| /* |
| * Copyright (c) 2023, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <arm_neon.h> |
| |
| #include "config/aom_config.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/arm/mem_neon.h" |
| #include "aom_ports/mem.h" |
| #include "av1/common/arm/convolve_neon.h" |
| #include "av1/common/arm/convolve_neon_i8mm.h" |
| #include "av1/common/convolve.h" |
| #include "av1/common/filter.h" |
| |
| DECLARE_ALIGNED(16, static const uint8_t, kDotProdMergeBlockTbl[48]) = { |
| // Shift left and insert new last column in transposed 4x4 block. |
| 1, 2, 3, 16, 5, 6, 7, 20, 9, 10, 11, 24, 13, 14, 15, 28, |
| // Shift left and insert two new columns in transposed 4x4 block. |
| 2, 3, 16, 17, 6, 7, 20, 21, 10, 11, 24, 25, 14, 15, 28, 29, |
| // Shift left and insert three new columns in transposed 4x4 block. |
| 3, 16, 17, 18, 7, 20, 21, 22, 11, 24, 25, 26, 15, 28, 29, 30 |
| }; |
| |
| static inline int16x4_t convolve12_4_x(uint8x16_t samples[2], |
| const int8x16_t filter[2], |
| const uint8x16_t permute_tbl, |
| const int32x4_t horiz_const) { |
| // Permute samples ready for matrix multiply. |
| // { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 } |
| // { 4, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 13 } |
| uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples[0], permute_tbl), |
| vqtbl1q_u8(samples[1], permute_tbl) }; |
| |
| // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix |
| // (filter), destructively accumulating into the destination register. |
| int32x4_t sum = vusmmlaq_s32(horiz_const, perm_samples[0], filter[0]); |
| sum = vusmmlaq_s32(sum, perm_samples[1], filter[1]); |
| |
| return vqrshrn_n_s32(sum, FILTER_BITS); |
| } |
| |
| static inline uint8x8_t convolve12_8_x(uint8x16_t samples[2], |
| const int8x16_t filter[2], |
| const uint8x16x2_t permute_tbl, |
| const int32x4_t horiz_const) { |
| // Permute samples ready for matrix multiply. |
| // { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 } |
| // { 4, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 13 } |
| // { 6, 7, 8, 9, 10, 11, 12, 13, 8, 9, 10, 11, 12, 13, 14, 15 } |
| // { 10, 11, 12, 13, 14, 15, 16, 17, 12, 13, 14, 15, 16, 17, 18, 19 } |
| uint8x16_t perm_samples[4] = { vqtbl1q_u8(samples[0], permute_tbl.val[0]), |
| vqtbl1q_u8(samples[0], permute_tbl.val[1]), |
| vqtbl1q_u8(samples[1], permute_tbl.val[0]), |
| vqtbl1q_u8(samples[1], permute_tbl.val[1]) }; |
| |
| // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix |
| // (filter), destructively accumulating into the destination register. |
| int32x4_t sum0123 = vusmmlaq_s32(horiz_const, perm_samples[0], filter[0]); |
| int32x4_t sum4567 = vusmmlaq_s32(horiz_const, perm_samples[1], filter[0]); |
| sum0123 = vusmmlaq_s32(sum0123, perm_samples[2], filter[1]); |
| sum4567 = vusmmlaq_s32(sum4567, perm_samples[3], filter[1]); |
| |
| // Narrow and re-pack. |
| int16x8_t sum_s16 = vcombine_s16(vqrshrn_n_s32(sum0123, FILTER_BITS), |
| vqrshrn_n_s32(sum4567, FILTER_BITS)); |
| return vqmovun_s16(sum_s16); |
| } |
| |
| static inline void convolve_x_sr_12tap_neon_i8mm(const uint8_t *src, |
| int src_stride, uint8_t *dst, |
| int dst_stride, int w, int h, |
| const int16_t *x_filter_ptr) { |
| // The no-op filter should never be used here. |
| assert(x_filter_ptr[5] != 128); |
| |
| // Split 12-tap filter into two 6-tap filters, masking the top two elements. |
| // { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0, 0 } |
| const int8x8_t mask = vcreate_s8(0x0000ffffffffffff); |
| const int8x8_t filter_0 = vand_s8(vmovn_s16(vld1q_s16(x_filter_ptr)), mask); |
| const int8x8_t filter_1 = |
| vext_s8(vmovn_s16(vld1q_s16(x_filter_ptr + 4)), vdup_n_s8(0), 2); |
| |
| // Stagger each 6-tap filter to enable use of matrix multiply instructions. |
| // { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 } |
| const int8x16_t filter[2] = { |
| vcombine_s8(filter_0, vext_s8(filter_0, filter_0, 7)), |
| vcombine_s8(filter_1, vext_s8(filter_1, filter_1, 7)) |
| }; |
| |
| // A shim of 1 << (ROUND0_BITS - 1) enables us to simplify computation in the |
| // convolution kernels: Adding this shim enables us to use a single rounding |
| // right shift by FILTER_BITS instead of two rounding right shifts: first by |
| // ROUND0_BITS, and then subsequently by FILTER_BITS - ROUND0_BITS. |
| const int32x4_t horiz_const = vdupq_n_s32(1 << (ROUND0_BITS - 1)); |
| |
| if (w <= 4) { |
| const uint8x16_t permute_tbl = vld1q_u8(kMatMulPermuteTbl); |
| |
| do { |
| uint8x16_t s0[2], s1[2], s2[2], s3[2]; |
| load_u8_16x4(src, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]); |
| load_u8_16x4(src + 6, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]); |
| |
| int16x4_t d0 = convolve12_4_x(s0, filter, permute_tbl, horiz_const); |
| int16x4_t d1 = convolve12_4_x(s1, filter, permute_tbl, horiz_const); |
| int16x4_t d2 = convolve12_4_x(s2, filter, permute_tbl, horiz_const); |
| int16x4_t d3 = convolve12_4_x(s3, filter, permute_tbl, horiz_const); |
| |
| uint8x8_t d01 = vqmovun_s16(vcombine_s16(d0, d1)); |
| uint8x8_t d23 = vqmovun_s16(vcombine_s16(d2, d3)); |
| |
| store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); |
| store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); |
| |
| dst += 4 * dst_stride; |
| src += 4 * src_stride; |
| h -= 4; |
| } while (h != 0); |
| } else { |
| const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMulPermuteTbl); |
| |
| do { |
| const uint8_t *s = src; |
| uint8_t *d = dst; |
| int width = w; |
| |
| do { |
| uint8x16_t s0[2], s1[2], s2[2], s3[2]; |
| load_u8_16x4(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]); |
| load_u8_16x4(s + 6, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]); |
| |
| uint8x8_t d0 = convolve12_8_x(s0, filter, permute_tbl, horiz_const); |
| uint8x8_t d1 = convolve12_8_x(s1, filter, permute_tbl, horiz_const); |
| uint8x8_t d2 = convolve12_8_x(s2, filter, permute_tbl, horiz_const); |
| uint8x8_t d3 = convolve12_8_x(s3, filter, permute_tbl, horiz_const); |
| |
| store_u8_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| s += 8; |
| d += 8; |
| width -= 8; |
| } while (width != 0); |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| h -= 4; |
