blob: 394ecfe1ba24f5cfa9c4abf7bf31f001e8b4e44a [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <limits.h>
#include <stdio.h>
#include "aom/aom_encoder.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/binary_codes_writer.h"
#include "aom_dsp/bitwriter_buffer.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem_ops.h"
#include "aom_ports/system_state.h"
#if CONFIG_BITSTREAM_DEBUG
#include "aom_util/debug_util.h"
#endif // CONFIG_BITSTREAM_DEBUG
#include "av1/common/cdef.h"
#include "av1/common/cfl.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/mvref_common.h"
#include "av1/common/odintrin.h"
#include "av1/common/pred_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/seg_common.h"
#include "av1/common/tile_common.h"
#include "av1/encoder/bitstream.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encodetxb.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/palette.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/tokenize.h"
#define ENC_MISMATCH_DEBUG 0
static INLINE void write_uniform(aom_writer *w, int n, int v) {
const int l = get_unsigned_bits(n);
const int m = (1 << l) - n;
if (l == 0) return;
if (v < m) {
aom_write_literal(w, v, l - 1);
} else {
aom_write_literal(w, m + ((v - m) >> 1), l - 1);
aom_write_literal(w, (v - m) & 1, 1);
}
}
static void loop_restoration_write_sb_coeffs(const AV1_COMMON *const cm,
MACROBLOCKD *xd,
const RestorationUnitInfo *rui,
aom_writer *const w, int plane,
FRAME_COUNTS *counts);
static void write_intra_mode_kf(FRAME_CONTEXT *frame_ctx,
const MB_MODE_INFO *mi,
const MB_MODE_INFO *above_mi,
const MB_MODE_INFO *left_mi,
PREDICTION_MODE mode, aom_writer *w) {
assert(!is_intrabc_block(mi));
(void)mi;
aom_write_symbol(w, mode, get_y_mode_cdf(frame_ctx, above_mi, left_mi),
INTRA_MODES);
}
static void write_inter_mode(aom_writer *w, PREDICTION_MODE mode,
FRAME_CONTEXT *ec_ctx, const int16_t mode_ctx) {
const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
aom_write_symbol(w, mode != NEWMV, ec_ctx->newmv_cdf[newmv_ctx], 2);
if (mode != NEWMV) {
const int16_t zeromv_ctx =
(mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
aom_write_symbol(w, mode != GLOBALMV, ec_ctx->zeromv_cdf[zeromv_ctx], 2);
if (mode != GLOBALMV) {
int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
aom_write_symbol(w, mode != NEARESTMV, ec_ctx->refmv_cdf[refmv_ctx], 2);
}
}
}
static void write_drl_idx(FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi,
const MB_MODE_INFO_EXT *mbmi_ext, aom_writer *w) {
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
assert(mbmi->ref_mv_idx < 3);
const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV;
if (new_mv) {
int idx;
for (idx = 0; idx < 2; ++idx) {
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
uint8_t drl_ctx =
av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx);
aom_write_symbol(w, mbmi->ref_mv_idx != idx, ec_ctx->drl_cdf[drl_ctx],
2);
if (mbmi->ref_mv_idx == idx) return;
}
}
return;
}
if (have_nearmv_in_inter_mode(mbmi->mode)) {
int idx;
// TODO(jingning): Temporary solution to compensate the NEARESTMV offset.
for (idx = 1; idx < 3; ++idx) {
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
uint8_t drl_ctx =
av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx);
aom_write_symbol(w, mbmi->ref_mv_idx != (idx - 1),
ec_ctx->drl_cdf[drl_ctx], 2);
if (mbmi->ref_mv_idx == (idx - 1)) return;
}
}
return;
}
}
static void write_inter_compound_mode(MACROBLOCKD *xd, aom_writer *w,
PREDICTION_MODE mode,
const int16_t mode_ctx) {
assert(is_inter_compound_mode(mode));
aom_write_symbol(w, INTER_COMPOUND_OFFSET(mode),
xd->tile_ctx->inter_compound_mode_cdf[mode_ctx],
INTER_COMPOUND_MODES);
}
static void write_tx_size_vartx(MACROBLOCKD *xd, const MB_MODE_INFO *mbmi,
TX_SIZE tx_size, int depth, int blk_row,
int blk_col, aom_writer *w) {
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const int max_blocks_high = max_block_high(xd, mbmi->sb_type, 0);
const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type, 0);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
if (depth == MAX_VARTX_DEPTH) {
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
return;
}
const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row,
mbmi->sb_type, tx_size);
const int txb_size_index =
av1_get_txb_size_index(mbmi->sb_type, blk_row, blk_col);
const int write_txfm_partition =
tx_size == mbmi->inter_tx_size[txb_size_index];
if (write_txfm_partition) {
aom_write_symbol(w, 0, ec_ctx->txfm_partition_cdf[ctx], 2);
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
// TODO(yuec): set correct txfm partition update for qttx
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
aom_write_symbol(w, 1, ec_ctx->txfm_partition_cdf[ctx], 2);
if (sub_txs == TX_4X4) {
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, sub_txs, tx_size);
return;
}
assert(bsw > 0 && bsh > 0);
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh)
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
int offsetr = blk_row + row;
int offsetc = blk_col + col;
write_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, w);
}
}
}
static void write_selected_tx_size(const MACROBLOCKD *xd, aom_writer *w) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (block_signals_txsize(bsize)) {
const TX_SIZE tx_size = mbmi->tx_size;
const int tx_size_ctx = get_tx_size_context(xd);
const int depth = tx_size_to_depth(tx_size, bsize);
const int max_depths = bsize_to_max_depth(bsize);
const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
assert(depth >= 0 && depth <= max_depths);
assert(!is_inter_block(mbmi));
assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi)));
aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx],
max_depths + 1);
}
}
static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd,
int segment_id, const MB_MODE_INFO *mi, aom_writer *w) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 1;
} else {
const int skip = mi->skip;
const int ctx = av1_get_skip_context(xd);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
aom_write_symbol(w, skip, ec_ctx->skip_cdfs[ctx], 2);
return skip;
}
}
static int write_skip_mode(const AV1_COMMON *cm, const MACROBLOCKD *xd,
int segment_id, const MB_MODE_INFO *mi,
aom_writer *w) {
if (!cm->skip_mode_flag) return 0;
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) {
return 0;
}
const int skip_mode = mi->skip_mode;
if (!is_comp_ref_allowed(mi->sb_type)) {
assert(!skip_mode);
return 0;
}
const int ctx = av1_get_skip_mode_context(xd);
aom_write_symbol(w, skip_mode, xd->tile_ctx->skip_mode_cdfs[ctx], 2);
return skip_mode;
}
static void write_is_inter(const AV1_COMMON *cm, const MACROBLOCKD *xd,
int segment_id, aom_writer *w, const int is_inter) {
if (!segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
assert(is_inter);
return;
}
const int ctx = av1_get_intra_inter_context(xd);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2);
}
}
static void write_motion_mode(const AV1_COMMON *cm, MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi, aom_writer *w) {
MOTION_MODE last_motion_mode_allowed =
cm->switchable_motion_mode
? motion_mode_allowed(cm->global_motion, xd, mbmi,
cm->allow_warped_motion)
: SIMPLE_TRANSLATION;
assert(mbmi->motion_mode <= last_motion_mode_allowed);
switch (last_motion_mode_allowed) {
case SIMPLE_TRANSLATION: break;
case OBMC_CAUSAL:
aom_write_symbol(w, mbmi->motion_mode == OBMC_CAUSAL,
xd->tile_ctx->obmc_cdf[mbmi->sb_type], 2);
break;
default:
aom_write_symbol(w, mbmi->motion_mode,
xd->tile_ctx->motion_mode_cdf[mbmi->sb_type],
MOTION_MODES);
}
}
static void write_delta_qindex(const MACROBLOCKD *xd, int delta_qindex,
aom_writer *w) {
int sign = delta_qindex < 0;
int abs = sign ? -delta_qindex : delta_qindex;
int rem_bits, thr;
int smallval = abs < DELTA_Q_SMALL ? 1 : 0;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf,
DELTA_Q_PROBS + 1);
if (!smallval) {
rem_bits = OD_ILOG_NZ(abs - 1) - 1;
thr = (1 << rem_bits) + 1;
aom_write_literal(w, rem_bits - 1, 3);
aom_write_literal(w, abs - thr, rem_bits);
}
if (abs > 0) {
aom_write_bit(w, sign);
}
}
static void write_delta_lflevel(const AV1_COMMON *cm, const MACROBLOCKD *xd,
int lf_id, int delta_lflevel, aom_writer *w) {
int sign = delta_lflevel < 0;
int abs = sign ? -delta_lflevel : delta_lflevel;
int rem_bits, thr;
int smallval = abs < DELTA_LF_SMALL ? 1 : 0;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (cm->delta_lf_multi) {
assert(lf_id >= 0 && lf_id < (av1_num_planes(cm) > 1 ? FRAME_LF_COUNT
: FRAME_LF_COUNT - 2));
aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL),
ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1);
} else {
aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf,
DELTA_LF_PROBS + 1);
}
if (!smallval) {
rem_bits = OD_ILOG_NZ(abs - 1) - 1;
thr = (1 << rem_bits) + 1;
aom_write_literal(w, rem_bits - 1, 3);
aom_write_literal(w, abs - thr, rem_bits);
}
if (abs > 0) {
aom_write_bit(w, sign);
}
}
static void pack_map_tokens(aom_writer *w, const TOKENEXTRA **tp, int n,
int num) {
const TOKENEXTRA *p = *tp;
write_uniform(w, n, p->token); // The first color index.
++p;
--num;
for (int i = 0; i < num; ++i) {
aom_write_symbol(w, p->token, p->color_map_cdf, n);
++p;
}
*tp = p;
}
static void pack_txb_tokens(aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x,
const TOKENEXTRA **tp,
const TOKENEXTRA *const tok_end, MACROBLOCKD *xd,
MB_MODE_INFO *mbmi, int plane,
BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth,
int block, int blk_row, int blk_col,
TX_SIZE tx_size, TOKEN_STATS *token_stats) {
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE plane_tx_size =
plane ? av1_get_max_uv_txsize(mbmi->sb_type, pd)
: mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
blk_col)];
if (tx_size == plane_tx_size || plane) {
tran_low_t *tcoeff = BLOCK_OFFSET(x->mbmi_ext->tcoeff[plane], block);
const uint16_t eob = x->mbmi_ext->eobs[plane][block];
TXB_CTX txb_ctx = { x->mbmi_ext->txb_skip_ctx[plane][block],
x->mbmi_ext->dc_sign_ctx[plane][block] };
av1_write_coeffs_txb(cm, xd, w, blk_row, blk_col, plane, tx_size, tcoeff,
eob, &txb_ctx);
#if CONFIG_RD_DEBUG
TOKEN_STATS tmp_token_stats;
init_token_stats(&tmp_token_stats);
token_stats->txb_coeff_cost_map[blk_row][blk_col] = tmp_token_stats.cost;
token_stats->cost += tmp_token_stats.cost;
#endif
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
const int step = bsh * bsw;
assert(bsw > 0 && bsh > 0);
for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) {
for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw) {
const int offsetr = blk_row + r;
const int offsetc = blk_col + c;
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
pack_txb_tokens(w, cm, x, tp, tok_end, xd, mbmi, plane, plane_bsize,
bit_depth, block, offsetr, offsetc, sub_txs,
token_stats);
block += step;
}
}
}
}
static INLINE void set_spatial_segment_id(const AV1_COMMON *const cm,
uint8_t *segment_ids,
BLOCK_SIZE bsize, int mi_row,
int mi_col, int segment_id) {
const int mi_offset = mi_row * cm->mi_cols + mi_col;
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
const int xmis = AOMMIN(cm->mi_cols - mi_col, bw);
const int ymis = AOMMIN(cm->mi_rows - mi_row, bh);
int x, y;
for (y = 0; y < ymis; ++y)
for (x = 0; x < xmis; ++x)
segment_ids[mi_offset + y * cm->mi_cols + x] = segment_id;
}
int av1_neg_interleave(int x, int ref, int max) {
assert(x < max);
const int diff = x - ref;
if (!ref) return x;
if (ref >= (max - 1)) return -x + max - 1;
if (2 * ref < max) {
if (abs(diff) <= ref) {
if (diff > 0)
return (diff << 1) - 1;
else
return ((-diff) << 1);
}
return x;
} else {
if (abs(diff) < (max - ref)) {
if (diff > 0)
return (diff << 1) - 1;
else
return ((-diff) << 1);
}
return (max - x) - 1;
}
}
static void write_segment_id(AV1_COMP *cpi, const MB_MODE_INFO *const mbmi,
aom_writer *w, const struct segmentation *seg,
struct segmentation_probs *segp, int mi_row,
int mi_col, int skip) {
if (!seg->enabled || !seg->update_map) return;
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
int cdf_num;
const int pred = av1_get_spatial_seg_pred(cm, xd, mi_row, mi_col, &cdf_num);
if (skip) {
// Still need to transmit tx size for intra blocks even if skip is
// true. Changing segment_id may make the tx size become invalid, e.g
// changing from lossless to lossy.
assert(is_inter_block(mbmi) || !cpi->has_lossless_segment);
set_spatial_segment_id(cm, cm->current_frame_seg_map, mbmi->sb_type, mi_row,
mi_col, pred);
set_spatial_segment_id(cm, cpi->segmentation_map, mbmi->sb_type, mi_row,
mi_col, pred);
/* mbmi is read only but we need to update segment_id */
((MB_MODE_INFO *)mbmi)->segment_id = pred;
return;
}
const int coded_id =
av1_neg_interleave(mbmi->segment_id, pred, seg->last_active_segid + 1);
aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num];
aom_write_symbol(w, coded_id, pred_cdf, MAX_SEGMENTS);
set_spatial_segment_id(cm, cm->current_frame_seg_map, mbmi->sb_type, mi_row,
mi_col, mbmi->segment_id);
}
#define WRITE_REF_BIT(bname, pname) \
aom_write_symbol(w, bname, av1_get_pred_cdf_##pname(xd), 2)
// This function encodes the reference frame
static void write_ref_frames(const AV1_COMMON *cm, const MACROBLOCKD *xd,
aom_writer *w) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
const int is_compound = has_second_ref(mbmi);
const int segment_id = mbmi->segment_id;
// If segment level coding of this signal is disabled...
// or the segment allows multiple reference frame options
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) {
assert(!is_compound);
assert(mbmi->ref_frame[0] ==
get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME));
} else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) ||
segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) {
assert(!is_compound);
assert(mbmi->ref_frame[0] == LAST_FRAME);
} else {
// does the feature use compound prediction or not
// (if not specified at the frame/segment level)
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
if (is_comp_ref_allowed(mbmi->sb_type))
aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(xd), 2);
} else {
assert((!is_compound) == (cm->reference_mode == SINGLE_REFERENCE));
}
if (is_compound) {
const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi)
? UNIDIR_COMP_REFERENCE
: BIDIR_COMP_REFERENCE;
aom_write_symbol(w, comp_ref_type, av1_get_comp_reference_type_cdf(xd),
2);
if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
const int bit = mbmi->ref_frame[0] == BWDREF_FRAME;
WRITE_REF_BIT(bit, uni_comp_ref_p);
if (!bit) {
assert(mbmi->ref_frame[0] == LAST_FRAME);
const int bit1 = mbmi->ref_frame[1] == LAST3_FRAME ||
mbmi->ref_frame[1] == GOLDEN_FRAME;
WRITE_REF_BIT(bit1, uni_comp_ref_p1);
if (bit1) {
const int bit2 = mbmi->ref_frame[1] == GOLDEN_FRAME;
WRITE_REF_BIT(bit2, uni_comp_ref_p2);
}
} else {
assert(mbmi->ref_frame[1] == ALTREF_FRAME);
}
return;
}
assert(comp_ref_type == BIDIR_COMP_REFERENCE);
const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME ||
mbmi->ref_frame[0] == LAST3_FRAME);
WRITE_REF_BIT(bit, comp_ref_p);
if (!bit) {
const int bit1 = mbmi->ref_frame[0] == LAST2_FRAME;
WRITE_REF_BIT(bit1, comp_ref_p1);
} else {
const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME;
WRITE_REF_BIT(bit2, comp_ref_p2);
}
const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME;
WRITE_REF_BIT(bit_bwd, comp_bwdref_p);
if (!bit_bwd) {
WRITE_REF_BIT(mbmi->ref_frame[1] == ALTREF2_FRAME, comp_bwdref_p1);
}
} else {
const int bit0 = (mbmi->ref_frame[0] <= ALTREF_FRAME &&
mbmi->ref_frame[0] >= BWDREF_FRAME);
WRITE_REF_BIT(bit0, single_ref_p1);
if (bit0) {
const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME;
WRITE_REF_BIT(bit1, single_ref_p2);
if (!bit1) {
WRITE_REF_BIT(mbmi->ref_frame[0] == ALTREF2_FRAME, single_ref_p6);
}
} else {
const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME ||
mbmi->ref_frame[0] == GOLDEN_FRAME);
WRITE_REF_BIT(bit2, single_ref_p3);
if (!bit2) {
const int bit3 = mbmi->ref_frame[0] != LAST_FRAME;
WRITE_REF_BIT(bit3, single_ref_p4);
} else {
const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME;
WRITE_REF_BIT(bit4, single_ref_p5);
}
}
}
}
}
static void write_filter_intra_mode_info(const AV1_COMMON *cm,
const MACROBLOCKD *xd,
const MB_MODE_INFO *const mbmi,
aom_writer *w) {
if (av1_filter_intra_allowed(cm, mbmi)) {
aom_write_symbol(w, mbmi->filter_intra_mode_info.use_filter_intra,
xd->tile_ctx->filter_intra_cdfs[mbmi->sb_type], 2);
if (mbmi->filter_intra_mode_info.use_filter_intra) {
const FILTER_INTRA_MODE mode =
mbmi->filter_intra_mode_info.filter_intra_mode;
aom_write_symbol(w, mode, xd->tile_ctx->filter_intra_mode_cdf,
FILTER_INTRA_MODES);
}
}
}
static void write_angle_delta(aom_writer *w, int angle_delta,
aom_cdf_prob *cdf) {
aom_write_symbol(w, angle_delta + MAX_ANGLE_DELTA, cdf,
2 * MAX_ANGLE_DELTA + 1);
}
static void write_mb_interp_filter(AV1_COMP *cpi, const MACROBLOCKD *xd,
aom_writer *w) {
AV1_COMMON *const cm = &cpi->common;
const MB_MODE_INFO *const mbmi = xd->mi[0];
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (!av1_is_interp_needed(xd)) {
assert(mbmi->interp_filters ==
av1_broadcast_interp_filter(
av1_unswitchable_filter(cm->interp_filter)));
return;
}
if (cm->interp_filter == SWITCHABLE) {
int dir;
for (dir = 0; dir < 2; ++dir) {
const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
InterpFilter filter =
av1_extract_interp_filter(mbmi->interp_filters, dir);
aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx],
SWITCHABLE_FILTERS);
++cpi->interp_filter_selected[0][filter];
if (cm->seq_params.enable_dual_filter == 0) return;
}
}
}
// Transmit color values with delta encoding. Write the first value as
// literal, and the deltas between each value and the previous one. "min_val" is
// the smallest possible value of the deltas.
