blob: acd912e5757e2b2622a9fe242ae6476ec91f1f2f [file] [log] [blame]
/*
* Copyright (c) 2023, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <arm_neon.h>
#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/arm/mem_neon.h"
#include "aom_ports/mem.h"
#include "av1/common/arm/convolve_neon.h"
#include "av1/common/arm/convolve_neon_i8mm.h"
#include "av1/common/convolve.h"
#include "av1/common/filter.h"
DECLARE_ALIGNED(16, static const uint8_t, kDotProdMergeBlockTbl[48]) = {
// Shift left and insert new last column in transposed 4x4 block.
1, 2, 3, 16, 5, 6, 7, 20, 9, 10, 11, 24, 13, 14, 15, 28,
// Shift left and insert two new columns in transposed 4x4 block.
2, 3, 16, 17, 6, 7, 20, 21, 10, 11, 24, 25, 14, 15, 28, 29,
// Shift left and insert three new columns in transposed 4x4 block.
3, 16, 17, 18, 7, 20, 21, 22, 11, 24, 25, 26, 15, 28, 29, 30
};
static inline int16x4_t convolve12_4_x(uint8x16_t samples[2],
const int8x16_t filter[2],
const uint8x16_t permute_tbl,
const int32x4_t horiz_const) {
// Permute samples ready for matrix multiply.
// { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 }
// { 4, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 13 }
uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples[0], permute_tbl),
vqtbl1q_u8(samples[1], permute_tbl) };
// These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix
// (filter), destructively accumulating into the destination register.
int32x4_t sum = vusmmlaq_s32(horiz_const, perm_samples[0], filter[0]);
sum = vusmmlaq_s32(sum, perm_samples[1], filter[1]);
return vqrshrn_n_s32(sum, FILTER_BITS);
}
static inline uint8x8_t convolve12_8_x(uint8x16_t samples[2],
const int8x16_t filter[2],
const uint8x16x2_t permute_tbl,
const int32x4_t horiz_const) {
// Permute samples ready for matrix multiply.
// { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 }
// { 4, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 13 }
// { 6, 7, 8, 9, 10, 11, 12, 13, 8, 9, 10, 11, 12, 13, 14, 15 }
// { 10, 11, 12, 13, 14, 15, 16, 17, 12, 13, 14, 15, 16, 17, 18, 19 }
uint8x16_t perm_samples[4] = { vqtbl1q_u8(samples[0], permute_tbl.val[0]),
vqtbl1q_u8(samples[0], permute_tbl.val[1]),
vqtbl1q_u8(samples[1], permute_tbl.val[0]),
vqtbl1q_u8(samples[1], permute_tbl.val[1]) };
// These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix
// (filter), destructively accumulating into the destination register.
int32x4_t sum0123 = vusmmlaq_s32(horiz_const, perm_samples[0], filter[0]);
int32x4_t sum4567 = vusmmlaq_s32(horiz_const, perm_samples[1], filter[0]);
sum0123 = vusmmlaq_s32(sum0123, perm_samples[2], filter[1]);
sum4567 = vusmmlaq_s32(sum4567, perm_samples[3], filter[1]);
// Narrow and re-pack.
int16x8_t sum_s16 = vcombine_s16(vqrshrn_n_s32(sum0123, FILTER_BITS),
vqrshrn_n_s32(sum4567, FILTER_BITS));
return vqmovun_s16(sum_s16);
}
static inline void convolve_x_sr_12tap_neon_i8mm(const uint8_t *src,
int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const int16_t *x_filter_ptr) {
// The no-op filter should never be used here.
assert(x_filter_ptr[5] != 128);
// Split 12-tap filter into two 6-tap filters, masking the top two elements.
// { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0 }
const int8x8_t mask = vcreate_s8(0x0000ffffffffffff);
const int8x8_t filter_0 = vand_s8(vmovn_s16(vld1q_s16(x_filter_ptr)), mask);
const int8x8_t filter_1 =
vext_s8(vmovn_s16(vld1q_s16(x_filter_ptr + 4)), vdup_n_s8(0), 2);
// Stagger each 6-tap filter to enable use of matrix multiply instructions.
// { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 }
const int8x16_t filter[2] = {
vcombine_s8(filter_0, vext_s8(filter_0, filter_0, 7)),
vcombine_s8(filter_1, vext_s8(filter_1, filter_1, 7))
};
// A shim of 1 << (ROUND0_BITS - 1) enables us to simplify computation in the
// convolution kernels: Adding this shim enables us to use a single rounding
// right shift by FILTER_BITS instead of two rounding right shifts: first by
// ROUND0_BITS, and then subsequently by FILTER_BITS - ROUND0_BITS.
const int32x4_t horiz_const = vdupq_n_s32(1 << (ROUND0_BITS - 1));
if (w <= 4) {
const uint8x16_t permute_tbl = vld1q_u8(kMatMulPermuteTbl);
do {
uint8x16_t s0[2], s1[2], s2[2], s3[2];
load_u8_16x4(src, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]);
load_u8_16x4(src + 6, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]);
int16x4_t d0 = convolve12_4_x(s0, filter, permute_tbl, horiz_const);
int16x4_t d1 = convolve12_4_x(s1, filter, permute_tbl, horiz_const);
int16x4_t d2 = convolve12_4_x(s2, filter, permute_tbl, horiz_const);
int16x4_t d3 = convolve12_4_x(s3, filter, permute_tbl, horiz_const);
uint8x8_t d01 = vqmovun_s16(vcombine_s16(d0, d1));
uint8x8_t d23 = vqmovun_s16(vcombine_s16(d2, d3));
store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01);
store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23);
dst += 4 * dst_stride;
src += 4 * src_stride;
h -= 4;
} while (h != 0);
} else {
const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMulPermuteTbl);
do {
const uint8_t *s = src;
uint8_t *d = dst;
int width = w;
do {
uint8x16_t s0[2], s1[2], s2[2], s3[2];
load_u8_16x4(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]);
load_u8_16x4(s + 6, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]);
uint8x8_t d0 = convolve12_8_x(s0, filter, permute_tbl, horiz_const);
uint8x8_t d1 = convolve12_8_x(s1, filter, permute_tbl, horiz_const);
uint8x8_t d2 = convolve12_8_x(s2, filter, permute_tbl, horiz_const);
uint8x8_t d3 = convolve12_8_x(s3, filter, permute_tbl, horiz_const);
store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
width -= 8;
} while (width != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
h -= 4;
} while (h != 0);
}
}
static inline uint8x8_t convolve8_8_x(uint8x16_t samples, const int8x8_t filter,
const uint8x16x3_t permute_tbl,
const int32x4_t horiz_const) {
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
uint8x16_t perm_samples[3] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
vqtbl1q_u8(samples, permute_tbl.val[1]),
vqtbl1q_u8(samples, permute_tbl.val[2]) };
int32x4_t sum0123 = vusdotq_lane_s32(horiz_const, perm_samples[0], filter, 0);
sum0123 = vusdotq_lane_s32(sum0123, perm_samples[1], filter, 1);
int32x4_t sum4567 = vusdotq_lane_s32(horiz_const, perm_samples[1], filter, 0);
sum4567 = vusdotq_lane_s32(sum4567, perm_samples[2], filter, 1);
int16x8_t sum_s16 = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567));
// We halved the convolution filter values so - 1 from the right shift.
