| /* |
| * Copyright (c) 2023, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "av1/common/reconinter.h" |
| |
| #include "av1/encoder/encodemv.h" |
| #include "av1/encoder/nonrd_opt.h" |
| #include "av1/encoder/rdopt.h" |
| |
| static const SCAN_ORDER av1_fast_idtx_scan_order_16x16 = { |
| av1_fast_idtx_scan_16x16, av1_fast_idtx_iscan_16x16 |
| }; |
| |
| #define DECLARE_BLOCK_YRD_BUFFERS() \ |
| DECLARE_ALIGNED(64, tran_low_t, dqcoeff_buf[16 * 16]); \ |
| DECLARE_ALIGNED(64, tran_low_t, qcoeff_buf[16 * 16]); \ |
| DECLARE_ALIGNED(64, tran_low_t, coeff_buf[16 * 16]); \ |
| uint16_t eob[1]; |
| |
| #define DECLARE_BLOCK_YRD_VARS() \ |
| /* When is_tx_8x8_dual_applicable is true, we compute the txfm for the \ |
| * entire bsize and write macroblock_plane::coeff. So low_coeff is kept \ |
| * as a non-const so we can reassign it to macroblock_plane::coeff. */ \ |
| int16_t *low_coeff = (int16_t *)coeff_buf; \ |
| int16_t *const low_qcoeff = (int16_t *)qcoeff_buf; \ |
| int16_t *const low_dqcoeff = (int16_t *)dqcoeff_buf; \ |
| const int diff_stride = bw; |
| |
| #define DECLARE_LOOP_VARS_BLOCK_YRD() \ |
| const int16_t *src_diff = &p->src_diff[(r * diff_stride + c) << 2]; |
| |
| static AOM_FORCE_INLINE void update_yrd_loop_vars( |
| MACROBLOCK *x, int *skippable, int step, int ncoeffs, |
| int16_t *const low_coeff, int16_t *const low_qcoeff, |
| int16_t *const low_dqcoeff, RD_STATS *this_rdc, int *eob_cost, |
| int tx_blk_id) { |
| const int is_txfm_skip = (ncoeffs == 0); |
| *skippable &= is_txfm_skip; |
| x->txfm_search_info.blk_skip[tx_blk_id] = is_txfm_skip; |
| *eob_cost += get_msb(ncoeffs + 1); |
| if (ncoeffs == 1) |
| this_rdc->rate += (int)abs(low_qcoeff[0]); |
| else if (ncoeffs > 1) |
| this_rdc->rate += aom_satd_lp(low_qcoeff, step << 4); |
| |
| this_rdc->dist += av1_block_error_lp(low_coeff, low_dqcoeff, step << 4) >> 2; |
| } |
| |
| static INLINE void aom_process_hadamard_lp_8x16(MACROBLOCK *x, |
| int max_blocks_high, |
| int max_blocks_wide, |
| int num_4x4_w, int step, |
| int block_step) { |
| struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y]; |
| const int bw = 4 * num_4x4_w; |
| const int num_4x4 = AOMMIN(num_4x4_w, max_blocks_wide); |
| int block = 0; |
| |
| for (int r = 0; r < max_blocks_high; r += block_step) { |
| for (int c = 0; c < num_4x4; c += 2 * block_step) { |
| const int16_t *src_diff = &p->src_diff[(r * bw + c) << 2]; |
| int16_t *low_coeff = (int16_t *)p->coeff + BLOCK_OFFSET(block); |
| aom_hadamard_lp_8x8_dual(src_diff, (ptrdiff_t)bw, low_coeff); |
| block += 2 * step; |
| } |
| } |
| } |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| #define DECLARE_BLOCK_YRD_HBD_VARS() \ |
| tran_low_t *const coeff = coeff_buf; \ |
| tran_low_t *const qcoeff = qcoeff_buf; \ |
| tran_low_t *const dqcoeff = dqcoeff_buf; |
| |
| static AOM_FORCE_INLINE void update_yrd_loop_vars_hbd( |
| MACROBLOCK *x, int *skippable, int step, int ncoeffs, |
| tran_low_t *const coeff, tran_low_t *const qcoeff, |
| tran_low_t *const dqcoeff, RD_STATS *this_rdc, int *eob_cost, |
| int tx_blk_id) { |
| const MACROBLOCKD *xd = &x->e_mbd; |
| const int is_txfm_skip = (ncoeffs == 0); |
| *skippable &= is_txfm_skip; |
| x->txfm_search_info.blk_skip[tx_blk_id] = is_txfm_skip; |
| *eob_cost += get_msb(ncoeffs + 1); |
| |
| int64_t dummy; |
| if (ncoeffs == 1) |
| this_rdc->rate += (int)abs(qcoeff[0]); |
| else if (ncoeffs > 1) |
| this_rdc->rate += aom_satd(qcoeff, step << 4); |
| this_rdc->dist += |
| av1_highbd_block_error(coeff, dqcoeff, step << 4, &dummy, xd->bd) >> 2; |
| } |
| #endif |
| |
| /*!\brief Calculates RD Cost using Hadamard transform. |
| * |
| * \ingroup nonrd_mode_search |
| * \callgraph |
| * \callergraph |
| * Calculates RD Cost using Hadamard transform. For low bit depth this function |
| * uses low-precision set of functions (16-bit) and 32 bit for high bit depth |
| * \param[in] x Pointer to structure holding all the data for |
| the current macroblock |
| * \param[in] this_rdc Pointer to calculated RD Cost |
| * \param[in] skippable Pointer to a flag indicating possible tx skip |
| * \param[in] bsize Current block size |
| * \param[in] tx_size Transform size |
| * \param[in] is_inter_mode Flag to indicate inter mode |
| * |
| * \remark Nothing is returned. Instead, calculated RD cost is placed to |
| * \c this_rdc. \c skippable flag is set if there is no non-zero quantized |
| * coefficients for Hadamard transform |