static void delta_encode_palette_colors(const int *colors, int num,
int bit_depth, int min_val,
aom_writer *w) {
if (num <= 0) return;
assert(colors[0] < (1 << bit_depth));
aom_write_literal(w, colors[0], bit_depth);
if (num == 1) return;
int max_delta = 0;
int deltas[PALETTE_MAX_SIZE];
memset(deltas, 0, sizeof(deltas));
for (int i = 1; i < num; ++i) {
assert(colors[i] < (1 << bit_depth));
const int delta = colors[i] - colors[i - 1];
deltas[i - 1] = delta;
assert(delta >= min_val);
if (delta > max_delta) max_delta = delta;
}
const int min_bits = bit_depth - 3;
int bits = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits);
assert(bits <= bit_depth);
int range = (1 << bit_depth) - colors[0] - min_val;
aom_write_literal(w, bits - min_bits, 2);
for (int i = 0; i < num - 1; ++i) {
aom_write_literal(w, deltas[i] - min_val, bits);
range -= deltas[i];
bits = AOMMIN(bits, av1_ceil_log2(range));
}
}
// Transmit luma palette color values. First signal if each color in the color
// cache is used. Those colors that are not in the cache are transmitted with
// delta encoding.
static void write_palette_colors_y(const MACROBLOCKD *const xd,
const PALETTE_MODE_INFO *const pmi,
int bit_depth, aom_writer *w) {
const int n = pmi->palette_size[0];
uint16_t color_cache[2 * PALETTE_MAX_SIZE];
const int n_cache = av1_get_palette_cache(xd, 0, color_cache);
int out_cache_colors[PALETTE_MAX_SIZE];
uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
const int n_out_cache =
av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n,
cache_color_found, out_cache_colors);
int n_in_cache = 0;
for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
const int found = cache_color_found[i];
aom_write_bit(w, found);
n_in_cache += found;
}
assert(n_in_cache + n_out_cache == n);
delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w);
}
// Write chroma palette color values. U channel is handled similarly to the luma
// channel. For v channel, either use delta encoding or transmit raw values
// directly, whichever costs less.
static void write_palette_colors_uv(const MACROBLOCKD *const xd,
const PALETTE_MODE_INFO *const pmi,
int bit_depth, aom_writer *w) {
const int n = pmi->palette_size[1];
const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE;
const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE;
// U channel colors.
uint16_t color_cache[2 * PALETTE_MAX_SIZE];
const int n_cache = av1_get_palette_cache(xd, 1, color_cache);
int out_cache_colors[PALETTE_MAX_SIZE];
uint8_t cache_color_found[2 * PALETTE_MAX_SIZE];
const int n_out_cache = av1_index_color_cache(
color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors);
int n_in_cache = 0;
for (int i = 0; i < n_cache && n_in_cache < n; ++i) {
const int found = cache_color_found[i];
aom_write_bit(w, found);
n_in_cache += found;
}
delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w);
// V channel colors. Don't use color cache as the colors are not sorted.
const int max_val = 1 << bit_depth;
int zero_count = 0, min_bits_v = 0;
int bits_v =
av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v);
const int rate_using_delta =
2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count;
const int rate_using_raw = bit_depth * n;
if (rate_using_delta < rate_using_raw) { // delta encoding
assert(colors_v[0] < (1 << bit_depth));
aom_write_bit(w, 1);
aom_write_literal(w, bits_v - min_bits_v, 2);
aom_write_literal(w, colors_v[0], bit_depth);
for (int i = 1; i < n; ++i) {
assert(colors_v[i] < (1 << bit_depth));
if (colors_v[i] == colors_v[i - 1]) { // No need to signal sign bit.
aom_write_literal(w, 0, bits_v);
continue;
}
const int delta = abs((int)colors_v[i] - colors_v[i - 1]);
const int sign_bit = colors_v[i] < colors_v[i - 1];
if (delta <= max_val - delta) {
aom_write_literal(w, delta, bits_v);
aom_write_bit(w, sign_bit);
} else {
aom_write_literal(w, max_val - delta, bits_v);
aom_write_bit(w, !sign_bit);
}
}
} else { // Transmit raw values.
aom_write_bit(w, 0);
for (int i = 0; i < n; ++i) {
assert(colors_v[i] < (1 << bit_depth));
aom_write_literal(w, colors_v[i], bit_depth);
}
}
}
static void write_palette_mode_info(const AV1_COMMON *cm, const MACROBLOCKD *xd,
const MB_MODE_INFO *const mbmi, int mi_row,
int mi_col, aom_writer *w) {
const int num_planes = av1_num_planes(cm);
const BLOCK_SIZE bsize = mbmi->sb_type;
assert(av1_allow_palette(cm->allow_screen_content_tools, bsize));
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
const int bsize_ctx = av1_get_palette_bsize_ctx(bsize);
if (mbmi->mode == DC_PRED) {
const int n = pmi->palette_size[0];
const int palette_y_mode_ctx = av1_get_palette_mode_ctx(xd);
aom_write_symbol(
w, n > 0,
xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_y_mode_ctx], 2);
if (n > 0) {
aom_write_symbol(w, n - PALETTE_MIN_SIZE,
xd->tile_ctx->palette_y_size_cdf[bsize_ctx],
PALETTE_SIZES);
write_palette_colors_y(xd, pmi, cm->bit_depth, w);
}
}
const int uv_dc_pred =
num_planes > 1 && mbmi->uv_mode == UV_DC_PRED &&
is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x,
xd->plane[1].subsampling_y);
if (uv_dc_pred) {
const int n = pmi->palette_size[1];
const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
aom_write_symbol(w, n > 0,
xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2);
if (n > 0) {
aom_write_symbol(w, n - PALETTE_MIN_SIZE,
xd->tile_ctx->palette_uv_size_cdf[bsize_ctx],
PALETTE_SIZES);
write_palette_colors_uv(xd, pmi, cm->bit_depth, w);
}
}
}
void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd,
int blk_row, int blk_col, int plane, TX_SIZE tx_size,
aom_writer *w) {
MB_MODE_INFO *mbmi = xd->mi[0];
const int is_inter = is_inter_block(mbmi);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
// Only y plane's tx_type is transmitted
if (plane > 0) return;
PLANE_TYPE plane_type = get_plane_type(plane);
TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size,
cm->reduced_tx_set_used);
const TX_SIZE square_tx_size = txsize_sqr_map[tx_size];
if (get_ext_tx_types(tx_size, is_inter, cm->reduced_tx_set_used) > 1 &&
((!cm->seg.enabled && cm->base_qindex > 0) ||
(cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) &&
!mbmi->skip &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
const TxSetType tx_set_type =
av1_get_ext_tx_set_type(tx_size, is_inter, cm->reduced_tx_set_used);
const int eset = get_ext_tx_set(tx_size, is_inter, cm->reduced_tx_set_used);
// eset == 0 should correspond to a set with only DCT_DCT and there
// is no need to send the tx_type
assert(eset > 0);
assert(av1_ext_tx_used[tx_set_type][tx_type]);
if (is_inter) {
aom_write_symbol(w, av1_ext_tx_ind[tx_set_type][tx_type],
ec_ctx->inter_ext_tx_cdf[eset][square_tx_size],
av1_num_ext_tx_set[tx_set_type]);
} else {
PREDICTION_MODE intra_dir;
if (mbmi->filter_intra_mode_info.use_filter_intra)
intra_dir =
fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode];
else
intra_dir = mbmi->mode;
aom_write_symbol(
w, av1_ext_tx_ind[tx_set_type][tx_type],
ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir],
av1_num_ext_tx_set[tx_set_type]);
}
}
}
static void write_intra_mode(FRAME_CONTEXT *frame_ctx, BLOCK_SIZE bsize,
PREDICTION_MODE mode, aom_writer *w) {
aom_write_symbol(w, mode, frame_ctx->y_mode_cdf[size_group_lookup[bsize]],
INTRA_MODES);
}
static void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx,
UV_PREDICTION_MODE uv_mode,
PREDICTION_MODE y_mode,
CFL_ALLOWED_TYPE cfl_allowed, aom_writer *w) {
aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[cfl_allowed][y_mode],
UV_INTRA_MODES - !cfl_allowed);
}
static void write_cfl_alphas(FRAME_CONTEXT *const ec_ctx, int idx,
int joint_sign, aom_writer *w) {
aom_write_symbol(w, joint_sign, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS);
// Magnitudes are only signaled for nonzero codes.
if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
aom_write_symbol(w, CFL_IDX_U(idx), cdf_u, CFL_ALPHABET_SIZE);
}
if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
aom_write_symbol(w, CFL_IDX_V(idx), cdf_v, CFL_ALPHABET_SIZE);
}
}
static void write_cdef(AV1_COMMON *cm, MACROBLOCKD *const xd, aom_writer *w,
int skip, int mi_col, int mi_row) {
if (cm->coded_lossless || cm->allow_intrabc) {
// Initialize to indicate no CDEF for safety.
cm->cdef_bits = 0;
cm->cdef_strengths[0] = 0;
cm->nb_cdef_strengths = 1;
cm->cdef_uv_strengths[0] = 0;
return;
}
const int m = ~((1 << (6 - MI_SIZE_LOG2)) - 1);
const MB_MODE_INFO *mbmi =
cm->mi_grid_visible[(mi_row & m) * cm->mi_stride + (mi_col & m)];
// Initialise when at top left part of the superblock
if (!(mi_row & (cm->seq_params.mib_size - 1)) &&
!(mi_col & (cm->seq_params.mib_size - 1))) { // Top left?
xd->cdef_preset[0] = xd->cdef_preset[1] = xd->cdef_preset[2] =
xd->cdef_preset[3] = -1;
}
// Emit CDEF param at first non-skip coding block
const int mask = 1 << (6 - MI_SIZE_LOG2);
const int index = cm->seq_params.sb_size == BLOCK_128X128
? !!(mi_col & mask) + 2 * !!(mi_row & mask)
: 0;
if (xd->cdef_preset[index] == -1 && !skip) {
aom_write_literal(w, mbmi->cdef_strength, cm->cdef_bits);
xd->cdef_preset[index] = mbmi->cdef_strength;
}
}
static void write_inter_segment_id(AV1_COMP *cpi, aom_writer *w,
const struct segmentation *const seg,
struct segmentation_probs *const segp,
int mi_row, int mi_col, int skip,
int preskip) {
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
const MB_MODE_INFO *const mbmi = xd->mi[0];
AV1_COMMON *const cm = &cpi->common;
if (seg->update_map) {
if (preskip) {
if (!seg->preskip_segid) return;
} else {
if (seg->preskip_segid) return;
if (skip) {
write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 1);
if (seg->temporal_update) ((MB_MODE_INFO *)mbmi)->seg_id_predicted = 0;
return;
}
}
if (seg->temporal_update) {
const int pred_flag = mbmi->seg_id_predicted;
aom_cdf_prob *pred_cdf = av1_get_pred_cdf_seg_id(segp, xd);
aom_write_symbol(w, pred_flag, pred_cdf, 2);
if (!pred_flag) {
write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 0);
}
if (pred_flag) {
set_spatial_segment_id(cm, cm->current_frame_seg_map, mbmi->sb_type,
mi_row, mi_col, mbmi->segment_id);
}
} else {
write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 0);
}
}
}
static void pack_inter_mode_mvs(AV1_COMP *cpi, const int mi_row,
const int mi_col, aom_writer *w) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &cpi->td.mb;
MACROBLOCKD *const xd = &x->e_mbd;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const struct segmentation *const seg = &cm->seg;
struct segmentation_probs *const segp = &ec_ctx->seg;
const MB_MODE_INFO *const mbmi = xd->mi[0];
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const PREDICTION_MODE mode = mbmi->mode;
const int segment_id = mbmi->segment_id;
const BLOCK_SIZE bsize = mbmi->sb_type;
const int allow_hp = cm->allow_high_precision_mv;
const int is_inter = is_inter_block(mbmi);
const int is_compound = has_second_ref(mbmi);
int skip, ref;
(void)mi_row;
(void)mi_col;
write_inter_segment_id(cpi, w, seg, segp, mi_row, mi_col, 0, 1);
write_skip_mode(cm, xd, segment_id, mbmi, w);
assert(IMPLIES(mbmi->skip_mode, mbmi->skip));
skip = mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mbmi, w);
write_inter_segment_id(cpi, w, seg, segp, mi_row, mi_col, skip, 0);
write_cdef(cm, xd, w, skip, mi_col, mi_row);
if (cm->delta_q_present_flag) {
int super_block_upper_left =
((mi_row & (cm->seq_params.mib_size - 1)) == 0) &&
((mi_col & (cm->seq_params.mib_size - 1)) == 0);
if ((bsize != cm->seq_params.sb_size || skip == 0) &&
super_block_upper_left) {
assert(mbmi->current_q_index > 0);
int reduced_delta_qindex =
(mbmi->current_q_index - xd->prev_qindex) / cm->delta_q_res;
write_delta_qindex(xd, reduced_delta_qindex, w);
xd->prev_qindex = mbmi->current_q_index;
if (cm->delta_lf_present_flag) {
if (cm->delta_lf_multi) {
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
int reduced_delta_lflevel =
(mbmi->curr_delta_lf[lf_id] - xd->prev_delta_lf[lf_id]) /
cm->delta_lf_res;
write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, w);
xd->prev_delta_lf[lf_id] = mbmi->curr_delta_lf[lf_id];
}
} else {
int reduced_delta_lflevel =
(mbmi->current_delta_lf_from_base - xd->prev_delta_lf_from_base) /
cm->delta_lf_res;
write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, w);
xd->prev_delta_lf_from_base = mbmi->current_delta_lf_from_base;
}
}
}
}
if (!mbmi->skip_mode) write_is_inter(cm, xd, mbmi->segment_id, w, is_inter);
if (mbmi->skip_mode) return;
if (!is_inter) {
write_intra_mode(ec_ctx, bsize, mode, w);
const int use_angle_delta = av1_use_angle_delta(bsize);
if (use_angle_delta && av1_is_directional_mode(mode)) {
write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y],
ec_ctx->angle_delta_cdf[mode - V_PRED]);
}
if (!cm->seq_params.monochrome &&
is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x,
xd->plane[1].subsampling_y)) {
const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w);
if (uv_mode == UV_CFL_PRED)
write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w);
if (use_angle_delta && av1_is_directional_mode(get_uv_mode(uv_mode))) {
write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_UV],
ec_ctx->angle_delta_cdf[uv_mode - V_PRED]);
}
}
if (av1_allow_palette(cm->allow_screen_content_tools, bsize))
write_palette_mode_info(cm, xd, mbmi, mi_row, mi_col, w);
write_filter_intra_mode_info(cm, xd, mbmi, w);
} else {
int16_t mode_ctx;
av1_collect_neighbors_ref_counts(xd);
write_ref_frames(cm, xd, w);
mode_ctx =
av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame);
// If segment skip is not enabled code the mode.
