| /* |
| * Copyright (c) 2024, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <arm_neon.h> |
| #include <assert.h> |
| |
| #include "config/aom_config.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/arm/mem_neon.h" |
| #include "aom_dsp/arm/transpose_neon.h" |
| |
| static INLINE int16x4_t compound_convolve8_4_v( |
| const int16x4_t s0, const int16x4_t s1, const int16x4_t s2, |
| const int16x4_t s3, const int16x4_t s4, const int16x4_t s5, |
| const int16x4_t s6, const int16x4_t s7, const int16x8_t filter, |
| const int32x4_t offset_const) { |
| const int16x4_t filter_0_3 = vget_low_s16(filter); |
| const int16x4_t filter_4_7 = vget_high_s16(filter); |
| |
| int32x4_t sum = offset_const; |
| sum = vmlal_lane_s16(sum, s0, filter_0_3, 0); |
| sum = vmlal_lane_s16(sum, s1, filter_0_3, 1); |
| sum = vmlal_lane_s16(sum, s2, filter_0_3, 2); |
| sum = vmlal_lane_s16(sum, s3, filter_0_3, 3); |
| sum = vmlal_lane_s16(sum, s4, filter_4_7, 0); |
| sum = vmlal_lane_s16(sum, s5, filter_4_7, 1); |
| sum = vmlal_lane_s16(sum, s6, filter_4_7, 2); |
| sum = vmlal_lane_s16(sum, s7, filter_4_7, 3); |
| |
| return vshrn_n_s32(sum, COMPOUND_ROUND1_BITS); |
| } |
| |
| static INLINE int16x8_t compound_convolve8_8_v( |
| const int16x8_t s0, const int16x8_t s1, const int16x8_t s2, |
| const int16x8_t s3, const int16x8_t s4, const int16x8_t s5, |
| const int16x8_t s6, const int16x8_t s7, const int16x8_t filter, |
| const int32x4_t offset_const) { |
| const int16x4_t filter_0_3 = vget_low_s16(filter); |
| const int16x4_t filter_4_7 = vget_high_s16(filter); |
| |
| int32x4_t sum0 = offset_const; |
| sum0 = vmlal_lane_s16(sum0, vget_low_s16(s0), filter_0_3, 0); |
| sum0 = vmlal_lane_s16(sum0, vget_low_s16(s1), filter_0_3, 1); |
| sum0 = vmlal_lane_s16(sum0, vget_low_s16(s2), filter_0_3, 2); |
| sum0 = vmlal_lane_s16(sum0, vget_low_s16(s3), filter_0_3, 3); |
| sum0 = vmlal_lane_s16(sum0, vget_low_s16(s4), filter_4_7, 0); |
| sum0 = vmlal_lane_s16(sum0, vget_low_s16(s5), filter_4_7, 1); |
| sum0 = vmlal_lane_s16(sum0, vget_low_s16(s6), filter_4_7, 2); |
| sum0 = vmlal_lane_s16(sum0, vget_low_s16(s7), filter_4_7, 3); |
| |
| int32x4_t sum1 = offset_const; |
| sum1 = vmlal_lane_s16(sum1, vget_high_s16(s0), filter_0_3, 0); |
| sum1 = vmlal_lane_s16(sum1, vget_high_s16(s1), filter_0_3, 1); |
| sum1 = vmlal_lane_s16(sum1, vget_high_s16(s2), filter_0_3, 2); |
| sum1 = vmlal_lane_s16(sum1, vget_high_s16(s3), filter_0_3, 3); |
| sum1 = vmlal_lane_s16(sum1, vget_high_s16(s4), filter_4_7, 0); |
| sum1 = vmlal_lane_s16(sum1, vget_high_s16(s5), filter_4_7, 1); |
| sum1 = vmlal_lane_s16(sum1, vget_high_s16(s6), filter_4_7, 2); |
| sum1 = vmlal_lane_s16(sum1, vget_high_s16(s7), filter_4_7, 3); |
| |
| int16x4_t res0 = vshrn_n_s32(sum0, COMPOUND_ROUND1_BITS); |
| int16x4_t res1 = vshrn_n_s32(sum1, COMPOUND_ROUND1_BITS); |
| |
| return vcombine_s16(res0, res1); |
| } |
| |
| static INLINE void compound_convolve_vert_scale_neon( |
| const int16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w, |
| int h, const int16_t *y_filter, int subpel_y_qn, int y_step_qn) { |
| const int bd = 8; |
| const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS; |
| // A shim of 1 << (COMPOUND_ROUND1_BITS - 1) enables us to use |