| */ |
| void av1_block_yrd(MACROBLOCK *x, RD_STATS *this_rdc, int *skippable, |
| BLOCK_SIZE bsize, TX_SIZE tx_size) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| const struct macroblockd_plane *pd = &xd->plane[AOM_PLANE_Y]; |
| struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y]; |
| assert(bsize < BLOCK_SIZES_ALL); |
| const int num_4x4_w = mi_size_wide[bsize]; |
| const int num_4x4_h = mi_size_high[bsize]; |
| const int step = 1 << (tx_size << 1); |
| const int block_step = (1 << tx_size); |
| const int row_step = step * num_4x4_w >> tx_size; |
| int block = 0; |
| const int max_blocks_wide = |
| num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5); |
| const int max_blocks_high = |
| num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5); |
| int eob_cost = 0; |
| const int bw = 4 * num_4x4_w; |
| const int bh = 4 * num_4x4_h; |
| const int use_hbd = is_cur_buf_hbd(xd); |
| int num_blk_skip_w = num_4x4_w; |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (use_hbd) { |
| aom_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, |
| p->src.stride, pd->dst.buf, pd->dst.stride); |
| } else { |
| aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, |
| pd->dst.buf, pd->dst.stride); |
| } |
| #else |
| aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, |
| pd->dst.buf, pd->dst.stride); |
| #endif |
| |
| // Keep the intermediate value on the stack here. Writing directly to |
| // skippable causes speed regression due to load-and-store issues in |
| // update_yrd_loop_vars. |
| int temp_skippable = 1; |
| this_rdc->dist = 0; |
| this_rdc->rate = 0; |
| // For block sizes 8x16 or above, Hadamard txfm of two adjacent 8x8 blocks |
| // can be done per function call. Hence the call of Hadamard txfm is |
| // abstracted here for the specified cases. |
| int is_tx_8x8_dual_applicable = |
| (tx_size == TX_8X8 && block_size_wide[bsize] >= 16 && |
| block_size_high[bsize] >= 8); |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| // As of now, dual implementation of hadamard txfm is available for low |
| // bitdepth. |
| if (use_hbd) is_tx_8x8_dual_applicable = 0; |
| #endif |
| |
| if (is_tx_8x8_dual_applicable) { |
| aom_process_hadamard_lp_8x16(x, max_blocks_high, max_blocks_wide, num_4x4_w, |
| step, block_step); |
| } |
| |
| const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT]; |
| DECLARE_BLOCK_YRD_BUFFERS() |
| DECLARE_BLOCK_YRD_VARS() |
| #if CONFIG_AV1_HIGHBITDEPTH |
| DECLARE_BLOCK_YRD_HBD_VARS() |
| #else |
| (void)use_hbd; |
| #endif |
| |
| // Keep track of the row and column of the blocks we use so that we know |
| // if we are in the unrestricted motion border. |
| for (int r = 0; r < max_blocks_high; r += block_step) { |
| for (int c = 0, s = 0; c < max_blocks_wide; c += block_step, s += step) { |
| DECLARE_LOOP_VARS_BLOCK_YRD() |
| |
| switch (tx_size) { |
| #if CONFIG_AV1_HIGHBITDEPTH |
| case TX_16X16: |
| if (use_hbd) { |
| aom_hadamard_16x16(src_diff, diff_stride, coeff); |
| av1_quantize_fp(coeff, 16 * 16, p->zbin_QTX, p->round_fp_QTX, |
| p->quant_fp_QTX, p->quant_shift_QTX, qcoeff, |
| dqcoeff, p->dequant_QTX, eob, |
| // default_scan_fp_16x16_transpose and |
| // av1_default_iscan_fp_16x16_transpose have to be |
| // used together. |
| default_scan_fp_16x16_transpose, |
| av1_default_iscan_fp_16x16_transpose); |
| } else { |
| aom_hadamard_lp_16x16(src_diff, diff_stride, low_coeff); |
| av1_quantize_lp(low_coeff, 16 * 16, p->round_fp_QTX, |
| p->quant_fp_QTX, low_qcoeff, low_dqcoeff, |
| p->dequant_QTX, eob, |
| // default_scan_lp_16x16_transpose and |
| // av1_default_iscan_lp_16x16_transpose have to be |
| // used together. |
| default_scan_lp_16x16_transpose, |
| av1_default_iscan_lp_16x16_transpose); |
| } |
| break; |
| case TX_8X8: |
| if (use_hbd) { |
| aom_hadamard_8x8(src_diff, diff_stride, coeff); |
| av1_quantize_fp( |
| coeff, 8 * 8, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX, |
| p->quant_shift_QTX, qcoeff, dqcoeff, p->dequant_QTX, eob, |
| default_scan_8x8_transpose, av1_default_iscan_8x8_transpose); |
| } else { |
| if (is_tx_8x8_dual_applicable) { |
| // The coeffs are pre-computed for the whole block, so re-assign |
| // low_coeff to the appropriate location. |
| const int block_offset = BLOCK_OFFSET(block + s); |
| low_coeff = (int16_t *)p->coeff + block_offset; |
| } else { |
| aom_hadamard_lp_8x8(src_diff, diff_stride, low_coeff); |
| } |
| av1_quantize_lp( |
