blob: fa431635dcea72e08be9333a881f608cc56e01c4 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <emmintrin.h> // SSE2
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
#include "aom_dsp/x86/synonyms.h"
#include "aom_ports/mem.h"
#include "./av1_rtcd.h"
#include "av1/common/filter.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/reconinter.h"
typedef void (*getNxMvar_fn_t)(const unsigned char *src, int src_stride,
const unsigned char *ref, int ref_stride,
unsigned int *sse, int *sum);
unsigned int aom_get_mb_ss_sse2(const int16_t *src) {
__m128i vsum = _mm_setzero_si128();
int i;
for (i = 0; i < 32; ++i) {
const __m128i v = xx_loadu_128(src);
vsum = _mm_add_epi32(vsum, _mm_madd_epi16(v, v));
src += 8;
}
vsum = _mm_add_epi32(vsum, _mm_srli_si128(vsum, 8));
vsum = _mm_add_epi32(vsum, _mm_srli_si128(vsum, 4));
return _mm_cvtsi128_si32(vsum);
}
// Read 4 samples from each of row and row + 1. Interleave the two rows and
// zero-extend them to 16 bit samples stored in the lower half of an SSE
// register.
static __m128i read64(const uint8_t *p, int stride, int row) {
__m128i row0 = xx_loadl_32(p + (row + 0) * stride);
__m128i row1 = xx_loadl_32(p + (row + 1) * stride);
return _mm_unpacklo_epi8(_mm_unpacklo_epi8(row0, row1), _mm_setzero_si128());
}
static void get4x4var_sse2(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse, int *sum) {
const __m128i src0 = read64(src, src_stride, 0);
const __m128i src1 = read64(src, src_stride, 2);
const __m128i ref0 = read64(ref, ref_stride, 0);
const __m128i ref1 = read64(ref, ref_stride, 2);
const __m128i diff0 = _mm_sub_epi16(src0, ref0);
const __m128i diff1 = _mm_sub_epi16(src1, ref1);
// sum
__m128i vsum = _mm_add_epi16(diff0, diff1);
vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 8));
vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 4));
vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 2));
*sum = (int16_t)_mm_extract_epi16(vsum, 0);
// sse
vsum =
_mm_add_epi32(_mm_madd_epi16(diff0, diff0), _mm_madd_epi16(diff1, diff1));
vsum = _mm_add_epi32(vsum, _mm_srli_si128(vsum, 8));
vsum = _mm_add_epi32(vsum, _mm_srli_si128(vsum, 4));
*sse = _mm_cvtsi128_si32(vsum);
}
void aom_get8x8var_sse2(const uint8_t *src, int src_stride, const uint8_t *ref,
int ref_stride, unsigned int *sse, int *sum) {
const __m128i zero = _mm_setzero_si128();
__m128i vsum = _mm_setzero_si128();
__m128i vsse = _mm_setzero_si128();
int i;
for (i = 0; i < 8; i += 2) {
const __m128i src0 =
_mm_unpacklo_epi8(xx_loadl_64(src + i * src_stride), zero);
const __m128i ref0 =
_mm_unpacklo_epi8(xx_loadl_64(ref + i * ref_stride), zero);
const __m128i diff0 = _mm_sub_epi16(src0, ref0);
const __m128i src1 =
_mm_unpacklo_epi8(xx_loadl_64(src + (i + 1) * src_stride), zero);
const __m128i ref1 =
_mm_unpacklo_epi8(xx_loadl_64(ref + (i + 1) * ref_stride), zero);
const __m128i diff1 = _mm_sub_epi16(src1, ref1);
vsum = _mm_add_epi16(vsum, diff0);
vsum = _mm_add_epi16(vsum, diff1);
vsse = _mm_add_epi32(vsse, _mm_madd_epi16(diff0, diff0));
vsse = _mm_add_epi32(vsse, _mm_madd_epi16(diff1, diff1));
}
// sum
vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 8));
vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 4));
vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 2));
*sum = (int16_t)_mm_extract_epi16(vsum, 0);
// sse
vsse = _mm_add_epi32(vsse, _mm_srli_si128(vsse, 8));
vsse = _mm_add_epi32(vsse, _mm_srli_si128(vsse, 4));
*sse = _mm_cvtsi128_si32(vsse);
}
void aom_get16x16var_sse2(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride, unsigned int *sse,