| // non-rounding shifts - which are generally faster than rounding shifts on |
| // modern CPUs. |
| const int32x4_t vert_offset = |
| vdupq_n_s32((1 << offset_bits) + (1 << (COMPOUND_ROUND1_BITS - 1))); |
| |
| int y_qn = subpel_y_qn; |
| |
| if (w == 4) { |
| do { |
| const int16_t *s = &src[(y_qn >> SCALE_SUBPEL_BITS) * src_stride]; |
| |
| const ptrdiff_t filter_offset = |
| SUBPEL_TAPS * ((y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); |
| const int16x8_t filter = vld1q_s16(y_filter + filter_offset); |
| |
| int16x4_t s0, s1, s2, s3, s4, s5, s6, s7; |
| load_s16_4x8(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); |
| |
| int16x4_t d0 = compound_convolve8_4_v(s0, s1, s2, s3, s4, s5, s6, s7, |
| filter, vert_offset); |
| |
| vst1_u16(dst, vreinterpret_u16_s16(d0)); |
| |
| dst += dst_stride; |
| y_qn += y_step_qn; |
| } while (--h != 0); |
| } else { |
| do { |
| const int16_t *s = &src[(y_qn >> SCALE_SUBPEL_BITS) * src_stride]; |
| |
| const ptrdiff_t filter_offset = |
| SUBPEL_TAPS * ((y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); |
| const int16x8_t filter = vld1q_s16(y_filter + filter_offset); |
| |
| int width = w; |
| uint16_t *d = dst; |
| |
| do { |
| int16x8_t s0, s1, s2, s3, s4, s5, s6, s7; |
| load_s16_8x8(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); |
| |
| int16x8_t d0 = compound_convolve8_8_v(s0, s1, s2, s3, s4, s5, s6, s7, |
| filter, vert_offset); |
| |
| vst1q_u16(d, vreinterpretq_u16_s16(d0)); |
| |
| s += 8; |
| d += 8; |
| width -= 8; |
| } while (width != 0); |
| |
| dst += dst_stride; |
| y_qn += y_step_qn; |
| } while (--h != 0); |
| } |
| } |
| |
| static INLINE void compound_avg_convolve_vert_scale_neon( |
| const int16_t *src, int src_stride, uint8_t *dst8, int dst8_stride, |
| uint16_t *dst16, int dst16_stride, int w, int h, const int16_t *y_filter, |
| int subpel_y_qn, int y_step_qn) { |
| const int bd = 8; |
| const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS; |
| // A shim of 1 << (COMPOUND_ROUND1_BITS - 1) enables us to use |
| // non-rounding shifts - which are generally faster than rounding shifts |
| // on modern CPUs. |
| const int32_t vert_offset_bits = |
| (1 << offset_bits) + (1 << (COMPOUND_ROUND1_BITS - 1)); |
| // For the averaging code path substract round offset and convolve round. |
| const int32_t avg_offset_bits = (1 << (offset_bits + 1)) + (1 << offset_bits); |
| const int32x4_t vert_offset = vdupq_n_s32(vert_offset_bits - avg_offset_bits); |
| |
| int y_qn = subpel_y_qn; |
| |
| if (w == 4) { |
| do { |
| const int16_t *s = &src[(y_qn >> SCALE_SUBPEL_BITS) * src_stride]; |
| |
| const ptrdiff_t filter_offset = |
| SUBPEL_TAPS * ((y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); |
| const int16x8_t filter = vld1q_s16(y_filter + filter_offset); |
| |
| int16x4_t s0, s1, s2, s3, s4, s5, s6, s7; |
| load_s16_4x8(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); |
| |
| int16x4_t d0 = compound_convolve8_4_v(s0, s1, s2, s3, s4, s5, s6, s7, |
| filter, vert_offset); |
| |
| int16x4_t dd0 = vreinterpret_s16_u16(vld1_u16(dst16)); |
| |
| int16x4_t avg = vhadd_s16(dd0, d0); |
| int16x8_t d0_s16 = vcombine_s16(avg, vdup_n_s16(0)); |
| |