| low_coeff, 8 * 8, p->round_fp_QTX, p->quant_fp_QTX, low_qcoeff, |
| low_dqcoeff, p->dequant_QTX, eob, |
| // default_scan_8x8_transpose and |
| // av1_default_iscan_8x8_transpose have to be used together. |
| default_scan_8x8_transpose, av1_default_iscan_8x8_transpose); |
| } |
| break; |
| default: |
| assert(tx_size == TX_4X4); |
| // In tx_size=4x4 case, aom_fdct4x4 and aom_fdct4x4_lp generate |
| // normal coefficients order, so we don't need to change the scan |
| // order here. |
| if (use_hbd) { |
| aom_fdct4x4(src_diff, coeff, diff_stride); |
| av1_quantize_fp(coeff, 4 * 4, p->zbin_QTX, p->round_fp_QTX, |
| p->quant_fp_QTX, p->quant_shift_QTX, qcoeff, |
| dqcoeff, p->dequant_QTX, eob, scan_order->scan, |
| scan_order->iscan); |
| } else { |
| aom_fdct4x4_lp(src_diff, low_coeff, diff_stride); |
| av1_quantize_lp(low_coeff, 4 * 4, p->round_fp_QTX, p->quant_fp_QTX, |
| low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, |
| scan_order->scan, scan_order->iscan); |
| } |
| break; |
| #else |
| case TX_16X16: |
| aom_hadamard_lp_16x16(src_diff, diff_stride, low_coeff); |
| av1_quantize_lp(low_coeff, 16 * 16, p->round_fp_QTX, p->quant_fp_QTX, |
| low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, |
| default_scan_lp_16x16_transpose, |
| av1_default_iscan_lp_16x16_transpose); |
| break; |
| case TX_8X8: |
| if (is_tx_8x8_dual_applicable) { |
| // The coeffs are pre-computed for the whole block, so re-assign |
| // low_coeff to the appropriate location. |
| const int block_offset = BLOCK_OFFSET(block + s); |
| low_coeff = (int16_t *)p->coeff + block_offset; |
| } else { |
| aom_hadamard_lp_8x8(src_diff, diff_stride, low_coeff); |
| } |
| av1_quantize_lp(low_coeff, 8 * 8, p->round_fp_QTX, p->quant_fp_QTX, |
| low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, |
| default_scan_8x8_transpose, |
| av1_default_iscan_8x8_transpose); |
| break; |
| default: |
| aom_fdct4x4_lp(src_diff, low_coeff, diff_stride); |
| av1_quantize_lp(low_coeff, 4 * 4, p->round_fp_QTX, p->quant_fp_QTX, |
| low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, |
| scan_order->scan, scan_order->iscan); |
| break; |
| #endif |
| } |
| assert(*eob <= 1024); |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (use_hbd) |
| update_yrd_loop_vars_hbd(x, &temp_skippable, step, *eob, coeff, qcoeff, |
| dqcoeff, this_rdc, &eob_cost, |
| r * num_blk_skip_w + c); |
| else |
| #endif |
| update_yrd_loop_vars(x, &temp_skippable, step, *eob, low_coeff, |
| low_qcoeff, low_dqcoeff, this_rdc, &eob_cost, |
| r * num_blk_skip_w + c); |
| } |
| block += row_step; |
| } |
| |
| this_rdc->skip_txfm = *skippable = temp_skippable; |
| if (this_rdc->sse < INT64_MAX) { |
| this_rdc->sse = (this_rdc->sse << 6) >> 2; |
| if (temp_skippable) { |
| this_rdc->dist = 0; |
| this_rdc->dist = this_rdc->sse; |
| return; |
| } |
| } |
| |
| // If skippable is set, rate gets clobbered later. |
| this_rdc->rate <<= (2 + AV1_PROB_COST_SHIFT); |
| this_rdc->rate += (eob_cost << AV1_PROB_COST_SHIFT); |
| } |
| |
| // Explicitly enumerate the cases so the compiler can generate SIMD for the |
| // function. According to the disassembler, gcc generates SSE codes for each of |
| // the possible block sizes. The hottest case is tx_width 16, which takes up |
| // about 8% of the self cycle of av1_nonrd_pick_inter_mode_sb. Since |
| // av1_nonrd_pick_inter_mode_sb takes up about 3% of total encoding time, the |
| // potential room of improvement for writing AVX2 optimization is only 3% * 8% = |
| // 0.24% of total encoding time. |
| static AOM_INLINE void scale_square_buf_vals(int16_t *dst, int tx_width, |
| const int16_t *src, |
| int src_stride) { |
| #define DO_SCALING \ |
| do { \ |
| for (int idy = 0; idy < tx_width; ++idy) { \ |
| for (int idx = 0; idx < tx_width; ++idx) { \ |
| dst[idy * tx_width + idx] = src[idy * src_stride + idx] * 8; \ |
| } \ |
| } \ |
| } while (0) |
| |
| if (tx_width == 4) { |
| DO_SCALING; |
| } else if (tx_width == 8) { |
| DO_SCALING; |
| } else if (tx_width == 16) { |
| DO_SCALING; |
| } else { |
| assert(0); |
| } |
| |
| #undef DO_SCALING |
| } |
| |
| /*!\brief Calculates RD Cost when the block uses Identity transform. |
| * Note that this function is only for low bit depth encoding, since it |
| * is called in real-time mode for now, which sets high bit depth to 0: |
| * -DCONFIG_AV1_HIGHBITDEPTH=0 |
| * |
| * \ingroup nonrd_mode_search |
| * \callgraph |
