cost;
const int use_palette = mbmi->palette_mode_info.palette_size[1] > 0;
const UV_PREDICTION_MODE mode = mbmi->uv_mode;
// Can only activate one mode.
assert(((mode != UV_DC_PRED) + use_palette + mbmi->use_intrabc) <= 1);
const int try_palette = av1_allow_palette(
cpi->common.features.allow_screen_content_tools, mbmi->sb_type);
if (try_palette && mode == UV_DC_PRED) {
const PALETTE_MODE_INFO *pmi = &mbmi->palette_mode_info;
total_rate +=
x->palette_uv_mode_cost[pmi->palette_size[0] > 0][use_palette];
if (use_palette) {
const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
const int plt_size = pmi->palette_size[1];
const MACROBLOCKD *xd = &x->e_mbd;
const uint8_t *const color_map = xd->plane[1].color_index_map;
int palette_mode_cost =
x->palette_uv_size_cost[bsize_ctx][plt_size - PALETTE_MIN_SIZE] +
write_uniform_cost(plt_size, color_map[0]);
uint16_t color_cache[2 * PALETTE_MAX_SIZE];
const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
palette_mode_cost += av1_palette_color_cost_uv(
pmi, color_cache, n_cache, cpi->common.seq_params.bit_depth);
palette_mode_cost +=
av1_cost_color_map(x, 1, bsize, mbmi->tx_size, PALETTE_MAP);
total_rate += palette_mode_cost;
}
}
if (av1_is_directional_mode(get_uv_mode(mode))) {
if (av1_use_angle_delta(bsize)) {
total_rate +=
x->angle_delta_cost[mode - V_PRED][mbmi->angle_delta[PLANE_TYPE_UV] +
MAX_ANGLE_DELTA];
}
}
return total_rate;
}
// Return 1 if an filter intra mode is selected; return 0 otherwise.
static int rd_pick_filter_intra_sby(const AV1_COMP *const cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE bsize, int mode_cost,
int64_t *best_rd, int64_t *best_model_rd,
PICK_MODE_CONTEXT *ctx) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
int filter_intra_selected_flag = 0;
FILTER_INTRA_MODE mode;
TX_SIZE best_tx_size = TX_8X8;
FILTER_INTRA_MODE_INFO filter_intra_mode_info;
uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
(void)ctx;
av1_zero(filter_intra_mode_info);
mbmi->filter_intra_mode_info.use_filter_intra = 1;
mbmi->mode = DC_PRED;
mbmi->palette_mode_info.palette_size[0] = 0;
for (mode = 0; mode < FILTER_INTRA_MODES; ++mode) {
int64_t this_rd;
RD_STATS tokenonly_rd_stats;
mbmi->filter_intra_mode_info.filter_intra_mode = mode;
if (model_intra_yrd_and_prune(cpi, x, bsize, mode_cost, best_model_rd)) {
continue;
}
av1_super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd);
if (tokenonly_rd_stats.rate == INT_MAX) continue;
const int this_rate =
tokenonly_rd_stats.rate +
intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost);
this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
// Collect mode stats for multiwinner mode processing
const int txfm_search_done = 1;
store_winner_mode_stats(
&cpi->common, x, mbmi, NULL, NULL, NULL, 0, NULL, bsize, this_rd,
cpi->sf.winner_mode_sf.enable_multiwinner_mode_process,
txfm_search_done);
if (this_rd < *best_rd) {
*best_rd = this_rd;
best_tx_size = mbmi->tx_size;
filter_intra_mode_info = mbmi->filter_intra_mode_info;
av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
memcpy(ctx->blk_skip, x->blk_skip,
sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
*rate = this_rate;
*rate_tokenonly = tokenonly_rd_stats.rate;
*distortion = tokenonly_rd_stats.dist;
*skippable = tokenonly_rd_stats.skip;
filter_intra_selected_flag = 1;
}
}
if (filter_intra_selected_flag) {
mbmi->mode = DC_PRED;
mbmi->tx_size = best_tx_size;
mbmi->filter_intra_mode_info = filter_intra_mode_info;
av1_copy_array(ctx->tx_type_map, best_tx_type_map, ctx->num_4x4_blk);
return 1;
} else {
return 0;
}
}
int av1_count_colors(const uint8_t *src, int stride, int rows, int cols,
int *val_count) {
const int max_pix_val = 1 << 8;
memset(val_count, 0, max_pix_val * sizeof(val_count[0]));
for (int r = 0; r < rows; ++r) {
for (int c = 0; c < cols; ++c) {
const int this_val = src[r * stride + c];
assert(this_val < max_pix_val);
++val_count[this_val];
}
}
int n = 0;
for (int i = 0; i < max_pix_val; ++i) {
if (val_count[i]) ++n;
}
return n;
}
int av1_count_colors_highbd(const uint8_t *src8, int stride, int rows, int cols,
int bit_depth, int *val_count) {
assert(bit_depth <= 12);
const int max_pix_val = 1 << bit_depth;
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
memset(val_count, 0, max_pix_val * sizeof(val_count[0]));
for (int r = 0; r < rows; ++r) {
for (int c = 0; c < cols; ++c) {
const int this_val = src[r * stride + c];
assert(this_val < max_pix_val);
if (this_val >= max_pix_val) return 0;
++val_count[this_val];
}
}
int n = 0;
for (int i = 0; i < max_pix_val; ++i) {
if (val_count[i]) ++n;
}
return n;
}
// Extends 'color_map' array from 'orig_width x orig_height' to 'new_width x
// new_height'. Extra rows and columns are filled in by copying last valid
// row/column.
static AOM_INLINE void extend_palette_color_map(uint8_t *const color_map,
int orig_width, int orig_height,
int new_width, int new_height) {
int j;
assert(new_width >= orig_width);
assert(new_height >= orig_height);
if (new_width == orig_width && new_height == orig_height) return;
for (j = orig_height - 1; j >= 0; --j) {
memmove(color_map + j * new_width, color_map + j * orig_width, orig_width);
// Copy last column to extra columns.
memset(color_map + j * new_width + orig_width,
color_map[j * new_width + orig_width - 1], new_width - orig_width);
}
// Copy last row to extra rows.
for (j = orig_height; j < new_height; ++j) {
memcpy(color_map + j * new_width, color_map + (orig_height - 1) * new_width,
new_width);
}
}
// Bias toward using colors in the cache.
// TODO(huisu): Try other schemes to improve compression.
static AOM_INLINE void optimize_palette_colors(uint16_t *color_cache,
int n_cache, int n_colors,
int stride, int *centroids) {
if (n_cache <= 0) return;
for (int i = 0; i < n_colors * stride; i += stride) {
int min_diff = abs(centroids[i] - (int)color_cache[0]);
int idx = 0;
for (int j = 1; j < n_cache; ++j) {
const int this_diff = abs(centroids[i] - color_cache[j]);
if (this_diff < min_diff) {
min_diff = this_diff;
idx = j;
}
}
if (min_diff <= 1) centroids[i] = color_cache[idx];
}
}
// Given the base colors as specified in centroids[], calculate the RD cost
// of palette mode.
static AOM_INLINE void palette_rd_y(
const AV1_COMP *const cpi, MACROBLOCK *x, MB_MODE_INFO *mbmi,
BLOCK_SIZE bsize, int dc_mode_cost, const int *data, int *centroids, int n,
uint16_t *color_cache, int n_cache, MB_MODE_INFO *best_mbmi,
uint8_t *best_palette_color_map, int64_t *best_rd, int64_t *best_model_rd,
int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable,
int *beat_best_rd, PICK_MODE_CONTEXT *ctx, uint8_t *blk_skip,
uint8_t *tx_type_map, int *beat_best_pallette_rd) {
optimize_palette_colors(color_cache, n_cache, n, 1, centroids);
const int num_unique_colors = av1_remove_duplicates(centroids, n);
if (num_unique_colors < PALETTE_MIN_SIZE) {
// Too few unique colors to create a palette. And DC_PRED will work
// well for that case anyway. So skip.
return;
}
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
if (cpi->common.seq_params.use_highbitdepth) {
for (int i = 0; i < num_unique_colors; ++i) {
pmi->palette_colors[i] = clip_pixel_highbd(
(int)centroids[i], cpi->common.seq_params.bit_depth);
}
} else {
for (int i = 0; i < num_unique_colors; ++i) {
pmi->palette_colors[i] = clip_pixel(centroids[i]);
}
}
pmi->palette_size[0] = num_unique_colors;
MACROBLOCKD *const xd = &x->e_mbd;
uint8_t *const color_map = xd->plane[0].color_index_map;
int block_width, block_height, rows, cols;
av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows,
&cols);
av1_calc_indices(data, centroids, color_map, rows * cols, num_unique_colors,
1);
extend_palette_color_map(color_map, cols, rows, block_width, block_height);
const int palette_mode_cost =
intra_mode_info_cost_y(cpi, x, mbmi, bsize, dc_mode_cost);
if (model_intra_yrd_and_prune(cpi, x, bsize, palette_mode_cost,
best_model_rd)) {
return;
}
RD_STATS tokenonly_rd_stats;
av1_super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd);
if (tokenonly_rd_stats.rate == INT_MAX) return;
int this_rate = tokenonly_rd_stats.rate + palette_mode_cost;
int64_t this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->sb_type)) {
tokenonly_rd_stats.rate -= tx_size_cost(x, bsize, mbmi->tx_size);
}
// Collect mode stats for multiwinner mode processing
const int txfm_search_done = 1;
store_winner_mode_stats(
&cpi->common, x, mbmi, NULL, NULL, NULL, THR_DC, color_map, bsize,
this_rd, cpi->sf.winner_mode_sf.enable_multiwinner_mode_process,
txfm_search_done);
if (this_rd < *best_rd) {
*best_rd = this_rd;
// Setting beat_best_rd flag because current mode rd is better than best_rd.