| uint8x8_t d0_u8 = vqrshrun_n_s16( |
| d0_s16, (2 * FILTER_BITS - ROUND0_BITS - COMPOUND_ROUND1_BITS)); |
| |
| store_u8_4x1(dst8, d0_u8); |
| |
| dst16 += dst16_stride; |
| dst8 += dst8_stride; |
| y_qn += y_step_qn; |
| } while (--h != 0); |
| } else { |
| do { |
| const int16_t *s = &src[(y_qn >> SCALE_SUBPEL_BITS) * src_stride]; |
| |
| const ptrdiff_t filter_offset = |
| SUBPEL_TAPS * ((y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); |
| const int16x8_t filter = vld1q_s16(y_filter + filter_offset); |
| |
| int width = w; |
| uint8_t *dst8_ptr = dst8; |
| uint16_t *dst16_ptr = dst16; |
| |
| do { |
| int16x8_t s0, s1, s2, s3, s4, s5, s6, s7; |
| load_s16_8x8(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); |
| |
| int16x8_t d0 = compound_convolve8_8_v(s0, s1, s2, s3, s4, s5, s6, s7, |
| filter, vert_offset); |
| |
| int16x8_t dd0 = vreinterpretq_s16_u16(vld1q_u16(dst16_ptr)); |
| |
| int16x8_t avg = vhaddq_s16(dd0, d0); |
| |
| uint8x8_t d0_u8 = vqrshrun_n_s16( |
| avg, (2 * FILTER_BITS - ROUND0_BITS - COMPOUND_ROUND1_BITS)); |
| |
| vst1_u8(dst8_ptr, d0_u8); |
| |
| s += 8; |
| dst8_ptr += 8; |
| dst16_ptr += 8; |
| width -= 8; |
| } while (width != 0); |
| |
| dst16 += dst16_stride; |
| dst8 += dst8_stride; |
| y_qn += y_step_qn; |
| } while (--h != 0); |
| } |
| } |
| |
| static INLINE void compound_dist_wtd_convolve_vert_scale_neon( |
| const int16_t *src, int src_stride, uint8_t *dst8, int dst8_stride, |
| uint16_t *dst16, int dst16_stride, int w, int h, const int16_t *y_filter, |
| ConvolveParams *conv_params, int subpel_y_qn, int y_step_qn) { |
| const int bd = 8; |
| const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS; |
| int y_qn = subpel_y_qn; |
| // A shim of 1 << (COMPOUND_ROUND1_BITS - 1) enables us to use |
| // non-rounding shifts - which are generally faster than rounding shifts on |
| // modern CPUs. |
| const int32x4_t vert_offset = |
| vdupq_n_s32((1 << offset_bits) + (1 << (COMPOUND_ROUND1_BITS - 1))); |
| // For the weighted averaging code path we have to substract round offset and |
| // convolve round. The shim of 1 << (2 * FILTER_BITS - ROUND0_BITS - |
| // COMPOUND_ROUND1_BITS - 1) enables us to use non-rounding shifts. The |
| // additional shift by DIST_PRECISION_BITS is needed in order to merge two |
| // shift calculations into one. |
| const int32x4_t dist_wtd_offset = vdupq_n_s32( |
| (1 << (2 * FILTER_BITS - ROUND0_BITS - COMPOUND_ROUND1_BITS - 1 + |
| DIST_PRECISION_BITS)) - |
| (1 << (offset_bits - COMPOUND_ROUND1_BITS + DIST_PRECISION_BITS)) - |
| (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1 + DIST_PRECISION_BITS))); |
| const int16x4_t bck_offset = vdup_n_s16(conv_params->bck_offset); |
| const int16x4_t fwd_offset = vdup_n_s16(conv_params->fwd_offset); |
| |
| if (w == 4) { |
| do { |
| const int16_t *s = &src[(y_qn >> SCALE_SUBPEL_BITS) * src_stride]; |
| |
| const ptrdiff_t filter_offset = |
| SUBPEL_TAPS * ((y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); |
| const int16x8_t filter = vld1q_s16(y_filter + filter_offset); |
| |
| int16x4_t s0, s1, s2, s3, s4, s5, s6, s7; |
| load_s16_4x8(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); |
| |
| int16x4_t d0 = compound_convolve8_4_v(s0, s1, s2, s3, s4, s5, s6, s7, |