| * \callergraph |
| * Calculates RD Cost. For low bit depth this function |
| * uses low-precision set of functions (16-bit) and 32 bit for high bit depth |
| * \param[in] x Pointer to structure holding all the data for |
| the current macroblock |
| * \param[in] pred_buf Pointer to the prediction buffer |
| * \param[in] pred_stride Stride for the prediction buffer |
| * \param[in] this_rdc Pointer to calculated RD Cost |
| * \param[in] skippable Pointer to a flag indicating possible tx skip |
| * \param[in] bsize Current block size |
| * \param[in] tx_size Transform size |
| * |
| * \remark Nothing is returned. Instead, calculated RD cost is placed to |
| * \c this_rdc. \c skippable flag is set if all coefficients are zero. |
| */ |
| void av1_block_yrd_idtx(MACROBLOCK *x, const uint8_t *const pred_buf, |
| int pred_stride, RD_STATS *this_rdc, int *skippable, |
| BLOCK_SIZE bsize, TX_SIZE tx_size) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y]; |
| assert(bsize < BLOCK_SIZES_ALL); |
| const int num_4x4_w = mi_size_wide[bsize]; |
| const int num_4x4_h = mi_size_high[bsize]; |
| const int step = 1 << (tx_size << 1); |
| const int block_step = (1 << tx_size); |
| const int max_blocks_wide = |
| num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5); |
| const int max_blocks_high = |
| num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5); |
| int eob_cost = 0; |
| const int bw = 4 * num_4x4_w; |
| const int bh = 4 * num_4x4_h; |
| const int num_blk_skip_w = num_4x4_w; |
| // Keep the intermediate value on the stack here. Writing directly to |
| // skippable causes speed regression due to load-and-store issues in |
| // update_yrd_loop_vars. |
| int temp_skippable = 1; |
| int tx_wd = 0; |
| const SCAN_ORDER *scan_order = NULL; |
| switch (tx_size) { |
| case TX_64X64: |
| assert(0); // Not implemented |
| break; |
| case TX_32X32: |
| assert(0); // Not used |
| break; |
| case TX_16X16: |
| scan_order = &av1_fast_idtx_scan_order_16x16; |
| tx_wd = 16; |
| break; |
| case TX_8X8: |
| scan_order = &av1_fast_idtx_scan_order_8x8; |
| tx_wd = 8; |
| break; |
| default: |
| assert(tx_size == TX_4X4); |
| scan_order = &av1_fast_idtx_scan_order_4x4; |
| tx_wd = 4; |
| break; |
| } |
| assert(scan_order != NULL); |
| |
| this_rdc->dist = 0; |
| this_rdc->rate = 0; |
| aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, |
| pred_buf, pred_stride); |
| // Keep track of the row and column of the blocks we use so that we know |
| // if we are in the unrestricted motion border. |
| DECLARE_BLOCK_YRD_BUFFERS() |
| DECLARE_BLOCK_YRD_VARS() |
| for (int r = 0; r < max_blocks_high; r += block_step) { |
| for (int c = 0, s = 0; c < max_blocks_wide; c += block_step, s += step) { |
| DECLARE_LOOP_VARS_BLOCK_YRD() |
| scale_square_buf_vals(low_coeff, tx_wd, src_diff, diff_stride); |
| av1_quantize_lp(low_coeff, tx_wd * tx_wd, p->round_fp_QTX, |
| p->quant_fp_QTX, low_qcoeff, low_dqcoeff, p->dequant_QTX, |
| eob, scan_order->scan, scan_order->iscan); |
| assert(*eob <= 1024); |
| update_yrd_loop_vars(x, &temp_skippable, step, *eob, low_coeff, |
| low_qcoeff, low_dqcoeff, this_rdc, &eob_cost, |
| r * num_blk_skip_w + c); |
| } |
| } |
| this_rdc->skip_txfm = *skippable = temp_skippable; |
| if (this_rdc->sse < INT64_MAX) { |
| this_rdc->sse = (this_rdc->sse << 6) >> 2; |
| if (temp_skippable) { |
| this_rdc->dist = 0; |
| this_rdc->dist = this_rdc->sse; |
| return; |
| } |
| } |
| // If skippable is set, rate gets clobbered later. |
| this_rdc->rate <<= (2 + AV1_PROB_COST_SHIFT); |
| this_rdc->rate += (eob_cost << AV1_PROB_COST_SHIFT); |
| } |
| |
| int64_t av1_model_rd_for_sb_uv(AV1_COMP *cpi, BLOCK_SIZE plane_bsize, |
| MACROBLOCK *x, MACROBLOCKD *xd, |
| RD_STATS *this_rdc, int start_plane, |
| int stop_plane) { |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| unsigned int sse; |
| int rate; |
| int64_t dist; |
| int plane; |
| int64_t tot_sse = 0; |
| |
| this_rdc->rate = 0; |
| this_rdc->dist = 0; |
| this_rdc->skip_txfm = 0; |
| |
| for (plane = start_plane; plane <= stop_plane; ++plane) { |
| struct macroblock_plane *const p = &x->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const uint32_t dc_quant = p->dequant_QTX[0]; |
| const uint32_t ac_quant = p->dequant_QTX[1]; |
| const BLOCK_SIZE bs = plane_bsize; |
| unsigned int var; |
| if (!x->color_sensitivity[COLOR_SENS_IDX(plane)]) continue; |
| |
| var = cpi->ppi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, |