int *sum) {
const __m128i zero = _mm_setzero_si128();
__m128i vsum = _mm_setzero_si128();
__m128i vsse = _mm_setzero_si128();
int i;
for (i = 0; i < 16; ++i) {
const __m128i s = xx_loadu_128(src);
const __m128i r = xx_loadu_128(ref);
const __m128i src0 = _mm_unpacklo_epi8(s, zero);
const __m128i ref0 = _mm_unpacklo_epi8(r, zero);
const __m128i diff0 = _mm_sub_epi16(src0, ref0);
const __m128i src1 = _mm_unpackhi_epi8(s, zero);
const __m128i ref1 = _mm_unpackhi_epi8(r, zero);
const __m128i diff1 = _mm_sub_epi16(src1, ref1);
vsum = _mm_add_epi16(vsum, diff0);
vsum = _mm_add_epi16(vsum, diff1);
vsse = _mm_add_epi32(vsse, _mm_madd_epi16(diff0, diff0));
vsse = _mm_add_epi32(vsse, _mm_madd_epi16(diff1, diff1));
src += src_stride;
ref += ref_stride;
}
// sum
vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 8));
vsum = _mm_add_epi16(vsum, _mm_srli_si128(vsum, 4));
*sum =
(int16_t)_mm_extract_epi16(vsum, 0) + (int16_t)_mm_extract_epi16(vsum, 1);
// sse
vsse = _mm_add_epi32(vsse, _mm_srli_si128(vsse, 8));
vsse = _mm_add_epi32(vsse, _mm_srli_si128(vsse, 4));
*sse = _mm_cvtsi128_si32(vsse);
}
static void variance_sse2(const unsigned char *src, int src_stride,
const unsigned char *ref, int ref_stride, int w,
int h, unsigned int *sse, int *sum,
getNxMvar_fn_t var_fn, int block_size) {
int i, j;
*sse = 0;
*sum = 0;
for (i = 0; i < h; i += block_size) {
for (j = 0; j < w; j += block_size) {
unsigned int sse0;
int sum0;
var_fn(src + src_stride * i + j, src_stride, ref + ref_stride * i + j,
ref_stride, &sse0, &sum0);
*sse += sse0;
*sum += sum0;
}
}
}
unsigned int aom_variance4x4_sse2(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse) {
int sum;
get4x4var_sse2(src, src_stride, ref, ref_stride, sse, &sum);
assert(sum <= 255 * 4 * 4);
assert(sum >= -255 * 4 * 4);
return *sse - ((sum * sum) >> 4);
}
unsigned int aom_variance8x4_sse2(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse) {
int sum;
variance_sse2(src, src_stride, ref, ref_stride, 8, 4, sse, &sum,
get4x4var_sse2, 4);
assert(sum <= 255 * 8 * 4);
assert(sum >= -255 * 8 * 4);
return *sse - ((sum * sum) >> 5);
}
unsigned int aom_variance4x8_sse2(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse) {
int sum;
variance_sse2(src, src_stride, ref, ref_stride, 4, 8, sse, &sum,
get4x4var_sse2, 4);
assert(sum <= 255 * 8 * 4);
assert(sum >= -255 * 8 * 4);
return *sse - ((sum * sum) >> 5);
}
unsigned int aom_variance8x8_sse2(const unsigned char *src, int src_stride,
const unsigned char *ref, int ref_stride,
unsigned int *sse) {
int sum;
aom_get8x8var_sse2(src, src_stride, ref, ref_stride, sse, &sum);
assert(sum <= 255 * 8 * 8);
assert(sum >= -255 * 8 * 8);
return *sse - ((sum * sum) >> 6);
}
unsigned int aom_variance16x8_sse2(const unsigned char *src, int src_stride,
const unsigned char *ref, int ref_stride,
unsigned int *sse) {
int sum;
variance_sse2(src, src_stride, ref, ref_stride, 16, 8, sse, &sum,
aom_get8x8var_sse2, 8);
assert(sum <= 255 * 16 * 8);
assert(sum >= -255 * 16 * 8);
return *sse - ((sum * sum) >> 7);
}
unsigned int aom_variance8x16_sse2(const unsigned char *src, int src_stride,
const unsigned char *ref, int ref_stride,
unsigned int *sse) {
int sum;
variance_sse2(src, src_stride, ref, ref_stride, 8, 16, sse, &sum,
aom_get8x8var_sse2, 8);
assert(sum <= 255 * 16 * 8);
assert(sum >= -255 * 16 * 8);
return *sse - ((sum * sum) >> 7);
}
unsigned int aom_variance16x16_sse2(const unsigned char *src, int src_stride,
const unsigned char *ref, int ref_stride,
