| /* |
| * Copyright (c) 2024, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <arm_neon.h> |
| #include <assert.h> |
| #include <stdint.h> |
| |
| #include "config/aom_config.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/aom_filter.h" |
| #include "aom_dsp/arm/mem_neon.h" |
| #include "aom_dsp/arm/transpose_neon.h" |
| #include "av1/common/arm/convolve_scale_neon.h" |
| #include "av1/common/convolve.h" |
| #include "av1/common/filter.h" |
| |
| static inline int16x4_t convolve8_4_h(const int16x4_t s0, const int16x4_t s1, |
| const int16x4_t s2, const int16x4_t s3, |
| const int16x4_t s4, const int16x4_t s5, |
| const int16x4_t s6, const int16x4_t s7, |
| const int16x8_t filter, |
| const int32x4_t horiz_const) { |
| int16x4_t filter_lo = vget_low_s16(filter); |
| int16x4_t filter_hi = vget_high_s16(filter); |
| |
| int32x4_t sum = horiz_const; |
| sum = vmlal_lane_s16(sum, s0, filter_lo, 0); |
| sum = vmlal_lane_s16(sum, s1, filter_lo, 1); |
| sum = vmlal_lane_s16(sum, s2, filter_lo, 2); |
| sum = vmlal_lane_s16(sum, s3, filter_lo, 3); |
| sum = vmlal_lane_s16(sum, s4, filter_hi, 0); |
| sum = vmlal_lane_s16(sum, s5, filter_hi, 1); |
| sum = vmlal_lane_s16(sum, s6, filter_hi, 2); |
| sum = vmlal_lane_s16(sum, s7, filter_hi, 3); |
| |
| return vshrn_n_s32(sum, ROUND0_BITS); |
| } |
| |
| static inline int16x8_t convolve8_8_h(const int16x8_t s0, const int16x8_t s1, |
| const int16x8_t s2, const int16x8_t s3, |
| const int16x8_t s4, const int16x8_t s5, |
| const int16x8_t s6, const int16x8_t s7, |
| const int16x8_t filter, |
| const int16x8_t horiz_const) { |
| int16x4_t filter_lo = vget_low_s16(filter); |
| int16x4_t filter_hi = vget_high_s16(filter); |
| |
| int16x8_t sum = horiz_const; |
| sum = vmlaq_lane_s16(sum, s0, filter_lo, 0); |
| sum = vmlaq_lane_s16(sum, s1, filter_lo, 1); |
| sum = vmlaq_lane_s16(sum, s2, filter_lo, 2); |
| sum = vmlaq_lane_s16(sum, s3, filter_lo, 3); |
| sum = vmlaq_lane_s16(sum, s4, filter_hi, 0); |
| sum = vmlaq_lane_s16(sum, s5, filter_hi, 1); |
| sum = vmlaq_lane_s16(sum, s6, filter_hi, 2); |
| sum = vmlaq_lane_s16(sum, s7, filter_hi, 3); |
| |
| return vshrq_n_s16(sum, ROUND0_BITS - 1); |
| } |
| |
| static inline void convolve_horiz_scale_8tap_neon(const uint8_t *src, |
| int src_stride, int16_t *dst, |
| int dst_stride, int w, int h, |
| const int16_t *x_filter, |
| const int subpel_x_qn, |
| const int x_step_qn) { |
| DECLARE_ALIGNED(16, int16_t, temp[8 * 8]); |
| const int bd = 8; |
| |
| if (w == 4) { |
| // The shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts. |
| const int32x4_t horiz_offset = |
| vdupq_n_s32((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))); |
| |
| do { |
| int x_qn = subpel_x_qn; |
| |
| // Process a 4x4 tile. |
| for (int r = 0; r < 4; ++r) { |
| const uint8_t *const s = &src[x_qn >> SCALE_SUBPEL_BITS]; |
| |
| const ptrdiff_t filter_offset = |
| SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); |
| const int16x8_t filter = vld1q_s16(x_filter + filter_offset); |
| |
| uint8x8_t t0, t1, t2, t3; |
| load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3); |
| |
| transpose_elems_inplace_u8_8x4(&t0, &t1, &t2, &t3); |
| |
| int16x4_t s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); |
| int16x4_t s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); |
| int16x4_t s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); |
| int16x4_t s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); |
