blob: c17f655c55047069af2734c7e972e7c558b31e4f [file] [log] [blame]
/*
* Copyright (c) 2018, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AV1_COMMON_X86_AV1_INV_TXFM_AVX2_H_
#define AV1_COMMON_X86_AV1_INV_TXFM_AVX2_H_
#include <immintrin.h>
#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "aom/aom_integer.h"
#include "aom_dsp/x86/transpose_sse2.h"
#include "aom_dsp/x86/txfm_common_sse2.h"
#ifdef __cplusplus
extern "C" {
#endif
#define pair_set_w16_epi16(a, b) \
_mm256_set1_epi32((int32_t)(((uint16_t)(a)) | (((uint32_t)(b)) << 16)))
#define btf_16_w16_avx2(w0, w1, in0, in1, out0, out1) \
{ \
__m256i t0 = _mm256_unpacklo_epi16(in0, in1); \
__m256i t1 = _mm256_unpackhi_epi16(in0, in1); \
__m256i u0 = _mm256_madd_epi16(t0, w0); \
__m256i u1 = _mm256_madd_epi16(t1, w0); \
__m256i v0 = _mm256_madd_epi16(t0, w1); \
__m256i v1 = _mm256_madd_epi16(t1, w1); \
\
__m256i a0 = _mm256_add_epi32(u0, __rounding); \
__m256i a1 = _mm256_add_epi32(u1, __rounding); \
__m256i b0 = _mm256_add_epi32(v0, __rounding); \
__m256i b1 = _mm256_add_epi32(v1, __rounding); \
\
__m256i c0 = _mm256_srai_epi32(a0, cos_bit); \
__m256i c1 = _mm256_srai_epi32(a1, cos_bit); \
__m256i d0 = _mm256_srai_epi32(b0, cos_bit); \
__m256i d1 = _mm256_srai_epi32(b1, cos_bit); \
\
out0 = _mm256_packs_epi32(c0, c1); \
out1 = _mm256_packs_epi32(d0, d1); \
}
// half input is zero
#define btf_16_w16_0_avx2(w0, w1, in, out0, out1) \
{ \
const __m256i _w0 = _mm256_set1_epi16(w0 * 8); \
const __m256i _w1 = _mm256_set1_epi16(w1 * 8); \
const __m256i _in = in; \
out0 = _mm256_mulhrs_epi16(_in, _w0); \
out1 = _mm256_mulhrs_epi16(_in, _w1); \
}
#define btf_16_adds_subs_avx2(in0, in1) \
{ \
const __m256i _in0 = in0; \
const __m256i _in1 = in1; \
in0 = _mm256_adds_epi16(_in0, _in1); \
in1 = _mm256_subs_epi16(_in0, _in1); \
}
#define btf_16_subs_adds_avx2(in0, in1) \
{ \
const __m256i _in0 = in0; \
const __m256i _in1 = in1; \
in1 = _mm256_subs_epi16(_in0, _in1); \
in0 = _mm256_adds_epi16(_in0, _in1); \
}
#define btf_16_adds_subs_out_avx2(out0, out1, in0, in1) \
{ \
const __m256i _in0 = in0; \
const __m256i _in1 = in1; \
out0 = _mm256_adds_epi16(_in0, _in1); \
out1 = _mm256_subs_epi16(_in0, _in1); \
}
static INLINE __m256i load_32bit_to_16bit_w16_avx2(const int32_t *a) {
const __m256i a_low = _mm256_lddqu_si256((const __m256i *)a);
const __m256i b = _mm256_packs_epi32(a_low, *(const __m256i *)(a + 8));
return _mm256_permute4x64_epi64(b, 0xD8);
}
static INLINE void load_buffer_32bit_to_16bit_w16_avx2(const int32_t *in,
int stride, __m256i *out,
int out_size) {
for (int i = 0; i < out_size; ++i) {
out[i] = load_32bit_to_16bit_w16_avx2(in + i * stride);
}
}
static INLINE void transpose_16bit_16x16_avx2(const __m256i *const in,
__m256i *const out) {
// Unpack 16 bit elements. Goes from:
// in[0]: 00 01 02 03 08 09 0a 0b 04 05 06 07 0c 0d 0e 0f
// in[1]: 10 11 12 13 18 19 1a 1b 14 15 16 17 1c 1d 1e 1f
// in[2]: 20 21 22 23 28 29 2a 2b 24 25 26 27 2c 2d 2e 2f
// in[3]: 30 31 32 33 38 39 3a 3b 34 35 36 37 3c 3d 3e 3f
// in[4]: 40 41 42 43 48 49 4a 4b 44 45 46 47 4c 4d 4e 4f
// in[5]: 50 51 52 53 58 59 5a 5b 54 55 56 57 5c 5d 5e 5f
// in[6]: 60 61 62 63 68 69 6a 6b 64 65 66 67 6c 6d 6e 6f
// in[7]: 70 71 72 73 78 79 7a 7b 74 75 76 77 7c 7d 7e 7f
// in[8]: 80 81 82 83 88 89 8a 8b 84 85 86 87 8c 8d 8e 8f
// to:
// a0: 00 10 01 11 02 12 03 13 04 14 05 15 06 16 07 17
// a1: 20 30 21 31 22 32 23 33 24 34 25 35 26 36 27 37
// a2: 40 50 41 51 42 52 43 53 44 54 45 55 46 56 47 57
// a3: 60 70 61 71 62 72 63 73 64 74 65 75 66 76 67 77
// ...