unsigned int *sse) {
int sum;
aom_get16x16var_sse2(src, src_stride, ref, ref_stride, sse, &sum);
assert(sum <= 255 * 16 * 16);
assert(sum >= -255 * 16 * 16);
return *sse - ((uint32_t)((int64_t)sum * sum) >> 8);
}
#define AOM_VAR_16_SSE2(bw, bh, bits) \
unsigned int aom_variance##bw##x##bh##_sse2( \
const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, \
unsigned int *sse) { \
int sum; \
variance_sse2(src, src_stride, ref, ref_stride, bw, bh, sse, &sum, \
aom_get16x16var_sse2, 16); \
assert(sum <= 255 * bw * bh); \
assert(sum >= -255 * bw * bh); \
return *sse - (uint32_t)(((int64_t)sum * sum) >> bits); \
}
AOM_VAR_16_SSE2(32, 32, 10);
AOM_VAR_16_SSE2(32, 16, 9);
AOM_VAR_16_SSE2(16, 32, 9);
AOM_VAR_16_SSE2(64, 64, 12);
AOM_VAR_16_SSE2(64, 32, 11);
AOM_VAR_16_SSE2(32, 64, 11);
AOM_VAR_16_SSE2(128, 128, 14);
AOM_VAR_16_SSE2(128, 64, 13);
AOM_VAR_16_SSE2(64, 128, 13);
unsigned int aom_mse8x8_sse2(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse) {
aom_variance8x8_sse2(src, src_stride, ref, ref_stride, sse);
return *sse;
}
unsigned int aom_mse8x16_sse2(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse) {
aom_variance8x16_sse2(src, src_stride, ref, ref_stride, sse);
return *sse;
}
unsigned int aom_mse16x8_sse2(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse) {
aom_variance16x8_sse2(src, src_stride, ref, ref_stride, sse);
return *sse;
}
unsigned int aom_mse16x16_sse2(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse) {
aom_variance16x16_sse2(src, src_stride, ref, ref_stride, sse);
return *sse;
}
unsigned int aom_variance4x16_sse2(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse) {
int sum;
variance_sse2(src, src_stride, ref, ref_stride, 4, 16, sse, &sum,
get4x4var_sse2, 4);
assert(sum <= 255 * 4 * 16);
assert(sum >= -255 * 4 * 16);
return *sse - (unsigned int)(((int64_t)sum * sum) >> 6);
}
unsigned int aom_variance16x4_sse2(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse) {
int sum;
variance_sse2(src, src_stride, ref, ref_stride, 16, 4, sse, &sum,
get4x4var_sse2, 4);
assert(sum <= 255 * 16 * 4);
assert(sum >= -255 * 16 * 4);
return *sse - (unsigned int)(((int64_t)sum * sum) >> 6);
}
unsigned int aom_variance8x32_sse2(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse) {
int sum;
variance_sse2(src, src_stride, ref, ref_stride, 8, 32, sse, &sum,
aom_get8x8var_sse2, 8);
assert(sum <= 255 * 8 * 32);
assert(sum >= -255 * 8 * 32);
return *sse - (unsigned int)(((int64_t)sum * sum) >> 8);
}
unsigned int aom_variance32x8_sse2(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse) {
int sum;
variance_sse2(src, src_stride, ref, ref_stride, 32, 8, sse, &sum,
aom_get8x8var_sse2, 8);
assert(sum <= 255 * 32 * 8);
assert(sum >= -255 * 32 * 8);
return *sse - (unsigned int)(((int64_t)sum * sum) >> 8);
}
unsigned int aom_variance16x64_sse2(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse) {
int sum;
variance_sse2(src, src_stride, ref, ref_stride, 16, 64, sse, &sum,
aom_get16x16var_sse2, 16);
assert(sum <= 255 * 16 * 64);
assert(sum >= -255 * 16 * 64);
return *sse - (unsigned int)(((int64_t)sum * sum) >> 10);
}
unsigned int aom_variance64x16_sse2(const uint8_t *src, int src_stride,
const uint8_t *ref, int ref_stride,
unsigned int *sse) {
int sum;
variance_sse2(src, src_stride, ref, ref_stride, 64, 16, sse, &sum,
aom_get16x16var_sse2, 16);
assert(sum <= 255 * 64 * 16);
assert(sum >= -255 * 64 * 16);
return *sse - (unsigned int)(((int64_t)sum * sum) >> 10);
}
// The 2 unused parameters are place holders for PIC enabled build.