| int16x4_t s4 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); |
| int16x4_t s5 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); |
| int16x4_t s6 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); |
| int16x4_t s7 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); |
| |
| int16x4_t d0 = |
| convolve8_4_h(s0, s1, s2, s3, s4, s5, s6, s7, filter, horiz_offset); |
| |
| vst1_s16(&temp[r * 4], d0); |
| x_qn += x_step_qn; |
| } |
| |
| // Transpose the 4x4 result tile and store. |
| int16x4_t d0, d1, d2, d3; |
| load_s16_4x4(temp, 4, &d0, &d1, &d2, &d3); |
| |
| transpose_elems_inplace_s16_4x4(&d0, &d1, &d2, &d3); |
| |
| store_s16_4x4(dst, dst_stride, d0, d1, d2, d3); |
| |
| dst += 4 * dst_stride; |
| src += 4 * src_stride; |
| h -= 4; |
| } while (h > 0); |
| } else { |
| // The shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts. |
| // The additional -1 is needed because we are halving the filter values. |
| const int16x8_t horiz_offset = |
| vdupq_n_s16((1 << (bd + FILTER_BITS - 2)) + (1 << (ROUND0_BITS - 2))); |
| |
| do { |
| int x_qn = subpel_x_qn; |
| int16_t *d = dst; |
| int width = w; |
| |
| do { |
| // Process an 8x8 tile. |
| for (int r = 0; r < 8; ++r) { |
| const uint8_t *const s = &src[(x_qn >> SCALE_SUBPEL_BITS)]; |
| |
| const ptrdiff_t filter_offset = |
| SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); |
| int16x8_t filter = vld1q_s16(x_filter + filter_offset); |
| // Filter values are all even so halve them to allow convolution |
| // kernel computations to stay in 16-bit element types. |
| filter = vshrq_n_s16(filter, 1); |
| |
| uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; |
| load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); |
| |
| transpose_elems_u8_8x8(t0, t1, t2, t3, t4, t5, t6, t7, &t0, &t1, &t2, |
| &t3, &t4, &t5, &t6, &t7); |
| |
| int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); |
| int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t1)); |
| int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); |
| int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); |
| int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t4)); |
| int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t5)); |
| int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t6)); |
| int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t7)); |
| |
| int16x8_t d0 = convolve8_8_h(s0, s1, s2, s3, s4, s5, s6, s7, filter, |
| horiz_offset); |
| |
| vst1q_s16(&temp[r * 8], d0); |
| |
| x_qn += x_step_qn; |
| } |
| |
| // Transpose the 8x8 result tile and store. |
| int16x8_t d0, d1, d2, d3, d4, d5, d6, d7; |
| load_s16_8x8(temp, 8, &d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); |
| |
| transpose_elems_inplace_s16_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); |
| |
| store_s16_8x8(d, dst_stride, d0, d1, d2, d3, d4, d5, d6, d7); |
| |
| d += 8; |
| width -= 8; |
| } while (width != 0); |
| |
| dst += 8 * dst_stride; |
| src += 8 * src_stride; |
| h -= 8; |
| } while (h > 0); |
| } |
| } |
| |
| static inline int16x4_t convolve6_4_h(const int16x4_t s0, const int16x4_t s1, |
| const int16x4_t s2, const int16x4_t s3, |
| const int16x4_t s4, const int16x4_t s5, |
| const int16x8_t filter, |
| const int32x4_t horiz_const) { |
| int16x4_t filter_lo = vget_low_s16(filter); |
| int16x4_t filter_hi = vget_high_s16(filter); |
| |
| int32x4_t sum = horiz_const; |
| // Filter values at indices 0 and 7 are 0. |
| sum = vmlal_lane_s16(sum, s0, filter_lo, 1); |