| filter, vert_offset); |
| |
| int16x4_t dd0 = vreinterpret_s16_u16(vld1_u16(dst16)); |
| |
| int32x4_t dst_wtd_avg = vmlal_s16(dist_wtd_offset, bck_offset, d0); |
| dst_wtd_avg = vmlal_s16(dst_wtd_avg, fwd_offset, dd0); |
| |
| int16x4_t d0_s16 = vshrn_n_s32( |
| dst_wtd_avg, 2 * FILTER_BITS - ROUND0_BITS - COMPOUND_ROUND1_BITS + |
| DIST_PRECISION_BITS); |
| |
| uint8x8_t d0_u8 = vqmovun_s16(vcombine_s16(d0_s16, vdup_n_s16(0))); |
| |
| store_u8_4x1(dst8, d0_u8); |
| |
| dst16 += dst16_stride; |
| dst8 += dst8_stride; |
| y_qn += y_step_qn; |
| } while (--h != 0); |
| } else { |
| do { |
| const int16_t *s = &src[(y_qn >> SCALE_SUBPEL_BITS) * src_stride]; |
| |
| const ptrdiff_t filter_offset = |
| SUBPEL_TAPS * ((y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); |
| const int16x8_t filter = vld1q_s16(y_filter + filter_offset); |
| |
| int width = w; |
| uint8_t *dst8_ptr = dst8; |
| uint16_t *dst16_ptr = dst16; |
| |
| do { |
| int16x8_t s0, s1, s2, s3, s4, s5, s6, s7; |
| load_s16_8x8(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); |
| |
| int16x8_t d0 = compound_convolve8_8_v(s0, s1, s2, s3, s4, s5, s6, s7, |
| filter, vert_offset); |
| |
| int16x8_t dd0 = vreinterpretq_s16_u16(vld1q_u16(dst16_ptr)); |
| |
| int32x4_t dst_wtd_avg0 = |
| vmlal_s16(dist_wtd_offset, bck_offset, vget_low_s16(d0)); |
| int32x4_t dst_wtd_avg1 = |
| vmlal_s16(dist_wtd_offset, bck_offset, vget_high_s16(d0)); |
| |
| dst_wtd_avg0 = vmlal_s16(dst_wtd_avg0, fwd_offset, vget_low_s16(dd0)); |
| dst_wtd_avg1 = vmlal_s16(dst_wtd_avg1, fwd_offset, vget_high_s16(dd0)); |
| |
| int16x4_t d0_s16_0 = vshrn_n_s32( |
| dst_wtd_avg0, 2 * FILTER_BITS - ROUND0_BITS - COMPOUND_ROUND1_BITS + |
| DIST_PRECISION_BITS); |
| int16x4_t d0_s16_1 = vshrn_n_s32( |
| dst_wtd_avg1, 2 * FILTER_BITS - ROUND0_BITS - COMPOUND_ROUND1_BITS + |
| DIST_PRECISION_BITS); |
| |
| uint8x8_t d0_u8 = vqmovun_s16(vcombine_s16(d0_s16_0, d0_s16_1)); |
| |
| vst1_u8(dst8_ptr, d0_u8); |
| |
| s += 8; |
| dst8_ptr += 8; |
| dst16_ptr += 8; |
| width -= 8; |
| } while (width != 0); |
| |
| dst16 += dst16_stride; |
| dst8 += dst8_stride; |
| y_qn += y_step_qn; |
| } while (--h != 0); |
| } |
| } |
| |
| static INLINE uint8x8_t convolve8_4_v(const int16x4_t s0, const int16x4_t s1, |
| const int16x4_t s2, const int16x4_t s3, |
| const int16x4_t s4, const int16x4_t s5, |
| const int16x4_t s6, const int16x4_t s7, |
| const int16x8_t filter, |
| const int32x4_t offset_const) { |
| const int16x4_t filter_0_3 = vget_low_s16(filter); |
| const int16x4_t filter_4_7 = vget_high_s16(filter); |
| |
| int32x4_t sum = offset_const; |
| sum = vmlal_lane_s16(sum, s0, filter_0_3, 0); |
| sum = vmlal_lane_s16(sum, s1, filter_0_3, 1); |
| sum = vmlal_lane_s16(sum, s2, filter_0_3, 2); |
| sum = vmlal_lane_s16(sum, s3, filter_0_3, 3); |
| sum = vmlal_lane_s16(sum, s4, filter_4_7, 0); |
| sum = vmlal_lane_s16(sum, s5, filter_4_7, 1); |
| sum = vmlal_lane_s16(sum, s6, filter_4_7, 2); |
| sum = vmlal_lane_s16(sum, s7, filter_4_7, 3); |
| |
| int16x4_t res = vshrn_n_s32(sum, 2 * FILTER_BITS - ROUND0_BITS); |
| |
| return vqmovun_s16(vcombine_s16(res, vdup_n_s16(0))); |
| } |
| |