// These definitions are for functions defined in subpel_variance.asm
#define DECL(w, opt) \
int aom_sub_pixel_variance##w##xh_##opt( \
const uint8_t *src, ptrdiff_t src_stride, int x_offset, int y_offset, \
const uint8_t *dst, ptrdiff_t dst_stride, int height, unsigned int *sse, \
void *unused0, void *unused)
#define DECLS(opt) \
DECL(4, opt); \
DECL(8, opt); \
DECL(16, opt)
DECLS(sse2);
DECLS(ssse3);
#undef DECLS
#undef DECL
#define FN(w, h, wf, wlog2, hlog2, opt, cast_prod, cast) \
unsigned int aom_sub_pixel_variance##w##x##h##_##opt( \
const uint8_t *src, int src_stride, int x_offset, int y_offset, \
const uint8_t *dst, int dst_stride, unsigned int *sse_ptr) { \
unsigned int sse; \
int se = aom_sub_pixel_variance##wf##xh_##opt(src, src_stride, x_offset, \
y_offset, dst, dst_stride, \
h, &sse, NULL, NULL); \
if (w > wf) { \
unsigned int sse2; \
int se2 = aom_sub_pixel_variance##wf##xh_##opt( \
src + 16, src_stride, x_offset, y_offset, dst + 16, dst_stride, h, \
&sse2, NULL, NULL); \
se += se2; \
sse += sse2; \
if (w > wf * 2) { \
se2 = aom_sub_pixel_variance##wf##xh_##opt( \
src + 32, src_stride, x_offset, y_offset, dst + 32, dst_stride, h, \
&sse2, NULL, NULL); \
se += se2; \
sse += sse2; \
se2 = aom_sub_pixel_variance##wf##xh_##opt( \
src + 48, src_stride, x_offset, y_offset, dst + 48, dst_stride, h, \
&sse2, NULL, NULL); \
se += se2; \
sse += sse2; \
} \
} \
*sse_ptr = sse; \
return sse - (unsigned int)(cast_prod(cast se * se) >> (wlog2 + hlog2)); \
}
#define FNS(opt) \
FN(64, 64, 16, 6, 6, opt, (int64_t), (int64_t)); \
FN(64, 32, 16, 6, 5, opt, (int64_t), (int64_t)); \
FN(32, 64, 16, 5, 6, opt, (int64_t), (int64_t)); \
FN(32, 32, 16, 5, 5, opt, (int64_t), (int64_t)); \
FN(32, 16, 16, 5, 4, opt, (int64_t), (int64_t)); \
FN(16, 32, 16, 4, 5, opt, (int64_t), (int64_t)); \
FN(16, 16, 16, 4, 4, opt, (uint32_t), (int64_t)); \
FN(16, 8, 16, 4, 3, opt, (int32_t), (int32_t)); \
FN(8, 16, 8, 3, 4, opt, (int32_t), (int32_t)); \
FN(8, 8, 8, 3, 3, opt, (int32_t), (int32_t)); \
FN(8, 4, 8, 3, 2, opt, (int32_t), (int32_t)); \
FN(4, 8, 4, 2, 3, opt, (int32_t), (int32_t)); \
FN(4, 4, 4, 2, 2, opt, (int32_t), (int32_t)); \
FN(4, 16, 4, 2, 4, opt, (int32_t), (int32_t)); \
FN(16, 4, 16, 4, 2, opt, (int32_t), (int32_t)); \
FN(8, 32, 8, 3, 5, opt, (uint32_t), (int64_t)); \
FN(32, 8, 16, 5, 3, opt, (uint32_t), (int64_t)); \
FN(16, 64, 16, 4, 6, opt, (int64_t), (int64_t)); \
FN(64, 16, 16, 6, 4, opt, (int64_t), (int64_t))
FNS(sse2);
FNS(ssse3);
#undef FNS
#undef FN
// The 2 unused parameters are place holders for PIC enabled build.