| sum = vmlal_lane_s16(sum, s1, filter_lo, 2); |
| sum = vmlal_lane_s16(sum, s2, filter_lo, 3); |
| sum = vmlal_lane_s16(sum, s3, filter_hi, 0); |
| sum = vmlal_lane_s16(sum, s4, filter_hi, 1); |
| sum = vmlal_lane_s16(sum, s5, filter_hi, 2); |
| |
| return vshrn_n_s32(sum, ROUND0_BITS); |
| } |
| |
| static inline int16x8_t convolve6_8_h(const int16x8_t s0, const int16x8_t s1, |
| const int16x8_t s2, const int16x8_t s3, |
| const int16x8_t s4, const int16x8_t s5, |
| const int16x8_t filter, |
| const int16x8_t horiz_const) { |
| int16x4_t filter_lo = vget_low_s16(filter); |
| int16x4_t filter_hi = vget_high_s16(filter); |
| |
| int16x8_t sum = horiz_const; |
| // Filter values at indices 0 and 7 are 0. |
| sum = vmlaq_lane_s16(sum, s0, filter_lo, 1); |
| sum = vmlaq_lane_s16(sum, s1, filter_lo, 2); |
| sum = vmlaq_lane_s16(sum, s2, filter_lo, 3); |
| sum = vmlaq_lane_s16(sum, s3, filter_hi, 0); |
| sum = vmlaq_lane_s16(sum, s4, filter_hi, 1); |
| sum = vmlaq_lane_s16(sum, s5, filter_hi, 2); |
| |
| // We halved the filter values so -1 from right shift. |
| return vshrq_n_s16(sum, ROUND0_BITS - 1); |
| } |
| |
| static inline void convolve_horiz_scale_6tap_neon(const uint8_t *src, |
| int src_stride, int16_t *dst, |
| int dst_stride, int w, int h, |
| const int16_t *x_filter, |
| const int subpel_x_qn, |
| const int x_step_qn) { |
| DECLARE_ALIGNED(16, int16_t, temp[8 * 8]); |
| const int bd = 8; |
| |
| if (w == 4) { |
| // The shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts. |
| const int32x4_t horiz_offset = |
| vdupq_n_s32((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))); |
| |
| do { |
| int x_qn = subpel_x_qn; |
| |
| // Process a 4x4 tile. |
| for (int r = 0; r < 4; ++r) { |
| const uint8_t *const s = &src[x_qn >> SCALE_SUBPEL_BITS]; |
| |
| const ptrdiff_t filter_offset = |
| SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); |
| const int16x8_t filter = vld1q_s16(x_filter + filter_offset); |
| |
| uint8x8_t t0, t1, t2, t3; |
| load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3); |
| |
| transpose_elems_inplace_u8_8x4(&t0, &t1, &t2, &t3); |
| |
| int16x4_t s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); |
| int16x4_t s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); |
| int16x4_t s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); |
| int16x4_t s3 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); |
| int16x4_t s4 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); |
| int16x4_t s5 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); |
| |
| int16x4_t d0 = |
| convolve6_4_h(s0, s1, s2, s3, s4, s5, filter, horiz_offset); |
| |
| vst1_s16(&temp[r * 4], d0); |
| x_qn += x_step_qn; |
| } |
| |
| // Transpose the 4x4 result tile and store. |
| int16x4_t d0, d1, d2, d3; |
| load_s16_4x4(temp, 4, &d0, &d1, &d2, &d3); |
| |
| transpose_elems_inplace_s16_4x4(&d0, &d1, &d2, &d3); |
| |
| store_s16_4x4(dst, dst_stride, d0, d1, d2, d3); |
| |
| dst += 4 * dst_stride; |
| src += 4 * src_stride; |
| h -= 4; |
| } while (h > 0); |
| } else { |
| // The shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts. |
| // The additional -1 is needed because we are halving the filter values. |
| const int16x8_t horiz_offset = |
| vdupq_n_s16((1 << (bd + FILTER_BITS - 2)) + (1 << (ROUND0_BITS - 2))); |
| |
| do { |
| int x_qn = subpel_x_qn; |
| int16_t *d = dst; |
| int width = w; |
| |
| do { |
| // Process an 8x8 tile. |
| for (int r = 0; r < 8; ++r) { |