if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) {
if (is_inter_compound_mode(mode))
write_inter_compound_mode(xd, w, mode, mode_ctx);
else if (is_inter_singleref_mode(mode))
write_inter_mode(w, mode, ec_ctx, mode_ctx);
if (mode == NEWMV || mode == NEW_NEWMV || have_nearmv_in_inter_mode(mode))
write_drl_idx(ec_ctx, mbmi, mbmi_ext, w);
else
assert(mbmi->ref_mv_idx == 0);
}
if (mode == NEWMV || mode == NEW_NEWMV) {
int_mv ref_mv;
for (ref = 0; ref < 1 + is_compound; ++ref) {
nmv_context *nmvc = &ec_ctx->nmvc;
ref_mv = mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0];
av1_encode_mv(cpi, w, &mbmi->mv[ref].as_mv, &ref_mv.as_mv, nmvc,
allow_hp);
}
} else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) {
nmv_context *nmvc = &ec_ctx->nmvc;
av1_encode_mv(cpi, w, &mbmi->mv[1].as_mv,
&mbmi_ext->ref_mvs[mbmi->ref_frame[1]][0].as_mv, nmvc,
allow_hp);
} else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) {
nmv_context *nmvc = &ec_ctx->nmvc;
av1_encode_mv(cpi, w, &mbmi->mv[0].as_mv,
&mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0].as_mv, nmvc,
allow_hp);
}
if (cpi->common.reference_mode != COMPOUND_REFERENCE &&
cpi->common.seq_params.enable_interintra_compound &&
is_interintra_allowed(mbmi)) {
const int interintra = mbmi->ref_frame[1] == INTRA_FRAME;
const int bsize_group = size_group_lookup[bsize];
aom_write_symbol(w, interintra, ec_ctx->interintra_cdf[bsize_group], 2);
if (interintra) {
aom_write_symbol(w, mbmi->interintra_mode,
ec_ctx->interintra_mode_cdf[bsize_group],
INTERINTRA_MODES);
if (is_interintra_wedge_used(bsize)) {
aom_write_symbol(w, mbmi->use_wedge_interintra,
ec_ctx->wedge_interintra_cdf[bsize], 2);
if (mbmi->use_wedge_interintra) {
aom_write_symbol(w, mbmi->interintra_wedge_index,
ec_ctx->wedge_idx_cdf[bsize], 16);
assert(mbmi->interintra_wedge_sign == 0);
}
}
}
}
if (mbmi->ref_frame[1] != INTRA_FRAME) write_motion_mode(cm, xd, mbmi, w);
// First write idx to indicate current compound inter prediction mode group
// Group A (0): jnt_comp, compound_average
// Group B (1): interintra, compound_diffwtd, wedge
if (has_second_ref(mbmi)) {
const int masked_compound_used = is_any_masked_compound_used(bsize) &&
cm->seq_params.enable_masked_compound;
if (masked_compound_used) {
const int ctx_comp_group_idx = get_comp_group_idx_context(xd);
aom_write_symbol(w, mbmi->comp_group_idx,
ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2);
} else {
assert(mbmi->comp_group_idx == 0);
}
if (mbmi->comp_group_idx == 0) {
if (mbmi->compound_idx)
assert(mbmi->interinter_compound_type == COMPOUND_AVERAGE);
if (cm->seq_params.enable_jnt_comp) {
const int comp_index_ctx = get_comp_index_context(cm, xd);
aom_write_symbol(w, mbmi->compound_idx,
ec_ctx->compound_index_cdf[comp_index_ctx], 2);
} else {
assert(mbmi->compound_idx == 1);
}
} else {
assert(cpi->common.reference_mode != SINGLE_REFERENCE &&
is_inter_compound_mode(mbmi->mode) &&
mbmi->motion_mode == SIMPLE_TRANSLATION);
assert(masked_compound_used);
// compound_diffwtd, wedge
assert(mbmi->interinter_compound_type == COMPOUND_WEDGE ||
mbmi->interinter_compound_type == COMPOUND_DIFFWTD);
if (is_interinter_compound_used(COMPOUND_WEDGE, bsize))
aom_write_symbol(w, mbmi->interinter_compound_type - 1,
ec_ctx->compound_type_cdf[bsize],
COMPOUND_TYPES - 1);
if (mbmi->interinter_compound_type == COMPOUND_WEDGE) {
assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize));
aom_write_symbol(w, mbmi->wedge_index, ec_ctx->wedge_idx_cdf[bsize],
16);
aom_write_bit(w, mbmi->wedge_sign);
} else {
assert(mbmi->interinter_compound_type == COMPOUND_DIFFWTD);
aom_write_literal(w, mbmi->mask_type, MAX_DIFFWTD_MASK_BITS);
}
}
}
write_mb_interp_filter(cpi, xd, w);
}
}
static void write_intrabc_info(MACROBLOCKD *xd,
const MB_MODE_INFO_EXT *mbmi_ext,
aom_writer *w) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
int use_intrabc = is_intrabc_block(mbmi);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2);
if (use_intrabc) {
assert(mbmi->mode == DC_PRED);
assert(mbmi->uv_mode == UV_DC_PRED);
assert(mbmi->motion_mode == SIMPLE_TRANSLATION);
int_mv dv_ref = mbmi_ext->ref_mvs[INTRA_FRAME][0];
av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc);
}
}
static void write_mb_modes_kf(AV1_COMP *cpi, MACROBLOCKD *xd,
const MB_MODE_INFO_EXT *mbmi_ext,
const int mi_row, const int mi_col,
aom_writer *w) {
AV1_COMMON *const cm = &cpi->common;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const struct segmentation *const seg = &cm->seg;
struct segmentation_probs *const segp = &ec_ctx->seg;
const MB_MODE_INFO *const above_mi = xd->above_mbmi;
const MB_MODE_INFO *const left_mi = xd->left_mbmi;
const MB_MODE_INFO *const mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type;
const PREDICTION_MODE mode = mbmi->mode;
if (seg->preskip_segid && seg->update_map)
write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 0);
const int skip = write_skip(cm, xd, mbmi->segment_id, mbmi, w);
if (!seg->preskip_segid && seg->update_map)
write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, skip);
write_cdef(cm, xd, w, skip, mi_col, mi_row);
if (cm->delta_q_present_flag) {
int super_block_upper_left =
((mi_row & (cm->seq_params.mib_size - 1)) == 0) &&
((mi_col & (cm->seq_params.mib_size - 1)) == 0);
if ((bsize != cm->seq_params.sb_size || skip == 0) &&
super_block_upper_left) {
assert(mbmi->current_q_index > 0);
int reduced_delta_qindex =
(mbmi->current_q_index - xd->prev_qindex) / cm->delta_q_res;
write_delta_qindex(xd, reduced_delta_qindex, w);
xd->prev_qindex = mbmi->current_q_index;
if (cm->delta_lf_present_flag) {
if (cm->delta_lf_multi) {
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
int reduced_delta_lflevel =
(mbmi->curr_delta_lf[lf_id] - xd->prev_delta_lf[lf_id]) /
cm->delta_lf_res;
write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, w);
xd->prev_delta_lf[lf_id] = mbmi->curr_delta_lf[lf_id];
}
} else {
int reduced_delta_lflevel =
(mbmi->current_delta_lf_from_base - xd->prev_delta_lf_from_base) /
cm->delta_lf_res;
write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, w);
xd->prev_delta_lf_from_base = mbmi->current_delta_lf_from_base;
}
}
}
}
if (av1_allow_intrabc(cm)) {
write_intrabc_info(xd, mbmi_ext, w);
if (is_intrabc_block(mbmi)) return;
}
write_intra_mode_kf(ec_ctx, mbmi, above_mi, left_mi, mode, w);
const int use_angle_delta = av1_use_angle_delta(bsize);
if (use_angle_delta && av1_is_directional_mode(mode)) {
write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y],
ec_ctx->angle_delta_cdf[mode - V_PRED]);
}
if (!cm->seq_params.monochrome &&
is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x,
xd->plane[1].subsampling_y)) {
const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w);
if (uv_mode == UV_CFL_PRED)
write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w);
if (use_angle_delta && av1_is_directional_mode(get_uv_mode(uv_mode))) {
write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_UV],
ec_ctx->angle_delta_cdf[uv_mode - V_PRED]);
}
}
if (av1_allow_palette(cm->allow_screen_content_tools, bsize))
write_palette_mode_info(cm, xd, mbmi, mi_row, mi_col, w);
write_filter_intra_mode_info(cm, xd, mbmi, w);
}
#if CONFIG_RD_DEBUG
static void dump_mode_info(MODE_INFO *mi) {
printf("\nmi->mi_row == %d\n", mi->mi_row);
printf("&& mi->mi_col == %d\n", mi->mi_col);
printf("&& mi->sb_type == %d\n", mi->sb_type);
printf("&& mi->tx_size == %d\n", mi->tx_size);
printf("&& mi->mode == %d\n", mi->mode);
}
static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats,
int plane) {
if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) {
int r, c;
printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n",
plane, rd_stats->txb_coeff_cost[plane], token_stats->cost);
printf("rd txb_coeff_cost_map\n");
for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) {
for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) {
printf("%d ", rd_stats->txb_coeff_cost_map[plane][r][c]);
}
printf("\n");
}
printf("pack txb_coeff_cost_map\n");
for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) {
for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) {
printf("%d ", token_stats->txb_coeff_cost_map[r][c]);
}
printf("\n");
}
return 1;
}
return 0;
}
#endif
#if ENC_MISMATCH_DEBUG
static void enc_dump_logs(AV1_COMP *cpi, int mi_row, int mi_col) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
const MB_MODE_INFO *const *mbmi = xd->mi[0];
if (is_inter_block(mbmi)) {
#define FRAME_TO_CHECK 11
if (cm->current_video_frame == FRAME_TO_CHECK && cm->show_frame == 1) {
const BLOCK_SIZE bsize = mbmi->sb_type;
int_mv mv[2];
int is_comp_ref = has_second_ref(mbmi);
int ref;
for (ref = 0; ref < 1 + is_comp_ref; ++ref)
mv[ref].as_mv = mbmi->mv[ref].as_mv;
if (!is_comp_ref) {
mv[1].as_int = 0;
}
MACROBLOCK *const x = &cpi->td.mb;
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const int16_t mode_ctx =
is_comp_ref ? mbmi_ext->compound_mode_context[mbmi->ref_frame[0]]
: av1_mode_context_analyzer(mbmi_ext->mode_context,
mbmi->ref_frame);
const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK;
int16_t zeromv_ctx = -1;
int16_t refmv_ctx = -1;
if (mbmi->mode != NEWMV) {
zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
if (mbmi->mode != GLOBALMV)
refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK;
}
printf(
"=== ENCODER ===: "
"Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, "
"show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, "
"ref[1]=%d, motion_mode=%d, mode_ctx=%d, "
"newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n",
cm->current_video_frame, mi_row, mi_col, mbmi->skip_mode, mbmi->mode,
bsize, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col,
mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0],
mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx,
zeromv_ctx, refmv_ctx, mbmi->tx_size);
}
}
}
#endif // ENC_MISMATCH_DEBUG
static void write_mbmi_b(AV1_COMP *cpi, const TileInfo *const tile,
aom_writer *w, int mi_row, int mi_col) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
int bh, bw;
xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col);
MB_MODE_INFO *m = xd->mi[0];
assert(m->sb_type <= cm->seq_params.sb_size ||
(m->sb_type >= BLOCK_SIZES && m->sb_type < BLOCK_SIZES_ALL));
bh = mi_size_high[m->sb_type];
bw = mi_size_wide[m->sb_type];
cpi->td.mb.mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
xd->above_txfm_context = cm->above_txfm_context[tile->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
if (frame_is_intra_only(cm)) {
write_mb_modes_kf(cpi, xd, cpi->td.mb.mbmi_ext, mi_row, mi_col, w);
} else {
// has_subpel_mv_component needs the ref frame buffers set up to look
// up if they are scaled. has_subpel_mv_component is in turn needed by
// write_switchable_interp_filter, which is called by pack_inter_mode_mvs.
set_ref_ptrs(cm, xd, m->ref_frame[0], m->ref_frame[1]);
#if ENC_MISMATCH_DEBUG
enc_dump_logs(cpi, mi_row, mi_col);
#endif // ENC_MISMATCH_DEBUG
pack_inter_mode_mvs(cpi, mi_row, mi_col, w);
}
}
static void write_inter_txb_coeff(AV1_COMMON *const cm, MACROBLOCK *const x,
MB_MODE_INFO *const mbmi, aom_writer *w,
const TOKENEXTRA **tok,
const TOKENEXTRA *const tok_end,
TOKEN_STATS *token_stats, const int row,
const int col, int *block, const int plane) {
MACROBLOCKD *const xd = &x->e_mbd;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE bsize = mbmi->sb_type;
const BLOCK_SIZE bsizec =
scale_chroma_bsize(bsize, pd->subsampling_x, pd->subsampling_y);
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsizec, pd);
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane);
const int step =
tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
const int bkw = tx_size_wide_unit[max_tx_size];
const int bkh = tx_size_high_unit[max_tx_size];
const BLOCK_SIZE max_unit_bsize = get_plane_block_size(BLOCK_64X64, pd);
int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0];
int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0];
int blk_row, blk_col;
const int num_4x4_w = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
const int num_4x4_h = block_size_high[plane_bsize] >> tx_size_high_log2[0];
const int unit_height =
AOMMIN(mu_blocks_high + (row >> pd->subsampling_y), num_4x4_h);
const int unit_width =
AOMMIN(mu_blocks_wide + (col >> pd->subsampling_x), num_4x4_w);
for (blk_row = row >> pd->subsampling_y; blk_row < unit_height;
blk_row += bkh) {
for (blk_col = col >> pd->subsampling_x; blk_col < unit_width;
blk_col += bkw) {
pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, plane, plane_bsize,
cm->bit_depth, *block, blk_row, blk_col, max_tx_size,
token_stats);
*block += step;
}
}
}
static void write_tokens_b(AV1_COMP *cpi, const TileInfo *const tile,
aom_writer *w, const TOKENEXTRA **tok,
const TOKENEXTRA *const tok_end, int mi_row,
int mi_col) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
const int mi_offset = mi_row * cm->mi_stride + mi_col;
MB_MODE_INFO *const mbmi = *(cm->mi_grid_visible + mi_offset);
int plane;
int bh, bw;
MACROBLOCK *const x = &cpi->td.mb;
(void)tok;
(void)tok_end;
xd->mi = cm->mi_grid_visible + mi_offset;
assert(mbmi->sb_type <= cm->seq_params.sb_size ||
(mbmi->sb_type >= BLOCK_SIZES && mbmi->sb_type < BLOCK_SIZES_ALL));
bh = mi_size_high[mbmi->sb_type];
bw = mi_size_wide[mbmi->sb_type];
cpi->td.mb.mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
if (!mbmi->skip) {
if (!is_inter_block(mbmi))
av1_write_coeffs_mb(cm, x, mi_row, mi_col, w, mbmi->sb_type);
if (is_inter_block(mbmi)) {
int block[MAX_MB_PLANE] = { 0 };
const BLOCK_SIZE plane_bsize = mbmi->sb_type;
assert(plane_bsize == get_plane_block_size(mbmi->sb_type, &xd->plane[0]));
const int num_4x4_w =
block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
const int num_4x4_h =
block_size_high[plane_bsize] >> tx_size_high_log2[0];
int row, col;
TOKEN_STATS token_stats;
init_token_stats(&token_stats);
const BLOCK_SIZE max_unit_bsize = BLOCK_64X64;
assert(max_unit_bsize ==
get_plane_block_size(BLOCK_64X64, &xd->plane[0]));
int mu_blocks_wide =
block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0];
int mu_blocks_high =
block_size_high[max_unit_bsize] >> tx_size_high_log2[0];
mu_blocks_wide = AOMMIN(num_4x4_w, mu_blocks_wide);
mu_blocks_high = AOMMIN(num_4x4_h, mu_blocks_high);
for (row = 0; row < num_4x4_h; row += mu_blocks_high) {
for (col = 0; col < num_4x4_w; col += mu_blocks_wide) {
for (plane = 0; plane < num_planes && is_inter_block(mbmi); ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
if (!is_chroma_reference(mi_row, mi_col, mbmi->sb_type,
pd->subsampling_x, pd->subsampling_y)) {
continue;
}
write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats,
row, col, &block[plane], plane);
}
}
#if CONFIG_RD_DEBUG
if (mbmi->sb_type >= BLOCK_8X8 &&
rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) {
dump_mode_info(m);
assert(0);
}
#endif // CONFIG_RD_DEBUG
}
}
}
}
static void write_modes_b(AV1_COMP *cpi, const TileInfo *const tile,
aom_writer *w, const TOKENEXTRA **tok,
const TOKENEXTRA *const tok_end, int mi_row,
int mi_col) {
write_mbmi_b(cpi, tile, w, mi_row, mi_col);
AV1_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &cpi->td.mb.e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
for (int plane = 0; plane < AOMMIN(2, av1_num_planes(cm)); ++plane) {
const uint8_t palette_size_plane =
mbmi->palette_mode_info.palette_size[plane];
assert(!mbmi->skip_mode || !palette_size_plane);
if (palette_size_plane > 0) {
assert(mbmi->use_intrabc == 0);
assert(av1_allow_palette(cm->allow_screen_content_tools, mbmi->sb_type));
int rows, cols;
av1_get_block_dimensions(mbmi->sb_type, plane, xd, NULL, NULL, &rows,
&cols);
assert(*tok < tok_end);
pack_map_tokens(w, tok, palette_size_plane, rows * cols);
}
}
BLOCK_SIZE bsize = mbmi->sb_type;
int is_inter_tx = is_inter_block(mbmi) || is_intrabc_block(mbmi);
int skip = mbmi->skip;
int segment_id = mbmi->segment_id;
if (cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) &&
!(is_inter_tx && skip) && !xd->lossless[segment_id]) {
if (is_inter_tx) { // This implies skip flag is 0.