#define DECL(w, opt) \
int aom_sub_pixel_avg_variance##w##xh_##opt( \
const uint8_t *src, ptrdiff_t src_stride, int x_offset, int y_offset, \
const uint8_t *dst, ptrdiff_t dst_stride, const uint8_t *sec, \
ptrdiff_t sec_stride, int height, unsigned int *sse, void *unused0, \
void *unused)
#define DECLS(opt) \
DECL(4, opt); \
DECL(8, opt); \
DECL(16, opt)
DECLS(sse2);
DECLS(ssse3);
#undef DECL
#undef DECLS
#define FN(w, h, wf, wlog2, hlog2, opt, cast_prod, cast) \
unsigned int aom_sub_pixel_avg_variance##w##x##h##_##opt( \
const uint8_t *src, int src_stride, int x_offset, int y_offset, \
const uint8_t *dst, int dst_stride, unsigned int *sseptr, \
const uint8_t *sec) { \
unsigned int sse; \
int se = aom_sub_pixel_avg_variance##wf##xh_##opt( \
src, src_stride, x_offset, y_offset, dst, dst_stride, sec, w, h, &sse, \
NULL, NULL); \
if (w > wf) { \
unsigned int sse2; \
int se2 = aom_sub_pixel_avg_variance##wf##xh_##opt( \
src + 16, src_stride, x_offset, y_offset, dst + 16, dst_stride, \
sec + 16, w, h, &sse2, NULL, NULL); \
se += se2; \
sse += sse2; \
if (w > wf * 2) { \
se2 = aom_sub_pixel_avg_variance##wf##xh_##opt( \
src + 32, src_stride, x_offset, y_offset, dst + 32, dst_stride, \
sec + 32, w, h, &sse2, NULL, NULL); \
se += se2; \
sse += sse2; \
se2 = aom_sub_pixel_avg_variance##wf##xh_##opt( \
src + 48, src_stride, x_offset, y_offset, dst + 48, dst_stride, \
sec + 48, w, h, &sse2, NULL, NULL); \
se += se2; \
sse += sse2; \
} \
} \
*sseptr = sse; \
return sse - (unsigned int)(cast_prod(cast se * se) >> (wlog2 + hlog2)); \
}
#define FNS(opt) \
FN(64, 64, 16, 6, 6, opt, (int64_t), (int64_t)); \
FN(64, 32, 16, 6, 5, opt, (int64_t), (int64_t)); \
FN(32, 64, 16, 5, 6, opt, (int64_t), (int64_t)); \
FN(32, 32, 16, 5, 5, opt, (int64_t), (int64_t)); \
FN(32, 16, 16, 5, 4, opt, (int64_t), (int64_t)); \
FN(16, 32, 16, 4, 5, opt, (int64_t), (int64_t)); \
FN(16, 16, 16, 4, 4, opt, (uint32_t), (int64_t)); \
FN(16, 8, 16, 4, 3, opt, (uint32_t), (int32_t)); \
FN(8, 16, 8, 3, 4, opt, (uint32_t), (int32_t)); \
FN(8, 8, 8, 3, 3, opt, (uint32_t), (int32_t)); \
FN(8, 4, 8, 3, 2, opt, (uint32_t), (int32_t)); \
FN(4, 8, 4, 2, 3, opt, (uint32_t), (int32_t)); \
FN(4, 4, 4, 2, 2, opt, (uint32_t), (int32_t)); \
FN(4, 16, 4, 2, 4, opt, (int32_t), (int32_t)); \
FN(16, 4, 16, 4, 2, opt, (int32_t), (int32_t)); \
FN(8, 32, 8, 3, 5, opt, (uint32_t), (int64_t)); \
FN(32, 8, 16, 5, 3, opt, (uint32_t), (int64_t)); \
FN(16, 64, 16, 4, 6, opt, (int64_t), (int64_t)); \
FN(64, 16, 16, 6, 4, opt, (int64_t), (int64_t))
FNS(sse2);
FNS(ssse3);
#undef FNS
#undef FN