| const uint8_t *const s = &src[(x_qn >> SCALE_SUBPEL_BITS)]; |
| |
| const ptrdiff_t filter_offset = |
| SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); |
| int16x8_t filter = vld1q_s16(x_filter + filter_offset); |
| // Filter values are all even so halve them to allow convolution |
| // kernel computations to stay in 16-bit element types. |
| filter = vshrq_n_s16(filter, 1); |
| |
| uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; |
| load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); |
| |
| transpose_elems_u8_8x8(t0, t1, t2, t3, t4, t5, t6, t7, &t0, &t1, &t2, |
| &t3, &t4, &t5, &t6, &t7); |
| |
| int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t1)); |
| int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t2)); |
| int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t3)); |
| int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t4)); |
| int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t5)); |
| int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t6)); |
| |
| int16x8_t d0 = |
| convolve6_8_h(s0, s1, s2, s3, s4, s5, filter, horiz_offset); |
| |
| vst1q_s16(&temp[r * 8], d0); |
| |
| x_qn += x_step_qn; |
| } |
| |
| // Transpose the 8x8 result tile and store. |
| int16x8_t d0, d1, d2, d3, d4, d5, d6, d7; |
| load_s16_8x8(temp, 8, &d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); |
| |
| transpose_elems_inplace_s16_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); |
| |
| store_s16_8x8(d, dst_stride, d0, d1, d2, d3, d4, d5, d6, d7); |
| |
| d += 8; |
| width -= 8; |
| } while (width != 0); |
| |
| dst += 8 * dst_stride; |
| src += 8 * src_stride; |
| h -= 8; |
| } while (h > 0); |
| } |
| } |
| |
| static inline void convolve_horiz_scale_2_8tap_neon( |
| const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int w, |
| int h, const int16_t *x_filter) { |
| const int bd = 8; |
| |
| if (w == 4) { |
| // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding |
| // shifts - which are generally faster than rounding shifts on modern CPUs. |
| const int32x4_t horiz_offset = |
| vdupq_n_s32((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))); |
| const int16x8_t filter = vld1q_s16(x_filter); |
| |
| do { |
| uint8x16_t t0, t1, t2, t3; |
| load_u8_16x4(src, src_stride, &t0, &t1, &t2, &t3); |
| transpose_elems_inplace_u8_16x4(&t0, &t1, &t2, &t3); |
| |
| int16x8_t tt0 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t0))); |
| int16x8_t tt1 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t1))); |
| int16x8_t tt2 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t2))); |
| int16x8_t tt3 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t3))); |
| int16x8_t tt4 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t0))); |
| int16x8_t tt5 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t1))); |
| int16x8_t tt6 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t2))); |
| int16x8_t tt7 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t3))); |
| |
| int16x4_t s0 = vget_low_s16(tt0); |
| int16x4_t s1 = vget_low_s16(tt1); |
| int16x4_t s2 = vget_low_s16(tt2); |
| int16x4_t s3 = vget_low_s16(tt3); |
| int16x4_t s4 = vget_high_s16(tt0); |
| int16x4_t s5 = vget_high_s16(tt1); |
| int16x4_t s6 = vget_high_s16(tt2); |
| int16x4_t s7 = vget_high_s16(tt3); |
| int16x4_t s8 = vget_low_s16(tt4); |
| int16x4_t s9 = vget_low_s16(tt5); |
| int16x4_t s10 = vget_low_s16(tt6); |
| int16x4_t s11 = vget_low_s16(tt7); |