return vqrshrun_n_s16(sum_s16, FILTER_BITS - 1);
}
static inline void convolve_x_sr_8tap_neon_i8mm(
const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
ptrdiff_t dst_stride, int width, int height, const int16_t *filter_x,
const int32x4_t horiz_const) {
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter = vshrn_n_s16(vld1q_s16(filter_x), 1);
const uint8x16x3_t permute_tbl = vld1q_u8_x3(kDotProdPermuteTbl);
do {
const uint8_t *s = src;
uint8_t *d = dst;
int w = width;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
uint8x8_t d0 = convolve8_8_x(s0, x_filter, permute_tbl, horiz_const);
uint8x8_t d1 = convolve8_8_x(s1, x_filter, permute_tbl, horiz_const);
uint8x8_t d2 = convolve8_8_x(s2, x_filter, permute_tbl, horiz_const);
uint8x8_t d3 = convolve8_8_x(s3, x_filter, permute_tbl, horiz_const);
store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
w -= 8;
} while (w != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
height -= 4;
} while (height != 0);
}
static inline int16x4_t convolve6_4_x(uint8x16_t samples,
const int8x16_t filter,
const uint8x16_t permute_tbl,
const int32x4_t horiz_const) {
// Permute samples ready for matrix multiply.
// { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 }
uint8x16_t perm_samples = vqtbl1q_u8(samples, permute_tbl);
// These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix
// (filter), destructively accumulating into the destination register.
int32x4_t sum = vusmmlaq_s32(horiz_const, perm_samples, filter);
// Further narrowing and packing is performed by the caller.
return vmovn_s32(sum);
}
static inline uint8x8_t convolve6_8_x(uint8x16_t samples,
const int8x16_t filter,
const uint8x16x2_t permute_tbl,
const int32x4_t horiz_const) {
// Permute samples ready for matrix multiply.
// { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 }
// { 4, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 13 }
uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
vqtbl1q_u8(samples, permute_tbl.val[1]) };
// These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix
// (filter), destructively accumulating into the destination register.
int32x4_t sum0123 = vusmmlaq_s32(horiz_const, perm_samples[0], filter);
int32x4_t sum4567 = vusmmlaq_s32(horiz_const, perm_samples[1], filter);
int16x8_t sum = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567));
// We halved the convolution filter values so - 1 from the right shift.
return vqrshrun_n_s16(sum, FILTER_BITS - 1);
}
static inline void convolve_x_sr_6tap_neon_i8mm(
const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
ptrdiff_t dst_stride, int width, int height, const int16_t *filter_x,
const int32x4_t horiz_const) {
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(filter_x), 1);
// Stagger the filter for use with the matrix multiply instructions.
// { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 }
const int8x16_t x_filter =
vcombine_s8(vext_s8(x_filter_s8, x_filter_s8, 1), x_filter_s8);
if (width == 4) {
const uint8x16_t permute_tbl = vld1q_u8(kMatMulPermuteTbl);
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3);
int16x4_t t0 = convolve6_4_x(s0, x_filter, permute_tbl, horiz_const);
int16x4_t t1 = convolve6_4_x(s1, x_filter, permute_tbl, horiz_const);
int16x4_t t2 = convolve6_4_x(s2, x_filter, permute_tbl, horiz_const);
int16x4_t t3 = convolve6_4_x(s3, x_filter, permute_tbl, horiz_const);
// We halved the filter values so -1 from right shift.
uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(t0, t1), FILTER_BITS - 1);
uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(t2, t3), FILTER_BITS - 1);
store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01);
store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23);
src += 4 * src_stride;
dst += 4 * dst_stride;
height -= 4;
} while (height != 0);
} else {
const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMulPermuteTbl);
do {
const uint8_t *s = src;
uint8_t *d = dst;
int w = width;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
uint8x8_t d0 = convolve6_8_x(s0, x_filter, permute_tbl, horiz_const);
uint8x8_t d1 = convolve6_8_x(s1, x_filter, permute_tbl, horiz_const);
uint8x8_t d2 = convolve6_8_x(s2, x_filter, permute_tbl, horiz_const);
uint8x8_t d3 = convolve6_8_x(s3, x_filter, permute_tbl, horiz_const);
store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
w -= 8;
} while (w != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
height -= 4;
} while (height != 0);
}
}
void av1_convolve_x_sr_neon_i8mm(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const int subpel_x_qn,
ConvolveParams *conv_params) {
if (w == 2 || h == 2) {
av1_convolve_x_sr_c(src, src_stride, dst, dst_stride, w, h, filter_params_x,
subpel_x_qn, conv_params);
return;
}
const uint8_t horiz_offset = filter_params_x->taps / 2 - 1;
src -= horiz_offset;
const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
int filter_taps = get_filter_tap(filter_params_x, subpel_x_qn & SUBPEL_MASK);
// A shim of 1 << (ROUND0_BITS - 1) enables us to simplify computation in the
// convolution kernels: Adding this shim enables us to use a single rounding
// right shift by FILTER_BITS instead of two rounding right shifts: first by
// ROUND0_BITS, and then subsequently by FILTER_BITS - ROUND0_BITS.