void aom_upsampled_pred_sse2(MACROBLOCKD *xd, const struct AV1Common *const cm,
int mi_row, int mi_col, const MV *const mv,
uint8_t *comp_pred, int width, int height,
int subpel_x_q3, int subpel_y_q3,
const uint8_t *ref, int ref_stride) {
// expect xd == NULL only in tests
if (xd != NULL) {
const MB_MODE_INFO *mi = xd->mi[0];
const int ref_num = 0;
const int is_intrabc = is_intrabc_block(mi);
const struct scale_factors *const sf =
is_intrabc ? &cm->sf_identity : &xd->block_refs[ref_num]->sf;
const int is_scaled = av1_is_scaled(sf);
if (is_scaled) {
// Note: This is mostly a copy from the >=8X8 case in
// build_inter_predictors() function, with some small tweaks.
// Some assumptions.
const int plane = 0;
// Get pre-requisites.
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int ssx = pd->subsampling_x;
const int ssy = pd->subsampling_y;
assert(ssx == 0 && ssy == 0);
const struct buf_2d *const dst_buf = &pd->dst;
const struct buf_2d *const pre_buf =
is_intrabc ? dst_buf : &pd->pre[ref_num];
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
// Calculate subpel_x/y and x/y_step.
const int row_start = 0; // Because ss_y is 0.
const int col_start = 0; // Because ss_x is 0.
const int pre_x = (mi_x + MI_SIZE * col_start) >> ssx;
const int pre_y = (mi_y + MI_SIZE * row_start) >> ssy;
int orig_pos_y = pre_y << SUBPEL_BITS;
orig_pos_y += mv->row * (1 << (1 - ssy));
int orig_pos_x = pre_x << SUBPEL_BITS;
orig_pos_x += mv->col * (1 << (1 - ssx));
int pos_y = sf->scale_value_y(orig_pos_y, sf);
int pos_x = sf->scale_value_x(orig_pos_x, sf);
pos_x += SCALE_EXTRA_OFF;
pos_y += SCALE_EXTRA_OFF;
const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy);
const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx);
const int bottom = (pre_buf->height + AOM_INTERP_EXTEND)
<< SCALE_SUBPEL_BITS;
const int right = (pre_buf->width + AOM_INTERP_EXTEND)
<< SCALE_SUBPEL_BITS;
pos_y = clamp(pos_y, top, bottom);
pos_x = clamp(pos_x, left, right);
const uint8_t *const pre =
pre_buf->buf0 + (pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride +
(pos_x >> SCALE_SUBPEL_BITS);
const int subpel_x = pos_x & SCALE_SUBPEL_MASK;
const int subpel_y = pos_y & SCALE_SUBPEL_MASK;
const int xs = sf->x_step_q4;
const int ys = sf->y_step_q4;
// Get warp types.
const WarpedMotionParams *const wm =
&xd->global_motion[mi->ref_frame[ref_num]];
const int is_global = is_global_mv_block(mi, wm->wmtype);
WarpTypesAllowed warp_types;
warp_types.global_warp_allowed = is_global;
warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL;
// Get convolve parameters.