// This flag need to be updated only for palette evaluation in key frames
if (beat_best_rd) *beat_best_rd = 1;
memcpy(best_palette_color_map, color_map,
block_width * block_height * sizeof(color_map[0]));
*best_mbmi = *mbmi;
memcpy(blk_skip, x->blk_skip, sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
av1_copy_array(tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
if (rate) *rate = this_rate;
if (rate_tokenonly) *rate_tokenonly = tokenonly_rd_stats.rate;
if (distortion) *distortion = tokenonly_rd_stats.dist;
if (skippable) *skippable = tokenonly_rd_stats.skip;
if (beat_best_pallette_rd) *beat_best_pallette_rd = 1;
}
}
static AOM_INLINE int perform_top_color_coarse_palette_search(
const AV1_COMP *const cpi, MACROBLOCK *x, MB_MODE_INFO *mbmi,
BLOCK_SIZE bsize, int dc_mode_cost, const int *data,
const int *const top_colors, int start_n, int end_n, int step_size,
uint16_t *color_cache, int n_cache, MB_MODE_INFO *best_mbmi,
uint8_t *best_palette_color_map, int64_t *best_rd, int64_t *best_model_rd,
int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable,
int *beat_best_rd, PICK_MODE_CONTEXT *ctx, uint8_t *best_blk_skip,
uint8_t *tx_type_map) {
int centroids[PALETTE_MAX_SIZE];
int n = start_n;
int top_color_winner = end_n + 1;
while (1) {
int beat_best_pallette_rd = 0;
for (int i = 0; i < n; ++i) centroids[i] = top_colors[i];
palette_rd_y(cpi, x, mbmi, bsize, dc_mode_cost, data, centroids, n,
color_cache, n_cache, best_mbmi, best_palette_color_map,
best_rd, best_model_rd, rate, rate_tokenonly, distortion,
skippable, beat_best_rd, ctx, best_blk_skip, tx_type_map,
&beat_best_pallette_rd);
// Break if current palette colors is not winning
if (beat_best_pallette_rd) top_color_winner = n;
n += step_size;
if (n > end_n) break;
}
return top_color_winner;
}
static AOM_INLINE int perform_k_means_coarse_palette_search(
const AV1_COMP *const cpi, MACROBLOCK *x, MB_MODE_INFO *mbmi,
BLOCK_SIZE bsize, int dc_mode_cost, const int *data, int lb, int ub,
int start_n, int end_n, int step_size, uint16_t *color_cache, int n_cache,
MB_MODE_INFO *best_mbmi, uint8_t *best_palette_color_map, int64_t *best_rd,
int64_t *best_model_rd, int *rate, int *rate_tokenonly, int64_t *distortion,
int *skippable, int *beat_best_rd, PICK_MODE_CONTEXT *ctx,
uint8_t *best_blk_skip, uint8_t *tx_type_map, uint8_t *color_map,
int data_points) {
int centroids[PALETTE_MAX_SIZE];
const int max_itr = 50;
int n = start_n;
int k_means_winner = end_n + 1;
while (1) {
int beat_best_pallette_rd = 0;
for (int i = 0; i < n; ++i) {
centroids[i] = lb + (2 * i + 1) * (ub - lb) / n / 2;
}
av1_k_means(data, centroids, color_map, data_points, n, 1, max_itr);
palette_rd_y(cpi, x, mbmi, bsize, dc_mode_cost, data, centroids, n,
color_cache, n_cache, best_mbmi, best_palette_color_map,
best_rd, best_model_rd, rate, rate_tokenonly, distortion,
skippable, beat_best_rd, ctx, best_blk_skip, tx_type_map,
&beat_best_pallette_rd);
// Break if current palette colors is not winning
if (beat_best_pallette_rd) k_means_winner = n;
n += step_size;
if (n > end_n) break;
}
return k_means_winner;
}
// Perform palette search for top colors from minimum palette colors (/maximum)
// with a step-size of 1 (/-1)
static AOM_INLINE int perform_top_color_palette_search(
const AV1_COMP *const cpi, MACROBLOCK *x, MB_MODE_INFO *mbmi,
BLOCK_SIZE bsize, int dc_mode_cost, const int *data, int *top_colors,
int start_n, int end_n, int step_size, uint16_t *color_cache, int n_cache,
MB_MODE_INFO *best_mbmi, uint8_t *best_palette_color_map, int64_t *best_rd,
int64_t *best_model_rd, int *rate, int *rate_tokenonly, int64_t *distortion,
int *skippable, int *beat_best_rd, PICK_MODE_CONTEXT *ctx,
uint8_t *best_blk_skip, uint8_t *tx_type_map) {
int centroids[PALETTE_MAX_SIZE];
int n = start_n;
assert((step_size == -1) || (step_size == 1) || (step_size == 0) ||
(step_size == 2));
assert(IMPLIES(step_size == -1, start_n > end_n));
assert(IMPLIES(step_size == 1, start_n < end_n));
while (1) {
int beat_best_pallette_rd = 0;
for (int i = 0; i < n; ++i) centroids[i] = top_colors[i];
palette_rd_y(cpi, x, mbmi, bsize, dc_mode_cost, data, centroids, n,
color_cache, n_cache, best_mbmi, best_palette_color_map,
best_rd, best_model_rd, rate, rate_tokenonly, distortion,
skippable, beat_best_rd, ctx, best_blk_skip, tx_type_map,
&beat_best_pallette_rd);
// Break if current palette colors is not winning
if ((cpi->sf.intra_sf.prune_palette_search_level == 2) &&
!beat_best_pallette_rd)
return n;
n += step_size;
if (n == end_n) break;
}
return n;
}
// Perform k-means based palette search from minimum palette colors (/maximum)
// with a step-size of 1 (/-1)
static AOM_INLINE int perform_k_means_palette_search(
const AV1_COMP *const cpi, MACROBLOCK *x, MB_MODE_INFO *mbmi,
BLOCK_SIZE bsize, int dc_mode_cost, const int *data, int lb, int ub,
int start_n, int end_n, int step_size, uint16_t *color_cache, int n_cache,
MB_MODE_INFO *best_mbmi, uint8_t *best_palette_color_map, int64_t *best_rd,
int64_t *best_model_rd, int *rate, int *rate_tokenonly, int64_t *distortion,
int *skippable, int *beat_best_rd, PICK_MODE_CONTEXT *ctx,
uint8_t *best_blk_skip, uint8_t *tx_type_map, uint8_t *color_map,
int data_points) {
int centroids[PALETTE_MAX_SIZE];
const int max_itr = 50;
int n = start_n;
assert((step_size == -1) || (step_size == 1) || (step_size == 0) ||
(step_size == 2));
assert(IMPLIES(step_size == -1, start_n > end_n));
assert(IMPLIES(step_size == 1, start_n < end_n));
while (1) {
int beat_best_pallette_rd = 0;
for (int i = 0; i < n; ++i) {
centroids[i] = lb + (2 * i + 1) * (ub - lb) / n / 2;
}
av1_k_means(data, centroids, color_map, data_points, n, 1, max_itr);
palette_rd_y(cpi, x, mbmi, bsize, dc_mode_cost, data, centroids, n,
color_cache, n_cache, best_mbmi, best_palette_color_map,
best_rd, best_model_rd, rate, rate_tokenonly, distortion,
skippable, beat_best_rd, ctx, best_blk_skip, tx_type_map,
&beat_best_pallette_rd);
// Break if current palette colors is not winning
if ((cpi->sf.intra_sf.prune_palette_search_level == 2) &&
!beat_best_pallette_rd)
return n;
n += step_size;
if (n == end_n) break;
}
return n;
}
#define START_N_STAGE2(x) \
((x == PALETTE_MIN_SIZE) ? PALETTE_MIN_SIZE + 1 \
: AOMMAX(x - 1, PALETTE_MIN_SIZE));
#define END_N_STAGE2(x, end_n) \
((x == end_n) ? x - 1 : AOMMIN(x + 1, PALETTE_MAX_SIZE));
static AOM_INLINE void update_start_end_stage_2(int *start_n_stage2,
int *end_n_stage2,
int *step_size_stage2,
int winner, int end_n) {
*start_n_stage2 = START_N_STAGE2(winner);
*end_n_stage2 = END_N_STAGE2(winner, end_n);
*step_size_stage2 = *end_n_stage2 - *start_n_stage2;
}
// Start index and step size below are chosen to evaluate unique
// candidates in neighbor search, in case a winner candidate is found in
// coarse search. Example,
// 1) 8 colors (end_n = 8): 2,3,4,5,6,7,8. start_n is chosen as 2 and step
// size is chosen as 3. Therefore, coarse search will evaluate 2, 5 and 8.
// If winner is found at 5, then 4 and 6 are evaluated. Similarly, for 2
// (3) and 8 (7).
// 2) 7 colors (end_n = 7): 2,3,4,5,6,7. If start_n is chosen as 2 (same
// as for 8 colors) then step size should also be 2, to cover all
// candidates. Coarse search will evaluate 2, 4 and 6. If winner is either
// 2 or 4, 3 will be evaluated. Instead, if start_n=3 and step_size=3,
// coarse search will evaluate 3 and 6. For the winner, unique neighbors
// (3: 2,4 or 6: 5,7) would be evaluated.