| static INLINE uint8x8_t convolve8_8_v(const int16x8_t s0, const int16x8_t s1, |
| const int16x8_t s2, const int16x8_t s3, |
| const int16x8_t s4, const int16x8_t s5, |
| const int16x8_t s6, const int16x8_t s7, |
| const int16x8_t filter, |
| const int32x4_t offset_const) { |
| const int16x4_t filter_0_3 = vget_low_s16(filter); |
| const int16x4_t filter_4_7 = vget_high_s16(filter); |
| |
| int32x4_t sum0 = offset_const; |
| sum0 = vmlal_lane_s16(sum0, vget_low_s16(s0), filter_0_3, 0); |
| sum0 = vmlal_lane_s16(sum0, vget_low_s16(s1), filter_0_3, 1); |
| sum0 = vmlal_lane_s16(sum0, vget_low_s16(s2), filter_0_3, 2); |
| sum0 = vmlal_lane_s16(sum0, vget_low_s16(s3), filter_0_3, 3); |
| sum0 = vmlal_lane_s16(sum0, vget_low_s16(s4), filter_4_7, 0); |
| sum0 = vmlal_lane_s16(sum0, vget_low_s16(s5), filter_4_7, 1); |
| sum0 = vmlal_lane_s16(sum0, vget_low_s16(s6), filter_4_7, 2); |
| sum0 = vmlal_lane_s16(sum0, vget_low_s16(s7), filter_4_7, 3); |
| |
| int32x4_t sum1 = offset_const; |
| sum1 = vmlal_lane_s16(sum1, vget_high_s16(s0), filter_0_3, 0); |
| sum1 = vmlal_lane_s16(sum1, vget_high_s16(s1), filter_0_3, 1); |
| sum1 = vmlal_lane_s16(sum1, vget_high_s16(s2), filter_0_3, 2); |
| sum1 = vmlal_lane_s16(sum1, vget_high_s16(s3), filter_0_3, 3); |
| sum1 = vmlal_lane_s16(sum1, vget_high_s16(s4), filter_4_7, 0); |
| sum1 = vmlal_lane_s16(sum1, vget_high_s16(s5), filter_4_7, 1); |
| sum1 = vmlal_lane_s16(sum1, vget_high_s16(s6), filter_4_7, 2); |
| sum1 = vmlal_lane_s16(sum1, vget_high_s16(s7), filter_4_7, 3); |
| |
| int16x4_t res0 = vshrn_n_s32(sum0, 2 * FILTER_BITS - ROUND0_BITS); |
| int16x4_t res1 = vshrn_n_s32(sum1, 2 * FILTER_BITS - ROUND0_BITS); |
| |
| return vqmovun_s16(vcombine_s16(res0, res1)); |
| } |
| |
| static INLINE void convolve_vert_scale_neon(const int16_t *src, int src_stride, |
| uint8_t *dst, int dst_stride, int w, |
| int h, const int16_t *y_filter, |
| int subpel_y_qn, int y_step_qn) { |
| const int bd = 8; |
| const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS; |
| const int round_1 = 2 * FILTER_BITS - ROUND0_BITS; |
| // The shim of 1 << (round_1 - 1) enables us to use non-rounding shifts. |
| int32x4_t vert_offset = |
| vdupq_n_s32((1 << (round_1 - 1)) - (1 << (offset_bits - 1))); |
| |
| int y_qn = subpel_y_qn; |
| if (w == 4) { |
| do { |
| const int16_t *s = &src[(y_qn >> SCALE_SUBPEL_BITS) * src_stride]; |
| |
| const ptrdiff_t filter_offset = |
| SUBPEL_TAPS * ((y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); |
| const int16x8_t filter = vld1q_s16(y_filter + filter_offset); |
| |
| int16x4_t s0, s1, s2, s3, s4, s5, s6, s7; |
| load_s16_4x8(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); |
| |
| uint8x8_t d = |
| convolve8_4_v(s0, s1, s2, s3, s4, s5, s6, s7, filter, vert_offset); |
| |
| store_u8_4x1(dst, d); |
| |
| dst += dst_stride; |
| y_qn += y_step_qn; |
| } while (--h != 0); |
| } else if (w == 8) { |
| do { |
| const int16_t *s = &src[(y_qn >> SCALE_SUBPEL_BITS) * src_stride]; |
| |
| const ptrdiff_t filter_offset = |
| SUBPEL_TAPS * ((y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); |
| const int16x8_t filter = vld1q_s16(y_filter + filter_offset); |
| |
| int16x8_t s0, s1, s2, s3, s4, s5, s6, s7; |