// Halve the total because we will halve the filter values.
const int32x4_t horiz_const = vdupq_n_s32((1 << ((ROUND0_BITS - 1)) / 2));
if (filter_taps <= 6) {
convolve_x_sr_6tap_neon_i8mm(src + 1, src_stride, dst, dst_stride, w, h,
x_filter_ptr, horiz_const);
return;
}
if (filter_taps > 8) {
convolve_x_sr_12tap_neon_i8mm(src, src_stride, dst, dst_stride, w, h,
x_filter_ptr);
return;
}
convolve_x_sr_8tap_neon_i8mm(src, src_stride, dst, dst_stride, w, h,
x_filter_ptr, horiz_const);
}
static inline void transpose_concat_4x4(uint8x8_t a0, uint8x8_t a1,
uint8x8_t a2, uint8x8_t a3,
uint8x16_t *b) {
// Transpose 8-bit elements and concatenate result rows as follows:
// a0: 00, 01, 02, 03, XX, XX, XX, XX
// a1: 10, 11, 12, 13, XX, XX, XX, XX
// a2: 20, 21, 22, 23, XX, XX, XX, XX
// a3: 30, 31, 32, 33, XX, XX, XX, XX
//
// b: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33
uint8x16_t a0q = vcombine_u8(a0, vdup_n_u8(0));
uint8x16_t a1q = vcombine_u8(a1, vdup_n_u8(0));
uint8x16_t a2q = vcombine_u8(a2, vdup_n_u8(0));
uint8x16_t a3q = vcombine_u8(a3, vdup_n_u8(0));
uint8x16_t a01 = vzipq_u8(a0q, a1q).val[0];
uint8x16_t a23 = vzipq_u8(a2q, a3q).val[0];
uint16x8_t a0123 =
vzipq_u16(vreinterpretq_u16_u8(a01), vreinterpretq_u16_u8(a23)).val[0];
*b = vreinterpretq_u8_u16(a0123);
}
static inline void transpose_concat_8x4(uint8x8_t a0, uint8x8_t a1,
uint8x8_t a2, uint8x8_t a3,
uint8x16_t *b0, uint8x16_t *b1) {
// Transpose 8-bit elements and concatenate result rows as follows:
// a0: 00, 01, 02, 03, 04, 05, 06, 07
// a1: 10, 11, 12, 13, 14, 15, 16, 17
// a2: 20, 21, 22, 23, 24, 25, 26, 27
// a3: 30, 31, 32, 33, 34, 35, 36, 37
//
// b0: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33
// b1: 04, 14, 24, 34, 05, 15, 25, 35, 06, 16, 26, 36, 07, 17, 27, 37
uint8x16_t a0q = vcombine_u8(a0, vdup_n_u8(0));
uint8x16_t a1q = vcombine_u8(a1, vdup_n_u8(0));
uint8x16_t a2q = vcombine_u8(a2, vdup_n_u8(0));
uint8x16_t a3q = vcombine_u8(a3, vdup_n_u8(0));
uint8x16_t a01 = vzipq_u8(a0q, a1q).val[0];
uint8x16_t a23 = vzipq_u8(a2q, a3q).val[0];
uint16x8x2_t a0123 =
vzipq_u16(vreinterpretq_u16_u8(a01), vreinterpretq_u16_u8(a23));
*b0 = vreinterpretq_u8_u16(a0123.val[0]);
*b1 = vreinterpretq_u8_u16(a0123.val[1]);
}
static inline int16x4_t convolve12_4_y(const uint8x16_t s0, const uint8x16_t s1,
const uint8x16_t s2,
const int8x8_t filters_0_7,
const int8x8_t filters_4_11) {
int32x4_t sum = vusdotq_lane_s32(vdupq_n_s32(0), s0, filters_0_7, 0);
sum = vusdotq_lane_s32(sum, s1, filters_0_7, 1);
sum = vusdotq_lane_s32(sum, s2, filters_4_11, 1);
// Further narrowing and packing is performed by the caller.
return vqmovn_s32(sum);
}
static inline uint8x8_t convolve12_8_y(
const uint8x16_t s0_lo, const uint8x16_t s0_hi, const uint8x16_t s1_lo,
const uint8x16_t s1_hi, const uint8x16_t s2_lo, const uint8x16_t s2_hi,
const int8x8_t filters_0_7, const int8x8_t filters_4_11) {
int32x4_t sum0123 = vusdotq_lane_s32(vdupq_n_s32(0), s0_lo, filters_0_7, 0);
sum0123 = vusdotq_lane_s32(sum0123, s1_lo, filters_0_7, 1);
sum0123 = vusdotq_lane_s32(sum0123, s2_lo, filters_4_11, 1);
int32x4_t sum4567 = vusdotq_lane_s32(vdupq_n_s32(0), s0_hi, filters_0_7, 0);
sum4567 = vusdotq_lane_s32(sum4567, s1_hi, filters_0_7, 1);
sum4567 = vusdotq_lane_s32(sum4567, s2_hi, filters_4_11, 1);
// Narrow and re-pack.
int16x8_t sum = vcombine_s16(vqmovn_s32(sum0123), vqmovn_s32(sum4567));
return vqrshrun_n_s16(sum, FILTER_BITS);
}
static inline void convolve_y_sr_12tap_neon_i8mm(const uint8_t *src_ptr,
int src_stride,
uint8_t *dst_ptr,
int dst_stride, int w, int h,
const int16_t *y_filter_ptr) {
// The no-op filter should never be used here.
assert(y_filter_ptr[5] != 128);
const int8x8_t filter_0_7 = vmovn_s16(vld1q_s16(y_filter_ptr));
const int8x8_t filter_4_11 = vmovn_s16(vld1q_s16(y_filter_ptr + 4));
const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl);
if (w == 4) {
uint8x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, sA;
load_u8_8x11(src_ptr, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7,
&s8, &s9, &sA);
src_ptr += 11 * src_stride;
// This operation combines a conventional transpose and the sample permute
// (see horizontal case) required before computing the dot product.