// start index for coarse palette search for dominant colors and k-means
static const uint8_t start_n_lookup_table[PALETTE_MAX_SIZE + 1] = { 0, 0, 0,
3, 3, 2,
3, 3, 2 };
// step size for coarse palette search for dominant colors and k-means
static const uint8_t step_size_lookup_table[PALETTE_MAX_SIZE + 1] = { 0, 0, 0,
3, 3, 3,
3, 3, 3 };
static void rd_pick_palette_intra_sby(
const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
int dc_mode_cost, MB_MODE_INFO *best_mbmi, uint8_t *best_palette_color_map,
int64_t *best_rd, int64_t *best_model_rd, int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable, int *beat_best_rd,
PICK_MODE_CONTEXT *ctx, uint8_t *best_blk_skip, uint8_t *tx_type_map) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
assert(!is_inter_block(mbmi));
assert(av1_allow_palette(cpi->common.features.allow_screen_content_tools,
bsize));
const int src_stride = x->plane[0].src.stride;
const uint8_t *const src = x->plane[0].src.buf;
int block_width, block_height, rows, cols;
av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows,
&cols);
const SequenceHeader *const seq_params = &cpi->common.seq_params;
const int is_hbd = seq_params->use_highbitdepth;
const int bit_depth = seq_params->bit_depth;
int count_buf[1 << 12]; // Maximum (1 << 12) color levels.
int colors;
if (is_hbd) {
colors = av1_count_colors_highbd(src, src_stride, rows, cols, bit_depth,
count_buf);
} else {
colors = av1_count_colors(src, src_stride, rows, cols, count_buf);
}
uint8_t *const color_map = xd->plane[0].color_index_map;
if (colors > 1 && colors <= 64) {
int *const data = x->palette_buffer->kmeans_data_buf;
int centroids[PALETTE_MAX_SIZE];
int lb, ub;
if (is_hbd) {
int *data_pt = data;
const uint16_t *src_pt = CONVERT_TO_SHORTPTR(src);
lb = ub = src_pt[0];
for (int r = 0; r < rows; ++r) {
for (int c = 0; c < cols; ++c) {
const int val = src_pt[c];
data_pt[c] = val;
lb = AOMMIN(lb, val);
ub = AOMMAX(ub, val);
}
src_pt += src_stride;
data_pt += cols;
}
} else {
int *data_pt = data;
const uint8_t *src_pt = src;
lb = ub = src[0];
for (int r = 0; r < rows; ++r) {
for (int c = 0; c < cols; ++c) {
const int val = src_pt[c];
data_pt[c] = val;
lb = AOMMIN(lb, val);
ub = AOMMAX(ub, val);
}
src_pt += src_stride;
data_pt += cols;
}
}
mbmi->mode = DC_PRED;
mbmi->filter_intra_mode_info.use_filter_intra = 0;
uint16_t color_cache[2 * PALETTE_MAX_SIZE];
const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
// Find the dominant colors, stored in top_colors[].
int top_colors[PALETTE_MAX_SIZE] = { 0 };
for (int i = 0; i < AOMMIN(colors, PALETTE_MAX_SIZE); ++i) {
int max_count = 0;
for (int j = 0; j < (1 << bit_depth); ++j) {
if (count_buf[j] > max_count) {
max_count = count_buf[j];
top_colors[i] = j;
}
}
assert(max_count > 0);
count_buf[top_colors[i]] = 0;
}
// Try the dominant colors directly.
// TODO(huisu@google.com): Try to avoid duplicate computation in cases
// where the dominant colors and the k-means results are similar.
if ((cpi->sf.intra_sf.prune_palette_search_level == 1) &&
(colors > PALETTE_MIN_SIZE)) {
const int end_n = AOMMIN(colors, PALETTE_MAX_SIZE);
assert(PALETTE_MAX_SIZE == 8);
assert(PALETTE_MIN_SIZE == 2);
// Choose the start index and step size for coarse search based on number
// of colors
const int start_n = start_n_lookup_table[end_n];
const int step_size = step_size_lookup_table[end_n];
// Perform top color coarse palette search to find the winner candidate
const int top_color_winner = perform_top_color_coarse_palette_search(
cpi, x, mbmi, bsize, dc_mode_cost, data, top_colors, start_n, end_n,
step_size, color_cache, n_cache, best_mbmi, best_palette_color_map,
best_rd, best_model_rd, rate, rate_tokenonly, distortion, skippable,
beat_best_rd, ctx, best_blk_skip, tx_type_map);
// Evaluate neighbors for the winner color (if winner is found) in the
// above coarse search for dominant colors
if (top_color_winner <= end_n) {
int start_n_stage2, end_n_stage2, step_size_stage2;
update_start_end_stage_2(&start_n_stage2, &end_n_stage2,
&step_size_stage2, top_color_winner, end_n);
// perform finer search for the winner candidate
perform_top_color_palette_search(
cpi, x, mbmi, bsize, dc_mode_cost, data, top_colors, start_n_stage2,
end_n_stage2 + step_size_stage2, step_size_stage2, color_cache,
n_cache, best_mbmi, best_palette_color_map, best_rd, best_model_rd,
rate, rate_tokenonly, distortion, skippable, beat_best_rd, ctx,
best_blk_skip, tx_type_map);
}
// K-means clustering.
// Perform k-means coarse palette search to find the winner candidate
const int k_means_winner = perform_k_means_coarse_palette_search(
cpi, x, mbmi, bsize, dc_mode_cost, data, lb, ub, start_n, end_n,
step_size, color_cache, n_cache, best_mbmi, best_palette_color_map,
best_rd, best_model_rd, rate, rate_tokenonly, distortion, skippable,
beat_best_rd, ctx, best_blk_skip, tx_type_map, color_map,
rows * cols);
// Evaluate neighbors for the winner color (if winner is found) in the
// above coarse search for k-means
if (k_means_winner <= end_n) {
int start_n_stage2, end_n_stage2, step_size_stage2;
update_start_end_stage_2(&start_n_stage2, &end_n_stage2,
&step_size_stage2, k_means_winner, end_n);
// perform finer search for the winner candidate
perform_k_means_palette_search(
cpi, x, mbmi, bsize, dc_mode_cost, data, lb, ub, start_n_stage2,
end_n_stage2 + step_size_stage2, step_size_stage2, color_cache,
n_cache, best_mbmi, best_palette_color_map, best_rd, best_model_rd,
rate, rate_tokenonly, distortion, skippable, beat_best_rd, ctx,
best_blk_skip, tx_type_map, color_map, rows * cols);
}
} else {
const int start_n = AOMMIN(colors, PALETTE_MAX_SIZE),
end_n = PALETTE_MIN_SIZE;
// Perform top color palette search from start_n
const int top_color_winner = perform_top_color_palette_search(
cpi, x, mbmi, bsize, dc_mode_cost, data, top_colors, start_n,
end_n - 1, -1, color_cache, n_cache, best_mbmi,
best_palette_color_map, best_rd, best_model_rd, rate, rate_tokenonly,
distortion, skippable, beat_best_rd, ctx, best_blk_skip, tx_type_map);
if (top_color_winner > end_n) {
// Perform top color palette search in reverse order for the remaining
// colors
perform_top_color_palette_search(
cpi, x, mbmi, bsize, dc_mode_cost, data, top_colors, end_n,
top_color_winner, 1, color_cache, n_cache, best_mbmi,
best_palette_color_map, best_rd, best_model_rd, rate,
rate_tokenonly, distortion, skippable, beat_best_rd, ctx,
best_blk_skip, tx_type_map);
}
// K-means clustering.
if (colors == PALETTE_MIN_SIZE) {
// Special case: These colors automatically become the centroids.
assert(colors == 2);
centroids[0] = lb;
centroids[1] = ub;
palette_rd_y(cpi, x, mbmi, bsize, dc_mode_cost, data, centroids, colors,
color_cache, n_cache, best_mbmi, best_palette_color_map,
best_rd, best_model_rd, rate, rate_tokenonly, distortion,
skippable, beat_best_rd, ctx, best_blk_skip, tx_type_map,
NULL);
} else {
// Perform k-means palette search from start_n
const int k_means_winner = perform_k_means_palette_search(
cpi, x, mbmi, bsize, dc_mode_cost, data, lb, ub, start_n, end_n - 1,
-1, color_cache, n_cache, best_mbmi, best_palette_color_map,
best_rd, best_model_rd, rate, rate_tokenonly, distortion, skippable,
beat_best_rd, ctx, best_blk_skip, tx_type_map, color_map,
rows * cols);
if (k_means_winner > end_n) {
// Perform k-means palette search in reverse order for the remaining
// colors
perform_k_means_palette_search(
cpi, x, mbmi, bsize, dc_mode_cost, data, lb, ub, end_n,
k_means_winner, 1, color_cache, n_cache, best_mbmi,
best_palette_color_map, best_rd, best_model_rd, rate,
rate_tokenonly, distortion, skippable, beat_best_rd, ctx,
best_blk_skip, tx_type_map, color_map, rows * cols);
}
}
}
}
if (best_mbmi->palette_mode_info.palette_size[0] > 0) {
memcpy(color_map, best_palette_color_map,
block_width * block_height * sizeof(best_palette_color_map[0]));
}
*mbmi = *best_mbmi;
}
static AOM_INLINE void rd_pick_palette_intra_sbuv(
const AV1_COMP *const cpi, MACROBLOCK *x, int dc_mode_cost,
uint8_t *best_palette_color_map, MB_MODE_INFO *const best_mbmi,
int64_t *best_rd, int *rate, int *rate_tokenonly, int64_t *distortion,
int *skippable) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
assert(!is_inter_block(mbmi));
assert(av1_allow_palette(cpi->common.features.allow_screen_content_tools,
mbmi->sb_type));
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
const BLOCK_SIZE bsize = mbmi->sb_type;
const SequenceHeader *const seq_params = &cpi->common.seq_params;
int this_rate;
int64_t this_rd;
int colors_u, colors_v, colors;
const int src_stride = x->plane[1].src.stride;
const uint8_t *const src_u = x->plane[1].src.buf;
const uint8_t *const src_v = x->plane[2].src.buf;
uint8_t *const color_map = xd->plane[1].color_index_map;
RD_STATS tokenonly_rd_stats;
int plane_block_width, plane_block_height, rows, cols;
av1_get_block_dimensions(bsize, 1, xd, &plane_block_width,
&plane_block_height, &rows, &cols);
mbmi->uv_mode = UV_DC_PRED;
int count_buf[1 << 12]; // Maximum (1 << 12) color levels.