| } while (h != 0); |
| } |
| } |
| |
| static inline uint8x8_t convolve8_8_x(uint8x16_t samples, const int8x8_t filter, |
| const uint8x16x3_t permute_tbl, |
| const int32x4_t horiz_const) { |
| // Permute samples ready for dot product. |
| // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } |
| // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } |
| // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } |
| uint8x16_t perm_samples[3] = { vqtbl1q_u8(samples, permute_tbl.val[0]), |
| vqtbl1q_u8(samples, permute_tbl.val[1]), |
| vqtbl1q_u8(samples, permute_tbl.val[2]) }; |
| |
| int32x4_t sum0123 = vusdotq_lane_s32(horiz_const, perm_samples[0], filter, 0); |
| sum0123 = vusdotq_lane_s32(sum0123, perm_samples[1], filter, 1); |
| |
| int32x4_t sum4567 = vusdotq_lane_s32(horiz_const, perm_samples[1], filter, 0); |
| sum4567 = vusdotq_lane_s32(sum4567, perm_samples[2], filter, 1); |
| |
| int16x8_t sum_s16 = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567)); |
| // We halved the convolution filter values so - 1 from the right shift. |
| return vqrshrun_n_s16(sum_s16, FILTER_BITS - 1); |
| } |
| |
| static inline void convolve_x_sr_8tap_neon_i8mm( |
| const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, |
| ptrdiff_t dst_stride, int width, int height, const int16_t *filter_x, |
| const int32x4_t horiz_const) { |
| // Filter values are even, so halve to reduce intermediate precision reqs. |
| const int8x8_t x_filter = vshrn_n_s16(vld1q_s16(filter_x), 1); |
| const uint8x16x3_t permute_tbl = vld1q_u8_x3(kDotProdPermuteTbl); |
| |
| do { |
| const uint8_t *s = src; |
| uint8_t *d = dst; |
| int w = width; |
| |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); |
| |
| uint8x8_t d0 = convolve8_8_x(s0, x_filter, permute_tbl, horiz_const); |
| uint8x8_t d1 = convolve8_8_x(s1, x_filter, permute_tbl, horiz_const); |
| uint8x8_t d2 = convolve8_8_x(s2, x_filter, permute_tbl, horiz_const); |
| uint8x8_t d3 = convolve8_8_x(s3, x_filter, permute_tbl, horiz_const); |
| |
| store_u8_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| s += 8; |
| d += 8; |
| w -= 8; |
| } while (w != 0); |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| height -= 4; |
| } while (height != 0); |
| } |
| |
| static inline int16x4_t convolve6_4_x(uint8x16_t samples, |
| const int8x16_t filter, |
| const uint8x16_t permute_tbl, |
| const int32x4_t horiz_const) { |
| // Permute samples ready for matrix multiply. |
| // { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 } |
| uint8x16_t perm_samples = vqtbl1q_u8(samples, permute_tbl); |
| |
| // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix |
| // (filter), destructively accumulating into the destination register. |
| int32x4_t sum = vusmmlaq_s32(horiz_const, perm_samples, filter); |
| |
| // Further narrowing and packing is performed by the caller. |
| return vmovn_s32(sum); |
| } |
| |
| static inline uint8x8_t convolve6_8_x(uint8x16_t samples, |
| const int8x16_t filter, |
| const uint8x16x2_t permute_tbl, |
| const int32x4_t horiz_const) { |
| // Permute samples ready for matrix multiply. |
| // { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 } |
| // { 4, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 13 } |
| uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]), |
| vqtbl1q_u8(samples, permute_tbl.val[1]) }; |
| |
| // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix |
| // (filter), destructively accumulating into the destination register. |
| int32x4_t sum0123 = vusmmlaq_s32(horiz_const, perm_samples[0], filter); |
| int32x4_t sum4567 = vusmmlaq_s32(horiz_const, perm_samples[1], filter); |
| |
| int16x8_t sum = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567)); |
| // We halved the convolution filter values so - 1 from the right shift. |
| return vqrshrun_n_s16(sum, FILTER_BITS - 1); |
| } |
| |
| static inline void convolve_x_sr_6tap_neon_i8mm( |
| const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, |
| ptrdiff_t dst_stride, int width, int height, const int16_t *filter_x, |
| const int32x4_t horiz_const) { |
| // Filter values are even, so halve to reduce intermediate precision reqs. |
| const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(filter_x), 1); |
| // Stagger the filter for use with the matrix multiply instructions. |
| // { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 } |
| const int8x16_t x_filter = |
| vcombine_s8(vext_s8(x_filter_s8, x_filter_s8, 1), x_filter_s8); |
| |
| if (width == 4) { |
| const uint8x16_t permute_tbl = vld1q_u8(kMatMulPermuteTbl); |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); |
| |
| int16x4_t t0 = convolve6_4_x(s0, x_filter, permute_tbl, horiz_const); |
| int16x4_t t1 = convolve6_4_x(s1, x_filter, permute_tbl, horiz_const); |
| int16x4_t t2 = convolve6_4_x(s2, x_filter, permute_tbl, horiz_const); |
| int16x4_t t3 = convolve6_4_x(s3, x_filter, permute_tbl, horiz_const); |
| // We halved the filter values so -1 from right shift. |
| uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(t0, t1), FILTER_BITS - 1); |
| uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(t2, t3), FILTER_BITS - 1); |
| |
| store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); |
| store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); |
| |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| height -= 4; |
| } while (height != 0); |
| } else { |
| const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMulPermuteTbl); |
| do { |
| const uint8_t *s = src; |
| uint8_t *d = dst; |
| int w = width; |
| |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); |
| |
| uint8x8_t d0 = convolve6_8_x(s0, x_filter, permute_tbl, horiz_const); |
| uint8x8_t d1 = convolve6_8_x(s1, x_filter, permute_tbl, horiz_const); |
| uint8x8_t d2 = convolve6_8_x(s2, x_filter, permute_tbl, horiz_const); |
| uint8x8_t d3 = convolve6_8_x(s3, x_filter, permute_tbl, horiz_const); |
| |
| store_u8_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| s += 8; |
| d += 8; |
| w -= 8; |
| } while (w != 0); |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| height -= 4; |
| } while (height != 0); |