| load_s16_8x8(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); |
| |
| uint8x8_t d = |
| convolve8_8_v(s0, s1, s2, s3, s4, s5, s6, s7, filter, vert_offset); |
| |
| vst1_u8(dst, d); |
| |
| dst += dst_stride; |
| y_qn += y_step_qn; |
| } while (--h != 0); |
| } else { |
| do { |
| const int16_t *s = &src[(y_qn >> SCALE_SUBPEL_BITS) * src_stride]; |
| uint8_t *d = dst; |
| int width = w; |
| |
| const ptrdiff_t filter_offset = |
| SUBPEL_TAPS * ((y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); |
| const int16x8_t filter = vld1q_s16(y_filter + filter_offset); |
| |
| do { |
| int16x8_t s0[2], s1[2], s2[2], s3[2], s4[2], s5[2], s6[2], s7[2]; |
| load_s16_8x8(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0], &s4[0], |
| &s5[0], &s6[0], &s7[0]); |
| load_s16_8x8(s + 8, src_stride, &s0[1], &s1[1], &s2[1], &s3[1], &s4[1], |
| &s5[1], &s6[1], &s7[1]); |
| |
| uint8x8_t d0 = convolve8_8_v(s0[0], s1[0], s2[0], s3[0], s4[0], s5[0], |
| s6[0], s7[0], filter, vert_offset); |
| uint8x8_t d1 = convolve8_8_v(s0[1], s1[1], s2[1], s3[1], s4[1], s5[1], |
| s6[1], s7[1], filter, vert_offset); |
| |
| vst1q_u8(d, vcombine_u8(d0, d1)); |
| |
| s += 16; |
| d += 16; |
| width -= 16; |
| } while (width != 0); |
| |
| dst += dst_stride; |
| y_qn += y_step_qn; |
| } while (--h != 0); |
| } |
| } |
| |
| static INLINE int16x4_t convolve8_4_h(const int16x4_t s0, const int16x4_t s1, |
| const int16x4_t s2, const int16x4_t s3, |
| const int16x4_t s4, const int16x4_t s5, |
| const int16x4_t s6, const int16x4_t s7, |
| const int16x8_t filter, |
| const int32x4_t horiz_const) { |
| int16x4_t filter_lo = vget_low_s16(filter); |
| int16x4_t filter_hi = vget_high_s16(filter); |
| |
| int32x4_t sum = horiz_const; |
| sum = vmlal_lane_s16(sum, s0, filter_lo, 0); |
| sum = vmlal_lane_s16(sum, s1, filter_lo, 1); |
| sum = vmlal_lane_s16(sum, s2, filter_lo, 2); |
| sum = vmlal_lane_s16(sum, s3, filter_lo, 3); |
| sum = vmlal_lane_s16(sum, s4, filter_hi, 0); |
| sum = vmlal_lane_s16(sum, s5, filter_hi, 1); |
| sum = vmlal_lane_s16(sum, s6, filter_hi, 2); |
| sum = vmlal_lane_s16(sum, s7, filter_hi, 3); |
| |
| return vshrn_n_s32(sum, ROUND0_BITS); |
| } |
| |
| static INLINE int16x8_t convolve8_8_h(const int16x8_t s0, const int16x8_t s1, |
| const int16x8_t s2, const int16x8_t s3, |
| const int16x8_t s4, const int16x8_t s5, |
| const int16x8_t s6, const int16x8_t s7, |
| const int16x8_t filter, |
| const int16x8_t horiz_const) { |
| int16x4_t filter_lo = vget_low_s16(filter); |
| int16x4_t filter_hi = vget_high_s16(filter); |
| |
| int16x8_t sum = horiz_const; |
| sum = vmlaq_lane_s16(sum, s0, filter_lo, 0); |
| sum = vmlaq_lane_s16(sum, s1, filter_lo, 1); |
| sum = vmlaq_lane_s16(sum, s2, filter_lo, 2); |
| sum = vmlaq_lane_s16(sum, s3, filter_lo, 3); |
| sum = vmlaq_lane_s16(sum, s4, filter_hi, 0); |
| sum = vmlaq_lane_s16(sum, s5, filter_hi, 1); |
| sum = vmlaq_lane_s16(sum, s6, filter_hi, 2); |
| sum = vmlaq_lane_s16(sum, s7, filter_hi, 3); |
| |
| return vshrq_n_s16(sum, ROUND0_BITS - 1); |
| } |
| |
| static INLINE void convolve_horiz_scale_neon(const uint8_t *src, int src_stride, |
| int16_t *dst, int dst_stride, |
| int w, int h, |
| const int16_t *x_filter, |
| const int subpel_x_qn, |
| const int x_step_qn) { |
