blob: 355141de554a0984e6f07c79d0fd82aada595224 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include <stdlib.h>
#include "av1/encoder/cost.h"
#include "av1/encoder/palette.h"
static float calc_dist(const float *p1, const float *p2, int dim) {
float dist = 0;
int i;
for (i = 0; i < dim; ++i) {
const float diff = p1[i] - p2[i];
dist += diff * diff;
}
return dist;
}
void av1_calc_indices(const float *data, const float *centroids,
uint8_t *indices, int n, int k, int dim) {
int i, j;
for (i = 0; i < n; ++i) {
float min_dist = calc_dist(data + i * dim, centroids, dim);
indices[i] = 0;
for (j = 1; j < k; ++j) {
const float this_dist =
calc_dist(data + i * dim, centroids + j * dim, dim);
if (this_dist < min_dist) {
min_dist = this_dist;
indices[i] = j;
}
}
}
}
// Generate a random number in the range [0, 32768).
static unsigned int lcg_rand16(unsigned int *state) {
*state = (unsigned int)(*state * 1103515245ULL + 12345);
return *state / 65536 % 32768;
}
static void calc_centroids(const float *data, float *centroids,
const uint8_t *indices, int n, int k, int dim) {
int i, j, index;
int count[PALETTE_MAX_SIZE];
unsigned int rand_state = (unsigned int)data[0];
assert(n <= 32768);
memset(count, 0, sizeof(count[0]) * k);
memset(centroids, 0, sizeof(centroids[0]) * k * dim);
for (i = 0; i < n; ++i) {
index = indices[i];
assert(index < k);
++count[index];
for (j = 0; j < dim; ++j) {
centroids[index * dim + j] += data[i * dim + j];
}
}
for (i = 0; i < k; ++i) {
if (count[i] == 0) {
memcpy(centroids + i * dim, data + (lcg_rand16(&rand_state) % n) * dim,
sizeof(centroids[0]) * dim);
} else {
const float norm = 1.0f / count[i];
for (j = 0; j < dim; ++j) centroids[i * dim + j] *= norm;
}
}
// Round to nearest integers.
for (i = 0; i < k * dim; ++i) {
centroids[i] = roundf(centroids[i]);
}
}
static float calc_total_dist(const float *data, const float *centroids,
const uint8_t *indices, int n, int k, int dim) {
float dist = 0;
int i;
(void)k;
for (i = 0; i < n; ++i)
dist += calc_dist(data + i * dim, centroids + indices[i] * dim, dim);
return dist;
}
void av1_k_means(const float *data, float *centroids, uint8_t *indices, int n,
int k, int dim, int max_itr) {
int i;
float this_dist;
float pre_centroids[2 * PALETTE_MAX_SIZE];
uint8_t pre_indices[MAX_SB_SQUARE];
av1_calc_indices(data, centroids, indices, n, k, dim);
this_dist = calc_total_dist(data, centroids, indices, n, k, dim);
for (i = 0; i < max_itr; ++i) {
const float pre_dist = this_dist;
memcpy(pre_centroids, centroids, sizeof(pre_centroids[0]) * k * dim);
memcpy(pre_indices, indices, sizeof(pre_indices[0]) * n);
calc_centroids(data, centroids, indices, n, k, dim);
av1_calc_indices(data, centroids, indices, n, k, dim);
this_dist = calc_total_dist(data, centroids, indices, n, k, dim);
if (this_dist > pre_dist) {
memcpy(centroids, pre_centroids, sizeof(pre_centroids[0]) * k * dim);
memcpy(indices, pre_indices, sizeof(pre_indices[0]) * n);
break;
}
if (!memcmp(centroids, pre_centroids, sizeof(pre_centroids[0]) * k * dim))
break;
}
}
static int float_comparer(const void *a, const void *b) {
const float fa = *(const float *)a;
const float fb = *(const float *)b;
return (fa > fb) - (fa < fb);
}
int av1_remove_duplicates(float *centroids, int num_centroids) {
int num_unique; // number of unique centroids
int i;
qsort(centroids, num_centroids, sizeof(*centroids), float_comparer);
// Remove duplicates.