| } |
| } |
| |
| void av1_convolve_x_sr_neon_i8mm(const uint8_t *src, int src_stride, |
| uint8_t *dst, int dst_stride, int w, int h, |
| const InterpFilterParams *filter_params_x, |
| const int subpel_x_qn, |
| ConvolveParams *conv_params) { |
| if (w == 2 || h == 2) { |
| av1_convolve_x_sr_c(src, src_stride, dst, dst_stride, w, h, filter_params_x, |
| subpel_x_qn, conv_params); |
| return; |
| } |
| |
| const uint8_t horiz_offset = filter_params_x->taps / 2 - 1; |
| src -= horiz_offset; |
| |
| const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel( |
| filter_params_x, subpel_x_qn & SUBPEL_MASK); |
| |
| int filter_taps = get_filter_tap(filter_params_x, subpel_x_qn & SUBPEL_MASK); |
| |
| // A shim of 1 << (ROUND0_BITS - 1) enables us to simplify computation in the |
| // convolution kernels: Adding this shim enables us to use a single rounding |
| // right shift by FILTER_BITS instead of two rounding right shifts: first by |
| // ROUND0_BITS, and then subsequently by FILTER_BITS - ROUND0_BITS. |
| // Halve the total because we will halve the filter values. |
| const int32x4_t horiz_const = vdupq_n_s32((1 << ((ROUND0_BITS - 1)) / 2)); |
| |
| if (filter_taps <= 6) { |
| convolve_x_sr_6tap_neon_i8mm(src + 1, src_stride, dst, dst_stride, w, h, |
| x_filter_ptr, horiz_const); |
| return; |
| } |
| |
| if (filter_taps > 8) { |
| convolve_x_sr_12tap_neon_i8mm(src, src_stride, dst, dst_stride, w, h, |
| x_filter_ptr); |
| return; |
| } |
| |
| convolve_x_sr_8tap_neon_i8mm(src, src_stride, dst, dst_stride, w, h, |
| x_filter_ptr, horiz_const); |
| } |
| |
| static inline void transpose_concat_4x4(uint8x8_t a0, uint8x8_t a1, |
| uint8x8_t a2, uint8x8_t a3, |
| uint8x16_t *b) { |
| // Transpose 8-bit elements and concatenate result rows as follows: |
| // a0: 00, 01, 02, 03, XX, XX, XX, XX |
| // a1: 10, 11, 12, 13, XX, XX, XX, XX |
| // a2: 20, 21, 22, 23, XX, XX, XX, XX |
| // a3: 30, 31, 32, 33, XX, XX, XX, XX |
| // |
| // b: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33 |
| |
| uint8x16_t a0q = vcombine_u8(a0, vdup_n_u8(0)); |
| uint8x16_t a1q = vcombine_u8(a1, vdup_n_u8(0)); |
| uint8x16_t a2q = vcombine_u8(a2, vdup_n_u8(0)); |
| uint8x16_t a3q = vcombine_u8(a3, vdup_n_u8(0)); |
| |
| uint8x16_t a01 = vzipq_u8(a0q, a1q).val[0]; |
| uint8x16_t a23 = vzipq_u8(a2q, a3q).val[0]; |
| |
| uint16x8_t a0123 = |
| vzipq_u16(vreinterpretq_u16_u8(a01), vreinterpretq_u16_u8(a23)).val[0]; |
| |
| *b = vreinterpretq_u8_u16(a0123); |
| } |
| |
| static inline void transpose_concat_8x4(uint8x8_t a0, uint8x8_t a1, |
| uint8x8_t a2, uint8x8_t a3, |
| uint8x16_t *b0, uint8x16_t *b1) { |
| // Transpose 8-bit elements and concatenate result rows as follows: |
| // a0: 00, 01, 02, 03, 04, 05, 06, 07 |
| // a1: 10, 11, 12, 13, 14, 15, 16, 17 |
| // a2: 20, 21, 22, 23, 24, 25, 26, 27 |
| // a3: 30, 31, 32, 33, 34, 35, 36, 37 |
| // |
| // b0: 00, 10, 20, 30, 01, 11, 21, 31, 02, 12, 22, 32, 03, 13, 23, 33 |
| // b1: 04, 14, 24, 34, 05, 15, 25, 35, 06, 16, 26, 36, 07, 17, 27, 37 |
| |
| uint8x16_t a0q = vcombine_u8(a0, vdup_n_u8(0)); |
| uint8x16_t a1q = vcombine_u8(a1, vdup_n_u8(0)); |
| uint8x16_t a2q = vcombine_u8(a2, vdup_n_u8(0)); |
| uint8x16_t a3q = vcombine_u8(a3, vdup_n_u8(0)); |
| |
| uint8x16_t a01 = vzipq_u8(a0q, a1q).val[0]; |
| uint8x16_t a23 = vzipq_u8(a2q, a3q).val[0]; |
| |
| uint16x8x2_t a0123 = |
| vzipq_u16(vreinterpretq_u16_u8(a01), vreinterpretq_u16_u8(a23)); |
| |
| *b0 = vreinterpretq_u8_u16(a0123.val[0]); |
| *b1 = vreinterpretq_u8_u16(a0123.val[1]); |
| } |
| |
| static inline int16x4_t convolve12_4_y(const uint8x16_t s0, const uint8x16_t s1, |
| const uint8x16_t s2, |
| const int8x8_t filters_0_7, |
| const int8x8_t filters_4_11) { |
| int32x4_t sum = vusdotq_lane_s32(vdupq_n_s32(0), s0, filters_0_7, 0); |
| sum = vusdotq_lane_s32(sum, s1, filters_0_7, 1); |
| sum = vusdotq_lane_s32(sum, s2, filters_4_11, 1); |
| |
| // Further narrowing and packing is performed by the caller. |
| return vqmovn_s32(sum); |
| } |
| |
| static inline uint8x8_t convolve12_8_y( |
| const uint8x16_t s0_lo, const uint8x16_t s0_hi, const uint8x16_t s1_lo, |
| const uint8x16_t s1_hi, const uint8x16_t s2_lo, const uint8x16_t s2_hi, |
| const int8x8_t filters_0_7, const int8x8_t filters_4_11) { |
| int32x4_t sum0123 = vusdotq_lane_s32(vdupq_n_s32(0), s0_lo, filters_0_7, 0); |
| sum0123 = vusdotq_lane_s32(sum0123, s1_lo, filters_0_7, 1); |
| sum0123 = vusdotq_lane_s32(sum0123, s2_lo, filters_4_11, 1); |
| |
| int32x4_t sum4567 = vusdotq_lane_s32(vdupq_n_s32(0), s0_hi, filters_0_7, 0); |
| sum4567 = vusdotq_lane_s32(sum4567, s1_hi, filters_0_7, 1); |
| sum4567 = vusdotq_lane_s32(sum4567, s2_hi, filters_4_11, 1); |
| |
| // Narrow and re-pack. |
| int16x8_t sum = vcombine_s16(vqmovn_s32(sum0123), vqmovn_s32(sum4567)); |
| return vqrshrun_n_s16(sum, FILTER_BITS); |
| } |
| |
| static inline void convolve_y_sr_12tap_neon_i8mm(const uint8_t *src_ptr, |
| int src_stride, |
| uint8_t *dst_ptr, |
| int dst_stride, int w, int h, |
| const int16_t *y_filter_ptr) { |
| // The no-op filter should never be used here. |
| assert(y_filter_ptr[5] != 128); |
| |
| const int8x8_t filter_0_7 = vmovn_s16(vld1q_s16(y_filter_ptr)); |
| const int8x8_t filter_4_11 = vmovn_s16(vld1q_s16(y_filter_ptr + 4)); |
| |
| const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl); |
| |
| if (w == 4) { |
| uint8x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, sA; |
| load_u8_8x11(src_ptr, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7, |
| &s8, &s9, &sA); |
| src_ptr += 11 * src_stride; |
| |
| // This operation combines a conventional transpose and the sample permute |
| // (see horizontal case) required before computing the dot product. |
| uint8x16_t s0123, s1234, s2345, s3456, s4567, s5678, s6789, s789A; |
| transpose_concat_4x4(s0, s1, s2, s3, &s0123); |
| transpose_concat_4x4(s1, s2, s3, s4, &s1234); |
| transpose_concat_4x4(s2, s3, s4, s5, &s2345); |
| transpose_concat_4x4(s3, s4, s5, s6, &s3456); |
| transpose_concat_4x4(s4, s5, s6, s7, &s4567); |
| transpose_concat_4x4(s5, s6, s7, s8, &s5678); |
| transpose_concat_4x4(s6, s7, s8, s9, &s6789); |
| transpose_concat_4x4(s7, s8, s9, sA, &s789A); |