uint8x16_t s0123, s1234, s2345, s3456, s4567, s5678, s6789, s789A;
transpose_concat_4x4(s0, s1, s2, s3, &s0123);
transpose_concat_4x4(s1, s2, s3, s4, &s1234);
transpose_concat_4x4(s2, s3, s4, s5, &s2345);
transpose_concat_4x4(s3, s4, s5, s6, &s3456);
transpose_concat_4x4(s4, s5, s6, s7, &s4567);
transpose_concat_4x4(s5, s6, s7, s8, &s5678);
transpose_concat_4x4(s6, s7, s8, s9, &s6789);
transpose_concat_4x4(s7, s8, s9, sA, &s789A);
do {
uint8x8_t sB, sC, sD, sE;
load_u8_8x4(src_ptr, src_stride, &sB, &sC, &sD, &sE);
uint8x16_t s89AB, s9ABC, sABCD, sBCDE;
transpose_concat_4x4(sB, sC, sD, sE, &sBCDE);
// Merge new data into block from previous iteration.
uint8x16x2_t samples_LUT = { { s789A, sBCDE } };
s89AB = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
s9ABC = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
sABCD = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
int16x4_t d0 =
convolve12_4_y(s0123, s4567, s89AB, filter_0_7, filter_4_11);
int16x4_t d1 =
convolve12_4_y(s1234, s5678, s9ABC, filter_0_7, filter_4_11);
int16x4_t d2 =
convolve12_4_y(s2345, s6789, sABCD, filter_0_7, filter_4_11);
int16x4_t d3 =
convolve12_4_y(s3456, s789A, sBCDE, filter_0_7, filter_4_11);
uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS);
uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS);
store_u8x4_strided_x2(dst_ptr + 0 * dst_stride, dst_stride, d01);
store_u8x4_strided_x2(dst_ptr + 2 * dst_stride, dst_stride, d23);
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123 = s4567;
s1234 = s5678;
s2345 = s6789;
s3456 = s789A;
s4567 = s89AB;
s5678 = s9ABC;
s6789 = sABCD;
s789A = sBCDE;
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
h -= 4;
} while (h != 0);
} else {
do {
int height = h;
const uint8_t *s = src_ptr;
uint8_t *d = dst_ptr;
uint8x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, sA;
load_u8_8x11(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7, &s8,
&s9, &sA);
s += 11 * src_stride;
// This operation combines a conventional transpose and the sample
// permute (see horizontal case) required before computing the dot
// product.
uint8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi,
s3456_lo, s3456_hi, s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo,
s6789_hi, s789A_lo, s789A_hi;
transpose_concat_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi);
transpose_concat_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi);
transpose_concat_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi);
transpose_concat_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi);
transpose_concat_8x4(s4, s5, s6, s7, &s4567_lo, &s4567_hi);
transpose_concat_8x4(s5, s6, s7, s8, &s5678_lo, &s5678_hi);
transpose_concat_8x4(s6, s7, s8, s9, &s6789_lo, &s6789_hi);
transpose_concat_8x4(s7, s8, s9, sA, &s789A_lo, &s789A_hi);
do {
uint8x8_t sB, sC, sD, sE;
load_u8_8x4(s, src_stride, &sB, &sC, &sD, &sE);
uint8x16_t s89AB_lo, s89AB_hi, s9ABC_lo, s9ABC_hi, sABCD_lo, sABCD_hi,
sBCDE_lo, sBCDE_hi;
transpose_concat_8x4(sB, sC, sD, sE, &sBCDE_lo, &sBCDE_hi);
// Merge new data into block from previous iteration.
uint8x16x2_t samples_LUT_lo = { { s789A_lo, sBCDE_lo } };
s89AB_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[0]);
s9ABC_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[1]);
sABCD_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[2]);
uint8x16x2_t samples_LUT_hi = { { s789A_hi, sBCDE_hi } };
s89AB_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[0]);
s9ABC_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[1]);
sABCD_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[2]);
uint8x8_t d0 =
convolve12_8_y(s0123_lo, s0123_hi, s4567_lo, s4567_hi, s89AB_lo,
s89AB_hi, filter_0_7, filter_4_11);
uint8x8_t d1 =
convolve12_8_y(s1234_lo, s1234_hi, s5678_lo, s5678_hi, s9ABC_lo,
s9ABC_hi, filter_0_7, filter_4_11);
uint8x8_t d2 =
convolve12_8_y(s2345_lo, s2345_hi, s6789_lo, s6789_hi, sABCD_lo,
sABCD_hi, filter_0_7, filter_4_11);
uint8x8_t d3 =
convolve12_8_y(s3456_lo, s3456_hi, s789A_lo, s789A_hi, sBCDE_lo,
sBCDE_hi, filter_0_7, filter_4_11);
store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123_lo = s4567_lo;
s0123_hi = s4567_hi;
s1234_lo = s5678_lo;
s1234_hi = s5678_hi;
s2345_lo = s6789_lo;
s2345_hi = s6789_hi;
s3456_lo = s789A_lo;
s3456_hi = s789A_hi;
s4567_lo = s89AB_lo;
s4567_hi = s89AB_hi;
s5678_lo = s9ABC_lo;
s5678_hi = s9ABC_hi;
s6789_lo = sABCD_lo;
s6789_hi = sABCD_hi;
s789A_lo = sBCDE_lo;
s789A_hi = sBCDE_hi;
s += 4 * src_stride;
d += 4 * dst_stride;
height -= 4;
} while (height != 0);
src_ptr += 8;
dst_ptr += 8;
w -= 8;
} while (w != 0);
}
}
static inline int16x4_t convolve8_4_y(const uint8x16_t s0, const uint8x16_t s1,
const int8x8_t filters) {
int32x4_t sum = vusdotq_lane_s32(vdupq_n_s32(0), s0, filters, 0);
sum = vusdotq_lane_s32(sum, s1, filters, 1);
// Further narrowing and packing is performed by the caller.
return vqmovn_s32(sum);
}
static inline uint8x8_t convolve8_8_y(const uint8x16_t s0_lo,
const uint8x16_t s0_hi,
const uint8x16_t s1_lo,
const uint8x16_t s1_hi,
const int8x8_t filters) {
int32x4_t sum0123 = vusdotq_lane_s32(vdupq_n_s32(0), s0_lo, filters, 0);
sum0123 = vusdotq_lane_s32(sum0123, s1_lo, filters, 1);
int32x4_t sum4567 = vusdotq_lane_s32(vdupq_n_s32(0), s0_hi, filters, 0);
sum4567 = vusdotq_lane_s32(sum4567, s1_hi, filters, 1);
// Narrow and re-pack.