num_unique = 1;
for (i = 1; i < num_centroids; ++i) {
if (centroids[i] != centroids[i - 1]) { // found a new unique centroid
centroids[num_unique++] = centroids[i];
}
}
return num_unique;
}
int av1_count_colors(const uint8_t *src, int stride, int rows, int cols) {
int n = 0, r, c, i, val_count[256];
uint8_t val;
memset(val_count, 0, sizeof(val_count));
for (r = 0; r < rows; ++r) {
for (c = 0; c < cols; ++c) {
val = src[r * stride + c];
++val_count[val];
}
}
for (i = 0; i < 256; ++i) {
if (val_count[i]) {
++n;
}
}
return n;
}
#if CONFIG_PALETTE_DELTA_ENCODING
int av1_get_palette_delta_bits_y(const PALETTE_MODE_INFO *const pmi,
int bit_depth, int *min_bits) {
const int n = pmi->palette_size[0];
int max_d = 0, i;
*min_bits = bit_depth - 3;
for (i = 1; i < n; ++i) {
const int delta = pmi->palette_colors[i] - pmi->palette_colors[i - 1];
assert(delta > 0);
if (delta > max_d) max_d = delta;
}
return AOMMAX(av1_ceil_log2(max_d), *min_bits);
}
int av1_get_palette_delta_bits_u(const PALETTE_MODE_INFO *const pmi,
int bit_depth, int *min_bits) {
const int n = pmi->palette_size[1];
int max_d = 0, i;
*min_bits = bit_depth - 3;
for (i = 1; i < n; ++i) {
const int delta = pmi->palette_colors[PALETTE_MAX_SIZE + i] -
pmi->palette_colors[PALETTE_MAX_SIZE + i - 1];
assert(delta >= 0);
if (delta > max_d) max_d = delta;
}
return AOMMAX(av1_ceil_log2(max_d + 1), *min_bits);
}
int av1_get_palette_delta_bits_v(const PALETTE_MODE_INFO *const pmi,
int bit_depth, int *zero_count,
int *min_bits) {
const int n = pmi->palette_size[1];
const int max_val = 1 << bit_depth;
int max_d = 0, i;
*min_bits = bit_depth - 4;
*zero_count = 0;
for (i = 1; i < n; ++i) {
const int delta = pmi->palette_colors[2 * PALETTE_MAX_SIZE + i] -
pmi->palette_colors[2 * PALETTE_MAX_SIZE + i - 1];
const int v = abs(delta);
const int d = AOMMIN(v, max_val - v);
if (d > max_d) max_d = d;
if (d == 0) ++(*zero_count);
}
return AOMMAX(av1_ceil_log2(max_d + 1), *min_bits);
}
#endif // CONFIG_PALETTE_DELTA_ENCODING
int av1_palette_color_cost_y(const PALETTE_MODE_INFO *const pmi,
int bit_depth) {
const int n = pmi->palette_size[0];
#if CONFIG_PALETTE_DELTA_ENCODING
int min_bits = 0;
const int bits = av1_get_palette_delta_bits_y(pmi, bit_depth, &min_bits);
return av1_cost_bit(128, 0) * (2 + bit_depth + bits * (n - 1));
#else
return bit_depth * n * av1_cost_bit(128, 0);
#endif // CONFIG_PALETTE_DELTA_ENCODING
}
int av1_palette_color_cost_uv(const PALETTE_MODE_INFO *const pmi,
int bit_depth) {
const int n = pmi->palette_size[1];
#if CONFIG_PALETTE_DELTA_ENCODING
int cost = 0;
// U channel palette color cost.
int min_bits_u = 0;
const int bits_u = av1_get_palette_delta_bits_u(pmi, bit_depth, &min_bits_u);
cost += av1_cost_bit(128, 0) * (2 + bit_depth + bits_u * (n - 1));
// V channel palette color cost.
int zero_count = 0, min_bits_v = 0;
const int bits_v =
av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v);
const int bits_using_delta =
2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count;
const int bits_using_raw = bit_depth * n;
cost += av1_cost_bit(128, 0) * (1 + AOMMIN(bits_using_delta, bits_using_raw));
return cost;
#else
return 2 * bit_depth * n * av1_cost_bit(128, 0);
#endif // CONFIG_PALETTE_DELTA_ENCODING
}
#if CONFIG_HIGHBITDEPTH
int av1_count_colors_highbd(const uint8_t *src8, int stride, int rows, int cols,
int bit_depth) {
int n = 0, r, c, i;
uint16_t val;
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
int val_count[1 << 12];
assert(bit_depth <= 12);
memset(val_count, 0, (1 << 12) * sizeof(val_count[0]));
for (r = 0; r < rows; ++r) {
for (c = 0; c < cols; ++c) {
val = src[r * stride + c];
++val_count[val];
}
}
for (i = 0; i < (1 << bit_depth); ++i) {
if (val_count[i]) {
++n;
}
}
return n;
}
#endif // CONFIG_HIGHBITDEPTH