| int16x4_t s12 = vget_high_s16(tt4); |
| int16x4_t s13 = vget_high_s16(tt5); |
| |
| int16x4_t d0 = |
| convolve8_4_h(s0, s1, s2, s3, s4, s5, s6, s7, filter, horiz_offset); |
| int16x4_t d1 = |
| convolve8_4_h(s2, s3, s4, s5, s6, s7, s8, s9, filter, horiz_offset); |
| int16x4_t d2 = |
| convolve8_4_h(s4, s5, s6, s7, s8, s9, s10, s11, filter, horiz_offset); |
| int16x4_t d3 = convolve8_4_h(s6, s7, s8, s9, s10, s11, s12, s13, filter, |
| horiz_offset); |
| |
| transpose_elems_inplace_s16_4x4(&d0, &d1, &d2, &d3); |
| |
| store_s16_4x4(dst, dst_stride, d0, d1, d2, d3); |
| |
| dst += 4 * dst_stride; |
| src += 4 * src_stride; |
| h -= 4; |
| } while (h > 0); |
| } else { |
| // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding |
| // shifts - which are generally faster than rounding shifts on modern CPUs. |
| // The additional -1 is needed because we are halving the filter values. |
| const int16x8_t horiz_offset = |
| vdupq_n_s16((1 << (bd + FILTER_BITS - 2)) + (1 << (ROUND0_BITS - 2))); |
| // Filter values are all even so halve them to allow convolution |
| // kernel computations to stay in 16-bit element types. |
| const int16x8_t filter = vshrq_n_s16(vld1q_s16(x_filter), 1); |
| |
| do { |
| const uint8_t *s = src; |
| int16_t *d = dst; |
| int width = w; |
| |
| uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; |
| load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); |
| transpose_elems_u8_8x8(t0, t1, t2, t3, t4, t5, t6, t7, &t0, &t1, &t2, &t3, |
| &t4, &t5, &t6, &t7); |
| |
| s += 8; |
| |
| int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); |
| int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t1)); |
| int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); |
| int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); |
| int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t4)); |
| int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t5)); |
| int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t6)); |
| int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t7)); |
| |
| do { |
| uint8x8_t t8, t9, t10, t11, t12, t13, t14, t15; |
| load_u8_8x8(s, src_stride, &t8, &t9, &t10, &t11, &t12, &t13, &t14, |
| &t15); |
| transpose_elems_u8_8x8(t8, t9, t10, t11, t12, t13, t14, t15, &t8, &t9, |
| &t10, &t11, &t12, &t13, &t14, &t15); |
| |
| int16x8_t s8 = vreinterpretq_s16_u16(vmovl_u8(t8)); |
| int16x8_t s9 = vreinterpretq_s16_u16(vmovl_u8(t9)); |
| int16x8_t s10 = vreinterpretq_s16_u16(vmovl_u8(t10)); |
| int16x8_t s11 = vreinterpretq_s16_u16(vmovl_u8(t11)); |
| int16x8_t s12 = vreinterpretq_s16_u16(vmovl_u8(t12)); |
| int16x8_t s13 = vreinterpretq_s16_u16(vmovl_u8(t13)); |
| int16x8_t s14 = vreinterpretq_s16_u16(vmovl_u8(t14)); |
| int16x8_t s15 = vreinterpretq_s16_u16(vmovl_u8(t15)); |
| |
| int16x8_t d0 = |
| convolve8_8_h(s0, s1, s2, s3, s4, s5, s6, s7, filter, horiz_offset); |
| int16x8_t d1 = |
| convolve8_8_h(s2, s3, s4, s5, s6, s7, s8, s9, filter, horiz_offset); |
| int16x8_t d2 = convolve8_8_h(s4, s5, s6, s7, s8, s9, s10, s11, filter, |
| horiz_offset); |
| int16x8_t d3 = convolve8_8_h(s6, s7, s8, s9, s10, s11, s12, s13, filter, |
| horiz_offset); |
| |
| transpose_elems_inplace_s16_8x4(&d0, &d1, &d2, &d3); |
| |
| store_s16_4x8(d, dst_stride, vget_low_s16(d0), vget_low_s16(d1), |
| vget_low_s16(d2), vget_low_s16(d3), vget_high_s16(d0), |
| vget_high_s16(d1), vget_high_s16(d2), vget_high_s16(d3)); |
| |
| s0 = s8; |
| s1 = s9; |
| s2 = s10; |
| s3 = s11; |