if (seq_params->use_highbitdepth) {
colors_u = av1_count_colors_highbd(src_u, src_stride, rows, cols,
seq_params->bit_depth, count_buf);
colors_v = av1_count_colors_highbd(src_v, src_stride, rows, cols,
seq_params->bit_depth, count_buf);
} else {
colors_u = av1_count_colors(src_u, src_stride, rows, cols, count_buf);
colors_v = av1_count_colors(src_v, src_stride, rows, cols, count_buf);
}
uint16_t color_cache[2 * PALETTE_MAX_SIZE];
const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
colors = colors_u > colors_v ? colors_u : colors_v;
if (colors > 1 && colors <= 64) {
int r, c, n, i, j;
const int max_itr = 50;
int lb_u, ub_u, val_u;
int lb_v, ub_v, val_v;
int *const data = x->palette_buffer->kmeans_data_buf;
int centroids[2 * PALETTE_MAX_SIZE];
uint16_t *src_u16 = CONVERT_TO_SHORTPTR(src_u);
uint16_t *src_v16 = CONVERT_TO_SHORTPTR(src_v);
if (seq_params->use_highbitdepth) {
lb_u = src_u16[0];
ub_u = src_u16[0];
lb_v = src_v16[0];
ub_v = src_v16[0];
} else {
lb_u = src_u[0];
ub_u = src_u[0];
lb_v = src_v[0];
ub_v = src_v[0];
}
for (r = 0; r < rows; ++r) {
for (c = 0; c < cols; ++c) {
if (seq_params->use_highbitdepth) {
val_u = src_u16[r * src_stride + c];
val_v = src_v16[r * src_stride + c];
data[(r * cols + c) * 2] = val_u;
data[(r * cols + c) * 2 + 1] = val_v;
} else {
val_u = src_u[r * src_stride + c];
val_v = src_v[r * src_stride + c];
data[(r * cols + c) * 2] = val_u;
data[(r * cols + c) * 2 + 1] = val_v;
}
if (val_u < lb_u)
lb_u = val_u;
else if (val_u > ub_u)
ub_u = val_u;
if (val_v < lb_v)
lb_v = val_v;
else if (val_v > ub_v)
ub_v = val_v;
}
}
for (n = colors > PALETTE_MAX_SIZE ? PALETTE_MAX_SIZE : colors; n >= 2;
--n) {
for (i = 0; i < n; ++i) {
centroids[i * 2] = lb_u + (2 * i + 1) * (ub_u - lb_u) / n / 2;
centroids[i * 2 + 1] = lb_v + (2 * i + 1) * (ub_v - lb_v) / n / 2;
}
av1_k_means(data, centroids, color_map, rows * cols, n, 2, max_itr);
optimize_palette_colors(color_cache, n_cache, n, 2, centroids);
// Sort the U channel colors in ascending order.
for (i = 0; i < 2 * (n - 1); i += 2) {
int min_idx = i;
int min_val = centroids[i];
for (j = i + 2; j < 2 * n; j += 2)
if (centroids[j] < min_val) min_val = centroids[j], min_idx = j;
if (min_idx != i) {
int temp_u = centroids[i], temp_v = centroids[i + 1];
centroids[i] = centroids[min_idx];
centroids[i + 1] = centroids[min_idx + 1];
centroids[min_idx] = temp_u, centroids[min_idx + 1] = temp_v;
}
}
av1_calc_indices(data, centroids, color_map, rows * cols, n, 2);
extend_palette_color_map(color_map, cols, rows, plane_block_width,
plane_block_height);
pmi->palette_size[1] = n;
for (i = 1; i < 3; ++i) {
for (j = 0; j < n; ++j) {
if (seq_params->use_highbitdepth)
pmi->palette_colors[i * PALETTE_MAX_SIZE + j] = clip_pixel_highbd(
(int)centroids[j * 2 + i - 1], seq_params->bit_depth);
else
pmi->palette_colors[i * PALETTE_MAX_SIZE + j] =
clip_pixel((int)centroids[j * 2 + i - 1]);
}
}
av1_super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd);
if (tokenonly_rd_stats.rate == INT_MAX) continue;
this_rate = tokenonly_rd_stats.rate +
intra_mode_info_cost_uv(cpi, x, mbmi, bsize, dc_mode_cost);
this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
if (this_rd < *best_rd) {
*best_rd = this_rd;
*best_mbmi = *mbmi;
memcpy(best_palette_color_map, color_map,
plane_block_width * plane_block_height *
sizeof(best_palette_color_map[0]));
*rate = this_rate;
*distortion = tokenonly_rd_stats.dist;
*rate_tokenonly = tokenonly_rd_stats.rate;
*skippable = tokenonly_rd_stats.skip;
}
}
}
if (best_mbmi->palette_mode_info.palette_size[1] > 0) {
memcpy(color_map, best_palette_color_map,
plane_block_width * plane_block_height *
sizeof(best_palette_color_map[0]));
}
}
void av1_restore_uv_color_map(const AV1_COMP *const cpi, MACROBLOCK *x) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
const BLOCK_SIZE bsize = mbmi->sb_type;
int src_stride = x->plane[1].src.stride;
const uint8_t *const src_u = x->plane[1].src.buf;
const uint8_t *const src_v = x->plane[2].src.buf;
int *const data = x->palette_buffer->kmeans_data_buf;
int centroids[2 * PALETTE_MAX_SIZE];
uint8_t *const color_map = xd->plane[1].color_index_map;
int r, c;
const uint16_t *const src_u16 = CONVERT_TO_SHORTPTR(src_u);
const uint16_t *const src_v16 = CONVERT_TO_SHORTPTR(src_v);
int plane_block_width, plane_block_height, rows, cols;
av1_get_block_dimensions(bsize, 1, xd, &plane_block_width,
&plane_block_height, &rows, &cols);
for (r = 0; r < rows; ++r) {
for (c = 0; c < cols; ++c) {
if (cpi->common.seq_params.use_highbitdepth) {
data[(r * cols + c) * 2] = src_u16[r * src_stride + c];
data[(r * cols + c) * 2 + 1] = src_v16[r * src_stride + c];
} else {
data[(r * cols + c) * 2] = src_u[r * src_stride + c];
data[(r * cols + c) * 2 + 1] = src_v[r * src_stride + c];
}
}
}
for (r = 1; r < 3; ++r) {
for (c = 0; c < pmi->palette_size[1]; ++c) {
centroids[c * 2 + r - 1] = pmi->palette_colors[r * PALETTE_MAX_SIZE + c];
}
}
av1_calc_indices(data, centroids, color_map, rows * cols,
pmi->palette_size[1], 2);
extend_palette_color_map(color_map, cols, rows, plane_block_width,
plane_block_height);
}
static AOM_INLINE void choose_intra_uv_mode(
const AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize,
TX_SIZE max_tx_size, int *rate_uv, int *rate_uv_tokenonly, int64_t *dist_uv,
int *skip_uv, UV_PREDICTION_MODE *mode_uv) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
// Use an estimated rd for uv_intra based on DC_PRED if the
// appropriate speed flag is set.
init_sbuv_mode(mbmi);
if (!xd->is_chroma_ref) {
*rate_uv = 0;
*rate_uv_tokenonly = 0;
*dist_uv = 0;
*skip_uv = 1;
*mode_uv = UV_DC_PRED;
return;
}
// Only store reconstructed luma when there's chroma RDO. When there's no
// chroma RDO, the reconstructed luma will be stored in encode_superblock().
xd->cfl.store_y = store_cfl_required_rdo(cm, x);
if (xd->cfl.store_y) {
// Restore reconstructed luma values.
av1_encode_intra_block_plane(cpi, x, mbmi->sb_type, AOM_PLANE_Y,
DRY_RUN_NORMAL,
cpi->optimize_seg_arr[mbmi->segment_id]);
xd->cfl.store_y = 0;
}
av1_rd_pick_intra_sbuv_mode(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv,
skip_uv, bsize, max_tx_size);
*mode_uv = mbmi->uv_mode;
}
// Run RD calculation with given chroma intra prediction angle., and return
// the RD cost. Update the best mode info. if the RD cost is the best so far.
static int64_t pick_intra_angle_routine_sbuv(
const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize,
int rate_overhead, int64_t best_rd_in, int *rate, RD_STATS *rd_stats,
int *best_angle_delta, int64_t *best_rd) {
MB_MODE_INFO *mbmi = x->e_mbd.mi[0];
assert(!is_inter_block(mbmi));
int this_rate;
int64_t this_rd;
RD_STATS tokenonly_rd_stats;
if (!av1_super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd_in))
return INT64_MAX;
this_rate = tokenonly_rd_stats.rate +
intra_mode_info_cost_uv(cpi, x, mbmi, bsize, rate_overhead);
this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
if (this_rd < *best_rd) {
*best_rd = this_rd;
*best_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV];
*rate = this_rate;
rd_stats->rate = tokenonly_rd_stats.rate;
rd_stats->dist = tokenonly_rd_stats.dist;
rd_stats->skip = tokenonly_rd_stats.skip;
}
return this_rd;
}
// With given chroma directional intra prediction mode, pick the best angle
// delta. Return true if a RD cost that is smaller than the input one is found.