| pd->dst.stride, &sse); |
| assert(sse >= var); |
| tot_sse += sse; |
| |
| av1_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs], |
| dc_quant >> 3, &rate, &dist); |
| |
| this_rdc->rate += rate >> 1; |
| this_rdc->dist += dist << 3; |
| |
| av1_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], ac_quant >> 3, |
| &rate, &dist); |
| |
| this_rdc->rate += rate; |
| this_rdc->dist += dist << 4; |
| } |
| |
| if (this_rdc->rate == 0) { |
| this_rdc->skip_txfm = 1; |
| } |
| |
| if (RDCOST(x->rdmult, this_rdc->rate, this_rdc->dist) >= |
| RDCOST(x->rdmult, 0, tot_sse << 4)) { |
| this_rdc->rate = 0; |
| this_rdc->dist = tot_sse << 4; |
| this_rdc->skip_txfm = 1; |
| } |
| |
| return tot_sse; |
| } |
| |
| static void compute_intra_yprediction(const AV1_COMMON *cm, |
| PREDICTION_MODE mode, BLOCK_SIZE bsize, |
| MACROBLOCK *x, MACROBLOCKD *xd) { |
| const SequenceHeader *seq_params = cm->seq_params; |
| struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; |
| struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y]; |
| uint8_t *const src_buf_base = p->src.buf; |
| uint8_t *const dst_buf_base = pd->dst.buf; |
| const int src_stride = p->src.stride; |
| const int dst_stride = pd->dst.stride; |
| int plane = 0; |
| int row, col; |
| // block and transform sizes, in number of 4x4 blocks log 2 ("*_b") |
| // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 |
| // transform size varies per plane, look it up in a common way. |
| const TX_SIZE tx_size = max_txsize_lookup[bsize]; |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); |
| // If mb_to_right_edge is < 0 we are in a situation in which |
| // the current block size extends into the UMV and we won't |
| // visit the sub blocks that are wholly within the UMV. |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); |
| const int max_blocks_high = max_block_high(xd, plane_bsize, plane); |
| // Keep track of the row and column of the blocks we use so that we know |
| // if we are in the unrestricted motion border. |
| for (row = 0; row < max_blocks_high; row += (1 << tx_size)) { |
| // Skip visiting the sub blocks that are wholly within the UMV. |
| for (col = 0; col < max_blocks_wide; col += (1 << tx_size)) { |
| p->src.buf = &src_buf_base[4 * (row * (int64_t)src_stride + col)]; |
| pd->dst.buf = &dst_buf_base[4 * (row * (int64_t)dst_stride + col)]; |
| av1_predict_intra_block( |
| xd, seq_params->sb_size, seq_params->enable_intra_edge_filter, |
| block_size_wide[bsize], block_size_high[bsize], tx_size, mode, 0, 0, |
| FILTER_INTRA_MODES, pd->dst.buf, dst_stride, pd->dst.buf, dst_stride, |
| 0, 0, plane); |
| } |
| } |
| p->src.buf = src_buf_base; |
| pd->dst.buf = dst_buf_base; |
| } |
| |
| // Checks whether Intra mode needs to be pruned based on |
| // 'intra_y_mode_bsize_mask_nrd' and 'prune_hv_pred_modes_using_blksad' |
| // speed features. |
| static INLINE bool is_prune_intra_mode( |
| AV1_COMP *cpi, int mode_index, int force_intra_check, BLOCK_SIZE bsize, |
| uint8_t segment_id, SOURCE_SAD source_sad_nonrd, |
| uint8_t color_sensitivity[MAX_MB_PLANE - 1]) { |
| const PREDICTION_MODE this_mode = intra_mode_list[mode_index]; |
| if (mode_index > 2 || force_intra_check == 0) { |
| if (!((1 << this_mode) & cpi->sf.rt_sf.intra_y_mode_bsize_mask_nrd[bsize])) |
| return true; |
| |
| if (this_mode == DC_PRED) return false; |
| |
| if (!cpi->sf.rt_sf.prune_hv_pred_modes_using_src_sad) return false; |
| |
| const bool has_color_sensitivity = |
| color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] && |
| color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)]; |
| if (has_color_sensitivity && |
| (cpi->rc.frame_source_sad > 1.1 * cpi->rc.avg_source_sad || |
| cyclic_refresh_segment_id_boosted(segment_id) || |
| source_sad_nonrd > kMedSad)) |
| return false; |
| |
| return true; |
| } |
| return false; |
| } |
| |
| /*!\brief Estimation of RD cost of an intra mode for Non-RD optimized case. |
| * |
| * \ingroup nonrd_mode_search |
| * \callgraph |
| * \callergraph |
| * Calculates RD Cost for an intra mode for a single TX block using Hadamard |
| * transform. |
| * \param[in] plane Color plane |
| * \param[in] block Index of a TX block in a prediction block |
| * \param[in] row Row of a current TX block |
| * \param[in] col Column of a current TX block |
| * \param[in] plane_bsize Block size of a current prediction block |
| * \param[in] tx_size Transform size |