| s4 = s12; |
| s5 = s13; |
| s6 = s14; |
| s7 = s15; |
| |
| s += 8; |
| d += 4; |
| width -= 4; |
| } while (width != 0); |
| |
| dst += 8 * dst_stride; |
| src += 8 * src_stride; |
| h -= 8; |
| } while (h > 0); |
| } |
| } |
| |
| static inline void convolve_horiz_scale_2_6tap_neon( |
| const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int w, |
| int h, const int16_t *x_filter) { |
| const int bd = 8; |
| |
| if (w == 4) { |
| // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding |
| // shifts - which are generally faster than rounding shifts on modern CPUs. |
| const int32x4_t horiz_offset = |
| vdupq_n_s32((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))); |
| const int16x8_t filter = vld1q_s16(x_filter); |
| |
| do { |
| uint8x16_t t0, t1, t2, t3; |
| load_u8_16x4(src, src_stride, &t0, &t1, &t2, &t3); |
| transpose_elems_inplace_u8_16x4(&t0, &t1, &t2, &t3); |
| |
| int16x8_t tt0 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t1))); |
| int16x8_t tt1 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t2))); |
| int16x8_t tt2 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t3))); |
| int16x8_t tt3 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t0))); |
| int16x8_t tt4 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t0))); |
| int16x8_t tt5 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t1))); |
| int16x8_t tt6 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t2))); |
| int16x8_t tt7 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t3))); |
| |
| int16x4_t s0 = vget_low_s16(tt0); |
| int16x4_t s1 = vget_low_s16(tt1); |
| int16x4_t s2 = vget_low_s16(tt2); |
| int16x4_t s3 = vget_high_s16(tt3); |
| int16x4_t s4 = vget_high_s16(tt0); |
| int16x4_t s5 = vget_high_s16(tt1); |
| int16x4_t s6 = vget_high_s16(tt2); |
| int16x4_t s7 = vget_low_s16(tt4); |
| int16x4_t s8 = vget_low_s16(tt5); |
| int16x4_t s9 = vget_low_s16(tt6); |
| int16x4_t s10 = vget_low_s16(tt7); |
| int16x4_t s11 = vget_high_s16(tt4); |
| |
| int16x4_t d0 = |
| convolve6_4_h(s0, s1, s2, s3, s4, s5, filter, horiz_offset); |
| int16x4_t d1 = |
| convolve6_4_h(s2, s3, s4, s5, s6, s7, filter, horiz_offset); |
| int16x4_t d2 = |
| convolve6_4_h(s4, s5, s6, s7, s8, s9, filter, horiz_offset); |
| int16x4_t d3 = |
| convolve6_4_h(s6, s7, s8, s9, s10, s11, filter, horiz_offset); |
| |
| transpose_elems_inplace_s16_4x4(&d0, &d1, &d2, &d3); |
| |
| store_s16_4x4(dst, dst_stride, d0, d1, d2, d3); |
| |
| dst += 4 * dst_stride; |
| src += 4 * src_stride; |
| h -= 4; |
| } while (h > 0); |
| } else { |
| // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding |
| // shifts - which are generally faster than rounding shifts on modern CPUs. |
| // The additional -1 is needed because we are halving the filter values. |
| const int16x8_t horiz_offset = |
| vdupq_n_s16((1 << (bd + FILTER_BITS - 2)) + (1 << (ROUND0_BITS - 2))); |
| // Filter values are all even so halve them to allow convolution |
| // kernel computations to stay in 16-bit element types. |
| const int16x8_t filter = vshrq_n_s16(vld1q_s16(x_filter), 1); |
| |
| do { |
| const uint8_t *s = src; |
| int16_t *d = dst; |
| int width = w; |
| |
| uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; |
| load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); |
| transpose_elems_u8_8x8(t0, t1, t2, t3, t4, t5, t6, t7, &t0, &t1, &t2, &t3, |
| &t4, &t5, &t6, &t7); |
| |
| s += 8; |
| |
| int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t1)); |