static int rd_pick_intra_angle_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int rate_overhead,
int64_t best_rd, int *rate,
RD_STATS *rd_stats) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
assert(!is_inter_block(mbmi));
int i, angle_delta, best_angle_delta = 0;
int64_t this_rd, best_rd_in, rd_cost[2 * (MAX_ANGLE_DELTA + 2)];
rd_stats->rate = INT_MAX;
rd_stats->skip = 0;
rd_stats->dist = INT64_MAX;
for (i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX;
for (angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) {
for (i = 0; i < 2; ++i) {
best_rd_in = (best_rd == INT64_MAX)
? INT64_MAX
: (best_rd + (best_rd >> ((angle_delta == 0) ? 3 : 5)));
mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta;
this_rd = pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead,
best_rd_in, rate, rd_stats,
&best_angle_delta, &best_rd);
rd_cost[2 * angle_delta + i] = this_rd;
if (angle_delta == 0) {
if (this_rd == INT64_MAX) return 0;
rd_cost[1] = this_rd;
break;
}
}
}
assert(best_rd != INT64_MAX);
for (angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) {
int64_t rd_thresh;
for (i = 0; i < 2; ++i) {
int skip_search = 0;
rd_thresh = best_rd + (best_rd >> 5);
if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh &&
rd_cost[2 * (angle_delta - 1) + i] > rd_thresh)
skip_search = 1;
if (!skip_search) {
mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta;
pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead, best_rd,
rate, rd_stats, &best_angle_delta,
&best_rd);
}
}
}
mbmi->angle_delta[PLANE_TYPE_UV] = best_angle_delta;
return rd_stats->rate != INT_MAX;
}
#define PLANE_SIGN_TO_JOINT_SIGN(plane, a, b) \
(plane == CFL_PRED_U ? a * CFL_SIGNS + b - 1 : b * CFL_SIGNS + a - 1)
static int cfl_rd_pick_alpha(MACROBLOCK *const x, const AV1_COMP *const cpi,
TX_SIZE tx_size, int64_t best_rd) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const MACROBLOCKD_PLANE *pd = &xd->plane[AOM_PLANE_U];
const BLOCK_SIZE plane_bsize =
get_plane_block_size(mbmi->sb_type, pd->subsampling_x, pd->subsampling_y);
assert(is_cfl_allowed(xd) && cpi->oxcf.enable_cfl_intra);
assert(plane_bsize < BLOCK_SIZES_ALL);
if (!xd->lossless[mbmi->segment_id]) {
assert(block_size_wide[plane_bsize] == tx_size_wide[tx_size]);
assert(block_size_high[plane_bsize] == tx_size_high[tx_size]);
}
xd->cfl.use_dc_pred_cache = 1;
const int64_t mode_rd =
RDCOST(x->rdmult,
x->intra_uv_mode_cost[CFL_ALLOWED][mbmi->mode][UV_CFL_PRED], 0);
int64_t best_rd_uv[CFL_JOINT_SIGNS][CFL_PRED_PLANES];
int best_c[CFL_JOINT_SIGNS][CFL_PRED_PLANES];
#if CONFIG_DEBUG
int best_rate_uv[CFL_JOINT_SIGNS][CFL_PRED_PLANES];
#endif // CONFIG_DEBUG
const int skip_trellis = 0;
for (int plane = 0; plane < CFL_PRED_PLANES; plane++) {
RD_STATS rd_stats;
av1_init_rd_stats(&rd_stats);
for (int joint_sign = 0; joint_sign < CFL_JOINT_SIGNS; joint_sign++) {
best_rd_uv[joint_sign][plane] = INT64_MAX;
best_c[joint_sign][plane] = 0;
}
// Collect RD stats for an alpha value of zero in this plane.
// Skip i == CFL_SIGN_ZERO as (0, 0) is invalid.
for (int i = CFL_SIGN_NEG; i < CFL_SIGNS; i++) {
const int8_t joint_sign =
PLANE_SIGN_TO_JOINT_SIGN(plane, CFL_SIGN_ZERO, i);
if (i == CFL_SIGN_NEG) {
mbmi->cfl_alpha_idx = 0;
mbmi->cfl_alpha_signs = joint_sign;
av1_txfm_rd_in_plane(
x, cpi, &rd_stats, best_rd, 0, plane + 1, plane_bsize, tx_size,
cpi->sf.rd_sf.use_fast_coef_costing, FTXS_NONE, skip_trellis);
if (rd_stats.rate == INT_MAX) break;
}
const int alpha_rate = x->cfl_cost[joint_sign][plane][0];
best_rd_uv[joint_sign][plane] =
RDCOST(x->rdmult, rd_stats.rate + alpha_rate, rd_stats.dist);
#if CONFIG_DEBUG
best_rate_uv[joint_sign][plane] = rd_stats.rate;
#endif // CONFIG_DEBUG
}
}
int8_t best_joint_sign = -1;
for (int plane = 0; plane < CFL_PRED_PLANES; plane++) {
for (int pn_sign = CFL_SIGN_NEG; pn_sign < CFL_SIGNS; pn_sign++) {
int progress = 0;
for (int c = 0; c < CFL_ALPHABET_SIZE; c++) {
int flag = 0;
RD_STATS rd_stats;
if (c > 2 && progress < c) break;
av1_init_rd_stats(&rd_stats);
for (int i = 0; i < CFL_SIGNS; i++) {
const int8_t joint_sign = PLANE_SIGN_TO_JOINT_SIGN(plane, pn_sign, i);
if (i == 0) {
mbmi->cfl_alpha_idx = (c << CFL_ALPHABET_SIZE_LOG2) + c;
mbmi->cfl_alpha_signs = joint_sign;
av1_txfm_rd_in_plane(
x, cpi, &rd_stats, best_rd, 0, plane + 1, plane_bsize, tx_size,
cpi->sf.rd_sf.use_fast_coef_costing, FTXS_NONE, skip_trellis);
if (rd_stats.rate == INT_MAX) break;
}
const int alpha_rate = x->cfl_cost[joint_sign][plane][c];
int64_t this_rd =
RDCOST(x->rdmult, rd_stats.rate + alpha_rate, rd_stats.dist);
if (this_rd >= best_rd_uv[joint_sign][plane]) continue;
best_rd_uv[joint_sign][plane] = this_rd;
best_c[joint_sign][plane] = c;
#if CONFIG_DEBUG
best_rate_uv[joint_sign][plane] = rd_stats.rate;
#endif // CONFIG_DEBUG
flag = 2;
if (best_rd_uv[joint_sign][!plane] == INT64_MAX) continue;
this_rd += mode_rd + best_rd_uv[joint_sign][!plane];
if (this_rd >= best_rd) continue;
best_rd = this_rd;
best_joint_sign = joint_sign;
}
progress += flag;
}
}
}
int best_rate_overhead = INT_MAX;
uint8_t ind = 0;
if (best_joint_sign >= 0) {
const int u = best_c[best_joint_sign][CFL_PRED_U];
const int v = best_c[best_joint_sign][CFL_PRED_V];
ind = (u << CFL_ALPHABET_SIZE_LOG2) + v;
best_rate_overhead = x->cfl_cost[best_joint_sign][CFL_PRED_U][u] +
x->cfl_cost[best_joint_sign][CFL_PRED_V][v];
#if CONFIG_DEBUG
xd->cfl.rate = x->intra_uv_mode_cost[CFL_ALLOWED][mbmi->mode][UV_CFL_PRED] +
best_rate_overhead +
best_rate_uv[best_joint_sign][CFL_PRED_U] +
best_rate_uv[best_joint_sign][CFL_PRED_V];
#endif // CONFIG_DEBUG
} else {
best_joint_sign = 0;
}
mbmi->cfl_alpha_idx = ind;
mbmi->cfl_alpha_signs = best_joint_sign;
xd->cfl.use_dc_pred_cache = 0;
xd->cfl.dc_pred_is_cached[0] = 0;
xd->cfl.dc_pred_is_cached[1] = 0;
return best_rate_overhead;
}
int64_t av1_rd_pick_intra_sbuv_mode(const AV1_COMP *const cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE bsize, TX_SIZE max_tx_size) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
assert(!is_inter_block(mbmi));
MB_MODE_INFO best_mbmi = *mbmi;
int64_t best_rd = INT64_MAX, this_rd;
for (int mode_idx = 0; mode_idx < UV_INTRA_MODES; ++mode_idx) {
int this_rate;
RD_STATS tokenonly_rd_stats;
UV_PREDICTION_MODE mode = uv_rd_search_mode_order[mode_idx];
const int is_directional_mode = av1_is_directional_mode(get_uv_mode(mode));
if (!(cpi->sf.intra_sf.intra_uv_mode_mask[txsize_sqr_up_map[max_tx_size]] &
(1 << mode)))
continue;
if (!cpi->oxcf.enable_smooth_intra && mode >= UV_SMOOTH_PRED &&
mode <= UV_SMOOTH_H_PRED)
continue;
if (!cpi->oxcf.enable_paeth_intra && mode == UV_PAETH_PRED) continue;
mbmi->uv_mode = mode;
int cfl_alpha_rate = 0;
if (mode == UV_CFL_PRED) {
if (!is_cfl_allowed(xd) || !cpi->oxcf.enable_cfl_intra) continue;