| DECLARE_ALIGNED(16, int16_t, temp[8 * 8]); |
| const int bd = 8; |
| |
| if (w == 4) { |
| // The shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts. |
| const int32x4_t horiz_offset = |
| vdupq_n_s32((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))); |
| |
| do { |
| int x_qn = subpel_x_qn; |
| |
| // Process a 4x4 tile. |
| for (int r = 0; r < 4; ++r) { |
| const uint8_t *const s = &src[x_qn >> SCALE_SUBPEL_BITS]; |
| |
| const ptrdiff_t filter_offset = |
| SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); |
| const int16x8_t filter = vld1q_s16(x_filter + filter_offset); |
| |
| uint8x8_t t0, t1, t2, t3; |
| load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3); |
| |
| transpose_elems_inplace_u8_8x4(&t0, &t1, &t2, &t3); |
| |
| int16x4_t s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); |
| int16x4_t s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); |
| int16x4_t s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); |
| int16x4_t s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); |
| int16x4_t s4 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); |
| int16x4_t s5 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); |
| int16x4_t s6 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); |
| int16x4_t s7 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); |
| |
| int16x4_t d0 = |
| convolve8_4_h(s0, s1, s2, s3, s4, s5, s6, s7, filter, horiz_offset); |
| |
| vst1_s16(&temp[r * 4], d0); |
| x_qn += x_step_qn; |
| } |
| |
| // Transpose the 4x4 result tile and store. |
| int16x4_t d0, d1, d2, d3; |
| load_s16_4x4(temp, 4, &d0, &d1, &d2, &d3); |
| |
| transpose_elems_inplace_s16_4x4(&d0, &d1, &d2, &d3); |
| |
| store_s16_4x4(dst, dst_stride, d0, d1, d2, d3); |
| |
| dst += 4 * dst_stride; |
| src += 4 * src_stride; |
| h -= 4; |
| } while (h > 0); |
| } else { |
| // The shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts. |
| // The additional -1 is needed because we are halving the filter values. |
| const int16x8_t horiz_offset = |
| vdupq_n_s16((1 << (bd + FILTER_BITS - 2)) + (1 << (ROUND0_BITS - 2))); |
| |
| do { |
| int x_qn = subpel_x_qn; |
| int16_t *d = dst; |
| int width = w; |
| |
| do { |
| // Process an 8x8 tile. |
| for (int r = 0; r < 8; ++r) { |
| const uint8_t *const s = &src[(x_qn >> SCALE_SUBPEL_BITS)]; |
| |
| const ptrdiff_t filter_offset = |
| SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); |
| int16x8_t filter = vld1q_s16(x_filter + filter_offset); |
| // Filter values are all even so halve them to allow convolution |
| // kernel computations to stay in 16-bit element types. |
| filter = vshrq_n_s16(filter, 1); |
| |
| uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; |
| load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); |
| |
| transpose_elems_u8_8x8(t0, t1, t2, t3, t4, t5, t6, t7, &t0, &t1, &t2, |
| &t3, &t4, &t5, &t6, &t7); |
| |
| int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); |
| int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t1)); |
| int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); |
| int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); |
| int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t4)); |