int16x8_t sum = vcombine_s16(vqmovn_s32(sum0123), vqmovn_s32(sum4567));
return vqrshrun_n_s16(sum, FILTER_BITS);
}
static inline void convolve_y_sr_8tap_neon_i8mm(const uint8_t *src_ptr,
int src_stride,
uint8_t *dst_ptr,
int dst_stride, int w, int h,
const int16_t *y_filter_ptr) {
const int8x8_t filter = vmovn_s16(vld1q_s16(y_filter_ptr));
const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl);
if (w == 4) {
uint8x8_t s0, s1, s2, s3, s4, s5, s6;
load_u8_8x7(src_ptr, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
src_ptr += 7 * src_stride;
// This operation combines a conventional transpose and the sample permute
// (see horizontal case) required before computing the dot product.
uint8x16_t s0123, s1234, s2345, s3456;
transpose_concat_4x4(s0, s1, s2, s3, &s0123);
transpose_concat_4x4(s1, s2, s3, s4, &s1234);
transpose_concat_4x4(s2, s3, s4, s5, &s2345);
transpose_concat_4x4(s3, s4, s5, s6, &s3456);
do {
uint8x8_t s7, s8, s9, s10;
load_u8_8x4(src_ptr, src_stride, &s7, &s8, &s9, &s10);
uint8x16_t s4567, s5678, s6789, s78910;
transpose_concat_4x4(s7, s8, s9, s10, &s78910);
// Merge new data into block from previous iteration.
uint8x16x2_t samples_LUT = { { s3456, s78910 } };
s4567 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
s5678 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
s6789 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
int16x4_t d0 = convolve8_4_y(s0123, s4567, filter);
int16x4_t d1 = convolve8_4_y(s1234, s5678, filter);
int16x4_t d2 = convolve8_4_y(s2345, s6789, filter);
int16x4_t d3 = convolve8_4_y(s3456, s78910, filter);
uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS);
uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS);
store_u8x4_strided_x2(dst_ptr + 0 * dst_stride, dst_stride, d01);
store_u8x4_strided_x2(dst_ptr + 2 * dst_stride, dst_stride, d23);
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123 = s4567;
s1234 = s5678;
s2345 = s6789;
s3456 = s78910;
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
h -= 4;
} while (h != 0);
} else {
do {
int height = h;
const uint8_t *s = src_ptr;
uint8_t *d = dst_ptr;
uint8x8_t s0, s1, s2, s3, s4, s5, s6;
load_u8_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
s += 7 * src_stride;
// This operation combines a conventional transpose and the sample
// permute (see horizontal case) required before computing the dot
// product.
uint8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi,
s3456_lo, s3456_hi;
transpose_concat_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi);
transpose_concat_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi);
transpose_concat_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi);
transpose_concat_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi);
do {
uint8x8_t s7, s8, s9, s10;
load_u8_8x4(s, src_stride, &s7, &s8, &s9, &s10);
uint8x16_t s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo, s6789_hi,
s78910_lo, s78910_hi;
transpose_concat_8x4(s7, s8, s9, s10, &s78910_lo, &s78910_hi);
// Merge new data into block from previous iteration.
uint8x16x2_t samples_LUT_lo = { { s3456_lo, s78910_lo } };
s4567_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[0]);
s5678_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[1]);
s6789_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[2]);
uint8x16x2_t samples_LUT_hi = { { s3456_hi, s78910_hi } };
s4567_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[0]);
s5678_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[1]);
s6789_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[2]);
uint8x8_t d0 =
convolve8_8_y(s0123_lo, s0123_hi, s4567_lo, s4567_hi, filter);
uint8x8_t d1 =
convolve8_8_y(s1234_lo, s1234_hi, s5678_lo, s5678_hi, filter);
uint8x8_t d2 =
convolve8_8_y(s2345_lo, s2345_hi, s6789_lo, s6789_hi, filter);
uint8x8_t d3 =
convolve8_8_y(s3456_lo, s3456_hi, s78910_lo, s78910_hi, filter);
store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123_lo = s4567_lo;
s0123_hi = s4567_hi;
s1234_lo = s5678_lo;
s1234_hi = s5678_hi;
s2345_lo = s6789_lo;
s2345_hi = s6789_hi;
s3456_lo = s78910_lo;
s3456_hi = s78910_hi;
s += 4 * src_stride;
d += 4 * dst_stride;
height -= 4;
} while (height != 0);
src_ptr += 8;
dst_ptr += 8;
w -= 8;
} while (w != 0);
}
}
void av1_convolve_y_sr_neon_i8mm(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_y,
const int subpel_y_qn) {
if (w == 2 || h == 2) {
av1_convolve_y_sr_c(src, src_stride, dst, dst_stride, w, h, filter_params_y,
subpel_y_qn);
return;
}
const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn);
if (y_filter_taps <= 6) {
av1_convolve_y_sr_neon(src, src_stride, dst, dst_stride, w, h,
filter_params_y, subpel_y_qn);
return;
}
const int vert_offset = y_filter_taps / 2 - 1;
src -= vert_offset * src_stride;
const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
if (y_filter_taps > 8) {
convolve_y_sr_12tap_neon_i8mm(src, src_stride, dst, dst_stride, w, h,
y_filter_ptr);
return;
}
convolve_y_sr_8tap_neon_i8mm(src, src_stride, dst, dst_stride, w, h,
y_filter_ptr);
}
static inline int16x8_t convolve8_8_2d_h(uint8x16_t samples,
const int8x8_t filters,
const uint8x16x3_t permute_tbl,
const int32x4_t horiz_const) {
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
uint8x16_t perm_samples[3] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
vqtbl1q_u8(samples, permute_tbl.val[1]),
vqtbl1q_u8(samples, permute_tbl.val[2]) };
int32x4_t sum0123 =
vusdotq_lane_s32(horiz_const, perm_samples[0], filters, 0);
sum0123 = vusdotq_lane_s32(sum0123, perm_samples[1], filters, 1);
int32x4_t sum4567 =
vusdotq_lane_s32(horiz_const, perm_samples[1], filters, 0);
sum4567 = vusdotq_lane_s32(sum4567, perm_samples[2], filters, 1);
// Narrow and re-pack.