assert(!is_directional_mode);
const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd);
cfl_alpha_rate = cfl_rd_pick_alpha(x, cpi, uv_tx_size, best_rd);
if (cfl_alpha_rate == INT_MAX) continue;
}
mbmi->angle_delta[PLANE_TYPE_UV] = 0;
if (is_directional_mode && av1_use_angle_delta(mbmi->sb_type) &&
cpi->oxcf.enable_angle_delta) {
const int rate_overhead =
x->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][mode];
if (!rd_pick_intra_angle_sbuv(cpi, x, bsize, rate_overhead, best_rd,
&this_rate, &tokenonly_rd_stats))
continue;
} else {
if (!av1_super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd)) {
continue;
}
}
const int mode_cost =
x->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][mode] +
cfl_alpha_rate;
this_rate = tokenonly_rd_stats.rate +
intra_mode_info_cost_uv(cpi, x, mbmi, bsize, mode_cost);
if (mode == UV_CFL_PRED) {
assert(is_cfl_allowed(xd) && cpi->oxcf.enable_cfl_intra);
#if CONFIG_DEBUG
if (!xd->lossless[mbmi->segment_id])
assert(xd->cfl.rate == tokenonly_rd_stats.rate + mode_cost);
#endif // CONFIG_DEBUG
}
this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist);
if (this_rd < best_rd) {
best_mbmi = *mbmi;
best_rd = this_rd;
*rate = this_rate;
*rate_tokenonly = tokenonly_rd_stats.rate;
*distortion = tokenonly_rd_stats.dist;
*skippable = tokenonly_rd_stats.skip;
}
}
const int try_palette =
cpi->oxcf.enable_palette &&
av1_allow_palette(cpi->common.features.allow_screen_content_tools,
mbmi->sb_type);
if (try_palette) {
uint8_t *best_palette_color_map = x->palette_buffer->best_palette_color_map;
rd_pick_palette_intra_sbuv(
cpi, x,
x->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][UV_DC_PRED],
best_palette_color_map, &best_mbmi, &best_rd, rate, rate_tokenonly,
distortion, skippable);
}
*mbmi = best_mbmi;
// Make sure we actually chose a mode
assert(best_rd < INT64_MAX);
return best_rd;
}
int av1_search_palette_mode(const AV1_COMP *cpi, MACROBLOCK *x,
RD_STATS *this_rd_cost, PICK_MODE_CONTEXT *ctx,
BLOCK_SIZE bsize, MB_MODE_INFO *const mbmi,
PALETTE_MODE_INFO *const pmi,
unsigned int *ref_costs_single,
IntraModeSearchState *intra_search_state,
int64_t best_rd) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
int rate2 = 0;
int64_t distortion2 = 0, best_rd_palette = best_rd, this_rd,
best_model_rd_palette = INT64_MAX;
int skippable = 0;
TX_SIZE uv_tx = TX_4X4;
uint8_t *const best_palette_color_map =
x->palette_buffer->best_palette_color_map;
uint8_t *const color_map = xd->plane[0].color_index_map;
MB_MODE_INFO best_mbmi_palette = *mbmi;
uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
const int *const intra_mode_cost = x->mbmode_cost[size_group_lookup[bsize]];
const int rows = block_size_high[bsize];
const int cols = block_size_wide[bsize];
mbmi->mode = DC_PRED;
mbmi->uv_mode = UV_DC_PRED;
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->ref_frame[1] = NONE_FRAME;
RD_STATS rd_stats_y;
av1_invalid_rd_stats(&rd_stats_y);
rd_pick_palette_intra_sby(
cpi, x, bsize, intra_mode_cost[DC_PRED], &best_mbmi_palette,
best_palette_color_map, &best_rd_palette, &best_model_rd_palette,
&rd_stats_y.rate, NULL, &rd_stats_y.dist, &rd_stats_y.skip, NULL, ctx,
best_blk_skip, best_tx_type_map);
if (rd_stats_y.rate == INT_MAX || pmi->palette_size[0] == 0) {
this_rd_cost->rdcost = INT64_MAX;
return skippable;
}
memcpy(x->blk_skip, best_blk_skip,
sizeof(best_blk_skip[0]) * bsize_to_num_blk(bsize));
av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk);
memcpy(color_map, best_palette_color_map,
rows * cols * sizeof(best_palette_color_map[0]));
skippable = rd_stats_y.skip;
distortion2 = rd_stats_y.dist;
rate2 = rd_stats_y.rate + ref_costs_single[INTRA_FRAME];
if (num_planes > 1) {
uv_tx = av1_get_tx_size(AOM_PLANE_U, xd);
if (intra_search_state->rate_uv_intra == INT_MAX) {
choose_intra_uv_mode(
cpi, x, bsize, uv_tx, &intra_search_state->rate_uv_intra,
&intra_search_state->rate_uv_tokenonly, &intra_search_state->dist_uvs,
&intra_search_state->skip_uvs, &intra_search_state->mode_uv);
intra_search_state->pmi_uv = *pmi;
intra_search_state->uv_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV];
}
mbmi->uv_mode = intra_search_state->mode_uv;
pmi->palette_size[1] = intra_search_state->pmi_uv.palette_size[1];
if (pmi->palette_size[1] > 0) {
memcpy(pmi->palette_colors + PALETTE_MAX_SIZE,
intra_search_state->pmi_uv.palette_colors + PALETTE_MAX_SIZE,
2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0]));
}
mbmi->angle_delta[PLANE_TYPE_UV] = intra_search_state->uv_angle_delta;
skippable = skippable && intra_search_state->skip_uvs;
distortion2 += intra_search_state->dist_uvs;
rate2 += intra_search_state->rate_uv_intra;
}
if (skippable) {
rate2 -= rd_stats_y.rate;
if (num_planes > 1) rate2 -= intra_search_state->rate_uv_tokenonly;
rate2 += x->skip_cost[av1_get_skip_context(xd)][1];
} else {
rate2 += x->skip_cost[av1_get_skip_context(xd)][0];
}
this_rd = RDCOST(x->rdmult, rate2, distortion2);
this_rd_cost->rate = rate2;
this_rd_cost->dist = distortion2;
this_rd_cost->rdcost = this_rd;
return skippable;
}
// Given selected prediction mode, search for the best tx type and size.
static AOM_INLINE int intra_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, const int *bmode_costs,
int64_t *best_rd, int *rate,
int *rate_tokenonly, int64_t *distortion,
int *skippable, MB_MODE_INFO *best_mbmi,
PICK_MODE_CONTEXT *ctx) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
RD_STATS rd_stats;
// In order to improve txfm search avoid rd based breakouts during winner
// mode evaluation. Hence passing ref_best_rd as a maximum value
av1_super_block_yrd(cpi, x, &rd_stats, bsize, INT64_MAX);
if (rd_stats.rate == INT_MAX) return 0;
int this_rate_tokenonly = rd_stats.rate;
if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->sb_type)) {
// av1_super_block_yrd above includes the cost of the tx_size in the
// tokenonly rate, but for intra blocks, tx_size is always coded
// (prediction granularity), so we account for it in the full rate,
// not the tokenonly rate.
this_rate_tokenonly -= tx_size_cost(x, bsize, mbmi->tx_size);
}
const int this_rate =
rd_stats.rate +
intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode]);
const int64_t this_rd = RDCOST(x->rdmult, this_rate, rd_stats.dist);
if (this_rd < *best_rd) {
*best_mbmi = *mbmi;
*best_rd = this_rd;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = rd_stats.dist;
*skippable = rd_stats.skip;
av1_copy_array(ctx->blk_skip, x->blk_skip, ctx->num_4x4_blk);
av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
return 1;
}
return 0;
}
// With given luma directional intra prediction mode, pick the best angle delta
// Return the RD cost corresponding to the best angle delta.