| * \param[in] arg Pointer to a structure that holds parameters |
| * for intra mode search |
| * |
| * \remark Nothing is returned. Instead, best mode and RD Cost of the best mode |
| * are set in \c args->rdc and \c args->mode |
| */ |
| void av1_estimate_block_intra(int plane, int block, int row, int col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| void *arg) { |
| struct estimate_block_intra_args *const args = arg; |
| AV1_COMP *const cpi = args->cpi; |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = args->x; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size]; |
| uint8_t *const src_buf_base = p->src.buf; |
| uint8_t *const dst_buf_base = pd->dst.buf; |
| const int64_t src_stride = p->src.stride; |
| const int64_t dst_stride = pd->dst.stride; |
| |
| (void)block; |
| |
| av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size); |
| |
| if (args->prune_mode_based_on_sad) { |
| unsigned int this_sad = cpi->ppi->fn_ptr[plane_bsize].sdf( |
| p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride); |
| const unsigned int sad_threshold = |
| args->best_sad != UINT_MAX ? args->best_sad + (args->best_sad >> 4) |
| : UINT_MAX; |
| // Skip the evaluation of current mode if its SAD is more than a threshold. |
| if (this_sad > sad_threshold) { |
| // For the current mode, set rate and distortion to maximum possible |
| // values and return. |
| // Note: args->rdc->rate is checked in av1_nonrd_pick_intra_mode() to skip |
| // the evaluation of the current mode. |
| args->rdc->rate = INT_MAX; |
| args->rdc->dist = INT64_MAX; |
| return; |
| } |
| if (this_sad < args->best_sad) { |
| args->best_sad = this_sad; |
| } |
| } |
| |
| RD_STATS this_rdc; |
| av1_invalid_rd_stats(&this_rdc); |
| |
| p->src.buf = &src_buf_base[4 * (row * src_stride + col)]; |
| pd->dst.buf = &dst_buf_base[4 * (row * dst_stride + col)]; |
| |
| if (plane == 0) { |
| av1_block_yrd(x, &this_rdc, &args->skippable, bsize_tx, |
| AOMMIN(tx_size, TX_16X16)); |
| } else { |
| av1_model_rd_for_sb_uv(cpi, bsize_tx, x, xd, &this_rdc, plane, plane); |
| } |
| |
| p->src.buf = src_buf_base; |
| pd->dst.buf = dst_buf_base; |
| assert(args->rdc->rate != INT_MAX && args->rdc->dist != INT64_MAX); |
| args->rdc->rate += this_rdc.rate; |
| args->rdc->dist += this_rdc.dist; |
| } |
| |
| /*!\brief Estimates best intra mode for inter mode search |
| * |
| * \ingroup nonrd_mode_search |
| * \callgraph |
| * \callergraph |
| * |
| * Using heuristics based on best inter mode, block size, and other decides |
| * whether to check intra modes. If so, estimates and selects best intra mode |
| * from the reduced set of intra modes (max 4 intra modes checked) |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] x Pointer to structure holding all the |
| * data for the current macroblock |
| * \param[in] bsize Current block size |
| * \param[in] best_early_term Flag, indicating that TX for the |
| * best inter mode was skipped |
| * \param[in] ref_cost_intra Cost of signalling intra mode |
| * \param[in] reuse_prediction Flag, indicating prediction re-use |
| * \param[in] orig_dst Original destination buffer |
| * \param[in] tmp_buffers Pointer to a temporary buffers for |
| * prediction re-use |
| * \param[out] this_mode_pred Pointer to store prediction buffer |
| * for prediction re-use |
| * \param[in] best_rdc Pointer to RD cost for the best |
| * selected intra mode |
| * \param[in] best_pickmode Pointer to a structure containing |
| * best mode picked so far |
| * \param[in] ctx Pointer to structure holding coding |
| * contexts and modes for the block |
| * |
| * \remark Nothing is returned. Instead, calculated RD cost is placed to |
| * \c best_rdc and best selected mode is placed to \c best_pickmode |
| * |
| */ |
| void av1_estimate_intra_mode(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, |
| int best_early_term, unsigned int ref_cost_intra, |
| int reuse_prediction, struct buf_2d *orig_dst, |
| PRED_BUFFER *tmp_buffers, |
| PRED_BUFFER **this_mode_pred, RD_STATS *best_rdc, |
| BEST_PICKMODE *best_pickmode, |
| PICK_MODE_CONTEXT *ctx) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mi = xd->mi[0]; |
| const TxfmSearchParams *txfm_params = &x->txfm_search_params; |
| const unsigned char segment_id = mi->segment_id; |
| const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize]; |
| const int *const rd_thresh_freq_fact = x->thresh_freq_fact[bsize]; |