| |
| do { |
| uint8x8_t sB, sC, sD, sE; |
| load_u8_8x4(src_ptr, src_stride, &sB, &sC, &sD, &sE); |
| |
| uint8x16_t s89AB, s9ABC, sABCD, sBCDE; |
| transpose_concat_4x4(sB, sC, sD, sE, &sBCDE); |
| |
| // Merge new data into block from previous iteration. |
| uint8x16x2_t samples_LUT = { { s789A, sBCDE } }; |
| s89AB = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); |
| s9ABC = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); |
| sABCD = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); |
| |
| int16x4_t d0 = |
| convolve12_4_y(s0123, s4567, s89AB, filter_0_7, filter_4_11); |
| int16x4_t d1 = |
| convolve12_4_y(s1234, s5678, s9ABC, filter_0_7, filter_4_11); |
| int16x4_t d2 = |
| convolve12_4_y(s2345, s6789, sABCD, filter_0_7, filter_4_11); |
| int16x4_t d3 = |
| convolve12_4_y(s3456, s789A, sBCDE, filter_0_7, filter_4_11); |
| uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS); |
| uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS); |
| |
| store_u8x4_strided_x2(dst_ptr + 0 * dst_stride, dst_stride, d01); |
| store_u8x4_strided_x2(dst_ptr + 2 * dst_stride, dst_stride, d23); |
| |
| // Prepare block for next iteration - re-using as much as possible. |
| // Shuffle everything up four rows. |
| s0123 = s4567; |
| s1234 = s5678; |
| s2345 = s6789; |
| s3456 = s789A; |
| s4567 = s89AB; |
| s5678 = s9ABC; |
| s6789 = sABCD; |
| s789A = sBCDE; |
| |
| src_ptr += 4 * src_stride; |
| dst_ptr += 4 * dst_stride; |
| h -= 4; |
| } while (h != 0); |
| } else { |
| do { |
| int height = h; |
| const uint8_t *s = src_ptr; |
| uint8_t *d = dst_ptr; |
| |
| uint8x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, sA; |
| load_u8_8x11(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7, &s8, |
| &s9, &sA); |
| s += 11 * src_stride; |
| |
| // This operation combines a conventional transpose and the sample |
| // permute (see horizontal case) required before computing the dot |
| // product. |
| uint8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi, |
| s3456_lo, s3456_hi, s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo, |
| s6789_hi, s789A_lo, s789A_hi; |
| transpose_concat_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi); |
| transpose_concat_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi); |
| transpose_concat_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi); |
| transpose_concat_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi); |
| transpose_concat_8x4(s4, s5, s6, s7, &s4567_lo, &s4567_hi); |
| transpose_concat_8x4(s5, s6, s7, s8, &s5678_lo, &s5678_hi); |
| transpose_concat_8x4(s6, s7, s8, s9, &s6789_lo, &s6789_hi); |
| transpose_concat_8x4(s7, s8, s9, sA, &s789A_lo, &s789A_hi); |
| |
| do { |
| uint8x8_t sB, sC, sD, sE; |
| load_u8_8x4(s, src_stride, &sB, &sC, &sD, &sE); |
| |
| uint8x16_t s89AB_lo, s89AB_hi, s9ABC_lo, s9ABC_hi, sABCD_lo, sABCD_hi, |
| sBCDE_lo, sBCDE_hi; |
| transpose_concat_8x4(sB, sC, sD, sE, &sBCDE_lo, &sBCDE_hi); |
| |
| // Merge new data into block from previous iteration. |
| uint8x16x2_t samples_LUT_lo = { { s789A_lo, sBCDE_lo } }; |
| s89AB_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[0]); |
| s9ABC_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[1]); |
| sABCD_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[2]); |
| |
| uint8x16x2_t samples_LUT_hi = { { s789A_hi, sBCDE_hi } }; |
| s89AB_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[0]); |
| s9ABC_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[1]); |
| sABCD_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[2]); |
| |
| uint8x8_t d0 = |
| convolve12_8_y(s0123_lo, s0123_hi, s4567_lo, s4567_hi, s89AB_lo, |
| s89AB_hi, filter_0_7, filter_4_11); |
| uint8x8_t d1 = |
| convolve12_8_y(s1234_lo, s1234_hi, s5678_lo, s5678_hi, s9ABC_lo, |
| s9ABC_hi, filter_0_7, filter_4_11); |
| uint8x8_t d2 = |
| convolve12_8_y(s2345_lo, s2345_hi, s6789_lo, s6789_hi, sABCD_lo, |
| sABCD_hi, filter_0_7, filter_4_11); |
| uint8x8_t d3 = |
| convolve12_8_y(s3456_lo, s3456_hi, s789A_lo, s789A_hi, sBCDE_lo, |
| sBCDE_hi, filter_0_7, filter_4_11); |
| |
| store_u8_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| // Prepare block for next iteration - re-using as much as possible. |
| // Shuffle everything up four rows. |
| s0123_lo = s4567_lo; |
| s0123_hi = s4567_hi; |
| s1234_lo = s5678_lo; |
| s1234_hi = s5678_hi; |
| s2345_lo = s6789_lo; |
| s2345_hi = s6789_hi; |
| s3456_lo = s789A_lo; |
| s3456_hi = s789A_hi; |
| s4567_lo = s89AB_lo; |
| s4567_hi = s89AB_hi; |
| s5678_lo = s9ABC_lo; |
| s5678_hi = s9ABC_hi; |
| s6789_lo = sABCD_lo; |
| s6789_hi = sABCD_hi; |
| s789A_lo = sBCDE_lo; |
| s789A_hi = sBCDE_hi; |
| |
| s += 4 * src_stride; |
| d += 4 * dst_stride; |
| height -= 4; |
| } while (height != 0); |
| src_ptr += 8; |
| dst_ptr += 8; |
| w -= 8; |
| } while (w != 0); |
| } |
| } |
| |
| static inline int16x4_t convolve8_4_y(const uint8x16_t s0, const uint8x16_t s1, |
| const int8x8_t filters) { |
| int32x4_t sum = vusdotq_lane_s32(vdupq_n_s32(0), s0, filters, 0); |
| sum = vusdotq_lane_s32(sum, s1, filters, 1); |
| |
| // Further narrowing and packing is performed by the caller. |
| return vqmovn_s32(sum); |
| } |
| |
| static inline uint8x8_t convolve8_8_y(const uint8x16_t s0_lo, |
| const uint8x16_t s0_hi, |
| const uint8x16_t s1_lo, |
| const uint8x16_t s1_hi, |
| const int8x8_t filters) { |
| int32x4_t sum0123 = vusdotq_lane_s32(vdupq_n_s32(0), s0_lo, filters, 0); |
| sum0123 = vusdotq_lane_s32(sum0123, s1_lo, filters, 1); |
| |
| int32x4_t sum4567 = vusdotq_lane_s32(vdupq_n_s32(0), s0_hi, filters, 0); |
| sum4567 = vusdotq_lane_s32(sum4567, s1_hi, filters, 1); |
| |
| // Narrow and re-pack. |
| int16x8_t sum = vcombine_s16(vqmovn_s32(sum0123), vqmovn_s32(sum4567)); |
| return vqrshrun_n_s16(sum, FILTER_BITS); |
| } |
| |
| static inline void convolve_y_sr_8tap_neon_i8mm(const uint8_t *src_ptr, |
| int src_stride, |
| uint8_t *dst_ptr, |
| int dst_stride, int w, int h, |
| const int16_t *y_filter_ptr) { |
| const int8x8_t filter = vmovn_s16(vld1q_s16(y_filter_ptr)); |
| |
| const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl); |
| |
| if (w == 4) { |