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0);
const int txbh = tx_size_high_unit[max_tx_size];
const int txbw = tx_size_wide_unit[max_tx_size];
const int width = block_size_wide[bsize] >> tx_size_wide_log2[0];
const int height = block_size_high[bsize] >> tx_size_high_log2[0];
int idx, idy;
for (idy = 0; idy < height; idy += txbh)
for (idx = 0; idx < width; idx += txbw)
write_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, w);
} else {
write_selected_tx_size(xd, w);
set_txfm_ctxs(mbmi->tx_size, xd->n8_w, xd->n8_h, 0, xd);
}
} else {
set_txfm_ctxs(mbmi->tx_size, xd->n8_w, xd->n8_h,
skip && is_inter_block(mbmi), xd);
}
write_tokens_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
}
static void write_partition(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd, int hbs, int mi_row,
int mi_col, PARTITION_TYPE p, BLOCK_SIZE bsize,
aom_writer *w) {
const int is_partition_point = bsize >= BLOCK_8X8;
if (!is_partition_point) return;
const int has_rows = (mi_row + hbs) < cm->mi_rows;
const int has_cols = (mi_col + hbs) < cm->mi_cols;
const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (!has_rows && !has_cols) {
assert(p == PARTITION_SPLIT);
return;
}
if (has_rows && has_cols) {
aom_write_symbol(w, p, ec_ctx->partition_cdf[ctx],
partition_cdf_length(bsize));
} else if (!has_rows && has_cols) {
assert(p == PARTITION_SPLIT || p == PARTITION_HORZ);
assert(bsize > BLOCK_8X8);
aom_cdf_prob cdf[2];
partition_gather_vert_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
} else {
assert(has_rows && !has_cols);
assert(p == PARTITION_SPLIT || p == PARTITION_VERT);
assert(bsize > BLOCK_8X8);
aom_cdf_prob cdf[2];
partition_gather_horz_alike(cdf, ec_ctx->partition_cdf[ctx], bsize);
aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2);
}
}
static void write_modes_sb(AV1_COMP *const cpi, const TileInfo *const tile,
aom_writer *const w, const TOKENEXTRA **tok,
const TOKENEXTRA *const tok_end, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
const int hbs = mi_size_wide[bsize] / 2;
const int quarter_step = mi_size_wide[bsize] / 4;
int i;
const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize);
const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
const int num_planes = av1_num_planes(cm);
for (int plane = 0; plane < num_planes; ++plane) {
int rcol0, rcol1, rrow0, rrow1, tile_tl_idx;
if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize,
&rcol0, &rcol1, &rrow0, &rrow1,
&tile_tl_idx)) {
const int rstride = cm->rst_info[plane].horz_units_per_tile;
for (int rrow = rrow0; rrow < rrow1; ++rrow) {
for (int rcol = rcol0; rcol < rcol1; ++rcol) {
const int runit_idx = tile_tl_idx + rcol + rrow * rstride;
const RestorationUnitInfo *rui =
&cm->rst_info[plane].unit_info[runit_idx];
loop_restoration_write_sb_coeffs(cm, xd, rui, w, plane,
cpi->td.counts);
}
}
}
}
write_partition(cm, xd, hbs, mi_row, mi_col, partition, bsize, w);
switch (partition) {
case PARTITION_NONE:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
break;
case PARTITION_HORZ:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
if (mi_row + hbs < cm->mi_rows)
write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col);
break;
case PARTITION_VERT:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
if (mi_col + hbs < cm->mi_cols)
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs);
break;
case PARTITION_SPLIT:
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize);
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs, subsize);
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col, subsize);
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs,
subsize);
break;
case PARTITION_HORZ_A:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col);
break;
case PARTITION_HORZ_B:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
break;
case PARTITION_VERT_A:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs);
break;
case PARTITION_VERT_B:
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs);
write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs);
break;
case PARTITION_HORZ_4:
for (i = 0; i < 4; ++i) {
int this_mi_row = mi_row + i * quarter_step;
if (i > 0 && this_mi_row >= cm->mi_rows) break;
write_modes_b(cpi, tile, w, tok, tok_end, this_mi_row, mi_col);
}
break;
case PARTITION_VERT_4:
for (i = 0; i < 4; ++i) {
int this_mi_col = mi_col + i * quarter_step;
if (i > 0 && this_mi_col >= cm->mi_cols) break;
write_modes_b(cpi, tile, w, tok, tok_end, mi_row, this_mi_col);
}
break;
default: assert(0);
}
// update partition context
update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
}
static void write_modes(AV1_COMP *const cpi, const TileInfo *const tile,
aom_writer *const w, const TOKENEXTRA **tok,
const TOKENEXTRA *const tok_end) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
const int mi_row_start = tile->mi_row_start;
const int mi_row_end = tile->mi_row_end;
const int mi_col_start = tile->mi_col_start;
const int mi_col_end = tile->mi_col_end;
int mi_row, mi_col;
av1_zero_above_context(cm, mi_col_start, mi_col_end, tile->tile_row);
av1_init_above_context(cm, xd, tile->tile_row);
if (cpi->common.delta_q_present_flag) {
xd->prev_qindex = cpi->common.base_qindex;
if (cpi->common.delta_lf_present_flag) {
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
xd->prev_delta_lf[lf_id] = 0;
xd->prev_delta_lf_from_base = 0;
}
}
for (mi_row = mi_row_start; mi_row < mi_row_end;
mi_row += cm->seq_params.mib_size) {
av1_zero_left_context(xd);
for (mi_col = mi_col_start; mi_col < mi_col_end;
mi_col += cm->seq_params.mib_size) {
write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col,
cm->seq_params.sb_size);
}
}
}
static void encode_restoration_mode(AV1_COMMON *cm,
struct aom_write_bit_buffer *wb) {
assert(!cm->all_lossless);
if (!cm->seq_params.enable_restoration) return;
if (cm->allow_intrabc) return;
const int num_planes = av1_num_planes(cm);
int all_none = 1, chroma_none = 1;
for (int p = 0; p < num_planes; ++p) {
RestorationInfo *rsi = &cm->rst_info[p];
if (rsi->frame_restoration_type != RESTORE_NONE) {
all_none = 0;
chroma_none &= p == 0;
}
switch (rsi->frame_restoration_type) {
case RESTORE_NONE:
aom_wb_write_bit(wb, 0);
aom_wb_write_bit(wb, 0);
break;
case RESTORE_WIENER:
aom_wb_write_bit(wb, 1);
aom_wb_write_bit(wb, 0);
break;
case RESTORE_SGRPROJ:
aom_wb_write_bit(wb, 1);
aom_wb_write_bit(wb, 1);
break;
case RESTORE_SWITCHABLE:
aom_wb_write_bit(wb, 0);
aom_wb_write_bit(wb, 1);
break;
default: assert(0);
}
}
if (!all_none) {
assert(cm->seq_params.sb_size == BLOCK_64X64 ||
cm->seq_params.sb_size == BLOCK_128X128);
const int sb_size = cm->seq_params.sb_size == BLOCK_128X128 ? 128 : 64;
RestorationInfo *rsi = &cm->rst_info[0];
assert(rsi->restoration_unit_size >= sb_size);
assert(RESTORATION_UNITSIZE_MAX == 256);
if (sb_size == 64) {
aom_wb_write_bit(wb, rsi->restoration_unit_size > 64);
}
if (rsi->restoration_unit_size > 64) {
aom_wb_write_bit(wb, rsi->restoration_unit_size > 128);
}
}
if (num_planes > 1) {
int s = AOMMIN(cm->subsampling_x, cm->subsampling_y);
if (s && !chroma_none) {
aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size !=
cm->rst_info[0].restoration_unit_size);
assert(cm->rst_info[1].restoration_unit_size ==
cm->rst_info[0].restoration_unit_size ||
cm->rst_info[1].restoration_unit_size ==
(cm->rst_info[0].restoration_unit_size >> s));
assert(cm->rst_info[2].restoration_unit_size ==
cm->rst_info[1].restoration_unit_size);
} else if (!s) {
assert(cm->rst_info[1].restoration_unit_size ==
cm->rst_info[0].restoration_unit_size);
assert(cm->rst_info[2].restoration_unit_size ==
cm->rst_info[1].restoration_unit_size);
}
}
}
static void write_wiener_filter(int wiener_win, const WienerInfo *wiener_info,
WienerInfo *ref_wiener_info, aom_writer *wb) {
if (wiener_win == WIENER_WIN)
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
WIENER_FILT_TAP0_SUBEXP_K,
ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV,
wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV);
else
assert(wiener_info->vfilter[0] == 0 &&
wiener_info->vfilter[WIENER_WIN - 1] == 0);
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
WIENER_FILT_TAP1_SUBEXP_K,
ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV,
wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV);
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
WIENER_FILT_TAP2_SUBEXP_K,
ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV,
wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV);
if (wiener_win == WIENER_WIN)
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
WIENER_FILT_TAP0_SUBEXP_K,
ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV,
wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV);
else
assert(wiener_info->hfilter[0] == 0 &&
wiener_info->hfilter[WIENER_WIN - 1] == 0);
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
WIENER_FILT_TAP1_SUBEXP_K,
ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV,
wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV);
aom_write_primitive_refsubexpfin(
wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
WIENER_FILT_TAP2_SUBEXP_K,
ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV,
wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV);
memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info));
}
static void write_sgrproj_filter(const SgrprojInfo *sgrproj_info,
SgrprojInfo *ref_sgrproj_info,
aom_writer *wb) {
aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS);
const sgr_params_type *params = &sgr_params[sgrproj_info->ep];
if (params->r0 == 0) {
assert(sgrproj_info->xqd[0] == 0);
aom_write_primitive_refsubexpfin(
wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
} else if (params->r1 == 0) {
aom_write_primitive_refsubexpfin(
wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
} else {
aom_write_primitive_refsubexpfin(
wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0,
sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0);
aom_write_primitive_refsubexpfin(
wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1,
sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1);
}
memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info));
}
static void loop_restoration_write_sb_coeffs(const AV1_COMMON *const cm,
MACROBLOCKD *xd,
const RestorationUnitInfo *rui,
aom_writer *const w, int plane,
FRAME_COUNTS *counts) {
const RestorationInfo *rsi = cm->rst_info + plane;
RestorationType frame_rtype = rsi->frame_restoration_type;
if (frame_rtype == RESTORE_NONE) return;
(void)counts;
assert(!cm->all_lossless);
const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN;
WienerInfo *wiener_info = xd->wiener_info + plane;
SgrprojInfo *sgrproj_info = xd->sgrproj_info + plane;
RestorationType unit_rtype = rui->restoration_type;
if (frame_rtype == RESTORE_SWITCHABLE) {
aom_write_symbol(w, unit_rtype, xd->tile_ctx->switchable_restore_cdf,
RESTORE_SWITCHABLE_TYPES);
#if CONFIG_ENTROPY_STATS
++counts->switchable_restore[unit_rtype];
#endif
switch (unit_rtype) {
case RESTORE_WIENER:
write_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, w);
break;
case RESTORE_SGRPROJ:
write_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, w);
break;
default: assert(unit_rtype == RESTORE_NONE); break;
}
} else if (frame_rtype == RESTORE_WIENER) {
aom_write_symbol(w, unit_rtype != RESTORE_NONE,
xd->tile_ctx->wiener_restore_cdf, 2);
#if CONFIG_ENTROPY_STATS
++counts->wiener_restore[unit_rtype != RESTORE_NONE];
#endif
if (unit_rtype != RESTORE_NONE) {
write_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, w);
}
} else if (frame_rtype == RESTORE_SGRPROJ) {
aom_write_symbol(w, unit_rtype != RESTORE_NONE,
xd->tile_ctx->sgrproj_restore_cdf, 2);
#if CONFIG_ENTROPY_STATS
++counts->sgrproj_restore[unit_rtype != RESTORE_NONE];
#endif
if (unit_rtype != RESTORE_NONE) {
write_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, w);
}
}
}
static void encode_loopfilter(AV1_COMMON *cm, struct aom_write_bit_buffer *wb) {
assert(!cm->coded_lossless);
if (cm->allow_intrabc) return;
const int num_planes = av1_num_planes(cm);
int i;
struct loopfilter *lf = &cm->lf;
// Encode the loop filter level and type
aom_wb_write_literal(wb, lf->filter_level[0], 6);
aom_wb_write_literal(wb, lf->filter_level[1], 6);
if (num_planes > 1) {
if (lf->filter_level[0] || lf->filter_level[1]) {
aom_wb_write_literal(wb, lf->filter_level_u, 6);
aom_wb_write_literal(wb, lf->filter_level_v, 6);
}
}
aom_wb_write_literal(wb, lf->sharpness_level, 3);
// Write out loop filter deltas applied at the MB level based on mode or
// ref frame (if they are enabled).
aom_wb_write_bit(wb, lf->mode_ref_delta_enabled);
if (lf->mode_ref_delta_enabled) {
aom_wb_write_bit(wb, lf->mode_ref_delta_update);
if (lf->mode_ref_delta_update) {
const int prime_idx = cm->primary_ref_frame;
const int buf_idx =
prime_idx == PRIMARY_REF_NONE ? -1 : cm->frame_refs[prime_idx].idx;
int8_t last_ref_deltas[REF_FRAMES];
if (prime_idx == PRIMARY_REF_NONE || buf_idx < 0) {
av1_set_default_ref_deltas(last_ref_deltas);
} else {
memcpy(last_ref_deltas, cm->buffer_pool->frame_bufs[buf_idx].ref_deltas,
REF_FRAMES);
}
for (i = 0; i < REF_FRAMES; i++) {
const int delta = lf->ref_deltas[i];
const int changed = delta != last_ref_deltas[i];
aom_wb_write_bit(wb, changed);
if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
}
int8_t last_mode_deltas[MAX_MODE_LF_DELTAS];
if (prime_idx == PRIMARY_REF_NONE || buf_idx < 0) {
av1_set_default_mode_deltas(last_mode_deltas);
} else {
memcpy(last_mode_deltas,
cm->buffer_pool->frame_bufs[buf_idx].mode_deltas,
MAX_MODE_LF_DELTAS);
}
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
const int delta = lf->mode_deltas[i];
const int changed = delta != last_mode_deltas[i];
aom_wb_write_bit(wb, changed);
if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6);
}
}
}
}
static void encode_cdef(const AV1_COMMON *cm, struct aom_write_bit_buffer *wb) {
assert(!cm->coded_lossless);
if (!cm->seq_params.enable_cdef) return;
if (cm->allow_intrabc) return;
const int num_planes = av1_num_planes(cm);
int i;
aom_wb_write_literal(wb, cm->cdef_pri_damping - 3, 2);
assert(cm->cdef_pri_damping == cm->cdef_sec_damping);
aom_wb_write_literal(wb, cm->cdef_bits, 2);
for (i = 0; i < cm->nb_cdef_strengths; i++) {
aom_wb_write_literal(wb, cm->cdef_strengths[i], CDEF_STRENGTH_BITS);
if (num_planes > 1)
aom_wb_write_literal(wb, cm->cdef_uv_strengths[i], CDEF_STRENGTH_BITS);
}
}
static void write_delta_q(struct aom_write_bit_buffer *wb, int delta_q) {
if (delta_q != 0) {
aom_wb_write_bit(wb, 1);
aom_wb_write_inv_signed_literal(wb, delta_q, 6);
} else {
aom_wb_write_bit(wb, 0);
}
}
static void encode_quantization(const AV1_COMMON *const cm,
struct aom_write_bit_buffer *wb) {
const int num_planes = av1_num_planes(cm);
aom_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS);
write_delta_q(wb, cm->y_dc_delta_q);
if (num_planes > 1) {
int diff_uv_delta = (cm->u_dc_delta_q != cm->v_dc_delta_q) ||
(cm->u_ac_delta_q != cm->v_ac_delta_q);
if (cm->separate_uv_delta_q) aom_wb_write_bit(wb, diff_uv_delta);
write_delta_q(wb, cm->u_dc_delta_q);
write_delta_q(wb, cm->u_ac_delta_q);
if (diff_uv_delta) {
write_delta_q(wb, cm->v_dc_delta_q);
write_delta_q(wb, cm->v_ac_delta_q);
}
}
aom_wb_write_bit(wb, cm->using_qmatrix);
if (cm->using_qmatrix) {
aom_wb_write_literal(wb, cm->qm_y, QM_LEVEL_BITS);
aom_wb_write_literal(wb, cm->qm_u, QM_LEVEL_BITS);
if (!cm->separate_uv_delta_q)
assert(cm->qm_u == cm->qm_v);
else
aom_wb_write_literal(wb, cm->qm_v, QM_LEVEL_BITS);
}
}
static void encode_segmentation(AV1_COMMON *cm, MACROBLOCKD *xd,
struct aom_write_bit_buffer *wb) {
int i, j;
struct segmentation *seg = &cm->seg;
aom_wb_write_bit(wb, seg->enabled);
if (!seg->enabled) return;
// Write update flags
if (cm->primary_ref_frame == PRIMARY_REF_NONE) {
assert(seg->update_map == 1);
seg->temporal_update = 0;
assert(seg->update_data == 1);
} else {
aom_wb_write_bit(wb, seg->update_map);
if (seg->update_map) {
// Select the coding strategy (temporal or spatial)
av1_choose_segmap_coding_method(cm, xd);
aom_wb_write_bit(wb, seg->temporal_update);
}
aom_wb_write_bit(wb, seg->update_data);
}
// Segmentation data
if (seg->update_data) {
for (i = 0; i < MAX_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
const int active = segfeature_active(seg, i, j);
aom_wb_write_bit(wb, active);
if (active) {
const int data_max = av1_seg_feature_data_max(j);
const int data_min = -data_max;
const int ubits = get_unsigned_bits(data_max);
const int data = clamp(get_segdata(seg, i, j), data_min, data_max);
if (av1_is_segfeature_signed(j)) {
aom_wb_write_inv_signed_literal(wb, data, ubits);
} else {
aom_wb_write_literal(wb, data, ubits);
}
}
}
}
}
}
static void write_tx_mode(AV1_COMMON *cm, TX_MODE *mode,
struct aom_write_bit_buffer *wb) {
if (cm->coded_lossless) {
*mode = ONLY_4X4;
return;
}
aom_wb_write_bit(wb, *mode == TX_MODE_SELECT);
}
static void write_frame_interp_filter(InterpFilter filter,
struct aom_write_bit_buffer *wb) {
aom_wb_write_bit(wb, filter == SWITCHABLE);
if (filter != SWITCHABLE)
aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS);
}
static void fix_interp_filter(AV1_COMMON *cm, FRAME_COUNTS *counts) {
if (cm->interp_filter == SWITCHABLE) {
// Check to see if only one of the filters is actually used
int count[SWITCHABLE_FILTERS];
int i, j, c = 0;
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
count[i] = 0;
for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j)
count[i] += counts->switchable_interp[j][i];
c += (count[i] > 0);
}
if (c == 1) {
// Only one filter is used. So set the filter at frame level
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
if (count[i]) {
if (i == EIGHTTAP_REGULAR) cm->interp_filter = i;
break;
}
}
}
}
}
// Same function as write_uniform but writing to uncompresses header wb
static void wb_write_uniform(struct aom_write_bit_buffer *wb, int n, int v) {
const int l = get_unsigned_bits(n);
const int m = (1 << l) - n;
if (l == 0) return;
if (v < m) {
aom_wb_write_literal(wb, v, l - 1);
} else {
aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1);
aom_wb_write_literal(wb, (v - m) & 1, 1);
}
}
static void write_tile_info_max_tile(const AV1_COMMON *const cm,
struct aom_write_bit_buffer *wb) {
int width_mi = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2);
int height_mi = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2);
int width_sb = width_mi >> cm->seq_params.mib_size_log2;
int height_sb = height_mi >> cm->seq_params.mib_size_log2;
int size_sb, i;
aom_wb_write_bit(wb, cm->uniform_tile_spacing_flag);
if (cm->uniform_tile_spacing_flag) {
// Uniform spaced tiles with power-of-two number of rows and columns
// tile columns
int ones = cm->log2_tile_cols - cm->min_log2_tile_cols;
while (ones--) {
aom_wb_write_bit(wb, 1);
}
if (cm->log2_tile_cols < cm->max_log2_tile_cols) {
aom_wb_write_bit(wb, 0);
}
// rows
ones = cm->log2_tile_rows - cm->min_log2_tile_rows;
while (ones--) {
aom_wb_write_bit(wb, 1);
}
if (cm->log2_tile_rows < cm->max_log2_tile_rows) {
aom_wb_write_bit(wb, 0);
}
} else {
// Explicit tiles with configurable tile widths and heights
// columns
for (i = 0; i < cm->tile_cols; i++) {
size_sb = cm->tile_col_start_sb[i + 1] - cm->tile_col_start_sb[i];
wb_write_uniform(wb, AOMMIN(width_sb, cm->max_tile_width_sb),
size_sb - 1);
width_sb -= size_sb;
}
assert(width_sb == 0);
// rows
for (i = 0; i < cm->tile_rows; i++) {
size_sb = cm->tile_row_start_sb[i + 1] - cm->tile_row_start_sb[i];
wb_write_uniform(wb, AOMMIN(height_sb, cm->max_tile_height_sb),
size_sb - 1);
height_sb -= size_sb;
}
assert(height_sb == 0);
}
}
static void write_tile_info(const AV1_COMMON *const cm,
struct aom_write_bit_buffer *saved_wb,
struct aom_write_bit_buffer *wb) {
if (cm->large_scale_tile) {
const int tile_width =
ALIGN_POWER_OF_TWO(cm->tile_width, cm->seq_params.mib_size_log2) >>
cm->seq_params.mib_size_log2;
const int tile_height =
ALIGN_POWER_OF_TWO(cm->tile_height, cm->seq_params.mib_size_log2) >>
cm->seq_params.mib_size_log2;
assert(tile_width > 0);
assert(tile_height > 0);
// Write the tile sizes
if (cm->seq_params.sb_size == BLOCK_128X128) {
assert(tile_width <= 32);
assert(tile_height <= 32);
aom_wb_write_literal(wb, tile_width - 1, 5);
aom_wb_write_literal(wb, tile_height - 1, 5);
} else {
assert(tile_width <= 64);
assert(tile_height <= 64);
aom_wb_write_literal(wb, tile_width - 1, 6);
aom_wb_write_literal(wb, tile_height - 1, 6);
}
} else {
write_tile_info_max_tile(cm, wb);
}
*saved_wb = *wb;
if (cm->large_scale_tile) {
if (cm->tile_rows * cm->tile_cols > 1) {
// Note that the last item in the uncompressed header is the data
// describing tile configuration.