| int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t2)); |
| int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t3)); |
| int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t4)); |
| int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t5)); |
| int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t6)); |
| int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t7)); |
| |
| do { |
| uint8x8_t t8, t9, t10, t11, t12, t13, t14, t15; |
| load_u8_8x8(s, src_stride, &t8, &t9, &t10, &t11, &t12, &t13, &t14, |
| &t15); |
| transpose_elems_u8_8x8(t8, t9, t10, t11, t12, t13, t14, t15, &t8, &t9, |
| &t10, &t11, &t12, &t13, &t14, &t15); |
| |
| int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t8)); |
| int16x8_t s8 = vreinterpretq_s16_u16(vmovl_u8(t9)); |
| int16x8_t s9 = vreinterpretq_s16_u16(vmovl_u8(t10)); |
| int16x8_t s10 = vreinterpretq_s16_u16(vmovl_u8(t11)); |
| int16x8_t s11 = vreinterpretq_s16_u16(vmovl_u8(t12)); |
| int16x8_t s12 = vreinterpretq_s16_u16(vmovl_u8(t13)); |
| int16x8_t s13 = vreinterpretq_s16_u16(vmovl_u8(t14)); |
| int16x8_t s14 = vreinterpretq_s16_u16(vmovl_u8(t15)); |
| |
| int16x8_t d0 = |
| convolve6_8_h(s0, s1, s2, s3, s4, s5, filter, horiz_offset); |
| int16x8_t d1 = |
| convolve6_8_h(s2, s3, s4, s5, s6, s7, filter, horiz_offset); |
| int16x8_t d2 = |
| convolve6_8_h(s4, s5, s6, s7, s8, s9, filter, horiz_offset); |
| int16x8_t d3 = |
| convolve6_8_h(s6, s7, s8, s9, s10, s11, filter, horiz_offset); |
| |
| transpose_elems_inplace_s16_8x4(&d0, &d1, &d2, &d3); |
| |
| store_s16_4x8(d, dst_stride, vget_low_s16(d0), vget_low_s16(d1), |
| vget_low_s16(d2), vget_low_s16(d3), vget_high_s16(d0), |
| vget_high_s16(d1), vget_high_s16(d2), vget_high_s16(d3)); |
| |
| s0 = s8; |
| s1 = s9; |
| s2 = s10; |
| s3 = s11; |
| s4 = s12; |
| s5 = s13; |
| s6 = s14; |
| |
| s += 8; |
| d += 4; |
| width -= 4; |
| } while (width != 0); |
| |
| dst += 8 * dst_stride; |
| src += 8 * src_stride; |
| h -= 8; |
| } while (h > 0); |
| } |
| } |
| |
| void av1_convolve_2d_scale_neon(const uint8_t *src, int src_stride, |
| uint8_t *dst, int dst_stride, int w, int h, |
| const InterpFilterParams *filter_params_x, |
| const InterpFilterParams *filter_params_y, |
| const int subpel_x_qn, const int x_step_qn, |
| const int subpel_y_qn, const int y_step_qn, |
| ConvolveParams *conv_params) { |
| if (w < 4 || h < 4) { |
| av1_convolve_2d_scale_c(src, src_stride, dst, dst_stride, w, h, |
| filter_params_x, filter_params_y, subpel_x_qn, |
| x_step_qn, subpel_y_qn, y_step_qn, conv_params); |
| return; |
| } |
| |
| // For the interpolation 8-tap filters are used. |
| assert(filter_params_y->taps <= 8 && filter_params_x->taps <= 8); |
| |
| DECLARE_ALIGNED(32, int16_t, |
| im_block[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]); |
| int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) + |
| filter_params_y->taps; |
| int im_stride = MAX_SB_SIZE; |
| CONV_BUF_TYPE *dst16 = conv_params->dst; |
| const int dst16_stride = conv_params->dst_stride; |
| |
| // Account for needing filter_taps / 2 - 1 lines prior and filter_taps / 2 |
| // lines post both horizontally and vertically. |
| const ptrdiff_t horiz_offset = filter_params_x->taps / 2 - 1; |
| const ptrdiff_t vert_offset = (filter_params_y->taps / 2 - 1) * src_stride; |
| |
| // Horizontal filter |
| |
| if (x_step_qn != 2 * (1 << SCALE_SUBPEL_BITS)) { |
| if (filter_params_x->interp_filter == MULTITAP_SHARP) { |