ConvolveParams conv_params = get_conv_params(ref_num, 0, plane, xd->bd);
const InterpFilters filters =
av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
// Get the inter predictor.
const int build_for_obmc = 0;
av1_make_inter_predictor(
pre, pre_buf->stride, comp_pred, width, subpel_x, subpel_y, sf, width,
height, &conv_params, filters, &warp_types, mi_x >> pd->subsampling_x,
mi_y >> pd->subsampling_y, plane, ref_num, mi, build_for_obmc, xs, ys,
xd, cm->allow_warped_motion);
return;
}
}
const InterpFilterParams filter =
av1_get_interp_filter_params_with_block_size(EIGHTTAP_REGULAR, 8);
if (!subpel_x_q3 && !subpel_y_q3) {
if (width >= 16) {
int i;
assert(!(width & 15));
/*Read 16 pixels one row at a time.*/
for (i = 0; i < height; i++) {
int j;
for (j = 0; j < width; j += 16) {
xx_storeu_128(comp_pred, xx_loadu_128(ref));
comp_pred += 16;
ref += 16;
}
ref += ref_stride - width;
}
} else if (width >= 8) {
int i;
assert(!(width & 7));
assert(!(height & 1));
/*Read 8 pixels two rows at a time.*/
for (i = 0; i < height; i += 2) {
__m128i s0 = xx_loadl_64(ref + 0 * ref_stride);
__m128i s1 = xx_loadl_64(ref + 1 * ref_stride);
xx_storeu_128(comp_pred, _mm_unpacklo_epi64(s0, s1));
comp_pred += 16;
ref += 2 * ref_stride;
}
} else {
int i;
assert(!(width & 3));
assert(!(height & 3));
/*Read 4 pixels four rows at a time.*/
for (i = 0; i < height; i++) {
const __m128i row0 = xx_loadl_64(ref + 0 * ref_stride);
const __m128i row1 = xx_loadl_64(ref + 1 * ref_stride);
const __m128i row2 = xx_loadl_64(ref + 2 * ref_stride);
const __m128i row3 = xx_loadl_64(ref + 3 * ref_stride);
const __m128i reg = _mm_unpacklo_epi64(_mm_unpacklo_epi32(row0, row1),
_mm_unpacklo_epi32(row2, row3));
xx_storeu_128(comp_pred, reg);
comp_pred += 16;
ref += 4 * ref_stride;
}
}
} else if (!subpel_y_q3) {
const int16_t *const kernel =
av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1);
aom_convolve8_horiz(ref, ref_stride, comp_pred, width, kernel, 16, NULL, -1,
width, height);
} else if (!subpel_x_q3) {
const int16_t *const kernel =
av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1);
aom_convolve8_vert(ref, ref_stride, comp_pred, width, NULL, -1, kernel, 16,
width, height);
} else {
DECLARE_ALIGNED(16, uint8_t,
temp[((MAX_SB_SIZE * 2 + 16) + 16) * MAX_SB_SIZE]);
const int16_t *const kernel_x =
av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1);
const int16_t *const kernel_y =
av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1);
const int intermediate_height =
(((height - 1) * 8 + subpel_y_q3) >> 3) + filter.taps;
assert(intermediate_height <= (MAX_SB_SIZE * 2 + 16) + 16);
aom_convolve8_horiz(ref - ref_stride * ((filter.taps >> 1) - 1), ref_stride,
temp, MAX_SB_SIZE, kernel_x, 16, NULL, -1, width,
intermediate_height);
aom_convolve8_vert(temp + MAX_SB_SIZE * ((filter.taps >> 1) - 1),
MAX_SB_SIZE, comp_pred, width, NULL, -1, kernel_y, 16,
width, height);
}
}
void aom_comp_avg_upsampled_pred_sse2(
MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col,
const MV *const mv, uint8_t *comp_pred, const uint8_t *pred, int width,
int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref,
int ref_stride) {
int n;
int i;
aom_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred, width, height,
subpel_x_q3, subpel_y_q3, ref, ref_stride);
/*The total number of pixels must be a multiple of 16 (e.g., 4x4).*/
assert(!(width * height & 15));
n = width * height >> 4;
for (i = 0; i < n; i++) {
__m128i s0 = xx_loadu_128(comp_pred);
__m128i p0 = xx_loadu_128(pred);
xx_storeu_128(comp_pred, _mm_avg_epu8(s0, p0));
comp_pred += 16;
pred += 16;
}
}