// Number of bytes in tile column size - 1
aom_wb_write_literal(wb, 0, 2);
// Number of bytes in tile size - 1
aom_wb_write_literal(wb, 0, 2);
}
return;
}
if (cm->tile_rows * cm->tile_cols > 1) {
// tile id used for cdf update
aom_wb_write_literal(wb, 0, cm->log2_tile_cols + cm->log2_tile_rows);
// Number of bytes in tile size - 1
aom_wb_write_literal(wb, 3, 2);
}
}
#if USE_GF16_MULTI_LAYER
static int get_refresh_mask_gf16(AV1_COMP *cpi) {
if (cpi->common.frame_type == KEY_FRAME || frame_is_sframe(&cpi->common))
return 0xFF;
int refresh_mask = 0;
if (cpi->refresh_last_frame || cpi->refresh_golden_frame ||
cpi->refresh_bwd_ref_frame || cpi->refresh_alt2_ref_frame ||
cpi->refresh_alt_ref_frame) {
assert(cpi->refresh_fb_idx >= 0 && cpi->refresh_fb_idx < REF_FRAMES);
refresh_mask |= (1 << cpi->refresh_fb_idx);
}
return refresh_mask;
}
#endif // USE_GF16_MULTI_LAYER
static int get_refresh_mask(AV1_COMP *cpi) {
if (cpi->common.frame_type == KEY_FRAME || frame_is_sframe(&cpi->common))
return 0xFF;
int refresh_mask = 0;
#if USE_GF16_MULTI_LAYER
if (cpi->rc.baseline_gf_interval == 16) return get_refresh_mask_gf16(cpi);
#endif // USE_GF16_MULTI_LAYER
// NOTE(zoeliu): When LAST_FRAME is to get refreshed, the decoder will be
// notified to get LAST3_FRAME refreshed and then the virtual indexes for all
// the 3 LAST reference frames will be updated accordingly, i.e.:
// (1) The original virtual index for LAST3_FRAME will become the new virtual
// index for LAST_FRAME; and
// (2) The original virtual indexes for LAST_FRAME and LAST2_FRAME will be
// shifted and become the new virtual indexes for LAST2_FRAME and
// LAST3_FRAME.
refresh_mask |=
(cpi->refresh_last_frame << cpi->ref_fb_idx[LAST_REF_FRAMES - 1]);
refresh_mask |=
(cpi->refresh_bwd_ref_frame << cpi->ref_fb_idx[BWDREF_FRAME - 1]);
refresh_mask |=
(cpi->refresh_alt2_ref_frame << cpi->ref_fb_idx[ALTREF2_FRAME - 1]);
if (av1_preserve_existing_gf(cpi)) {
// We have decided to preserve the previously existing golden frame as our
// new ARF frame. However, in the short term we leave it in the GF slot and,
// if we're updating the GF with the current decoded frame, we save it
// instead to the ARF slot.
// Later, in the function av1_encoder.c:av1_update_reference_frames() we
// will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it
// there so that it can be done outside of the recode loop.
// Note: This is highly specific to the use of ARF as a forward reference,
// and this needs to be generalized as other uses are implemented
// (like RTC/temporal scalability).
return refresh_mask |
(cpi->refresh_golden_frame << cpi->ref_fb_idx[ALTREF_FRAME - 1]);
} else {
const int arf_idx = cpi->ref_fb_idx[ALTREF_FRAME - 1];
return refresh_mask |
(cpi->refresh_golden_frame << cpi->ref_fb_idx[GOLDEN_FRAME - 1]) |
(cpi->refresh_alt_ref_frame << arf_idx);
}
}
static INLINE int find_identical_tile(
const int tile_row, const int tile_col,
TileBufferEnc (*const tile_buffers)[1024]) {
const MV32 candidate_offset[1] = { { 1, 0 } };
const uint8_t *const cur_tile_data =
tile_buffers[tile_row][tile_col].data + 4;
const size_t cur_tile_size = tile_buffers[tile_row][tile_col].size;
int i;
if (tile_row == 0) return 0;
// (TODO: yunqingwang) For now, only above tile is checked and used.
// More candidates such as left tile can be added later.
for (i = 0; i < 1; i++) {
int row_offset = candidate_offset[0].row;
int col_offset = candidate_offset[0].col;
int row = tile_row - row_offset;
int col = tile_col - col_offset;
uint8_t tile_hdr;
const uint8_t *tile_data;
TileBufferEnc *candidate;
if (row < 0 || col < 0) continue;
tile_hdr = *(tile_buffers[row][col].data);
// Read out tcm bit
if ((tile_hdr >> 7) == 1) {
// The candidate is a copy tile itself
row_offset += tile_hdr & 0x7f;
row = tile_row - row_offset;
}
candidate = &tile_buffers[row][col];
if (row_offset >= 128 || candidate->size != cur_tile_size) continue;
tile_data = candidate->data + 4;
if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue;
// Identical tile found
assert(row_offset > 0);
return row_offset;
}
// No identical tile found
return 0;
}
static void write_render_size(const AV1_COMMON *cm,
struct aom_write_bit_buffer *wb) {
const int scaling_active = !av1_resize_unscaled(cm);
aom_wb_write_bit(wb, scaling_active);
if (scaling_active) {
aom_wb_write_literal(wb, cm->render_width - 1, 16);
aom_wb_write_literal(wb, cm->render_height - 1, 16);
}
}
static void write_superres_scale(const AV1_COMMON *const cm,
struct aom_write_bit_buffer *wb) {
const SequenceHeader *const seq_params = &cm->seq_params;
if (!seq_params->enable_superres) {
assert(cm->superres_scale_denominator == SCALE_NUMERATOR);
return;
}
// First bit is whether to to scale or not
if (cm->superres_scale_denominator == SCALE_NUMERATOR) {
aom_wb_write_bit(wb, 0); // no scaling
} else {
aom_wb_write_bit(wb, 1); // scaling, write scale factor
assert(cm->superres_scale_denominator >= SUPERRES_SCALE_DENOMINATOR_MIN);
assert(cm->superres_scale_denominator <
SUPERRES_SCALE_DENOMINATOR_MIN + (1 << SUPERRES_SCALE_BITS));
aom_wb_write_literal(
wb, cm->superres_scale_denominator - SUPERRES_SCALE_DENOMINATOR_MIN,
SUPERRES_SCALE_BITS);
}
}
static void write_frame_size(const AV1_COMMON *cm, int frame_size_override,
struct aom_write_bit_buffer *wb) {
const int coded_width = cm->superres_upscaled_width - 1;
const int coded_height = cm->superres_upscaled_height - 1;
if (frame_size_override) {
const SequenceHeader *seq_params = &cm->seq_params;
int num_bits_width = seq_params->num_bits_width;
int num_bits_height = seq_params->num_bits_height;
aom_wb_write_literal(wb, coded_width, num_bits_width);
aom_wb_write_literal(wb, coded_height, num_bits_height);
}
write_superres_scale(cm, wb);
write_render_size(cm, wb);
}
static void write_frame_size_with_refs(AV1_COMP *cpi,
struct aom_write_bit_buffer *wb) {
AV1_COMMON *const cm = &cpi->common;
int found = 0;
MV_REFERENCE_FRAME ref_frame;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame);
if (cfg != NULL) {
found = cm->superres_upscaled_width == cfg->y_crop_width &&
cm->superres_upscaled_height == cfg->y_crop_height;
found &= cm->render_width == cfg->render_width &&
cm->render_height == cfg->render_height;
}
aom_wb_write_bit(wb, found);
if (found) {
write_superres_scale(cm, wb);
break;
}
}
if (!found) {
int frame_size_override = 1; // Always equal to 1 in this function
write_frame_size(cm, frame_size_override, wb);
}
}
static void write_profile(BITSTREAM_PROFILE profile,
struct aom_write_bit_buffer *wb) {
assert(profile >= PROFILE_0 && profile < MAX_PROFILES);
aom_wb_write_literal(wb, profile, PROFILE_BITS);
}
static void write_bitdepth(AV1_COMMON *const cm,
struct aom_write_bit_buffer *wb) {
// Profile 0/1: [0] for 8 bit, [1] 10-bit
// Profile 2: [0] for 8 bit, [10] 10-bit, [11] - 12-bit
aom_wb_write_bit(wb, cm->bit_depth == AOM_BITS_8 ? 0 : 1);
if (cm->profile == PROFILE_2 && cm->bit_depth != AOM_BITS_8) {
aom_wb_write_bit(wb, cm->bit_depth == AOM_BITS_10 ? 0 : 1);
}
}
static void write_bitdepth_colorspace_sampling(
AV1_COMMON *const cm, struct aom_write_bit_buffer *wb) {
write_bitdepth(cm, wb);
const int is_monochrome = cm->seq_params.monochrome;
// monochrome bit
if (cm->profile != PROFILE_1)
aom_wb_write_bit(wb, is_monochrome);
else
assert(!is_monochrome);
if (cm->color_primaries == AOM_CICP_CP_UNSPECIFIED &&
cm->transfer_characteristics == AOM_CICP_TC_UNSPECIFIED &&
cm->matrix_coefficients == AOM_CICP_MC_UNSPECIFIED) {
aom_wb_write_bit(wb, 0); // No color description present
} else {
aom_wb_write_bit(wb, 1); // Color description present
aom_wb_write_literal(wb, cm->color_primaries, 8);
aom_wb_write_literal(wb, cm->transfer_characteristics, 8);
aom_wb_write_literal(wb, cm->matrix_coefficients, 8);
}
if (is_monochrome) {
// 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
aom_wb_write_bit(wb, cm->color_range);
return;
}
if (cm->color_primaries == AOM_CICP_CP_BT_709 &&
cm->transfer_characteristics == AOM_CICP_TC_SRGB &&
cm->matrix_coefficients ==
AOM_CICP_MC_IDENTITY) { // it would be better to remove this
// dependency too
assert(cm->subsampling_x == 0 && cm->subsampling_y == 0);
assert(cm->profile == PROFILE_1 ||
(cm->profile == PROFILE_2 && cm->bit_depth == AOM_BITS_12));
} else {
// 0: [16, 235] (i.e. xvYCC), 1: [0, 255]
aom_wb_write_bit(wb, cm->color_range);
if (cm->profile == PROFILE_0) {
// 420 only
assert(cm->subsampling_x == 1 && cm->subsampling_y == 1);
} else if (cm->profile == PROFILE_1) {
// 444 only
assert(cm->subsampling_x == 0 && cm->subsampling_y == 0);
} else if (cm->profile == PROFILE_2) {
if (cm->bit_depth == AOM_BITS_12) {
// 420, 444 or 422
aom_wb_write_bit(wb, cm->subsampling_x);
if (cm->subsampling_x == 0) {
assert(cm->subsampling_y == 0 &&
"4:4:0 subsampling not allowed in AV1");
} else {
aom_wb_write_bit(wb, cm->subsampling_y);
}
} else {
// 422 only
assert(cm->subsampling_x == 1 && cm->subsampling_y == 0);
}
}
if (cm->matrix_coefficients == AOM_CICP_MC_IDENTITY) {
assert(cm->subsampling_x == 0 && cm->subsampling_y == 0);
}
if (cm->subsampling_x == 1 && cm->subsampling_y == 1) {
aom_wb_write_literal(wb, cm->chroma_sample_position, 2);
}
}
aom_wb_write_bit(wb, cm->separate_uv_delta_q);
}
static void write_timing_info_header(AV1_COMMON *const cm,
struct aom_write_bit_buffer *wb) {
#if !CONFIG_BUFFER_MODEL
aom_wb_write_bit(wb, cm->timing_info_present); // timing info present flag
if (cm->timing_info_present) {
#endif
#if CONFIG_BUFFER_MODEL
aom_wb_write_unsigned_literal(wb, cm->timing_info.num_units_in_display_tick,
32); // Number of units in tick
aom_wb_write_unsigned_literal(wb, cm->timing_info.time_scale,
32); // Time scale
aom_wb_write_bit(
wb,
cm->timing_info.equal_picture_interval); // Equal picture interval bit
if (cm->timing_info.equal_picture_interval) {
aom_wb_write_uvlc(
wb,
cm->timing_info.num_ticks_per_picture - 1); // ticks per picture
#else
aom_wb_write_unsigned_literal(wb, cm->num_units_in_tick,
32); // Number of units in tick
aom_wb_write_unsigned_literal(wb, cm->time_scale, 32); // Time scale
aom_wb_write_bit(wb,
cm->equal_picture_interval); // Equal picture interval bit
if (cm->equal_picture_interval) {
aom_wb_write_uvlc(wb,
cm->num_ticks_per_picture - 1); // ticks per picture
#endif
}
#if !CONFIG_BUFFER_MODEL
}
#endif
}
#if CONFIG_BUFFER_MODEL
static void write_decoder_model_info(AV1_COMMON *const cm,
struct aom_write_bit_buffer *wb) {
aom_wb_write_literal(wb, cm->buffer_model.bitrate_scale, 4);
aom_wb_write_literal(wb, cm->buffer_model.buffer_size_scale, 4);
aom_wb_write_literal(
wb, cm->buffer_model.encoder_decoder_buffer_delay_length - 1, 5);
aom_wb_write_unsigned_literal(wb, cm->buffer_model.num_units_in_decoding_tick,
32); // Number of units in decoding tick
aom_wb_write_literal(wb, cm->buffer_model.buffer_removal_delay_length - 1, 5);
aom_wb_write_literal(wb, cm->buffer_model.frame_presentation_delay_length - 1,
5);
}
static void write_dec_model_op_parameters(AV1_COMMON *const cm,
struct aom_write_bit_buffer *wb,
int op_num) {
if (op_num > MAX_NUM_OPERATING_POINTS)
aom_internal_error(
&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Encoder does not support %d decoder model operating points", op_num);
// aom_wb_write_bit(wb, cm->op_params[op_num].has_parameters);
// if (!cm->op_params[op_num].has_parameters) return;
aom_wb_write_uvlc(wb, cm->op_params[op_num].bitrate - 1);
aom_wb_write_uvlc(wb, cm->op_params[op_num].buffer_size - 1);
aom_wb_write_bit(wb, cm->op_params[op_num].cbr_flag);
aom_wb_write_literal(wb, cm->op_params[op_num].decoder_buffer_delay,
cm->buffer_model.encoder_decoder_buffer_delay_length);
aom_wb_write_literal(wb, cm->op_params[op_num].encoder_buffer_delay,
cm->buffer_model.encoder_decoder_buffer_delay_length);
aom_wb_write_bit(wb, cm->op_params[op_num].low_delay_mode_flag);
cm->op_frame_timing[op_num].buffer_removal_delay =
0; // reset the decoded frame counter
}
static void write_tu_pts_info(AV1_COMMON *const cm,
struct aom_write_bit_buffer *wb) {
aom_wb_write_unsigned_literal(
wb, (uint32_t)cm->tu_presentation_delay,
cm->buffer_model.frame_presentation_delay_length);
}
#endif
static void write_film_grain_params(AV1_COMP *cpi,
struct aom_write_bit_buffer *wb) {
AV1_COMMON *const cm = &cpi->common;
aom_film_grain_t *pars = &cm->film_grain_params;
cm->cur_frame->film_grain_params = *pars;
aom_wb_write_bit(wb, pars->apply_grain);
if (!pars->apply_grain) return;
aom_wb_write_literal(wb, pars->random_seed, 16);
pars->random_seed += 3245; // For film grain test vectors purposes
if (!pars->random_seed) // Random seed should not be zero
pars->random_seed += 1735;
if (cm->frame_type == INTER_FRAME)
aom_wb_write_bit(wb, pars->update_parameters);
else
pars->update_parameters = 1;
if (!pars->update_parameters) {
RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
int ref_frame, ref_idx, buf_idx;
for (ref_frame = LAST_FRAME; ref_frame < REF_FRAMES; ref_frame++) {
ref_idx = get_ref_frame_map_idx(cpi, ref_frame);
assert(ref_idx != INVALID_IDX);
buf_idx = cm->ref_frame_map[ref_idx];
if (frame_bufs[buf_idx].film_grain_params_present &&
memcmp(pars, &frame_bufs[buf_idx].film_grain_params, sizeof(*pars))) {
break;
}
}
assert(ref_frame < REF_FRAMES);
aom_wb_write_literal(wb, ref_idx, 3);
return;
}
// Scaling functions parameters
aom_wb_write_literal(wb, pars->num_y_points, 4); // max 14
for (int i = 0; i < pars->num_y_points; i++) {
aom_wb_write_literal(wb, pars->scaling_points_y[i][0], 8);
aom_wb_write_literal(wb, pars->scaling_points_y[i][1], 8);
}
if (!cm->seq_params.monochrome)
aom_wb_write_bit(wb, pars->chroma_scaling_from_luma);
else
pars->chroma_scaling_from_luma = 0; // for monochrome override to 0
if (cm->seq_params.monochrome || pars->chroma_scaling_from_luma ||
((cm->subsampling_x == 1) && (cm->subsampling_y == 1) &&
(pars->num_y_points == 0))) {
pars->num_cb_points = 0;
pars->num_cr_points = 0;
} else {
aom_wb_write_literal(wb, pars->num_cb_points, 4); // max 10
for (int i = 0; i < pars->num_cb_points; i++) {
aom_wb_write_literal(wb, pars->scaling_points_cb[i][0], 8);
aom_wb_write_literal(wb, pars->scaling_points_cb[i][1], 8);
}
aom_wb_write_literal(wb, pars->num_cr_points, 4); // max 10
for (int i = 0; i < pars->num_cr_points; i++) {
aom_wb_write_literal(wb, pars->scaling_points_cr[i][0], 8);
aom_wb_write_literal(wb, pars->scaling_points_cr[i][1], 8);
}
}
aom_wb_write_literal(wb, pars->scaling_shift - 8, 2); // 8 + value
// AR coefficients
// Only sent if the corresponsing scaling function has
// more than 0 points
aom_wb_write_literal(wb, pars->ar_coeff_lag, 2);
int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1);
int num_pos_chroma = num_pos_luma;
if (pars->num_y_points > 0) ++num_pos_chroma;
if (pars->num_y_points)
for (int i = 0; i < num_pos_luma; i++)
aom_wb_write_literal(wb, pars->ar_coeffs_y[i] + 128, 8);
if (pars->num_cb_points || pars->chroma_scaling_from_luma)
for (int i = 0; i < num_pos_chroma; i++)