| int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t5)); |
| int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t6)); |
| int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t7)); |
| |
| int16x8_t d0 = convolve8_8_h(s0, s1, s2, s3, s4, s5, s6, s7, filter, |
| horiz_offset); |
| |
| vst1q_s16(&temp[r * 8], d0); |
| |
| x_qn += x_step_qn; |
| } |
| |
| // Transpose the 8x8 result tile and store. |
| int16x8_t d0, d1, d2, d3, d4, d5, d6, d7; |
| load_s16_8x8(temp, 8, &d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); |
| |
| transpose_elems_inplace_s16_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); |
| |
| store_s16_8x8(d, dst_stride, d0, d1, d2, d3, d4, d5, d6, d7); |
| |
| d += 8; |
| width -= 8; |
| } while (width != 0); |
| |
| dst += 8 * dst_stride; |
| src += 8 * src_stride; |
| h -= 8; |
| } while (h > 0); |
| } |
| } |
| |
| void av1_convolve_2d_scale_neon(const uint8_t *src, int src_stride, |
| uint8_t *dst, int dst_stride, int w, int h, |
| const InterpFilterParams *filter_params_x, |
| const InterpFilterParams *filter_params_y, |
| const int subpel_x_qn, const int x_step_qn, |
| const int subpel_y_qn, const int y_step_qn, |
| ConvolveParams *conv_params) { |
| if (w < 4 || h < 4) { |
| av1_convolve_2d_scale_c(src, src_stride, dst, dst_stride, w, h, |
| filter_params_x, filter_params_y, subpel_x_qn, |
| x_step_qn, subpel_y_qn, y_step_qn, conv_params); |
| return; |
| } |
| |
| // For the interpolation 8-tap filters are used. |
| assert(filter_params_y->taps <= 8 && filter_params_x->taps <= 8); |
| |
| DECLARE_ALIGNED(32, int16_t, |
| im_block[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]); |
| int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) + |
| filter_params_y->taps; |
| int im_stride = MAX_SB_SIZE; |
| CONV_BUF_TYPE *dst16 = conv_params->dst; |
| const int dst16_stride = conv_params->dst_stride; |
| |
| // Account for needing filter_taps / 2 - 1 lines prior and filter_taps / 2 |
| // lines post both horizontally and vertically. |
| const ptrdiff_t horiz_offset = filter_params_x->taps / 2 - 1; |
| const ptrdiff_t vert_offset = (filter_params_y->taps / 2 - 1) * src_stride; |
| |
| // Horizontal filter |
| convolve_horiz_scale_neon( |
| src - horiz_offset - vert_offset, src_stride, im_block, im_stride, w, |
| im_h, filter_params_x->filter_ptr, subpel_x_qn, x_step_qn); |
| |
| // Vertical filter |
| if (UNLIKELY(conv_params->is_compound)) { |
| if (conv_params->do_average) { |
| if (conv_params->use_dist_wtd_comp_avg) { |
| compound_dist_wtd_convolve_vert_scale_neon( |
| im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h, |
| filter_params_y->filter_ptr, conv_params, subpel_y_qn, y_step_qn); |
| } else { |
| compound_avg_convolve_vert_scale_neon( |
| im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h, |
| filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); |
| } |
| } else { |
| compound_convolve_vert_scale_neon( |
| im_block, im_stride, dst16, dst16_stride, w, h, |
| filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); |
| } |
| } else { |
| convolve_vert_scale_neon(im_block, im_stride, dst, dst_stride, w, h, |
| filter_params_y->filter_ptr, subpel_y_qn, |
| y_step_qn); |
| } |
| } |