| convolve_horiz_scale_8tap_neon( |
| src - horiz_offset - vert_offset, src_stride, im_block, im_stride, w, |
| im_h, filter_params_x->filter_ptr, subpel_x_qn, x_step_qn); |
| } else { |
| convolve_horiz_scale_6tap_neon( |
| src - horiz_offset - vert_offset, src_stride, im_block, im_stride, w, |
| im_h, filter_params_x->filter_ptr, subpel_x_qn, x_step_qn); |
| } |
| } else { |
| assert(subpel_x_qn < (1 << SCALE_SUBPEL_BITS)); |
| // The filter index is calculated using the |
| // ((subpel_x_qn + x * x_step_qn) & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS |
| // equation, where the values of x are from 0 to w. If x_step_qn is a |
| // multiple of SCALE_SUBPEL_MASK we can leave it out of the equation. |
| const ptrdiff_t filter_offset = |
| SUBPEL_TAPS * ((subpel_x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); |
| const int16_t *x_filter = filter_params_x->filter_ptr + filter_offset; |
| |
| // The source index is calculated using the (subpel_x_qn + x * x_step_qn) |
| // >> SCALE_SUBPEL_BITS, where the values of x are from 0 to w. If |
| // subpel_x_qn < (1 << SCALE_SUBPEL_BITS) and x_step_qn % (1 << |
| // SCALE_SUBPEL_BITS) == 0, the source index can be determined using the |
| // value x * (x_step_qn / (1 << SCALE_SUBPEL_BITS)). |
| if (filter_params_x->interp_filter == MULTITAP_SHARP) { |
| convolve_horiz_scale_2_8tap_neon(src - horiz_offset - vert_offset, |
| src_stride, im_block, im_stride, w, im_h, |
| x_filter); |
| } else { |
| convolve_horiz_scale_2_6tap_neon(src - horiz_offset - vert_offset, |
| src_stride, im_block, im_stride, w, im_h, |
| x_filter); |
| } |
| } |
| |
| // Vertical filter |
| if (filter_params_y->interp_filter == MULTITAP_SHARP) { |
| if (UNLIKELY(conv_params->is_compound)) { |
| if (conv_params->do_average) { |
| if (conv_params->use_dist_wtd_comp_avg) { |
| compound_dist_wtd_convolve_vert_scale_8tap_neon( |
| im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h, |
| filter_params_y->filter_ptr, conv_params, subpel_y_qn, y_step_qn); |
| } else { |
| compound_avg_convolve_vert_scale_8tap_neon( |
| im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h, |
| filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); |
| } |
| } else { |
| compound_convolve_vert_scale_8tap_neon( |
| im_block, im_stride, dst16, dst16_stride, w, h, |
| filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); |
| } |
| } else { |
| convolve_vert_scale_8tap_neon(im_block, im_stride, dst, dst_stride, w, h, |
| filter_params_y->filter_ptr, subpel_y_qn, |
| y_step_qn); |
| } |
| } else { |
| if (UNLIKELY(conv_params->is_compound)) { |
| if (conv_params->do_average) { |
| if (conv_params->use_dist_wtd_comp_avg) { |
| compound_dist_wtd_convolve_vert_scale_6tap_neon( |
| im_block + im_stride, im_stride, dst, dst_stride, dst16, |
| dst16_stride, w, h, filter_params_y->filter_ptr, conv_params, |
| subpel_y_qn, y_step_qn); |
| } else { |
| compound_avg_convolve_vert_scale_6tap_neon( |
| im_block + im_stride, im_stride, dst, dst_stride, dst16, |
| dst16_stride, w, h, filter_params_y->filter_ptr, subpel_y_qn, |
| y_step_qn); |
| } |
| } else { |
| compound_convolve_vert_scale_6tap_neon( |
| im_block + im_stride, im_stride, dst16, dst16_stride, w, h, |
| filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); |
| } |
| } else { |
| convolve_vert_scale_6tap_neon( |
| im_block + im_stride, im_stride, dst, dst_stride, w, h, |
| filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); |
| } |
| } |
| } |