static int64_t rd_pick_intra_angle_sby(const AV1_COMP *const cpi, MACROBLOCK *x,
int *rate, RD_STATS *rd_stats,
BLOCK_SIZE bsize, int mode_cost,
int64_t best_rd, int64_t *best_model_rd,
int skip_model_rd_for_zero_deg) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
assert(!is_inter_block(mbmi));
int best_angle_delta = 0;
int64_t rd_cost[2 * (MAX_ANGLE_DELTA + 2)];
TX_SIZE best_tx_size = mbmi->tx_size;
uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
for (int i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX;
int first_try = 1;
for (int angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) {
for (int i = 0; i < 2; ++i) {
const int64_t best_rd_in =
(best_rd == INT64_MAX) ? INT64_MAX
: (best_rd + (best_rd >> (first_try ? 3 : 5)));
const int64_t this_rd = calc_rd_given_intra_angle(
cpi, x, bsize, mode_cost, best_rd_in, (1 - 2 * i) * angle_delta,
MAX_ANGLE_DELTA, rate, rd_stats, &best_angle_delta, &best_tx_size,
&best_rd, best_model_rd, best_tx_type_map, best_blk_skip,
(skip_model_rd_for_zero_deg & !angle_delta));
rd_cost[2 * angle_delta + i] = this_rd;
if (first_try && this_rd == INT64_MAX) return best_rd;
first_try = 0;
if (angle_delta == 0) {
rd_cost[1] = this_rd;
break;
}
}
}
assert(best_rd != INT64_MAX);
for (int angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) {
for (int i = 0; i < 2; ++i) {
int skip_search = 0;
const int64_t rd_thresh = best_rd + (best_rd >> 5);
if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh &&
rd_cost[2 * (angle_delta - 1) + i] > rd_thresh)
skip_search = 1;
if (!skip_search) {
calc_rd_given_intra_angle(
cpi, x, bsize, mode_cost, best_rd, (1 - 2 * i) * angle_delta,
MAX_ANGLE_DELTA, rate, rd_stats, &best_angle_delta, &best_tx_size,
&best_rd, best_model_rd, best_tx_type_map, best_blk_skip, 0);
}
}
}
if (rd_stats->rate != INT_MAX) {
mbmi->tx_size = best_tx_size;
mbmi->angle_delta[PLANE_TYPE_Y] = best_angle_delta;
const int n4 = bsize_to_num_blk(bsize);
memcpy(x->blk_skip, best_blk_skip, sizeof(best_blk_skip[0]) * n4);
av1_copy_array(xd->tx_type_map, best_tx_type_map, n4);
}
return best_rd;
}
int64_t av1_handle_intra_mode(IntraModeSearchState *intra_search_state,
const AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize, int ref_frame_cost,
const PICK_MODE_CONTEXT *ctx, int disable_skip,
RD_STATS *rd_stats, RD_STATS *rd_stats_y,
RD_STATS *rd_stats_uv, int64_t best_rd,
int64_t *best_intra_rd, int8_t best_mbmode_skip) {
const AV1_COMMON *cm = &cpi->common;
const SPEED_FEATURES *const sf = &cpi->sf;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
assert(mbmi->ref_frame[0] == INTRA_FRAME);
const PREDICTION_MODE mode = mbmi->mode;
const int mode_cost =
x->mbmode_cost[size_group_lookup[bsize]][mode] + ref_frame_cost;
const int intra_cost_penalty = av1_get_intra_cost_penalty(
cm->quant_params.base_qindex, cm->quant_params.y_dc_delta_q,
cm->seq_params.bit_depth);
const int skip_ctx = av1_get_skip_context(xd);
int known_rate = mode_cost;
known_rate += ref_frame_cost;
if (mode != DC_PRED && mode != PAETH_PRED) known_rate += intra_cost_penalty;
known_rate += AOMMIN(x->skip_cost[skip_ctx][0], x->skip_cost[skip_ctx][1]);
const int64_t known_rd = RDCOST(x->rdmult, known_rate, 0);
if (known_rd > best_rd) {
intra_search_state->skip_intra_modes = 1;
return INT64_MAX;
}
const int is_directional_mode = av1_is_directional_mode(mode);
if (is_directional_mode && av1_use_angle_delta(bsize) &&
cpi->oxcf.enable_angle_delta) {
if (sf->intra_sf.intra_pruning_with_hog &&
!intra_search_state->angle_stats_ready) {
prune_intra_mode_with_hog(x, bsize,
cpi->sf.intra_sf.intra_pruning_with_hog_thresh,
intra_search_state->directional_mode_skip_mask);
intra_search_state->angle_stats_ready = 1;
}
if (intra_search_state->directional_mode_skip_mask[mode]) return INT64_MAX;
av1_init_rd_stats(rd_stats_y);
rd_stats_y->rate = INT_MAX;
int64_t model_rd = INT64_MAX;
int rate_dummy;
rd_pick_intra_angle_sby(cpi, x, &rate_dummy, rd_stats_y, bsize, mode_cost,
best_rd, &model_rd, 0);
} else {
av1_init_rd_stats(rd_stats_y);
mbmi->angle_delta[PLANE_TYPE_Y] = 0;
av1_super_block_yrd(cpi, x, rd_stats_y, bsize, best_rd);
}
// Pick filter intra modes.
if (mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) {
int try_filter_intra = 0;
int64_t best_rd_so_far = INT64_MAX;
if (rd_stats_y->rate != INT_MAX) {
const int tmp_rate =
rd_stats_y->rate + x->filter_intra_cost[bsize][0] + mode_cost;
best_rd_so_far = RDCOST(x->rdmult, tmp_rate, rd_stats_y->dist);
try_filter_intra = (best_rd_so_far / 2) <= best_rd;
} else {
try_filter_intra = !best_mbmode_skip;
}
if (try_filter_intra) {
RD_STATS rd_stats_y_fi;
int filter_intra_selected_flag = 0;
TX_SIZE best_tx_size = mbmi->tx_size;
FILTER_INTRA_MODE best_fi_mode = FILTER_DC_PRED;
uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
memcpy(best_blk_skip, x->blk_skip,
sizeof(best_blk_skip[0]) * ctx->num_4x4_blk);
uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
mbmi->filter_intra_mode_info.use_filter_intra = 1;
for (FILTER_INTRA_MODE fi_mode = FILTER_DC_PRED;
fi_mode < FILTER_INTRA_MODES; ++fi_mode) {
mbmi->filter_intra_mode_info.filter_intra_mode = fi_mode;
av1_super_block_yrd(cpi, x, &rd_stats_y_fi, bsize, best_rd);
if (rd_stats_y_fi.rate == INT_MAX) continue;
const int this_rate_tmp =
rd_stats_y_fi.rate +
intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost);
const int64_t this_rd_tmp =
RDCOST(x->rdmult, this_rate_tmp, rd_stats_y_fi.dist);
if (this_rd_tmp != INT64_MAX && this_rd_tmp / 2 > best_rd) {
break;
}
if (this_rd_tmp < best_rd_so_far) {
best_tx_size = mbmi->tx_size;
av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
memcpy(best_blk_skip, x->blk_skip,
sizeof(best_blk_skip[0]) * ctx->num_4x4_blk);
best_fi_mode = fi_mode;
*rd_stats_y = rd_stats_y_fi;
filter_intra_selected_flag = 1;
best_rd_so_far = this_rd_tmp;
}
}
mbmi->tx_size = best_tx_size;
av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk);
memcpy(x->blk_skip, best_blk_skip,
sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
if (filter_intra_selected_flag) {
mbmi->filter_intra_mode_info.use_filter_intra = 1;
mbmi->filter_intra_mode_info.filter_intra_mode = best_fi_mode;
} else {
mbmi->filter_intra_mode_info.use_filter_intra = 0;
}
}
}
if (rd_stats_y->rate == INT_MAX) return INT64_MAX;
const int mode_cost_y =
intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost);
av1_init_rd_stats(rd_stats);
av1_init_rd_stats(rd_stats_uv);
const int num_planes = av1_num_planes(cm);
if (num_planes > 1) {
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
const int try_palette =
cpi->oxcf.enable_palette &&
av1_allow_palette(cm->features.allow_screen_content_tools,
mbmi->sb_type);
const TX_SIZE uv_tx = av1_get_tx_size(AOM_PLANE_U, xd);
if (intra_search_state->rate_uv_intra == INT_MAX) {
const int rate_y =
rd_stats_y->skip ? x->skip_cost[skip_ctx][1] : rd_stats_y->rate;
const int64_t rdy =
RDCOST(x->rdmult, rate_y + mode_cost_y, rd_stats_y->dist);
if (best_rd < (INT64_MAX / 2) && rdy > (best_rd + (best_rd >> 2))) {
intra_search_state->skip_intra_modes = 1;
return INT64_MAX;
}
choose_intra_uv_mode(
cpi, x, bsize, uv_tx, &intra_search_state->rate_uv_intra,
&intra_search_state->rate_uv_tokenonly, &intra_search_state->dist_uvs,
&intra_search_state->skip_uvs, &intra_search_state->mode_uv);
if (try_palette) intra_search_state->pmi_uv = *pmi;
intra_search_state->uv_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV];
const int uv_rate = intra_search_state->rate_uv_tokenonly;
const int64_t uv_dist = intra_search_state->dist_uvs;
const int64_t uv_rd = RDCOST(x->rdmult, uv_rate, uv_dist);
if (uv_rd > best_rd) {
intra_search_state->skip_intra_modes = 1;
return INT64_MAX;
}
}
rd_stats_uv->rate = intra_search_state->rate_uv_tokenonly;
rd_stats_uv->dist = intra_search_state->dist_uvs;
rd_stats_uv->skip = intra_search_state->skip_uvs;
rd_stats->skip = rd_stats_y->skip && rd_stats_uv->skip;
mbmi->uv_mode = intra_search_state->mode_uv;
if (try_palette) {
pmi->palette_size[1] = intra_search_state->pmi_uv.palette_size[1];
memcpy(pmi->palette_colors + PALETTE_MAX_SIZE,
intra_search_state->pmi_uv.palette_colors + PALETTE_MAX_SIZE,
2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0]));
}
mbmi->angle_delta[PLANE_TYPE_UV] = intra_search_state->uv_angle_delta;
}
rd_stats->rate = rd_stats_y->rate + mode_cost_y;
if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(bsize)) {
// av1_super_block_yrd above includes the cost of the tx_size in the
// tokenonly rate, but for intra blocks, tx_size is always coded
// (prediction granularity), so we account for it in the full rate,
// not the tokenonly rate.
rd_stats_y->rate -= tx_size_cost(x, bsize, mbmi->tx_size);
}
if (num_planes > 1 && xd->is_chroma_ref) {
const int uv_mode_cost =
x->intra_uv_mode_cost[is_cfl_allowed(xd)][mode][mbmi->uv_mode];
rd_stats->rate +=
rd_stats_uv->rate +
intra_mode_info_cost_uv(cpi, x, mbmi, bsize, uv_mode_cost);
}
if (mode != DC_PRED && mode != PAETH_PRED) {
rd_stats->rate += intra_cost_penalty;
}
// Intra block is always coded as non-skip
rd_stats->skip = 0;
rd_stats->dist = rd_stats_y->dist + rd_stats_uv->dist;
// Add in the cost of the no skip flag.