| const bool is_screen_content = |
| cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN; |
| struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; |
| const REAL_TIME_SPEED_FEATURES *const rt_sf = &cpi->sf.rt_sf; |
| |
| const CommonQuantParams *quant_params = &cm->quant_params; |
| |
| RD_STATS this_rdc; |
| |
| int intra_cost_penalty = av1_get_intra_cost_penalty( |
| quant_params->base_qindex, quant_params->y_dc_delta_q, |
| cm->seq_params->bit_depth); |
| int64_t inter_mode_thresh = |
| RDCOST(x->rdmult, ref_cost_intra + intra_cost_penalty, 0); |
| int perform_intra_pred = rt_sf->check_intra_pred_nonrd; |
| int force_intra_check = 0; |
| // For spatial enhancement layer: turn off intra prediction if the |
| // previous spatial layer as golden ref is not chosen as best reference. |
| // only do this for temporal enhancement layer and on non-key frames. |
| if (cpi->svc.spatial_layer_id > 0 && |
| best_pickmode->best_ref_frame != GOLDEN_FRAME && |
| cpi->svc.temporal_layer_id > 0 && |
| !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame) |
| perform_intra_pred = 0; |
| |
| int do_early_exit_rdthresh = 1; |
| |
| uint32_t spatial_var_thresh = 50; |
| int motion_thresh = 32; |
| // Adjust thresholds to make intra mode likely tested if the other |
| // references (golden, alt) are skipped/not checked. For now always |
| // adjust for svc mode. |
| if (cpi->ppi->use_svc || (rt_sf->use_nonrd_altref_frame == 0 && |
| rt_sf->nonrd_prune_ref_frame_search > 0)) { |
| spatial_var_thresh = 150; |
| motion_thresh = 0; |
| } |
| |
| // Some adjustments to checking intra mode based on source variance. |
| if (x->source_variance < spatial_var_thresh) { |
| // If the best inter mode is large motion or non-LAST ref reduce intra cost |
| // penalty, so intra mode is more likely tested. |
| if (best_rdc->rdcost != INT64_MAX && |
| (best_pickmode->best_ref_frame != LAST_FRAME || |
| abs(mi->mv[0].as_mv.row) >= motion_thresh || |
| abs(mi->mv[0].as_mv.col) >= motion_thresh)) { |
| intra_cost_penalty = intra_cost_penalty >> 2; |
| inter_mode_thresh = |
| RDCOST(x->rdmult, ref_cost_intra + intra_cost_penalty, 0); |
| do_early_exit_rdthresh = 0; |
| } |
| if ((x->source_variance < AOMMAX(50, (spatial_var_thresh >> 1)) && |
| x->content_state_sb.source_sad_nonrd >= kHighSad) || |
| (is_screen_content && x->source_variance < 50 && |
| ((bsize >= BLOCK_32X32 && |
| x->content_state_sb.source_sad_nonrd != kZeroSad) || |
| x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] == 1 || |
| x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] == 1))) |
| force_intra_check = 1; |
| // For big blocks worth checking intra (since only DC will be checked), |
| // even if best_early_term is set. |
| if (bsize >= BLOCK_32X32) best_early_term = 0; |
| } else if (rt_sf->source_metrics_sb_nonrd && |
| x->content_state_sb.source_sad_nonrd <= kLowSad) { |
| perform_intra_pred = 0; |
| } |
| |
| if (best_rdc->skip_txfm && best_pickmode->best_mode_initial_skip_flag) { |
| if (rt_sf->skip_intra_pred == 1 && best_pickmode->best_mode != NEWMV) |
| perform_intra_pred = 0; |
| else if (rt_sf->skip_intra_pred == 2) |
| perform_intra_pred = 0; |
| } |
| |
| if (!(best_rdc->rdcost == INT64_MAX || force_intra_check || |
| (perform_intra_pred && !best_early_term && |
| bsize <= cpi->sf.part_sf.max_intra_bsize))) { |
| return; |
| } |
| |
| // Early exit based on RD cost calculated using known rate. When |
| // is_screen_content is true, more bias is given to intra modes. Hence, |
| // considered conservative threshold in early exit for the same. |
| const int64_t known_rd = is_screen_content |
| ? CALC_BIASED_RDCOST(inter_mode_thresh) |
| : inter_mode_thresh; |
| if (known_rd > best_rdc->rdcost) return; |
| |
| struct estimate_block_intra_args args; |
| init_estimate_block_intra_args(&args, cpi, x); |
| TX_SIZE intra_tx_size = AOMMIN( |
| AOMMIN(max_txsize_lookup[bsize], |
| tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]), |
| TX_16X16); |
| if (is_screen_content && cpi->rc.high_source_sad && |
| x->source_variance > spatial_var_thresh && bsize <= BLOCK_16X16) |
| intra_tx_size = TX_4X4; |
| |
| PRED_BUFFER *const best_pred = best_pickmode->best_pred; |
| if (reuse_prediction && best_pred != NULL) { |
| const int bh = block_size_high[bsize]; |
| const int bw = block_size_wide[bsize]; |
| if (best_pred->data == orig_dst->buf) { |
| *this_mode_pred = &tmp_buffers[get_pred_buffer(tmp_buffers, 3)]; |