// We halved the convolution filter values so -1 from the right shift.
return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1),
vshrn_n_s32(sum4567, ROUND0_BITS - 1));
}
static inline void convolve_2d_sr_horiz_8tap_neon_i8mm(
const uint8_t *src, int src_stride, int16_t *im_block, int im_stride, int w,
int im_h, const int16_t *x_filter_ptr) {
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1);
const int bd = 8;
// This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
// The outermost -1 is needed because we halved the filter values.
const int32x4_t horiz_const = vdupq_n_s32((1 << (bd + FILTER_BITS - 2)) +
(1 << ((ROUND0_BITS - 1) - 1)));
const uint8_t *src_ptr = src;
int16_t *dst_ptr = im_block;
int dst_stride = im_stride;
int height = im_h;
const uint8x16x3_t permute_tbl = vld1q_u8_x3(kDotProdPermuteTbl);
do {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
int16x8_t d0 = convolve8_8_2d_h(s0, x_filter, permute_tbl, horiz_const);
int16x8_t d1 = convolve8_8_2d_h(s1, x_filter, permute_tbl, horiz_const);
int16x8_t d2 = convolve8_8_2d_h(s2, x_filter, permute_tbl, horiz_const);
int16x8_t d3 = convolve8_8_2d_h(s3, x_filter, permute_tbl, horiz_const);
store_s16_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
width -= 8;
} while (width != 0);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
height -= 4;
} while (height > 4);
do {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
uint8x16_t s0 = vld1q_u8(s);
int16x8_t d0 = convolve8_8_2d_h(s0, x_filter, permute_tbl, horiz_const);
vst1q_s16(d, d0);
s += 8;
d += 8;
width -= 8;
} while (width != 0);
src_ptr += src_stride;
dst_ptr += dst_stride;
} while (--height != 0);
}
static inline int16x4_t convolve4_4_2d_h(const uint8x16_t samples,
const int8x8_t filters,
const uint8x16_t permute_tbl,
const int32x4_t horiz_const) {
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
uint8x16_t perm_samples = vqtbl1q_u8(samples, permute_tbl);
int32x4_t sum = vusdotq_lane_s32(horiz_const, perm_samples, filters, 0);
// We halved the convolution filter values so -1 from the right shift.
return vshrn_n_s32(sum, ROUND0_BITS - 1);
}
static inline int16x8_t convolve4_8_2d_h(const uint8x16_t samples,
const int8x8_t filters,
const uint8x16x2_t permute_tbl,
const int32x4_t horiz_const) {
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
vqtbl1q_u8(samples, permute_tbl.val[1]) };
int32x4_t sum0123 =
vusdotq_lane_s32(horiz_const, perm_samples[0], filters, 0);
int32x4_t sum4567 =
vusdotq_lane_s32(horiz_const, perm_samples[1], filters, 0);
// Narrow and re-pack.
// We halved the filter values so -1 from right shift.
return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1),
vshrn_n_s32(sum4567, ROUND0_BITS - 1));
}
static inline void convolve_2d_sr_horiz_4tap_neon_i8mm(
const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int width,
int height, const int16_t *filter_x) {
const int bd = 8;
const int16x4_t x_filter = vld1_s16(filter_x + 2);
// All 4-tap and bilinear filter values are even, so halve them to reduce
// intermediate precision requirements.
const int8x8_t filter = vshrn_n_s16(vcombine_s16(x_filter, vdup_n_s16(0)), 1);
// Adding a shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
// Halve the total because we halved the filter values.
const int32x4_t horiz_const = vdupq_n_s32(
(((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))) / 2));
if (width == 4) {
const uint8x16_t perm_tbl = vld1q_u8(kDotProdPermuteTbl);
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3);
int16x4_t d0 = convolve4_4_2d_h(s0, filter, perm_tbl, horiz_const);
int16x4_t d1 = convolve4_4_2d_h(s1, filter, perm_tbl, horiz_const);
int16x4_t d2 = convolve4_4_2d_h(s2, filter, perm_tbl, horiz_const);
int16x4_t d3 = convolve4_4_2d_h(s3, filter, perm_tbl, horiz_const);
store_s16_4x4(dst, dst_stride, d0, d1, d2, d3);
src += 4 * src_stride;
dst += 4 * dst_stride;
height -= 4;
} while (height > 4);
do {
uint8x16_t s0 = vld1q_u8(src);
int16x4_t d0 = convolve4_4_2d_h(s0, filter, perm_tbl, horiz_const);
vst1_s16(dst, d0);
src += src_stride;
dst += dst_stride;
} while (--height != 0);
} else {
const uint8x16x2_t perm_tbl = vld1q_u8_x2(kDotProdPermuteTbl);
do {
int w = width;
const uint8_t *s = src;
int16_t *d = dst;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
int16x8_t d0 = convolve4_8_2d_h(s0, filter, perm_tbl, horiz_const);
int16x8_t d1 = convolve4_8_2d_h(s1, filter, perm_tbl, horiz_const);
int16x8_t d2 = convolve4_8_2d_h(s2, filter, perm_tbl, horiz_const);
int16x8_t d3 = convolve4_8_2d_h(s3, filter, perm_tbl, horiz_const);
store_s16_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
w -= 8;
} while (w != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
height -= 4;
} while (height > 4);
do {
const uint8_t *s = src;
int16_t *d = dst;
int w = width;
do {
uint8x16_t s0 = vld1q_u8(s);
int16x8_t d0 = convolve4_8_2d_h(s0, filter, perm_tbl, horiz_const);
vst1q_s16(d, d0);
s += 8;
d += 8;
w -= 8;
} while (w != 0);
src += src_stride;
dst += dst_stride;
} while (--height != 0);
}
}
static inline int16x4_t convolve6_4_2d_h(uint8x16_t samples,
const int8x16_t filter,
const uint8x16_t permute_tbl,
const int32x4_t horiz_const) {
// Permute samples ready for matrix multiply.
// { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 }
uint8x16_t perm_samples = vqtbl1q_u8(samples, permute_tbl);
// These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix
// (filter), destructively accumulating into the destination register.
int32x4_t sum = vusmmlaq_s32(horiz_const, perm_samples, filter);
// We halved the convolution filter values so -1 from the right shift.
return vshrn_n_s32(sum, ROUND0_BITS - 1);
}
static inline int16x8_t convolve6_8_2d_h(uint8x16_t samples,
const int8x16_t filter,
const uint8x16x2_t permute_tbl,
const int32x4_t horiz_const) {
// Permute samples ready for matrix multiply.
// { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 }
// { 4, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 13 }
uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
vqtbl1q_u8(samples, permute_tbl.val[1]) };
// These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix
// (filter), destructively accumulating into the destination register.
int32x4_t sum0123 = vusmmlaq_s32(horiz_const, perm_samples[0], filter);
int32x4_t sum4567 = vusmmlaq_s32(horiz_const, perm_samples[1], filter);
// Narrow and re-pack.
// We halved the convolution filter values so -1 from the right shift.
return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1),
vshrn_n_s32(sum4567, ROUND0_BITS - 1));
}
static inline void convolve_2d_sr_6tap_neon_i8mm(const uint8_t *src,
int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const int16_t *x_filter_ptr,
const int16_t *y_filter_ptr) {
const int16x8_t y_filter = vld1q_s16(y_filter_ptr);
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1);
// Stagger the filter for use with the matrix multiply instructions.
// { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 }
const int8x16_t x_filter =
vcombine_s8(vext_s8(x_filter_s8, x_filter_s8, 1), x_filter_s8);
const int bd = 8;
// This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding
// shifts in convolution kernels - which are generally faster than rounding
// shifts on modern CPUs. The outermost -1 is needed because we halved the
// filter values.
const int32x4_t horiz_const = vdupq_n_s32((1 << (bd + FILTER_BITS - 2)) +
(1 << ((ROUND0_BITS - 1) - 1)));
const int16x8_t vert_const = vdupq_n_s16(1 << (bd - 1));
const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMulPermuteTbl);
do {
const uint8_t *s = src;
uint8_t *d = dst;
int height = h;
uint8x16_t h_s0, h_s1, h_s2, h_s3, h_s4;
load_u8_16x5(s, src_stride, &h_s0, &h_s1, &h_s2, &h_s3, &h_s4);
s += 5 * src_stride;
int16x8_t v_s0 = convolve6_8_2d_h(h_s0, x_filter, permute_tbl, horiz_const);
int16x8_t v_s1 = convolve6_8_2d_h(h_s1, x_filter, permute_tbl, horiz_const);
int16x8_t v_s2 = convolve6_8_2d_h(h_s2, x_filter, permute_tbl, horiz_const);
int16x8_t v_s3 = convolve6_8_2d_h(h_s3, x_filter, permute_tbl, horiz_const);
int16x8_t v_s4 = convolve6_8_2d_h(h_s4, x_filter, permute_tbl, horiz_const);
do {
uint8x16_t h_s5, h_s6, h_s7, h_s8;
load_u8_16x4(s, src_stride, &h_s5, &h_s6, &h_s7, &h_s8);
int16x8_t v_s5 =
convolve6_8_2d_h(h_s5, x_filter, permute_tbl, horiz_const);
int16x8_t v_s6 =
convolve6_8_2d_h(h_s6, x_filter, permute_tbl, horiz_const);
int16x8_t v_s7 =
convolve6_8_2d_h(h_s7, x_filter, permute_tbl, horiz_const);
int16x8_t v_s8 =
convolve6_8_2d_h(h_s8, x_filter, permute_tbl, horiz_const);
uint8x8_t d0 = convolve6_8_2d_v(v_s0, v_s1, v_s2, v_s3, v_s4, v_s5,
y_filter, vert_const);
uint8x8_t d1 = convolve6_8_2d_v(v_s1, v_s2, v_s3, v_s4, v_s5, v_s6,
y_filter, vert_const);
uint8x8_t d2 = convolve6_8_2d_v(v_s2, v_s3, v_s4, v_s5, v_s6, v_s7,
y_filter, vert_const);
uint8x8_t d3 = convolve6_8_2d_v(v_s3, v_s4, v_s5, v_s6, v_s7, v_s8,
y_filter, vert_const);
store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
v_s0 = v_s4;
v_s1 = v_s5;
v_s2 = v_s6;
v_s3 = v_s7;
v_s4 = v_s8;
s += 4 * src_stride;
d += 4 * dst_stride;
height -= 4;
} while (height != 0);
src += 8;
dst += 8;
w -= 8;
} while (w != 0);
}
static inline void convolve_2d_sr_6tap_4tap_neon_i8mm(
const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w,
int h, const int16_t *x_filter_ptr, const int16_t *y_filter_ptr) {
const int16x4_t y_filter = vld1_s16(y_filter_ptr + 2);
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1);
// Stagger the filter for use with the matrix multiply instructions.
// { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 }
const int8x16_t x_filter =
vcombine_s8(vext_s8(x_filter_s8, x_filter_s8, 1), x_filter_s8);
const int bd = 8;
// Adding a shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
// Halve the total because we halved the filter values.