rd_stats->rate += x->skip_cost[skip_ctx][0];
// Calculate the final RD estimate for this mode.
const int64_t this_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
// Keep record of best intra rd
if (this_rd < *best_intra_rd) {
*best_intra_rd = this_rd;
intra_search_state->best_intra_mode = mode;
}
if (sf->intra_sf.skip_intra_in_interframe) {
if (best_rd < (INT64_MAX / 2) && this_rd > (best_rd + (best_rd >> 1)))
intra_search_state->skip_intra_modes = 1;
}
if (!disable_skip) {
for (int i = 0; i < REFERENCE_MODES; ++i) {
intra_search_state->best_pred_rd[i] =
AOMMIN(intra_search_state->best_pred_rd[i], this_rd);
}
}
return this_rd;
}
// This function is used only for intra_only frames
int64_t av1_rd_pick_intra_sby_mode(const AV1_COMP *const cpi, MACROBLOCK *x,
int *rate, int *rate_tokenonly,
int64_t *distortion, int *skippable,
BLOCK_SIZE bsize, int64_t best_rd,
PICK_MODE_CONTEXT *ctx) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
assert(!is_inter_block(mbmi));
int64_t best_model_rd = INT64_MAX;
int is_directional_mode;
uint8_t directional_mode_skip_mask[INTRA_MODES] = { 0 };
// Flag to check rd of any intra mode is better than best_rd passed to this
// function
int beat_best_rd = 0;
const int *bmode_costs;
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
const int try_palette =
cpi->oxcf.enable_palette &&
av1_allow_palette(cpi->common.features.allow_screen_content_tools,
mbmi->sb_type);
uint8_t *best_palette_color_map =
try_palette ? x->palette_buffer->best_palette_color_map : NULL;
const MB_MODE_INFO *above_mi = xd->above_mbmi;
const MB_MODE_INFO *left_mi = xd->left_mbmi;
const PREDICTION_MODE A = av1_above_block_mode(above_mi);
const PREDICTION_MODE L = av1_left_block_mode(left_mi);
const int above_ctx = intra_mode_context[A];
const int left_ctx = intra_mode_context[L];
bmode_costs = x->y_mode_costs[above_ctx][left_ctx];
mbmi->angle_delta[PLANE_TYPE_Y] = 0;
if (cpi->sf.intra_sf.intra_pruning_with_hog) {
prune_intra_mode_with_hog(x, bsize,
cpi->sf.intra_sf.intra_pruning_with_hog_thresh,
directional_mode_skip_mask);
}
mbmi->filter_intra_mode_info.use_filter_intra = 0;
pmi->palette_size[0] = 0;
// Set params for mode evaluation
set_mode_eval_params(cpi, x, MODE_EVAL);
MB_MODE_INFO best_mbmi = *mbmi;
av1_zero(x->winner_mode_stats);
x->winner_mode_count = 0;
/* Y Search for intra prediction mode */
for (int mode_idx = INTRA_MODE_START; mode_idx < INTRA_MODE_END; ++mode_idx) {
RD_STATS this_rd_stats;
int this_rate, this_rate_tokenonly, s;
int64_t this_distortion, this_rd;
mbmi->mode = intra_rd_search_mode_order[mode_idx];
if ((!cpi->oxcf.enable_smooth_intra ||
cpi->sf.intra_sf.disable_smooth_intra) &&
(mbmi->mode == SMOOTH_PRED || mbmi->mode == SMOOTH_H_PRED ||
mbmi->mode == SMOOTH_V_PRED))
continue;
if (!cpi->oxcf.enable_paeth_intra && mbmi->mode == PAETH_PRED) continue;
mbmi->angle_delta[PLANE_TYPE_Y] = 0;
if (model_intra_yrd_and_prune(cpi, x, bsize, bmode_costs[mbmi->mode],
&best_model_rd)) {
continue;
}
is_directional_mode = av1_is_directional_mode(mbmi->mode);
if (is_directional_mode && directional_mode_skip_mask[mbmi->mode]) continue;
if (is_directional_mode && av1_use_angle_delta(bsize) &&
cpi->oxcf.enable_angle_delta) {
this_rd_stats.rate = INT_MAX;
rd_pick_intra_angle_sby(cpi, x, &this_rate, &this_rd_stats, bsize,
bmode_costs[mbmi->mode], best_rd, &best_model_rd,
1);
} else {
av1_super_block_yrd(cpi, x, &this_rd_stats, bsize, best_rd);
}
this_rate_tokenonly = this_rd_stats.rate;
this_distortion = this_rd_stats.dist;
s = this_rd_stats.skip;
if (this_rate_tokenonly == INT_MAX) continue;
if (!xd->lossless[mbmi->segment_id] &&
block_signals_txsize(mbmi->sb_type)) {
// av1_super_block_yrd above includes the cost of the tx_size in the
// tokenonly rate, but for intra blocks, tx_size is always coded
// (prediction granularity), so we account for it in the full rate,
// not the tokenonly rate.
this_rate_tokenonly -= tx_size_cost(x, bsize, mbmi->tx_size);
}
this_rate =
this_rd_stats.rate +
intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode]);
this_rd = RDCOST(x->rdmult, this_rate, this_distortion);
// Collect mode stats for multiwinner mode processing
const int txfm_search_done = 1;
store_winner_mode_stats(
&cpi->common, x, mbmi, NULL, NULL, NULL, 0, NULL, bsize, this_rd,
cpi->sf.winner_mode_sf.enable_multiwinner_mode_process,
txfm_search_done);
if (this_rd < best_rd) {
best_mbmi = *mbmi;
best_rd = this_rd;
// Setting beat_best_rd flag because current mode rd is better than
// best_rd passed to this function
beat_best_rd = 1;
*rate = this_rate;
*rate_tokenonly = this_rate_tokenonly;
*distortion = this_distortion;
*skippable = s;
memcpy(ctx->blk_skip, x->blk_skip,
sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
}
}
if (try_palette) {
rd_pick_palette_intra_sby(
cpi, x, bsize, bmode_costs[DC_PRED], &best_mbmi, best_palette_color_map,
&best_rd, &best_model_rd, rate, rate_tokenonly, distortion, skippable,
&beat_best_rd, ctx, ctx->blk_skip, ctx->tx_type_map);
}
if (beat_best_rd && av1_filter_intra_allowed_bsize(&cpi->common, bsize)) {
if (rd_pick_filter_intra_sby(cpi, x, rate, rate_tokenonly, distortion,
skippable, bsize, bmode_costs[DC_PRED],
&best_rd, &best_model_rd, ctx)) {
best_mbmi = *mbmi;
}
}
// No mode is identified with less rd value than best_rd passed to this
// function. In such cases winner mode processing is not necessary and return
// best_rd as INT64_MAX to indicate best mode is not identified
if (!beat_best_rd) return INT64_MAX;
// In multi-winner mode processing, perform tx search for few best modes
// identified during mode evaluation. Winner mode processing uses best tx
// configuration for tx search.
if (cpi->sf.winner_mode_sf.enable_multiwinner_mode_process) {
int best_mode_idx = 0;
int block_width, block_height;
uint8_t *color_map_dst = xd->plane[PLANE_TYPE_Y].color_index_map;
av1_get_block_dimensions(bsize, AOM_PLANE_Y, xd, &block_width,
&block_height, NULL, NULL);
for (int mode_idx = 0; mode_idx < x->winner_mode_count; mode_idx++) {
*mbmi = x->winner_mode_stats[mode_idx].mbmi;
if (is_winner_mode_processing_enabled(cpi, mbmi, mbmi->mode)) {
// Restore color_map of palette mode before winner mode processing
if (mbmi->palette_mode_info.palette_size[0] > 0) {
uint8_t *color_map_src =
x->winner_mode_stats[mode_idx].color_index_map;
memcpy(color_map_dst, color_map_src,
block_width * block_height * sizeof(*color_map_src));
}
// Set params for winner mode evaluation
set_mode_eval_params(cpi, x, WINNER_MODE_EVAL);
// Winner mode processing
// If previous searches use only the default tx type/no R-D optimization
// of quantized coeffs, do an extra search for the best tx type/better
// R-D optimization of quantized coeffs
if (intra_block_yrd(cpi, x, bsize, bmode_costs, &best_rd, rate,
rate_tokenonly, distortion, skippable, &best_mbmi,
ctx))
best_mode_idx = mode_idx;
}
}
// Copy color_map of palette mode for final winner mode
if (best_mbmi.palette_mode_info.palette_size[0] > 0) {
uint8_t *color_map_src =
x->winner_mode_stats[best_mode_idx].color_index_map;
memcpy(color_map_dst, color_map_src,
block_width * block_height * sizeof(*color_map_src));
}
} else {
// If previous searches use only the default tx type/no R-D optimization of
// quantized coeffs, do an extra search for the best tx type/better R-D
// optimization of quantized coeffs
if (is_winner_mode_processing_enabled(cpi, mbmi, best_mbmi.mode)) {
// Set params for winner mode evaluation
set_mode_eval_params(cpi, x, WINNER_MODE_EVAL);
*mbmi = best_mbmi;
intra_block_yrd(cpi, x, bsize, bmode_costs, &best_rd, rate,
rate_tokenonly, distortion, skippable, &best_mbmi, ctx);
}
}
*mbmi = best_mbmi;
av1_copy_array(xd->tx_type_map, ctx->tx_type_map, ctx->num_4x4_blk);
return best_rd;
}