| aom_convolve_copy(best_pred->data, best_pred->stride, |
| (*this_mode_pred)->data, (*this_mode_pred)->stride, bw, |
| bh); |
| best_pickmode->best_pred = *this_mode_pred; |
| } |
| } |
| pd->dst = *orig_dst; |
| |
| for (int midx = 0; midx < RTC_INTRA_MODES; ++midx) { |
| const PREDICTION_MODE this_mode = intra_mode_list[midx]; |
| const THR_MODES mode_index = mode_idx[INTRA_FRAME][mode_offset(this_mode)]; |
| const int64_t mode_rd_thresh = rd_threshes[mode_index]; |
| |
| if (is_prune_intra_mode(cpi, midx, force_intra_check, bsize, segment_id, |
| x->content_state_sb.source_sad_nonrd, |
| x->color_sensitivity)) |
| continue; |
| |
| if (is_screen_content && rt_sf->source_metrics_sb_nonrd) { |
| // For spatially flat blocks with zero motion only check |
| // DC mode. |
| if (x->content_state_sb.source_sad_nonrd == kZeroSad && |
| x->source_variance == 0 && this_mode != DC_PRED) |
| continue; |
| // Only test Intra for big blocks if spatial_variance is small. |
| else if (bsize > BLOCK_32X32 && x->source_variance > 50) |
| continue; |
| } |
| |
| if (rd_less_than_thresh(best_rdc->rdcost, mode_rd_thresh, |
| rd_thresh_freq_fact[mode_index]) && |
| (do_early_exit_rdthresh || this_mode == SMOOTH_PRED)) { |
| continue; |
| } |
| const BLOCK_SIZE uv_bsize = |
| get_plane_block_size(bsize, xd->plane[AOM_PLANE_U].subsampling_x, |
| xd->plane[AOM_PLANE_U].subsampling_y); |
| |
| mi->mode = this_mode; |
| mi->ref_frame[0] = INTRA_FRAME; |
| mi->ref_frame[1] = NONE_FRAME; |
| |
| av1_invalid_rd_stats(&this_rdc); |
| args.mode = this_mode; |
| args.skippable = 1; |
| args.rdc = &this_rdc; |
| mi->tx_size = intra_tx_size; |
| compute_intra_yprediction(cm, this_mode, bsize, x, xd); |
| // Look into selecting tx_size here, based on prediction residual. |
| av1_block_yrd(x, &this_rdc, &args.skippable, bsize, mi->tx_size); |
| // TODO(kyslov@) Need to account for skippable |
| if (x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)]) { |
| av1_foreach_transformed_block_in_plane(xd, uv_bsize, AOM_PLANE_U, |
| av1_estimate_block_intra, &args); |
| } |
| if (x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)]) { |
| av1_foreach_transformed_block_in_plane(xd, uv_bsize, AOM_PLANE_V, |
| av1_estimate_block_intra, &args); |
| } |
| |
| int mode_cost = 0; |
| if (av1_is_directional_mode(this_mode) && av1_use_angle_delta(bsize)) { |
| mode_cost += |
| x->mode_costs.angle_delta_cost[this_mode - V_PRED] |
| [MAX_ANGLE_DELTA + |
| mi->angle_delta[PLANE_TYPE_Y]]; |
| } |
| if (this_mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) { |
| mode_cost += x->mode_costs.filter_intra_cost[bsize][0]; |
| } |
| this_rdc.rate += ref_cost_intra; |
| this_rdc.rate += intra_cost_penalty; |
| this_rdc.rate += mode_cost; |
| this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); |
| |
| if (is_screen_content && rt_sf->source_metrics_sb_nonrd) { |
| // For blocks with low spatial variance and color sad, |
| // favor the intra-modes, only on scene/slide change. |
| if (cpi->rc.high_source_sad && x->source_variance < 800 && |
| (x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] || |
| x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)])) |
| this_rdc.rdcost = CALC_BIASED_RDCOST(this_rdc.rdcost); |
| // Otherwise bias against intra for blocks with zero |
| // motion and no color, on non-scene/slide changes. |
| else if (!cpi->rc.high_source_sad && x->source_variance > 0 && |
| x->content_state_sb.source_sad_nonrd == kZeroSad && |
| x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] == 0 && |
| x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] == 0) |
| this_rdc.rdcost = (3 * this_rdc.rdcost) >> 1; |
| } |
| |
| if (this_rdc.rdcost < best_rdc->rdcost) { |
| *best_rdc = this_rdc; |
| best_pickmode->best_mode = this_mode; |
| best_pickmode->best_tx_size = mi->tx_size; |
| best_pickmode->best_ref_frame = INTRA_FRAME; |
| best_pickmode->best_second_ref_frame = NONE; |
| best_pickmode->best_mode_skip_txfm = this_rdc.skip_txfm; |
| mi->uv_mode = this_mode; |
| mi->mv[0].as_int = INVALID_MV; |
| mi->mv[1].as_int = INVALID_MV; |
| if (!this_rdc.skip_txfm) |
| memset(ctx->blk_skip, 0, |
| sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); |
| } |
| } |
| if (best_pickmode->best_ref_frame == INTRA_FRAME) |
| memset(ctx->blk_skip, 0, |
| sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); |
| mi->tx_size = best_pickmode->best_tx_size; |
| } |