| uint8x8_t s0, s1, s2, s3, s4, s5, s6; |
| load_u8_8x7(src_ptr, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); |
| src_ptr += 7 * src_stride; |
| |
| // This operation combines a conventional transpose and the sample permute |
| // (see horizontal case) required before computing the dot product. |
| uint8x16_t s0123, s1234, s2345, s3456; |
| transpose_concat_4x4(s0, s1, s2, s3, &s0123); |
| transpose_concat_4x4(s1, s2, s3, s4, &s1234); |
| transpose_concat_4x4(s2, s3, s4, s5, &s2345); |
| transpose_concat_4x4(s3, s4, s5, s6, &s3456); |
| |
| do { |
| uint8x8_t s7, s8, s9, s10; |
| load_u8_8x4(src_ptr, src_stride, &s7, &s8, &s9, &s10); |
| |
| uint8x16_t s4567, s5678, s6789, s78910; |
| transpose_concat_4x4(s7, s8, s9, s10, &s78910); |
| |
| // Merge new data into block from previous iteration. |
| uint8x16x2_t samples_LUT = { { s3456, s78910 } }; |
| s4567 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); |
| s5678 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); |
| s6789 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); |
| |
| int16x4_t d0 = convolve8_4_y(s0123, s4567, filter); |
| int16x4_t d1 = convolve8_4_y(s1234, s5678, filter); |
| int16x4_t d2 = convolve8_4_y(s2345, s6789, filter); |
| int16x4_t d3 = convolve8_4_y(s3456, s78910, filter); |
| uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS); |
| uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS); |
| |
| store_u8x4_strided_x2(dst_ptr + 0 * dst_stride, dst_stride, d01); |
| store_u8x4_strided_x2(dst_ptr + 2 * dst_stride, dst_stride, d23); |
| |
| // Prepare block for next iteration - re-using as much as possible. |
| // Shuffle everything up four rows. |
| s0123 = s4567; |
| s1234 = s5678; |
| s2345 = s6789; |
| s3456 = s78910; |
| |
| src_ptr += 4 * src_stride; |
| dst_ptr += 4 * dst_stride; |
| h -= 4; |
| } while (h != 0); |
| } else { |
| do { |
| int height = h; |
| const uint8_t *s = src_ptr; |
| uint8_t *d = dst_ptr; |
| |
| uint8x8_t s0, s1, s2, s3, s4, s5, s6; |
| load_u8_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); |
| s += 7 * src_stride; |
| |
| // This operation combines a conventional transpose and the sample |
| // permute (see horizontal case) required before computing the dot |
| // product. |
| uint8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi, |
| s3456_lo, s3456_hi; |
| transpose_concat_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi); |
| transpose_concat_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi); |
| transpose_concat_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi); |
| transpose_concat_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi); |
| |
| do { |
| uint8x8_t s7, s8, s9, s10; |
| load_u8_8x4(s, src_stride, &s7, &s8, &s9, &s10); |
| |
| uint8x16_t s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo, s6789_hi, |
| s78910_lo, s78910_hi; |
| transpose_concat_8x4(s7, s8, s9, s10, &s78910_lo, &s78910_hi); |
| |
| // Merge new data into block from previous iteration. |
| uint8x16x2_t samples_LUT_lo = { { s3456_lo, s78910_lo } }; |
| s4567_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[0]); |
| s5678_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[1]); |
| s6789_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[2]); |
| |
| uint8x16x2_t samples_LUT_hi = { { s3456_hi, s78910_hi } }; |
| s4567_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[0]); |
| s5678_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[1]); |
| s6789_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[2]); |
| |
| uint8x8_t d0 = |
| convolve8_8_y(s0123_lo, s0123_hi, s4567_lo, s4567_hi, filter); |
| uint8x8_t d1 = |
| convolve8_8_y(s1234_lo, s1234_hi, s5678_lo, s5678_hi, filter); |
| uint8x8_t d2 = |
| convolve8_8_y(s2345_lo, s2345_hi, s6789_lo, s6789_hi, filter); |
| uint8x8_t d3 = |
| convolve8_8_y(s3456_lo, s3456_hi, s78910_lo, s78910_hi, filter); |
| |
| store_u8_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| // Prepare block for next iteration - re-using as much as possible. |
| // Shuffle everything up four rows. |
| s0123_lo = s4567_lo; |
| s0123_hi = s4567_hi; |
| s1234_lo = s5678_lo; |
| s1234_hi = s5678_hi; |
| s2345_lo = s6789_lo; |
| s2345_hi = s6789_hi; |
| s3456_lo = s78910_lo; |
| s3456_hi = s78910_hi; |
| |
| s += 4 * src_stride; |
| d += 4 * dst_stride; |
| height -= 4; |
| } while (height != 0); |
| src_ptr += 8; |
| dst_ptr += 8; |
| w -= 8; |
| } while (w != 0); |
| } |
| } |
| |
| void av1_convolve_y_sr_neon_i8mm(const uint8_t *src, int src_stride, |
| uint8_t *dst, int dst_stride, int w, int h, |
| const InterpFilterParams *filter_params_y, |
| const int subpel_y_qn) { |
| if (w == 2 || h == 2) { |
| av1_convolve_y_sr_c(src, src_stride, dst, dst_stride, w, h, filter_params_y, |
| subpel_y_qn); |
| return; |
| } |
| |
| const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn); |
| |
| if (y_filter_taps <= 6) { |
| av1_convolve_y_sr_neon(src, src_stride, dst, dst_stride, w, h, |
| filter_params_y, subpel_y_qn); |
| return; |
| } |
| |
| const int vert_offset = y_filter_taps / 2 - 1; |
| src -= vert_offset * src_stride; |
| |
| const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel( |
| filter_params_y, subpel_y_qn & SUBPEL_MASK); |
| |
| if (y_filter_taps > 8) { |
| convolve_y_sr_12tap_neon_i8mm(src, src_stride, dst, dst_stride, w, h, |
| y_filter_ptr); |
| return; |
| } |
| convolve_y_sr_8tap_neon_i8mm(src, src_stride, dst, dst_stride, w, h, |
| y_filter_ptr); |
| } |
| |
| static inline int16x8_t convolve8_8_2d_h(uint8x16_t samples, |
| const int8x8_t filters, |
| const uint8x16x3_t permute_tbl, |
| const int32x4_t horiz_const) { |
| // Permute samples ready for dot product. |
| // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } |
| // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } |
| // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } |
| uint8x16_t perm_samples[3] = { vqtbl1q_u8(samples, permute_tbl.val[0]), |
| vqtbl1q_u8(samples, permute_tbl.val[1]), |
| vqtbl1q_u8(samples, permute_tbl.val[2]) }; |
| |
| int32x4_t sum0123 = |
| vusdotq_lane_s32(horiz_const, perm_samples[0], filters, 0); |
| sum0123 = vusdotq_lane_s32(sum0123, perm_samples[1], filters, 1); |