aom_wb_write_literal(wb, pars->ar_coeffs_cb[i] + 128, 8);
if (pars->num_cr_points || pars->chroma_scaling_from_luma)
for (int i = 0; i < num_pos_chroma; i++)
aom_wb_write_literal(wb, pars->ar_coeffs_cr[i] + 128, 8);
aom_wb_write_literal(wb, pars->ar_coeff_shift - 6, 2); // 8 + value
aom_wb_write_literal(wb, pars->grain_scale_shift, 2);
if (pars->num_cb_points) {
aom_wb_write_literal(wb, pars->cb_mult, 8);
aom_wb_write_literal(wb, pars->cb_luma_mult, 8);
aom_wb_write_literal(wb, pars->cb_offset, 9);
}
if (pars->num_cr_points) {
aom_wb_write_literal(wb, pars->cr_mult, 8);
aom_wb_write_literal(wb, pars->cr_luma_mult, 8);
aom_wb_write_literal(wb, pars->cr_offset, 9);
}
aom_wb_write_bit(wb, pars->overlap_flag);
aom_wb_write_bit(wb, pars->clip_to_restricted_range);
}
static void write_sb_size(SequenceHeader *seq_params,
struct aom_write_bit_buffer *wb) {
(void)seq_params;
(void)wb;
assert(seq_params->mib_size == mi_size_wide[seq_params->sb_size]);
assert(seq_params->mib_size == 1 << seq_params->mib_size_log2);
assert(seq_params->sb_size == BLOCK_128X128 ||
seq_params->sb_size == BLOCK_64X64);
aom_wb_write_bit(wb, seq_params->sb_size == BLOCK_128X128 ? 1 : 0);
}
void write_sequence_header(AV1_COMP *cpi, struct aom_write_bit_buffer *wb) {
AV1_COMMON *const cm = &cpi->common;
SequenceHeader *seq_params = &cm->seq_params;
int max_frame_width = cpi->oxcf.forced_max_frame_width
? cpi->oxcf.forced_max_frame_width
: cpi->oxcf.width;
int max_frame_height = cpi->oxcf.forced_max_frame_height
? cpi->oxcf.forced_max_frame_height
: cpi->oxcf.height;
const int num_bits_width =
(max_frame_width > 1) ? get_msb(max_frame_width - 1) + 1 : 1;
const int num_bits_height =
(max_frame_height > 1) ? get_msb(max_frame_height - 1) + 1 : 1;
assert(num_bits_width <= 16);
assert(num_bits_height <= 16);
seq_params->num_bits_width = num_bits_width;
seq_params->num_bits_height = num_bits_height;
seq_params->max_frame_width = max_frame_width;
seq_params->max_frame_height = max_frame_height;
aom_wb_write_literal(wb, num_bits_width - 1, 4);
aom_wb_write_literal(wb, num_bits_height - 1, 4);
aom_wb_write_literal(wb, max_frame_width - 1, num_bits_width);
aom_wb_write_literal(wb, max_frame_height - 1, num_bits_height);
/* Placeholder for actually writing to the bitstream */
if (!seq_params->reduced_still_picture_hdr) {
seq_params->frame_id_numbers_present_flag =
cm->large_scale_tile ? 0 : cm->error_resilient_mode;
seq_params->frame_id_length = FRAME_ID_LENGTH;
seq_params->delta_frame_id_length = DELTA_FRAME_ID_LENGTH;
aom_wb_write_bit(wb, seq_params->frame_id_numbers_present_flag);
if (seq_params->frame_id_numbers_present_flag) {
// We must always have delta_frame_id_length < frame_id_length,
// in order for a frame to be referenced with a unique delta.
// Avoid wasting bits by using a coding that enforces this restriction.
aom_wb_write_literal(wb, seq_params->delta_frame_id_length - 2, 4);
aom_wb_write_literal(
wb,
seq_params->frame_id_length - seq_params->delta_frame_id_length - 1,
3);
}
}
write_sb_size(seq_params, wb);
aom_wb_write_bit(wb, seq_params->enable_filter_intra);
aom_wb_write_bit(wb, seq_params->enable_intra_edge_filter);
if (!seq_params->reduced_still_picture_hdr) {
aom_wb_write_bit(wb, seq_params->enable_interintra_compound);
aom_wb_write_bit(wb, seq_params->enable_masked_compound);
aom_wb_write_bit(wb, seq_params->enable_warped_motion);
aom_wb_write_bit(wb, seq_params->enable_dual_filter);
aom_wb_write_bit(wb, seq_params->enable_order_hint);
if (seq_params->enable_order_hint) {
aom_wb_write_bit(wb, seq_params->enable_jnt_comp);
aom_wb_write_bit(wb, seq_params->enable_ref_frame_mvs);
}
if (seq_params->force_screen_content_tools == 2) {
aom_wb_write_bit(wb, 1);
} else {
aom_wb_write_bit(wb, 0);
aom_wb_write_bit(wb, seq_params->force_screen_content_tools);
}
if (seq_params->force_screen_content_tools > 0) {
if (seq_params->force_integer_mv == 2) {
aom_wb_write_bit(wb, 1);
} else {
aom_wb_write_bit(wb, 0);
aom_wb_write_bit(wb, seq_params->force_integer_mv);
}
} else {
assert(seq_params->force_integer_mv == 2);
}
if (seq_params->enable_order_hint)
aom_wb_write_literal(wb, seq_params->order_hint_bits_minus1, 3);
}
aom_wb_write_bit(wb, seq_params->enable_superres);
aom_wb_write_bit(wb, seq_params->enable_cdef);
aom_wb_write_bit(wb, seq_params->enable_restoration);
}
static void write_global_motion_params(const WarpedMotionParams *params,
const WarpedMotionParams *ref_params,
struct aom_write_bit_buffer *wb,
int allow_hp) {
const TransformationType type = params->wmtype;
aom_wb_write_bit(wb, type != IDENTITY);
if (type != IDENTITY) {
aom_wb_write_bit(wb, type == ROTZOOM);
if (type != ROTZOOM) aom_wb_write_bit(wb, type == TRANSLATION);
}
if (type >= ROTZOOM) {
aom_wb_write_signed_primitive_refsubexpfin(
wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) -
(1 << GM_ALPHA_PREC_BITS),
(params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
aom_wb_write_signed_primitive_refsubexpfin(
wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF),
(params->wmmat[3] >> GM_ALPHA_PREC_DIFF));
}
if (type >= AFFINE) {
aom_wb_write_signed_primitive_refsubexpfin(
wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF),
(params->wmmat[4] >> GM_ALPHA_PREC_DIFF));
aom_wb_write_signed_primitive_refsubexpfin(
wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
(1 << GM_ALPHA_PREC_BITS),
(params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
}
if (type >= TRANSLATION) {
const int trans_bits = (type == TRANSLATION)
? GM_ABS_TRANS_ONLY_BITS - !allow_hp
: GM_ABS_TRANS_BITS;
const int trans_prec_diff = (type == TRANSLATION)
? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
: GM_TRANS_PREC_DIFF;
aom_wb_write_signed_primitive_refsubexpfin(
wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
(ref_params->wmmat[0] >> trans_prec_diff),
(params->wmmat[0] >> trans_prec_diff));
aom_wb_write_signed_primitive_refsubexpfin(
wb, (1 << trans_bits) + 1, SUBEXPFIN_K,
(ref_params->wmmat[1] >> trans_prec_diff),
(params->wmmat[1] >> trans_prec_diff));
}
}
static void write_global_motion(AV1_COMP *cpi,
struct aom_write_bit_buffer *wb) {
AV1_COMMON *const cm = &cpi->common;
int frame;
for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
const WarpedMotionParams *ref_params =
cm->prev_frame ? &cm->prev_frame->global_motion[frame]
: &default_warp_params;
write_global_motion_params(&cm->global_motion[frame], ref_params, wb,
cm->allow_high_precision_mv);
// TODO(sarahparker, debargha): The logic in the commented out code below
// does not work currently and causes mismatches when resize is on.
// Fix it before turning the optimization back on.
/*
YV12_BUFFER_CONFIG *ref_buf = get_ref_frame_buffer(cpi, frame);
if (cpi->source->y_crop_width == ref_buf->y_crop_width &&
cpi->source->y_crop_height == ref_buf->y_crop_height) {
write_global_motion_params(&cm->global_motion[frame],
&cm->prev_frame->global_motion[frame], wb,
cm->allow_high_precision_mv);
} else {
assert(cm->global_motion[frame].wmtype == IDENTITY &&
"Invalid warp type for frames of different resolutions");
}
*/
/*
printf("Frame %d/%d: Enc Ref %d: %d %d %d %d\n",
cm->current_video_frame, cm->show_frame, frame,
cm->global_motion[frame].wmmat[0],
cm->global_motion[frame].wmmat[1], cm->global_motion[frame].wmmat[2],
cm->global_motion[frame].wmmat[3]);
*/
}
}
void check_frame_refs_short_signaling(AV1_COMP *const cpi, int lst_map_idx,
int gld_map_idx) {
AV1_COMMON *const cm = &cpi->common;
if (!cm->frame_refs_short_signaling) return;
// Check whether all references are distinct frames.
int buf_markers[FRAME_BUFFERS] = { 0 };
for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame);
if (buf_idx != INVALID_IDX) {
assert(buf_idx >= 0 && buf_idx < FRAME_BUFFERS);
buf_markers[buf_idx] = 1;
}
}
int num_refs = 0;
for (int buf_idx = 0; buf_idx < FRAME_BUFFERS; ++buf_idx) {
num_refs += buf_markers[buf_idx];
}
// We only turn on frame_refs_short_signaling when all references are
// distinct.
if (num_refs < INTER_REFS_PER_FRAME) {
// It indicates that there exist more than one reference frame pointing to
// the same reference buffer, i.e. two or more references are duplicate.
cm->frame_refs_short_signaling = 0;
return;
}
// Check whether the encoder side ref frame choices are aligned with that to
// be derived at the decoder side.
RefBuffer frame_refs_copy[INTER_REFS_PER_FRAME];
// Backup the frame refs info
memcpy(frame_refs_copy, cm->frame_refs,
INTER_REFS_PER_FRAME * sizeof(RefBuffer));
// Set up the frame refs mapping indexes according to the
// frame_refs_short_signaling policy.
av1_set_frame_refs(cm, lst_map_idx, gld_map_idx);
// We only turn on frame_refs_short_signaling when the encoder side decision
// on ref frames is identical to that at the decoder side.
for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ++ref_idx) {
// Compare the buffer index between two reference frames indexed
// respectively by the encoder and the decoder side decisions.
if (cm->frame_refs[ref_idx].idx != frame_refs_copy[ref_idx].idx) {
cm->frame_refs_short_signaling = 0;
break;
}
}
#if 0 // For debug
printf("\nFrame=%d: ", cm->current_video_frame);
for (int enc_ref = LAST_FRAME; enc_ref <= ALTREF_FRAME; ++enc_ref) {
printf("enc_ref(map_idx=%d, buf_idx=%d)=%d, mapped to "
"dec_ref(map_idx=%d, buf_idx=%d)=%d\n",
get_ref_frame_map_idx(cpi, enc_ref),
get_ref_frame_buf_idx(cpi, enc_ref), enc_ref,
cm->frame_refs[cpi->ref_conv[enc_ref] - LAST_FRAME].map_idx,
cm->frame_refs[cpi->ref_conv[enc_ref] - LAST_FRAME].idx,
cpi->ref_conv[enc_ref]);
}
#endif // 0
// Restore the frame refs info if frame_refs_short_signaling is off.
if (!cm->frame_refs_short_signaling)
memcpy(cm->frame_refs, frame_refs_copy,
INTER_REFS_PER_FRAME * sizeof(RefBuffer));
}
// New function based on HLS R18
static void write_uncompressed_header_obu(AV1_COMP *cpi,
struct aom_write_bit_buffer *saved_wb,
struct aom_write_bit_buffer *wb) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &cpi->td.mb.e_mbd;
// NOTE: By default all coded frames to be used as a reference
cm->is_reference_frame = 1;
cm->frame_type = cm->intra_only ? INTRA_ONLY_FRAME : cm->frame_type;
if (cm->seq_params.still_picture) {
assert(cm->show_existing_frame == 0);
assert(cm->show_frame == 1);
assert(cm->frame_type == KEY_FRAME);
}
if (!cm->seq_params.reduced_still_picture_hdr) {
if (cm->show_existing_frame) {
RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
const int frame_to_show = cm->ref_frame_map[cpi->existing_fb_idx_to_show];
if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) {
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Buffer %d does not contain a reconstructed frame",
frame_to_show);
}
ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show);
aom_wb_write_bit(wb, 1); // show_existing_frame
aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3);
#if CONFIG_BUFFER_MODEL
if (cm->decoder_model_info_present_flag &&
cm->timing_info.equal_picture_interval == 0) {
write_tu_pts_info(cm, wb);
}
#endif
if (cm->seq_params.frame_id_numbers_present_flag) {
int frame_id_len = cm->seq_params.frame_id_length;
int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show];
aom_wb_write_literal(wb, display_frame_id, frame_id_len);
}
if (cm->reset_decoder_state &&
frame_bufs[frame_to_show].frame_type != KEY_FRAME) {
aom_internal_error(
&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"show_existing_frame to reset state on KEY_FRAME only");
}
return;
} else {
aom_wb_write_bit(wb, 0); // show_existing_frame
}
aom_wb_write_literal(wb, cm->frame_type, 2);
aom_wb_write_bit(wb, cm->show_frame);
#if CONFIG_BUFFER_MODEL
if (cm->show_frame) {
if (cm->decoder_model_info_present_flag &&
cm->timing_info.equal_picture_interval == 0)
write_tu_pts_info(cm, wb);
} else {
#else
if (!cm->show_frame) {
#endif
aom_wb_write_bit(wb, cm->showable_frame);
}
if (frame_is_sframe(cm)) {
assert(cm->error_resilient_mode);
} else if (!(cm->frame_type == KEY_FRAME && cm->show_frame)) {
aom_wb_write_bit(wb, cm->error_resilient_mode);
}
}
aom_wb_write_bit(wb, cm->disable_cdf_update);
if (cm->seq_params.force_screen_content_tools == 2) {
aom_wb_write_bit(wb, cm->allow_screen_content_tools);
} else {
assert(cm->allow_screen_content_tools ==
cm->seq_params.force_screen_content_tools);
}
if (cm->allow_screen_content_tools) {
if (cm->seq_params.force_integer_mv == 2) {
aom_wb_write_bit(wb, cm->cur_frame_force_integer_mv);
} else {
assert(cm->cur_frame_force_integer_mv == cm->seq_params.force_integer_mv);
}
} else {
assert(cm->cur_frame_force_integer_mv == 0);
}
cm->invalid_delta_frame_id_minus1 = 0;
int frame_size_override_flag = 0;
cm->frame_refs_short_signaling = 0;
if (cm->seq_params.reduced_still_picture_hdr) {
assert(cm->width == cm->seq_params.max_frame_width &&
cm->height == cm->seq_params.max_frame_height);
} else {
if (cm->seq_params.frame_id_numbers_present_flag) {
int frame_id_len = cm->seq_params.frame_id_length;
aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len);
}
if (cm->width > cm->seq_params.max_frame_width ||
cm->height > cm->seq_params.max_frame_height) {
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Frame dimensions are larger than the maximum values");
}
frame_size_override_flag =
frame_is_sframe(cm) ? 1
: (cm->width != cm->seq_params.max_frame_width ||
cm->height != cm->seq_params.max_frame_height);
if (!frame_is_sframe(cm)) aom_wb_write_bit(wb, frame_size_override_flag);
if (cm->seq_params.enable_order_hint)
aom_wb_write_literal(wb, cm->frame_offset,
cm->seq_params.order_hint_bits_minus1 + 1);
if (!cm->error_resilient_mode && !frame_is_intra_only(cm)) {
aom_wb_write_literal(wb, cm->primary_ref_frame, PRIMARY_REF_BITS);
}
}
#if CONFIG_BUFFER_MODEL
if (cm->decoder_model_info_present_flag) {
aom_wb_write_bit(wb, cm->buffer_removal_delay_present);
if (cm->buffer_removal_delay_present) {
for (int op_num = 0; op_num < cm->operating_points_decoder_model_cnt;
op_num++) {
if (((cm->op_params[op_num].decoder_model_operating_point_idc >>
cm->temporal_layer_id) &
0x1 &&
(cm->op_params[op_num].decoder_model_operating_point_idc >>
(cm->spatial_layer_id + 8)) &
0x1) ||
cm->op_params[op_num].decoder_model_operating_point_idc == 0) {
aom_wb_write_literal(
wb, (uint32_t)cm->op_frame_timing[op_num].buffer_removal_delay,
cm->buffer_model.buffer_removal_delay_length);
cm->op_frame_timing[op_num].buffer_removal_delay++;
}
}
}
}
#endif
cpi->refresh_frame_mask = get_refresh_mask(cpi);
if (cm->frame_type == KEY_FRAME) {
if (!cm->show_frame) { // unshown keyframe (forward keyframe)
aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES);
} else {
assert(cpi->refresh_frame_mask == 0xFF);
}
} else {
if (cm->frame_type == INTRA_ONLY_FRAME) {
assert(cpi->refresh_frame_mask != 0xFF);
int updated_fb = -1;
for (int i = 0; i < REF_FRAMES; i++) {
// If more than one frame is refreshed, it doesn't matter which one
// we pick, so pick the first.