__m256i a[16];
for (int i = 0; i < 16; i += 2) {
a[i / 2 + 0] = _mm256_unpacklo_epi16(in[i], in[i + 1]);
a[i / 2 + 8] = _mm256_unpackhi_epi16(in[i], in[i + 1]);
}
__m256i b[16];
for (int i = 0; i < 16; i += 2) {
b[i / 2 + 0] = _mm256_unpacklo_epi32(a[i], a[i + 1]);
b[i / 2 + 8] = _mm256_unpackhi_epi32(a[i], a[i + 1]);
}
__m256i c[16];
for (int i = 0; i < 16; i += 2) {
c[i / 2 + 0] = _mm256_unpacklo_epi64(b[i], b[i + 1]);
c[i / 2 + 8] = _mm256_unpackhi_epi64(b[i], b[i + 1]);
}
out[0 + 0] = _mm256_permute2x128_si256(c[0], c[1], 0x20);
out[1 + 0] = _mm256_permute2x128_si256(c[8], c[9], 0x20);
out[2 + 0] = _mm256_permute2x128_si256(c[4], c[5], 0x20);
out[3 + 0] = _mm256_permute2x128_si256(c[12], c[13], 0x20);
out[0 + 8] = _mm256_permute2x128_si256(c[0], c[1], 0x31);
out[1 + 8] = _mm256_permute2x128_si256(c[8], c[9], 0x31);
out[2 + 8] = _mm256_permute2x128_si256(c[4], c[5], 0x31);
out[3 + 8] = _mm256_permute2x128_si256(c[12], c[13], 0x31);
out[4 + 0] = _mm256_permute2x128_si256(c[0 + 2], c[1 + 2], 0x20);
out[5 + 0] = _mm256_permute2x128_si256(c[8 + 2], c[9 + 2], 0x20);
out[6 + 0] = _mm256_permute2x128_si256(c[4 + 2], c[5 + 2], 0x20);
out[7 + 0] = _mm256_permute2x128_si256(c[12 + 2], c[13 + 2], 0x20);
out[4 + 8] = _mm256_permute2x128_si256(c[0 + 2], c[1 + 2], 0x31);
out[5 + 8] = _mm256_permute2x128_si256(c[8 + 2], c[9 + 2], 0x31);
out[6 + 8] = _mm256_permute2x128_si256(c[4 + 2], c[5 + 2], 0x31);
out[7 + 8] = _mm256_permute2x128_si256(c[12 + 2], c[13 + 2], 0x31);
}
static INLINE void round_shift_16bit_w16_avx2(__m256i *in, int size, int bit) {
if (bit < 0) {
__m256i scale = _mm256_set1_epi16(1 << (bit + 15));
for (int i = 0; i < size; ++i) {
in[i] = _mm256_mulhrs_epi16(in[i], scale);
}
} else if (bit > 0) {
for (int i = 0; i < size; ++i) {
in[i] = _mm256_slli_epi16(in[i], bit);
}
}
}
static INLINE void round_shift_avx2(const __m256i *input, __m256i *output,
int size) {
const __m256i scale = _mm256_set1_epi16(NewInvSqrt2 * 8);
for (int i = 0; i < size; ++i) {
output[i] = _mm256_mulhrs_epi16(input[i], scale);
}
}
static INLINE void flip_buf_av2(__m256i *in, __m256i *out, int size) {
for (int i = 0; i < size; ++i) {
out[size - i - 1] = in[i];
}
}
static INLINE void write_recon_w16_avx2(__m256i res, uint8_t *output) {
__m128i pred = _mm_loadu_si128((__m128i const *)(output));
__m256i u = _mm256_adds_epi16(_mm256_cvtepu8_epi16(pred), res);
__m128i y = _mm256_castsi256_si128(
_mm256_permute4x64_epi64(_mm256_packus_epi16(u, u), 168));
_mm_storeu_si128((__m128i *)(output), y);
}
static INLINE void lowbd_write_buffer_16xn_avx2(__m256i *in, uint8_t *output,
int stride, int flipud,
int height) {
int j = flipud ? (height - 1) : 0;
const int step = flipud ? -1 : 1;
for (int i = 0; i < height; ++i, j += step) {
write_recon_w16_avx2(in[j], output + i * stride);
}
}
typedef void (*transform_1d_avx2)(const __m256i *input, __m256i *output,
int8_t cos_bit);
void av1_lowbd_inv_txfm2d_add_avx2(const int32_t *input, uint8_t *output,
int stride, TX_TYPE tx_type, TX_SIZE tx_size,
int eob);
#ifdef __cplusplus
}
#endif
#endif // AV1_COMMON_X86_AV1_INV_TXFM_AVX2_H_