| |
| int32x4_t sum4567 = |
| vusdotq_lane_s32(horiz_const, perm_samples[1], filters, 0); |
| sum4567 = vusdotq_lane_s32(sum4567, perm_samples[2], filters, 1); |
| |
| // Narrow and re-pack. |
| // We halved the convolution filter values so -1 from the right shift. |
| return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1), |
| vshrn_n_s32(sum4567, ROUND0_BITS - 1)); |
| } |
| |
| static inline void convolve_2d_sr_horiz_8tap_neon_i8mm( |
| const uint8_t *src, int src_stride, int16_t *im_block, int im_stride, int w, |
| int im_h, const int16_t *x_filter_ptr) { |
| // Filter values are even, so halve to reduce intermediate precision reqs. |
| const int8x8_t x_filter = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1); |
| |
| const int bd = 8; |
| // This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding |
| // shifts - which are generally faster than rounding shifts on modern CPUs. |
| // The outermost -1 is needed because we halved the filter values. |
| const int32x4_t horiz_const = vdupq_n_s32((1 << (bd + FILTER_BITS - 2)) + |
| (1 << ((ROUND0_BITS - 1) - 1))); |
| |
| const uint8_t *src_ptr = src; |
| int16_t *dst_ptr = im_block; |
| int dst_stride = im_stride; |
| int height = im_h; |
| |
| const uint8x16x3_t permute_tbl = vld1q_u8_x3(kDotProdPermuteTbl); |
| do { |
| const uint8_t *s = src_ptr; |
| int16_t *d = dst_ptr; |
| int width = w; |
| |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); |
| |
| int16x8_t d0 = convolve8_8_2d_h(s0, x_filter, permute_tbl, horiz_const); |
| int16x8_t d1 = convolve8_8_2d_h(s1, x_filter, permute_tbl, horiz_const); |
| int16x8_t d2 = convolve8_8_2d_h(s2, x_filter, permute_tbl, horiz_const); |
| int16x8_t d3 = convolve8_8_2d_h(s3, x_filter, permute_tbl, horiz_const); |
| |
| store_s16_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| s += 8; |
| d += 8; |
| width -= 8; |
| } while (width != 0); |
| src_ptr += 4 * src_stride; |
| dst_ptr += 4 * dst_stride; |
| height -= 4; |
| } while (height > 4); |
| |
| do { |
| const uint8_t *s = src_ptr; |
| int16_t *d = dst_ptr; |
| int width = w; |
| |
| do { |
| uint8x16_t s0 = vld1q_u8(s); |
| int16x8_t d0 = convolve8_8_2d_h(s0, x_filter, permute_tbl, horiz_const); |
| vst1q_s16(d, d0); |
| |
| s += 8; |
| d += 8; |
| width -= 8; |
| } while (width != 0); |
| src_ptr += src_stride; |
| dst_ptr += dst_stride; |
| } while (--height != 0); |
| } |
| |
| static inline int16x4_t convolve4_4_2d_h(const uint8x16_t samples, |
| const int8x8_t filters, |
| const uint8x16_t permute_tbl, |
| const int32x4_t horiz_const) { |
| // Permute samples ready for dot product. |
| // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } |
| uint8x16_t perm_samples = vqtbl1q_u8(samples, permute_tbl); |
| |
| int32x4_t sum = vusdotq_lane_s32(horiz_const, perm_samples, filters, 0); |
| |
| // We halved the convolution filter values so -1 from the right shift. |
| return vshrn_n_s32(sum, ROUND0_BITS - 1); |
| } |
| |
| static inline int16x8_t convolve4_8_2d_h(const uint8x16_t samples, |
| const int8x8_t filters, |
| const uint8x16x2_t permute_tbl, |
| const int32x4_t horiz_const) { |
| // Permute samples ready for dot product. |
| // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } |
| // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } |
| uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]), |
| vqtbl1q_u8(samples, permute_tbl.val[1]) }; |
| |
| int32x4_t sum0123 = |
| vusdotq_lane_s32(horiz_const, perm_samples[0], filters, 0); |
| int32x4_t sum4567 = |
| vusdotq_lane_s32(horiz_const, perm_samples[1], filters, 0); |
| |
| // Narrow and re-pack. |
| // We halved the filter values so -1 from right shift. |
| return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1), |
| vshrn_n_s32(sum4567, ROUND0_BITS - 1)); |
| } |
| |
| static inline void convolve_2d_sr_horiz_4tap_neon_i8mm( |
| const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int width, |
| int height, const int16_t *filter_x) { |
| const int bd = 8; |
| const int16x4_t x_filter = vld1_s16(filter_x + 2); |
| // All 4-tap and bilinear filter values are even, so halve them to reduce |
| // intermediate precision requirements. |
| const int8x8_t filter = vshrn_n_s16(vcombine_s16(x_filter, vdup_n_s16(0)), 1); |
| |
| // Adding a shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding |
| // shifts - which are generally faster than rounding shifts on modern CPUs. |
| // Halve the total because we halved the filter values. |
| const int32x4_t horiz_const = vdupq_n_s32( |
| (((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))) / 2)); |
| |
| if (width == 4) { |
| const uint8x16_t perm_tbl = vld1q_u8(kDotProdPermuteTbl); |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); |
| |
| int16x4_t d0 = convolve4_4_2d_h(s0, filter, perm_tbl, horiz_const); |
| int16x4_t d1 = convolve4_4_2d_h(s1, filter, perm_tbl, horiz_const); |
| int16x4_t d2 = convolve4_4_2d_h(s2, filter, perm_tbl, horiz_const); |
| int16x4_t d3 = convolve4_4_2d_h(s3, filter, perm_tbl, horiz_const); |
| |
| store_s16_4x4(dst, dst_stride, d0, d1, d2, d3); |
| |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| height -= 4; |
| } while (height > 4); |
| |
| do { |
| uint8x16_t s0 = vld1q_u8(src); |
| int16x4_t d0 = convolve4_4_2d_h(s0, filter, perm_tbl, horiz_const); |
| vst1_s16(dst, d0); |
| |
| src += src_stride; |
| dst += dst_stride; |
| } while (--height != 0); |
| } else { |
| const uint8x16x2_t perm_tbl = vld1q_u8_x2(kDotProdPermuteTbl); |
| do { |
| int w = width; |
| const uint8_t *s = src; |
| int16_t *d = dst; |
| |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); |
| |
| int16x8_t d0 = convolve4_8_2d_h(s0, filter, perm_tbl, horiz_const); |
| int16x8_t d1 = convolve4_8_2d_h(s1, filter, perm_tbl, horiz_const); |
| int16x8_t d2 = convolve4_8_2d_h(s2, filter, perm_tbl, horiz_const); |
| int16x8_t d3 = convolve4_8_2d_h(s3, filter, perm_tbl, horiz_const); |
| |
| store_s16_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| s += 8; |
| d += 8; |
| w -= 8; |
| } while (w != 0); |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| height -= 4; |
| } while (height > 4); |
| |
| do { |
| const uint8_t *s = src; |