if (cpi->refresh_frame_mask & (1 << i)) {
updated_fb = i;
break;
}
}
assert(updated_fb >= 0);
cm->fb_of_context_type[cm->frame_context_idx] = updated_fb;
aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES);
} else if (cm->frame_type == INTER_FRAME || frame_is_sframe(cm)) {
if (cm->frame_type == INTER_FRAME) {
aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES);
} else {
assert(frame_is_sframe(cm) && cpi->refresh_frame_mask == 0xFF);
}
int updated_fb = -1;
for (int i = 0; i < REF_FRAMES; i++) {
// If more than one frame is refreshed, it doesn't matter which one
// we pick, so pick the first.
if (cpi->refresh_frame_mask & (1 << i)) {
updated_fb = i;
break;
}
}
// large scale tile sometimes won't refresh any fbs
if (updated_fb >= 0) {
cm->fb_of_context_type[cm->frame_context_idx] = updated_fb;
}
if (!cpi->refresh_frame_mask) {
// NOTE: "cpi->refresh_frame_mask == 0" indicates that the coded frame
// will not be used as a reference
cm->is_reference_frame = 0;
}
}
}
if (!frame_is_intra_only(cm) || cpi->refresh_frame_mask != 0xFF) {
// Write all ref frame order hints if error_resilient_mode == 1
if (cm->error_resilient_mode && cm->seq_params.enable_order_hint) {
RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) {
// Get buffer index
const int buf_idx = cm->ref_frame_map[ref_idx];
assert(buf_idx >= 0 && buf_idx < FRAME_BUFFERS);
// Write order hint to bit stream
aom_wb_write_literal(wb, frame_bufs[buf_idx].cur_frame_offset,
cm->seq_params.order_hint_bits_minus1 + 1);
}
}
}
if (cm->frame_type == KEY_FRAME) {
write_frame_size(cm, frame_size_override_flag, wb);
assert(av1_superres_unscaled(cm) || !cm->allow_intrabc);
if (cm->allow_screen_content_tools && av1_superres_unscaled(cm))
aom_wb_write_bit(wb, cm->allow_intrabc);
// all eight fbs are refreshed, pick one that will live long enough
cm->fb_of_context_type[REGULAR_FRAME] = 0;
} else {
if (cm->frame_type == INTRA_ONLY_FRAME) {
write_frame_size(cm, frame_size_override_flag, wb);
assert(av1_superres_unscaled(cm) || !cm->allow_intrabc);
if (cm->allow_screen_content_tools && av1_superres_unscaled(cm))
aom_wb_write_bit(wb, cm->allow_intrabc);
} else if (cm->frame_type == INTER_FRAME || frame_is_sframe(cm)) {
MV_REFERENCE_FRAME ref_frame;
// NOTE: Error resilient mode turns off frame_refs_short_signaling
// automatically.
if (cm->seq_params.enable_order_hint)
aom_wb_write_bit(wb, cm->frame_refs_short_signaling);
else
assert(cm->frame_refs_short_signaling == 0);
if (cm->frame_refs_short_signaling) {
const int lst_ref = get_ref_frame_map_idx(cpi, LAST_FRAME);
assert(lst_ref != INVALID_IDX);
const int gld_ref = get_ref_frame_map_idx(cpi, GOLDEN_FRAME);
assert(gld_ref != INVALID_IDX);
// NOTE(zoeliu@google.com):
// An example solution for encoder-side implementation on frame refs
// short signaling, which is only turned on when the encoder side
// decision on ref frames is identical to that at the decoder side.
check_frame_refs_short_signaling(cpi, lst_ref, gld_ref);
if (cm->frame_refs_short_signaling) {
aom_wb_write_literal(wb, lst_ref, REF_FRAMES_LOG2);
aom_wb_write_literal(wb, gld_ref, REF_FRAMES_LOG2);
}
}
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX);
if (!cm->frame_refs_short_signaling)
aom_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame),
REF_FRAMES_LOG2);
if (cm->seq_params.frame_id_numbers_present_flag) {
int i = get_ref_frame_map_idx(cpi, ref_frame);
int frame_id_len = cm->seq_params.frame_id_length;
int diff_len = cm->seq_params.delta_frame_id_length;
int delta_frame_id_minus1 =
((cm->current_frame_id - cm->ref_frame_id[i] +
(1 << frame_id_len)) %
(1 << frame_id_len)) -
1;
if (delta_frame_id_minus1 < 0 ||
delta_frame_id_minus1 >= (1 << diff_len))
cm->invalid_delta_frame_id_minus1 = 1;
aom_wb_write_literal(wb, delta_frame_id_minus1, diff_len);
}
}
if (!cm->error_resilient_mode && frame_size_override_flag) {
write_frame_size_with_refs(cpi, wb);
} else {
write_frame_size(cm, frame_size_override_flag, wb);
}
if (cm->cur_frame_force_integer_mv) {
cm->allow_high_precision_mv = 0;
} else {
aom_wb_write_bit(wb, cm->allow_high_precision_mv);
}
fix_interp_filter(cm, cpi->td.counts);
write_frame_interp_filter(cm->interp_filter, wb);
aom_wb_write_bit(wb, cm->switchable_motion_mode);
if (frame_might_allow_ref_frame_mvs(cm)) {
aom_wb_write_bit(wb, cm->allow_ref_frame_mvs);
} else {
assert(cm->allow_ref_frame_mvs == 0);
}
}
}
const int might_bwd_adapt = !(cm->seq_params.reduced_still_picture_hdr) &&
!(cm->large_scale_tile) &&
!(cm->disable_cdf_update);
if (might_bwd_adapt) {
aom_wb_write_bit(
wb, cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED);
}
write_tile_info(cm, saved_wb, wb);
encode_quantization(cm, wb);
encode_segmentation(cm, xd, wb);
{
int delta_q_allowed = 1;
if (cm->delta_q_present_flag)
assert(delta_q_allowed == 1 && cm->base_qindex > 0);
if (delta_q_allowed == 1 && cm->base_qindex > 0) {
aom_wb_write_bit(wb, cm->delta_q_present_flag);
if (cm->delta_q_present_flag) {
aom_wb_write_literal(wb, OD_ILOG_NZ(cm->delta_q_res) - 1, 2);
xd->prev_qindex = cm->base_qindex;
if (cm->allow_intrabc)
assert(cm->delta_lf_present_flag == 0);
else
aom_wb_write_bit(wb, cm->delta_lf_present_flag);
if (cm->delta_lf_present_flag) {
aom_wb_write_literal(wb, OD_ILOG_NZ(cm->delta_lf_res) - 1, 2);
xd->prev_delta_lf_from_base = 0;
aom_wb_write_bit(wb, cm->delta_lf_multi);
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
xd->prev_delta_lf[lf_id] = 0;
}
}
}
}
if (cm->all_lossless) {
assert(av1_superres_unscaled(cm));
} else {
if (!cm->coded_lossless) {
encode_loopfilter(cm, wb);
encode_cdef(cm, wb);
}
encode_restoration_mode(cm, wb);
}
write_tx_mode(cm, &cm->tx_mode, wb);
if (cpi->allow_comp_inter_inter) {
const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT;
aom_wb_write_bit(wb, use_hybrid_pred);
}
if (cm->is_skip_mode_allowed) aom_wb_write_bit(wb, cm->skip_mode_flag);
if (frame_might_allow_warped_motion(cm))
aom_wb_write_bit(wb, cm->allow_warped_motion);
else
assert(!cm->allow_warped_motion);
aom_wb_write_bit(wb, cm->reduced_tx_set_used);
if (!frame_is_intra_only(cm)) write_global_motion(cpi, wb);
if (cm->film_grain_params_present && (cm->show_frame || cm->showable_frame)) {
int flip_back_update_parameters_flag = 0;
if (cm->frame_type != INTER_FRAME &&
cm->film_grain_params.update_parameters == 0) {
cm->film_grain_params.update_parameters = 1;
flip_back_update_parameters_flag = 1;
}
write_film_grain_params(cpi, wb);
if (flip_back_update_parameters_flag)
cm->film_grain_params.update_parameters = 0;
}
}
static int choose_size_bytes(uint32_t size, int spare_msbs) {
// Choose the number of bytes required to represent size, without
// using the 'spare_msbs' number of most significant bits.
// Make sure we will fit in 4 bytes to start with..
if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1;
// Normalise to 32 bits
size <<= spare_msbs;
if (size >> 24 != 0)
return 4;
else if (size >> 16 != 0)
return 3;
else if (size >> 8 != 0)
return 2;
else
return 1;
}
static void mem_put_varsize(uint8_t *const dst, const int sz, const int val) {
switch (sz) {
case 1: dst[0] = (uint8_t)(val & 0xff); break;
case 2: mem_put_le16(dst, val); break;
case 3: mem_put_le24(dst, val); break;
case 4: mem_put_le32(dst, val); break;
default: assert(0 && "Invalid size"); break;
}
}
static int remux_tiles(const AV1_COMMON *const cm, uint8_t *dst,
const uint32_t data_size, const uint32_t max_tile_size,
const uint32_t max_tile_col_size,
int *const tile_size_bytes,
int *const tile_col_size_bytes) {
// Choose the tile size bytes (tsb) and tile column size bytes (tcsb)
int tsb;
int tcsb;
if (cm->large_scale_tile) {
// The top bit in the tile size field indicates tile copy mode, so we
// have 1 less bit to code the tile size
tsb = choose_size_bytes(max_tile_size, 1);
tcsb = choose_size_bytes(max_tile_col_size, 0);
} else {
tsb = choose_size_bytes(max_tile_size, 0);
tcsb = 4; // This is ignored
(void)max_tile_col_size;
}
assert(tsb > 0);
assert(tcsb > 0);
*tile_size_bytes = tsb;
*tile_col_size_bytes = tcsb;
if (tsb == 4 && tcsb == 4) return data_size;
uint32_t wpos = 0;
uint32_t rpos = 0;
if (cm->large_scale_tile) {
int tile_row;
int tile_col;
for (tile_col = 0; tile_col < cm->tile_cols; tile_col++) {
// All but the last column has a column header
if (tile_col < cm->tile_cols - 1) {
uint32_t tile_col_size = mem_get_le32(dst + rpos);
rpos += 4;
// Adjust the tile column size by the number of bytes removed
// from the tile size fields.
tile_col_size -= (4 - tsb) * cm->tile_rows;
mem_put_varsize(dst + wpos, tcsb, tile_col_size);
wpos += tcsb;
}
for (tile_row = 0; tile_row < cm->tile_rows; tile_row++) {
// All, including the last row has a header
uint32_t tile_header = mem_get_le32(dst + rpos);
rpos += 4;
// If this is a copy tile, we need to shift the MSB to the
// top bit of the new width, and there is no data to copy.
if (tile_header >> 31 != 0) {
if (tsb < 4) tile_header >>= 32 - 8 * tsb;
mem_put_varsize(dst + wpos, tsb, tile_header);
wpos += tsb;
} else {
mem_put_varsize(dst + wpos, tsb, tile_header);
wpos += tsb;
tile_header += AV1_MIN_TILE_SIZE_BYTES;
memmove(dst + wpos, dst + rpos, tile_header);
rpos += tile_header;
wpos += tile_header;
}
}
}
assert(rpos > wpos);
assert(rpos == data_size);
return wpos;
}
const int n_tiles = cm->tile_cols * cm->tile_rows;
int n;
for (n = 0; n < n_tiles; n++) {
int tile_size;
if (n == n_tiles - 1) {
tile_size = data_size - rpos;
} else {
tile_size = mem_get_le32(dst + rpos);
rpos += 4;
mem_put_varsize(dst + wpos, tsb, tile_size);
tile_size += AV1_MIN_TILE_SIZE_BYTES;
wpos += tsb;
}
memmove(dst + wpos, dst + rpos, tile_size);
rpos += tile_size;
wpos += tile_size;
}
assert(rpos > wpos);
assert(rpos == data_size);
return wpos;
}
uint32_t write_obu_header(OBU_TYPE obu_type, int obu_extension,
uint8_t *const dst) {
struct aom_write_bit_buffer wb = { dst, 0 };
uint32_t size = 0;
aom_wb_write_literal(&wb, 0, 1); // forbidden bit.