const int32x4_t horiz_const = vdupq_n_s32(
((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))) / 2);
const int16x8_t vert_const = vdupq_n_s16(1 << (bd - 1));
if (w == 4) {
const uint8x16_t permute_tbl = vld1q_u8(kMatMulPermuteTbl);
uint8x16_t h_s0, h_s1, h_s2;
load_u8_16x3(src, src_stride, &h_s0, &h_s1, &h_s2);
int16x4_t v_s0 = convolve6_4_2d_h(h_s0, x_filter, permute_tbl, horiz_const);
int16x4_t v_s1 = convolve6_4_2d_h(h_s1, x_filter, permute_tbl, horiz_const);
int16x4_t v_s2 = convolve6_4_2d_h(h_s2, x_filter, permute_tbl, horiz_const);
src += 3 * src_stride;
do {
uint8x16_t h_s3, h_s4, h_s5, h_s6;
load_u8_16x4(src, src_stride, &h_s3, &h_s4, &h_s5, &h_s6);
int16x4_t v_s3 =
convolve6_4_2d_h(h_s3, x_filter, permute_tbl, horiz_const);
int16x4_t v_s4 =
convolve6_4_2d_h(h_s4, x_filter, permute_tbl, horiz_const);
int16x4_t v_s5 =
convolve6_4_2d_h(h_s5, x_filter, permute_tbl, horiz_const);
int16x4_t v_s6 =
convolve6_4_2d_h(h_s6, x_filter, permute_tbl, horiz_const);
int16x4_t d0 = convolve4_4_2d_v(v_s0, v_s1, v_s2, v_s3, y_filter);
int16x4_t d1 = convolve4_4_2d_v(v_s1, v_s2, v_s3, v_s4, y_filter);
int16x4_t d2 = convolve4_4_2d_v(v_s2, v_s3, v_s4, v_s5, y_filter);
int16x4_t d3 = convolve4_4_2d_v(v_s3, v_s4, v_s5, v_s6, y_filter);
uint8x8_t d01 = vqmovun_s16(vsubq_s16(vcombine_s16(d0, d1), vert_const));
uint8x8_t d23 = vqmovun_s16(vsubq_s16(vcombine_s16(d2, d3), vert_const));
store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01);
store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23);
v_s0 = v_s4;
v_s1 = v_s5;
v_s2 = v_s6;
src += 4 * src_stride;
dst += 4 * dst_stride;
h -= 4;
} while (h != 0);
} else {
const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMulPermuteTbl);
do {
int height = h;
const uint8_t *s = src;
uint8_t *d = dst;
uint8x16_t h_s0, h_s1, h_s2;
load_u8_16x3(src, src_stride, &h_s0, &h_s1, &h_s2);
int16x8_t v_s0 =
convolve6_8_2d_h(h_s0, x_filter, permute_tbl, horiz_const);
int16x8_t v_s1 =
convolve6_8_2d_h(h_s1, x_filter, permute_tbl, horiz_const);
int16x8_t v_s2 =
convolve6_8_2d_h(h_s2, x_filter, permute_tbl, horiz_const);
s += 3 * src_stride;
do {
uint8x16_t h_s3, h_s4, h_s5, h_s6;
load_u8_16x4(s, src_stride, &h_s3, &h_s4, &h_s5, &h_s6);
int16x8_t v_s3 =
convolve6_8_2d_h(h_s3, x_filter, permute_tbl, horiz_const);
int16x8_t v_s4 =
convolve6_8_2d_h(h_s4, x_filter, permute_tbl, horiz_const);
int16x8_t v_s5 =
convolve6_8_2d_h(h_s5, x_filter, permute_tbl, horiz_const);
int16x8_t v_s6 =
convolve6_8_2d_h(h_s6, x_filter, permute_tbl, horiz_const);
uint8x8_t d0 =
convolve4_8_2d_v(v_s0, v_s1, v_s2, v_s3, y_filter, vert_const);
uint8x8_t d1 =
convolve4_8_2d_v(v_s1, v_s2, v_s3, v_s4, y_filter, vert_const);
uint8x8_t d2 =
convolve4_8_2d_v(v_s2, v_s3, v_s4, v_s5, y_filter, vert_const);
uint8x8_t d3 =
convolve4_8_2d_v(v_s3, v_s4, v_s5, v_s6, y_filter, vert_const);
store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
v_s0 = v_s4;
v_s1 = v_s5;
v_s2 = v_s6;
s += 4 * src_stride;
d += 4 * dst_stride;
height -= 4;
} while (height != 0);
src += 8;
dst += 8;
w -= 8;
} while (w != 0);
}
}
void av1_convolve_2d_sr_neon_i8mm(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y,
const int subpel_x_qn, const int subpel_y_qn,
ConvolveParams *conv_params) {
if (w == 2 || h == 2) {
av1_convolve_2d_sr_c(src, src_stride, dst, dst_stride, w, h,
filter_params_x, filter_params_y, subpel_x_qn,
subpel_y_qn, conv_params);
return;
}
const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn);
const int x_filter_taps = get_filter_tap(filter_params_x, subpel_x_qn);
const int clamped_y_taps = y_filter_taps < 4 ? 4 : y_filter_taps;
const int im_h = h + clamped_y_taps - 1;
const int im_stride = MAX_SB_SIZE;
const int vert_offset = clamped_y_taps / 2 - 1;
const int horiz_offset = filter_params_x->taps / 2 - 1;
const uint8_t *src_ptr = src - vert_offset * src_stride - horiz_offset;
const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
if (filter_params_x->taps > 8) {
DECLARE_ALIGNED(16, int16_t,
im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE]);
const int16x8_t y_filter_0_7 = vld1q_s16(y_filter_ptr);
const int16x4_t y_filter_8_11 = vld1_s16(y_filter_ptr + 8);
convolve_2d_sr_horiz_12tap_neon_i8mm(src_ptr, src_stride, im_block,
im_stride, w, im_h, x_filter_ptr);
convolve_2d_sr_vert_12tap_neon(im_block, im_stride, dst, dst_stride, w, h,
y_filter_0_7, y_filter_8_11);
} else {
DECLARE_ALIGNED(16, int16_t,
im_block[(MAX_SB_SIZE + SUBPEL_TAPS - 1) * MAX_SB_SIZE]);
if (x_filter_taps == 6 && y_filter_taps == 6) {
convolve_2d_sr_6tap_neon_i8mm(src_ptr + 1, src_stride, dst, dst_stride, w,
h, x_filter_ptr, y_filter_ptr);
return;
}
// Used for both 6, 4 and 4, 4 horiz, vert filter tap combinations.
if (x_filter_taps <= 6 && y_filter_taps <= 4) {
convolve_2d_sr_6tap_4tap_neon_i8mm(src_ptr + 1, src_stride, dst,
dst_stride, w, h, x_filter_ptr,
y_filter_ptr);
return;
}
if (x_filter_taps <= 4) {
convolve_2d_sr_horiz_4tap_neon_i8mm(src_ptr + 2, src_stride, im_block,
im_stride, w, im_h, x_filter_ptr);
} else {
convolve_2d_sr_horiz_8tap_neon_i8mm(src_ptr, src_stride, im_block,
im_stride, w, im_h, x_filter_ptr);
}
const int16x8_t y_filter = vld1q_s16(y_filter_ptr);
if (clamped_y_taps <= 4) {
convolve_2d_sr_vert_4tap_neon(im_block, im_stride, dst, dst_stride, w, h,
y_filter_ptr);
} else if (clamped_y_taps == 6) {
convolve_2d_sr_vert_6tap_neon(im_block, im_stride, dst, dst_stride, w, h,
y_filter);
} else {
convolve_2d_sr_vert_8tap_neon(im_block, im_stride, dst, dst_stride, w, h,
y_filter);
}
}
}