| int16_t *d = dst; |
| int w = width; |
| |
| do { |
| uint8x16_t s0 = vld1q_u8(s); |
| int16x8_t d0 = convolve4_8_2d_h(s0, filter, perm_tbl, horiz_const); |
| vst1q_s16(d, d0); |
| |
| s += 8; |
| d += 8; |
| w -= 8; |
| } while (w != 0); |
| src += src_stride; |
| dst += dst_stride; |
| } while (--height != 0); |
| } |
| } |
| |
| static inline int16x4_t convolve6_4_2d_h(uint8x16_t samples, |
| const int8x16_t filter, |
| const uint8x16_t permute_tbl, |
| const int32x4_t horiz_const) { |
| // Permute samples ready for matrix multiply. |
| // { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 } |
| uint8x16_t perm_samples = vqtbl1q_u8(samples, permute_tbl); |
| |
| // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix |
| // (filter), destructively accumulating into the destination register. |
| int32x4_t sum = vusmmlaq_s32(horiz_const, perm_samples, filter); |
| |
| // We halved the convolution filter values so -1 from the right shift. |
| return vshrn_n_s32(sum, ROUND0_BITS - 1); |
| } |
| |
| static inline int16x8_t convolve6_8_2d_h(uint8x16_t samples, |
| const int8x16_t filter, |
| const uint8x16x2_t permute_tbl, |
| const int32x4_t horiz_const) { |
| // Permute samples ready for matrix multiply. |
| // { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 } |
| // { 4, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 13 } |
| uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]), |
| vqtbl1q_u8(samples, permute_tbl.val[1]) }; |
| |
| // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix |
| // (filter), destructively accumulating into the destination register. |
| int32x4_t sum0123 = vusmmlaq_s32(horiz_const, perm_samples[0], filter); |
| int32x4_t sum4567 = vusmmlaq_s32(horiz_const, perm_samples[1], filter); |
| |
| // Narrow and re-pack. |
| // We halved the convolution filter values so -1 from the right shift. |
| return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1), |
| vshrn_n_s32(sum4567, ROUND0_BITS - 1)); |
| } |
| |
| static inline void convolve_2d_sr_6tap_neon_i8mm(const uint8_t *src, |
| int src_stride, uint8_t *dst, |
| int dst_stride, int w, int h, |
| const int16_t *x_filter_ptr, |
| const int16_t *y_filter_ptr) { |
| const int16x8_t y_filter = vld1q_s16(y_filter_ptr); |
| // Filter values are even, so halve to reduce intermediate precision reqs. |
| const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1); |
| // Stagger the filter for use with the matrix multiply instructions. |
| // { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 } |
| const int8x16_t x_filter = |
| vcombine_s8(vext_s8(x_filter_s8, x_filter_s8, 1), x_filter_s8); |
| |
| const int bd = 8; |
| // This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding |
| // shifts in convolution kernels - which are generally faster than rounding |
| // shifts on modern CPUs. The outermost -1 is needed because we halved the |
| // filter values. |
| const int32x4_t horiz_const = vdupq_n_s32((1 << (bd + FILTER_BITS - 2)) + |
| (1 << ((ROUND0_BITS - 1) - 1))); |
| const int16x8_t vert_const = vdupq_n_s16(1 << (bd - 1)); |
| const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMulPermuteTbl); |
| |
| do { |
| const uint8_t *s = src; |
| uint8_t *d = dst; |
| int height = h; |
| |
| uint8x16_t h_s0, h_s1, h_s2, h_s3, h_s4; |
| load_u8_16x5(s, src_stride, &h_s0, &h_s1, &h_s2, &h_s3, &h_s4); |
| s += 5 * src_stride; |
| |
| int16x8_t v_s0 = convolve6_8_2d_h(h_s0, x_filter, permute_tbl, horiz_const); |
| int16x8_t v_s1 = convolve6_8_2d_h(h_s1, x_filter, permute_tbl, horiz_const); |
| int16x8_t v_s2 = convolve6_8_2d_h(h_s2, x_filter, permute_tbl, horiz_const); |
| int16x8_t v_s3 = convolve6_8_2d_h(h_s3, x_filter, permute_tbl, horiz_const); |
| int16x8_t v_s4 = convolve6_8_2d_h(h_s4, x_filter, permute_tbl, horiz_const); |
| |
| do { |
| uint8x16_t h_s5, h_s6, h_s7, h_s8; |
| load_u8_16x4(s, src_stride, &h_s5, &h_s6, &h_s7, &h_s8); |
| |
| int16x8_t v_s5 = |
| convolve6_8_2d_h(h_s5, x_filter, permute_tbl, horiz_const); |
| int16x8_t v_s6 = |
| convolve6_8_2d_h(h_s6, x_filter, permute_tbl, horiz_const); |
| int16x8_t v_s7 = |
| convolve6_8_2d_h(h_s7, x_filter, permute_tbl, horiz_const); |
| int16x8_t v_s8 = |
| convolve6_8_2d_h(h_s8, x_filter, permute_tbl, horiz_const); |
| |
| uint8x8_t d0 = convolve6_8_2d_v(v_s0, v_s1, v_s2, v_s3, v_s4, v_s5, |
| y_filter, vert_const); |
| uint8x8_t d1 = convolve6_8_2d_v(v_s1, v_s2, v_s3, v_s4, v_s5, v_s6, |
| y_filter, vert_const); |
| uint8x8_t d2 = convolve6_8_2d_v(v_s2, v_s3, v_s4, v_s5, v_s6, v_s7, |
| y_filter, vert_const); |
| uint8x8_t d3 = convolve6_8_2d_v(v_s3, v_s4, v_s5, v_s6, v_s7, v_s8, |
| y_filter, vert_const); |
| |
| store_u8_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| v_s0 = v_s4; |
| v_s1 = v_s5; |
| v_s2 = v_s6; |
| v_s3 = v_s7; |
| v_s4 = v_s8; |
| |
| s += 4 * src_stride; |
| d += 4 * dst_stride; |
| height -= 4; |
| } while (height != 0); |
| src += 8; |
| dst += 8; |
| w -= 8; |
| } while (w != 0); |
| } |
| |
| static inline void convolve_2d_sr_6tap_4tap_neon_i8mm( |
| const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, |
| int h, const int16_t *x_filter_ptr, const int16_t *y_filter_ptr) { |
| const int16x4_t y_filter = vld1_s16(y_filter_ptr + 2); |
| // Filter values are even, so halve to reduce intermediate precision reqs. |
| const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1); |
| // Stagger the filter for use with the matrix multiply instructions. |
| // { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 } |
| const int8x16_t x_filter = |
| vcombine_s8(vext_s8(x_filter_s8, x_filter_s8, 1), x_filter_s8); |
| |
| const int bd = 8; |
| // Adding a shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding |
| // shifts - which are generally faster than rounding shifts on modern CPUs. |
| // Halve the total because we halved the filter values. |
| const int32x4_t horiz_const = vdupq_n_s32( |
| ((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))) / 2); |
| const int16x8_t vert_const = vdupq_n_s16(1 << (bd - 1)); |
| |
| if (w == 4) { |
| const uint8x16_t permute_tbl = vld1q_u8(kMatMulPermuteTbl); |
| uint8x16_t h_s0, h_s1, h_s2; |