aom_wb_write_literal(&wb, (int)obu_type, 4);
aom_wb_write_literal(&wb, obu_extension ? 1 : 0, 1);
aom_wb_write_literal(&wb, 1, 1); // obu_has_payload_length_field
aom_wb_write_literal(&wb, 0, 1); // reserved
if (obu_extension) {
aom_wb_write_literal(&wb, obu_extension & 0xFF, 8);
}
size = aom_wb_bytes_written(&wb);
return size;
}
int write_uleb_obu_size(uint32_t obu_header_size, uint32_t obu_payload_size,
uint8_t *dest) {
const uint32_t obu_size = obu_payload_size;
const uint32_t offset = obu_header_size;
size_t coded_obu_size = 0;
if (aom_uleb_encode(obu_size, sizeof(obu_size), dest + offset,
&coded_obu_size) != 0) {
return AOM_CODEC_ERROR;
}
return AOM_CODEC_OK;
}
static size_t obu_memmove(uint32_t obu_header_size, uint32_t obu_payload_size,
uint8_t *data) {
const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size);
const uint32_t move_dst_offset =
(uint32_t)length_field_size + obu_header_size;
const uint32_t move_src_offset = obu_header_size;
const uint32_t move_size = obu_payload_size;
memmove(data + move_dst_offset, data + move_src_offset, move_size);
return length_field_size;
}
static void add_trailing_bits(struct aom_write_bit_buffer *wb) {
if (aom_wb_is_byte_aligned(wb)) {
aom_wb_write_literal(wb, 0x80, 8);
} else {
// assumes that the other bits are already 0s
aom_wb_write_bit(wb, 1);
}
}
static void write_bitstream_level(BitstreamLevel bl,
struct aom_write_bit_buffer *wb) {
assert(bl.major >= LEVEL_MAJOR_MIN && bl.major <= LEVEL_MAJOR_MAX);
aom_wb_write_literal(wb, bl.major - LEVEL_MAJOR_MIN, LEVEL_MAJOR_BITS);
aom_wb_write_literal(wb, bl.minor, LEVEL_MINOR_BITS);
}
static uint32_t write_sequence_header_obu(AV1_COMP *cpi, uint8_t *const dst,
uint8_t number_spatial_layers) {
AV1_COMMON *const cm = &cpi->common;
struct aom_write_bit_buffer wb = { dst, 0 };
uint32_t size = 0;
write_profile(cm->profile, &wb);
// Still picture or not
aom_wb_write_bit(&wb, cm->seq_params.still_picture);
assert(IMPLIES(!cm->seq_params.still_picture,
!cm->seq_params.reduced_still_picture_hdr));
// whether to use reduced still picture header
aom_wb_write_bit(&wb, cm->seq_params.reduced_still_picture_hdr);
if (cm->seq_params.reduced_still_picture_hdr) {
write_bitstream_level(cm->seq_params.level[0], &wb);
} else {
uint8_t operating_points_minus1_cnt =
number_spatial_layers > 1 ? number_spatial_layers - 1 : 0;
aom_wb_write_literal(&wb, operating_points_minus1_cnt,
OP_POINTS_MINUS1_BITS);
int i;
if (operating_points_minus1_cnt == 0) {
cm->seq_params.operating_point_idc[0] = 0;
} else {
// Set operating_point_idc[] such that for the i-th operating point the
// first (operating_points_cnt-i) spatial layers and the first temporal
// layer are decoded Note that highest quality operating point should come
// first
for (i = 0; i < operating_points_minus1_cnt + 1; i++)
cm->seq_params.operating_point_idc[i] =
(~(~0u << (operating_points_minus1_cnt + 1 - i)) << 8) | 1;
}
for (i = 0; i < operating_points_minus1_cnt + 1; i++) {
aom_wb_write_literal(&wb, cm->seq_params.operating_point_idc[i],
OP_POINTS_IDC_BITS);
write_bitstream_level(cm->seq_params.level[i], &wb);
#if !CONFIG_BUFFER_MODEL
aom_wb_write_literal(&wb, 0, 1); // decoder_rate_model_present_flag[i]
#endif
}
}
write_sequence_header(cpi, &wb);
// color_config
write_bitdepth_colorspace_sampling(cm, &wb);
#if !CONFIG_BUFFER_MODEL
// timing_info
if (!cm->seq_params.reduced_still_picture_hdr)
write_timing_info_header(cm, &wb);
#else
if (!cm->seq_params.reduced_still_picture_hdr)
aom_wb_write_bit(&wb, cm->timing_info_present); // timing info present flag
else
assert(cm->timing_info_present == 0);
if (cm->timing_info_present) {
// timing_info
write_timing_info_header(cm, &wb);
aom_wb_write_bit(&wb, cm->decoder_model_info_present_flag);
if (cm->decoder_model_info_present_flag) write_decoder_model_info(cm, &wb);
}
if (cm->operating_points_decoder_model_cnt > 0) {
aom_wb_write_bit(&wb, 1);
aom_wb_write_literal(&wb, cm->operating_points_decoder_model_cnt - 1, 5);
} else {
aom_wb_write_bit(&wb, 0);
}
for (int op_num = 0; op_num < cm->operating_points_decoder_model_cnt;
++op_num) {
aom_wb_write_literal(
&wb, cm->op_params[op_num].decoder_model_operating_point_idc, 12);
aom_wb_write_bit(&wb,
cm->op_params[op_num].display_model_param_present_flag);
if (cm->op_params[op_num].display_model_param_present_flag)
aom_wb_write_literal(&wb, cm->op_params[op_num].initial_display_delay - 1,
4);
if (cm->decoder_model_info_present_flag) {
aom_wb_write_bit(&wb,
cm->op_params[op_num].decoder_model_param_present_flag);
if (cm->op_params[op_num].decoder_model_param_present_flag)
write_dec_model_op_parameters(cm, &wb, op_num);
}
}
#endif
aom_wb_write_bit(&wb, cm->film_grain_params_present);
add_trailing_bits(&wb);
size = aom_wb_bytes_written(&wb);
return size;
}
static uint32_t write_frame_header_obu(AV1_COMP *cpi,
struct aom_write_bit_buffer *saved_wb,
uint8_t *const dst,
int append_trailing_bits) {
struct aom_write_bit_buffer wb = { dst, 0 };
write_uncompressed_header_obu(cpi, saved_wb, &wb);
if (append_trailing_bits) add_trailing_bits(&wb);
return aom_wb_bytes_written(&wb);
}
static uint32_t write_tile_group_header(uint8_t *const dst, int startTile,
int endTile, int tiles_log2,
int tile_start_and_end_present_flag) {
struct aom_write_bit_buffer wb = { dst, 0 };
uint32_t size = 0;
if (!tiles_log2) return size;
aom_wb_write_bit(&wb, tile_start_and_end_present_flag);
if (tile_start_and_end_present_flag) {
aom_wb_write_literal(&wb, startTile, tiles_log2);
aom_wb_write_literal(&wb, endTile, tiles_log2);
}
size = aom_wb_bytes_written(&wb);
return size;
}
typedef struct {
uint8_t *frame_header;
size_t obu_header_byte_offset;
size_t total_length;
} FrameHeaderInfo;
static uint32_t write_tiles_in_tg_obus(AV1_COMP *const cpi, uint8_t *const dst,
struct aom_write_bit_buffer *saved_wb,
uint8_t obu_extension_header,
const FrameHeaderInfo *fh_info) {
AV1_COMMON *const cm = &cpi->common;
aom_writer mode_bc;
int tile_row, tile_col;
TOKENEXTRA *(*const tok_buffers)[MAX_TILE_COLS] = cpi->tile_tok;
TileBufferEnc(*const tile_buffers)[MAX_TILE_COLS] = cpi->tile_buffers;
uint32_t total_size = 0;
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
unsigned int tile_size = 0;
unsigned int max_tile_size = 0;
unsigned int max_tile_col_size = 0;
const int n_log2_tiles = cm->log2_tile_rows + cm->log2_tile_cols;
// Fixed size tile groups for the moment
const int num_tg_hdrs = cm->num_tg;
const int tg_size =
(cm->large_scale_tile)
? 1
: (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs;
int tile_count = 0;
int curr_tg_data_size = 0;
uint8_t *data = dst;
int new_tg = 1;
const int have_tiles = tile_cols * tile_rows > 1;
int first_tg = 1;
cm->largest_tile_id = 0;
if (cm->large_scale_tile) {
// For large_scale_tile case, we always have only one tile group, so it can
// be written as an OBU_FRAME.
const OBU_TYPE obu_type = OBU_FRAME;
const uint32_t tg_hdr_size = write_obu_header(obu_type, 0, data);
data += tg_hdr_size;
const uint32_t frame_header_size =
write_frame_header_obu(cpi, saved_wb, data, 0);
data += frame_header_size;
total_size += frame_header_size;
int tile_size_bytes = 0;
int tile_col_size_bytes = 0;
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
TileInfo tile_info;
const int is_last_col = (tile_col == tile_cols - 1);
const uint32_t col_offset = total_size;
av1_tile_set_col(&tile_info, cm, tile_col);
// The last column does not have a column header
if (!is_last_col) total_size += 4;
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col];
const TOKENEXTRA *tok = tok_buffers[tile_row][tile_col];
const TOKENEXTRA *tok_end = tok + cpi->tok_count[tile_row][tile_col];
const int data_offset = have_tiles ? 4 : 0;
const int tile_idx = tile_row * tile_cols + tile_col;
TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
av1_tile_set_row(&tile_info, cm, tile_row);
buf->data = dst + total_size + tg_hdr_size;
// Is CONFIG_EXT_TILE = 1, every tile in the row has a header,
// even for the last one, unless no tiling is used at all.
total_size += data_offset;
// Initialise tile context from the frame context
this_tile->tctx = *cm->fc;
cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx;
mode_bc.allow_update_cdf = !cm->large_scale_tile;
mode_bc.allow_update_cdf =
mode_bc.allow_update_cdf && !cm->disable_cdf_update;
aom_start_encode(&mode_bc, buf->data + data_offset);
write_modes(cpi, &tile_info, &mode_bc, &tok, tok_end);
assert(tok == tok_end);
aom_stop_encode(&mode_bc);
tile_size = mode_bc.pos;
buf->size = tile_size;
// Record the maximum tile size we see, so we can compact headers later.
if (tile_size > max_tile_size) {
max_tile_size = tile_size;
cm->largest_tile_id = tile_cols * tile_row + tile_col;
}
if (have_tiles) {
// tile header: size of this tile, or copy offset
uint32_t tile_header = tile_size - AV1_MIN_TILE_SIZE_BYTES;
const int tile_copy_mode =
((AOMMAX(cm->tile_width, cm->tile_height) << MI_SIZE_LOG2) <= 256)
? 1
: 0;
// If tile_copy_mode = 1, check if this tile is a copy tile.
// Very low chances to have copy tiles on the key frames, so don't
// search on key frames to reduce unnecessary search.
if (cm->frame_type != KEY_FRAME && tile_copy_mode) {
const int identical_tile_offset =
find_identical_tile(tile_row, tile_col, tile_buffers);
if (identical_tile_offset > 0) {
tile_size = 0;
tile_header = identical_tile_offset | 0x80;
tile_header <<= 24;
}
}
mem_put_le32(buf->data, tile_header);
}
total_size += tile_size;
}
if (!is_last_col) {
uint32_t col_size = total_size - col_offset - 4;
mem_put_le32(dst + col_offset + tg_hdr_size, col_size);
// Record the maximum tile column size we see.
max_tile_col_size = AOMMAX(max_tile_col_size, col_size);
}
}
if (have_tiles) {
total_size = remux_tiles(cm, data, total_size - frame_header_size,
max_tile_size, max_tile_col_size,
&tile_size_bytes, &tile_col_size_bytes);
total_size += frame_header_size;
}
// In EXT_TILE case, only use 1 tile group. Follow the obu syntax, write
// current tile group size before tile data(include tile column header).
// Tile group size doesn't include the bytes storing tg size.
total_size += tg_hdr_size;
const uint32_t obu_payload_size = total_size - tg_hdr_size;
const size_t length_field_size =
obu_memmove(tg_hdr_size, obu_payload_size, dst);
if (write_uleb_obu_size(tg_hdr_size, obu_payload_size, dst) !=
AOM_CODEC_OK) {
assert(0);
}
total_size += (uint32_t)length_field_size;
saved_wb->bit_buffer += length_field_size;
// Now fill in the gaps in the uncompressed header.
if (have_tiles) {
assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4);
aom_wb_overwrite_literal(saved_wb, tile_col_size_bytes - 1, 2);
assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
}
return total_size;
}
uint32_t obu_header_size = 0;
uint8_t *tile_data_start = dst + total_size;
for (tile_row = 0; tile_row < tile_rows; tile_row++) {
TileInfo tile_info;
av1_tile_set_row(&tile_info, cm, tile_row);
for (tile_col = 0; tile_col < tile_cols; tile_col++) {
const int tile_idx = tile_row * tile_cols + tile_col;
TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col];
TileDataEnc *this_tile = &cpi->tile_data[tile_idx];
const TOKENEXTRA *tok = tok_buffers[tile_row][tile_col];
const TOKENEXTRA *tok_end = tok + cpi->tok_count[tile_row][tile_col];
int is_last_tile_in_tg = 0;
if (new_tg) {
data = dst + total_size;
// A new tile group begins at this tile. Write the obu header and
// tile group header
const OBU_TYPE obu_type =
(num_tg_hdrs == 1) ? OBU_FRAME : OBU_TILE_GROUP;
curr_tg_data_size =
write_obu_header(obu_type, obu_extension_header, data);
obu_header_size = curr_tg_data_size;
if (num_tg_hdrs == 1) {
curr_tg_data_size += write_frame_header_obu(
cpi, saved_wb, data + curr_tg_data_size, 0);
}
curr_tg_data_size += write_tile_group_header(
data + curr_tg_data_size, tile_idx,
AOMMIN(tile_idx + tg_size - 1, tile_cols * tile_rows - 1),
n_log2_tiles, cm->num_tg > 1);
total_size += curr_tg_data_size;
tile_data_start += curr_tg_data_size;
new_tg = 0;
tile_count = 0;
}
tile_count++;
av1_tile_set_col(&tile_info, cm, tile_col);
if (tile_count == tg_size || tile_idx == (tile_cols * tile_rows - 1)) {
is_last_tile_in_tg = 1;
new_tg = 1;
} else {
is_last_tile_in_tg = 0;
}
buf->data = dst + total_size;
// The last tile of the tile group does not have a header.
if (!is_last_tile_in_tg) total_size += 4;
// Initialise tile context from the frame context
this_tile->tctx = *cm->fc;
cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx;
mode_bc.allow_update_cdf = 1;
mode_bc.allow_update_cdf =
mode_bc.allow_update_cdf && !cm->disable_cdf_update;
const int num_planes = av1_num_planes(cm);
av1_reset_loop_restoration(&cpi->td.mb.e_mbd, num_planes);
aom_start_encode(&mode_bc, dst + total_size);
write_modes(cpi, &tile_info, &mode_bc, &tok, tok_end);
aom_stop_encode(&mode_bc);
tile_size = mode_bc.pos;
assert(tile_size >= AV1_MIN_TILE_SIZE_BYTES);
curr_tg_data_size += (tile_size + (is_last_tile_in_tg ? 0 : 4));
buf->size = tile_size;
if (tile_size > max_tile_size) {
cm->largest_tile_id = tile_cols * tile_row + tile_col;
max_tile_size = tile_size;
}
if (!is_last_tile_in_tg) {
// size of this tile
mem_put_le32(buf->data, tile_size - AV1_MIN_TILE_SIZE_BYTES);
} else {
// write current tile group size
const uint32_t obu_payload_size = curr_tg_data_size - obu_header_size;
const size_t length_field_size =
obu_memmove(obu_header_size, obu_payload_size, data);
if (write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
AOM_CODEC_OK) {
assert(0);
}
curr_tg_data_size += (int)length_field_size;
total_size += (uint32_t)length_field_size;
tile_data_start += length_field_size;
if (num_tg_hdrs == 1) {
// if this tg is combined with the frame header then update saved
// frame header base offset accroding to length field size
saved_wb->bit_buffer += length_field_size;
}
if (!first_tg && cm->error_resilient_mode) {
// Make room for a duplicate Frame Header OBU.
memmove(data + fh_info->total_length, data, curr_tg_data_size);
// Insert a copy of the Frame Header OBU.
memcpy(data, fh_info->frame_header, fh_info->total_length);
// Force context update tile to be the first tile in error
// resiliant mode as the duplicate frame headers will have
// context_update_tile_id set to 0
cm->largest_tile_id = 0;
// Rewrite the OBU header to change the OBU type to Redundant Frame
// Header.
write_obu_header(OBU_REDUNDANT_FRAME_HEADER, obu_extension_header,
&data[fh_info->obu_header_byte_offset]);
data += fh_info->total_length;
curr_tg_data_size += (int)(fh_info->total_length);
total_size += (uint32_t)(fh_info->total_length);
}
first_tg = 0;
}
total_size += tile_size;
}
}
if (have_tiles) {
// Fill in context_update_tile_id indicating the tile to use for the
// cdf update. The encoder currently sets it to the largest tile
// (but is up to the encoder)
aom_wb_overwrite_literal(saved_wb, cm->largest_tile_id,
cm->log2_tile_cols + cm->log2_tile_rows);
// If more than one tile group. tile_size_bytes takes the default value 4
// and does not need to be set. For a single tile group it is set in the
// section below.
if (num_tg_hdrs == 1) {
int tile_size_bytes = 4, unused;
const uint32_t tile_data_offset = (uint32_t)(tile_data_start - dst);
const uint32_t tile_data_size = total_size - tile_data_offset;
total_size =
remux_tiles(cm, tile_data_start, tile_data_size, max_tile_size,
max_tile_col_size, &tile_size_bytes, &unused);
total_size += tile_data_offset;
assert(tile_size_bytes >= 1 && tile_size_bytes <= 4);
aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2);
// Update the OBU length if remux_tiles() reduced the size.
uint64_t payload_size;
size_t length_field_size;
int res =
aom_uleb_decode(dst + obu_header_size, total_size - obu_header_size,
&payload_size, &length_field_size);
assert(res == 0);
(void)res;
const uint64_t new_payload_size =
total_size - obu_header_size - length_field_size;
if (new_payload_size != payload_size) {
size_t new_length_field_size;
res = aom_uleb_encode(new_payload_size, length_field_size,
dst + obu_header_size, &new_length_field_size);
assert(res == 0);
if (new_length_field_size < length_field_size) {
const size_t src_offset = obu_header_size + length_field_size;
const size_t dst_offset = obu_header_size + new_length_field_size;
memmove(dst + dst_offset, dst + src_offset, (size_t)payload_size);
total_size -= (int)(length_field_size - new_length_field_size);
}
}
}
}
return total_size;
}
int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t *size) {
uint8_t *data = dst;
uint32_t data_size;
AV1_COMMON *const cm = &cpi->common;
uint32_t obu_header_size = 0;
uint32_t obu_payload_size = 0;
FrameHeaderInfo fh_info = { NULL, 0, 0 };
const uint8_t number_spatial_layers = cm->number_spatial_layers;
const uint8_t obu_extension_header =
cm->temporal_layer_id << 5 | cm->spatial_layer_id << 3 | 0;
#if CONFIG_BITSTREAM_DEBUG
bitstream_queue_reset_write();
#endif
// The TD is now written outside the frame encode loop
// write sequence header obu if KEY_FRAME, preceded by 4-byte size
if (cm->frame_type == KEY_FRAME) {
obu_header_size = write_obu_header(OBU_SEQUENCE_HEADER, 0, data);
obu_payload_size = write_sequence_header_obu(cpi, data + obu_header_size,
number_spatial_layers);
const size_t length_field_size =
obu_memmove(obu_header_size, obu_payload_size, data);
if (write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
AOM_CODEC_OK) {
return AOM_CODEC_ERROR;
}
data += obu_header_size + obu_payload_size + length_field_size;
}
const int write_frame_header = (cm->num_tg > 1 || cm->show_existing_frame);
struct aom_write_bit_buffer saved_wb;
if (write_frame_header) {
// Write Frame Header OBU.
fh_info.frame_header = data;
obu_header_size =
write_obu_header(OBU_FRAME_HEADER, obu_extension_header, data);
obu_payload_size =
write_frame_header_obu(cpi, &saved_wb, data + obu_header_size, 1);
const size_t length_field_size =
obu_memmove(obu_header_size, obu_payload_size, data);
if (write_uleb_obu_size(obu_header_size, obu_payload_size, data) !=
AOM_CODEC_OK) {
return AOM_CODEC_ERROR;
}
fh_info.obu_header_byte_offset = 0;
fh_info.total_length =
obu_header_size + obu_payload_size + length_field_size;
data += fh_info.total_length;
// Since length_field_size is determined adaptively after frame header
// encoding, saved_wb must be adjusted accordingly.
saved_wb.bit_buffer += length_field_size;
}
#define EXT_TILE_DEBUG 0
#if EXT_TILE_DEBUG
{
char fn[20] = "./fh";
fn[4] = cm->current_video_frame / 100 + '0';
fn[5] = (cm->current_video_frame % 100) / 10 + '0';
fn[6] = (cm->current_video_frame % 10) + '0';
fn[7] = '\0';
av1_print_uncompressed_frame_header(data - obu_size, obu_size, fn);
}
#endif // EXT_TILE_DEBUG
#undef EXT_TILE_DEBUG
if (cm->show_existing_frame) {
data_size = 0;
} else {
// Each tile group obu will be preceded by 4-byte size of the tile group
// obu
data_size = write_tiles_in_tg_obus(cpi, data, &saved_wb,
obu_extension_header, &fh_info);
}
data += data_size;
*size = data - dst;
return AOM_CODEC_OK;
}