| load_u8_16x3(src, src_stride, &h_s0, &h_s1, &h_s2); |
| |
| int16x4_t v_s0 = convolve6_4_2d_h(h_s0, x_filter, permute_tbl, horiz_const); |
| int16x4_t v_s1 = convolve6_4_2d_h(h_s1, x_filter, permute_tbl, horiz_const); |
| int16x4_t v_s2 = convolve6_4_2d_h(h_s2, x_filter, permute_tbl, horiz_const); |
| |
| src += 3 * src_stride; |
| |
| do { |
| uint8x16_t h_s3, h_s4, h_s5, h_s6; |
| load_u8_16x4(src, src_stride, &h_s3, &h_s4, &h_s5, &h_s6); |
| |
| int16x4_t v_s3 = |
| convolve6_4_2d_h(h_s3, x_filter, permute_tbl, horiz_const); |
| int16x4_t v_s4 = |
| convolve6_4_2d_h(h_s4, x_filter, permute_tbl, horiz_const); |
| int16x4_t v_s5 = |
| convolve6_4_2d_h(h_s5, x_filter, permute_tbl, horiz_const); |
| int16x4_t v_s6 = |
| convolve6_4_2d_h(h_s6, x_filter, permute_tbl, horiz_const); |
| |
| int16x4_t d0 = convolve4_4_2d_v(v_s0, v_s1, v_s2, v_s3, y_filter); |
| int16x4_t d1 = convolve4_4_2d_v(v_s1, v_s2, v_s3, v_s4, y_filter); |
| int16x4_t d2 = convolve4_4_2d_v(v_s2, v_s3, v_s4, v_s5, y_filter); |
| int16x4_t d3 = convolve4_4_2d_v(v_s3, v_s4, v_s5, v_s6, y_filter); |
| |
| uint8x8_t d01 = vqmovun_s16(vsubq_s16(vcombine_s16(d0, d1), vert_const)); |
| uint8x8_t d23 = vqmovun_s16(vsubq_s16(vcombine_s16(d2, d3), vert_const)); |
| |
| store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); |
| store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); |
| |
| v_s0 = v_s4; |
| v_s1 = v_s5; |
| v_s2 = v_s6; |
| |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| h -= 4; |
| } while (h != 0); |
| } else { |
| const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMulPermuteTbl); |
| |
| do { |
| int height = h; |
| const uint8_t *s = src; |
| uint8_t *d = dst; |
| |
| uint8x16_t h_s0, h_s1, h_s2; |
| load_u8_16x3(src, src_stride, &h_s0, &h_s1, &h_s2); |
| |
| int16x8_t v_s0 = |
| convolve6_8_2d_h(h_s0, x_filter, permute_tbl, horiz_const); |
| int16x8_t v_s1 = |
| convolve6_8_2d_h(h_s1, x_filter, permute_tbl, horiz_const); |
| int16x8_t v_s2 = |
| convolve6_8_2d_h(h_s2, x_filter, permute_tbl, horiz_const); |
| |
| s += 3 * src_stride; |
| |
| do { |
| uint8x16_t h_s3, h_s4, h_s5, h_s6; |
| load_u8_16x4(s, src_stride, &h_s3, &h_s4, &h_s5, &h_s6); |
| |
| int16x8_t v_s3 = |
| convolve6_8_2d_h(h_s3, x_filter, permute_tbl, horiz_const); |
| int16x8_t v_s4 = |
| convolve6_8_2d_h(h_s4, x_filter, permute_tbl, horiz_const); |
| int16x8_t v_s5 = |
| convolve6_8_2d_h(h_s5, x_filter, permute_tbl, horiz_const); |
| int16x8_t v_s6 = |
| convolve6_8_2d_h(h_s6, x_filter, permute_tbl, horiz_const); |
| |
| uint8x8_t d0 = |
| convolve4_8_2d_v(v_s0, v_s1, v_s2, v_s3, y_filter, vert_const); |
| uint8x8_t d1 = |
| convolve4_8_2d_v(v_s1, v_s2, v_s3, v_s4, y_filter, vert_const); |
| uint8x8_t d2 = |
| convolve4_8_2d_v(v_s2, v_s3, v_s4, v_s5, y_filter, vert_const); |
| uint8x8_t d3 = |
| convolve4_8_2d_v(v_s3, v_s4, v_s5, v_s6, y_filter, vert_const); |
| |
| store_u8_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| v_s0 = v_s4; |
| v_s1 = v_s5; |
| v_s2 = v_s6; |
| |
| s += 4 * src_stride; |
| d += 4 * dst_stride; |
| height -= 4; |
| } while (height != 0); |
| src += 8; |
| dst += 8; |
| w -= 8; |
| } while (w != 0); |
| } |
| } |
| |
| void av1_convolve_2d_sr_neon_i8mm(const uint8_t *src, int src_stride, |
| uint8_t *dst, int dst_stride, int w, int h, |
| const InterpFilterParams *filter_params_x, |
| const InterpFilterParams *filter_params_y, |
| const int subpel_x_qn, const int subpel_y_qn, |
| ConvolveParams *conv_params) { |
| if (w == 2 || h == 2) { |
| av1_convolve_2d_sr_c(src, src_stride, dst, dst_stride, w, h, |
| filter_params_x, filter_params_y, subpel_x_qn, |
| subpel_y_qn, conv_params); |
| return; |
| } |
| |
| const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn); |
| const int x_filter_taps = get_filter_tap(filter_params_x, subpel_x_qn); |
| const int clamped_y_taps = y_filter_taps < 4 ? 4 : y_filter_taps; |
| const int im_h = h + clamped_y_taps - 1; |
| const int im_stride = MAX_SB_SIZE; |
| const int vert_offset = clamped_y_taps / 2 - 1; |
| const int horiz_offset = filter_params_x->taps / 2 - 1; |
| const uint8_t *src_ptr = src - vert_offset * src_stride - horiz_offset; |
| |
| const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel( |
| filter_params_x, subpel_x_qn & SUBPEL_MASK); |
| const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel( |
| filter_params_y, subpel_y_qn & SUBPEL_MASK); |
| |
| if (filter_params_x->taps > 8) { |
| DECLARE_ALIGNED(16, int16_t, |
| im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE]); |
| |
| const int16x8_t y_filter_0_7 = vld1q_s16(y_filter_ptr); |
| const int16x4_t y_filter_8_11 = vld1_s16(y_filter_ptr + 8); |
| |
| convolve_2d_sr_horiz_12tap_neon_i8mm(src_ptr, src_stride, im_block, |
| im_stride, w, im_h, x_filter_ptr); |
| |
| convolve_2d_sr_vert_12tap_neon(im_block, im_stride, dst, dst_stride, w, h, |
| y_filter_0_7, y_filter_8_11); |
| } else { |
| DECLARE_ALIGNED(16, int16_t, |
| im_block[(MAX_SB_SIZE + SUBPEL_TAPS - 1) * MAX_SB_SIZE]); |
| |
| if (x_filter_taps == 6 && y_filter_taps == 6) { |
| convolve_2d_sr_6tap_neon_i8mm(src_ptr + 1, src_stride, dst, dst_stride, w, |
| h, x_filter_ptr, y_filter_ptr); |
| return; |
| } |
| |
| // Used for both 6, 4 and 4, 4 horiz, vert filter tap combinations. |
| if (x_filter_taps <= 6 && y_filter_taps <= 4) { |
| convolve_2d_sr_6tap_4tap_neon_i8mm(src_ptr + 1, src_stride, dst, |
| dst_stride, w, h, x_filter_ptr, |
| y_filter_ptr); |
| return; |
| } |
| |
| if (x_filter_taps <= 4) { |
| convolve_2d_sr_horiz_4tap_neon_i8mm(src_ptr + 2, src_stride, im_block, |
| im_stride, w, im_h, x_filter_ptr); |
| } else { |
| convolve_2d_sr_horiz_8tap_neon_i8mm(src_ptr, src_stride, im_block, |
| im_stride, w, im_h, x_filter_ptr); |
| } |
| |
| const int16x8_t y_filter = vld1q_s16(y_filter_ptr); |
| |
| if (clamped_y_taps <= 4) { |
| convolve_2d_sr_vert_4tap_neon(im_block, im_stride, dst, dst_stride, w, h, |
| y_filter_ptr); |
| } else if (clamped_y_taps == 6) { |
| convolve_2d_sr_vert_6tap_neon(im_block, im_stride, dst, dst_stride, w, h, |
| y_filter); |
| } else { |
| convolve_2d_sr_vert_8tap_neon(im_block, im_stride, dst, dst_stride, w, h, |
| y_filter); |
| } |
| } |
| } |