blob: a8f2f0231e0a331666540c4619165bfb21bef5e9 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <stdbool.h>
#include "av1/common/av1_common_int.h"
#include "av1/common/resize.h"
#include "av1/common/tile_common.h"
#include "aom_dsp/aom_dsp_common.h"
void av1_tile_init(TileInfo *tile, const AV1_COMMON *cm, int row, int col) {
av1_tile_set_row(tile, cm, row);
av1_tile_set_col(tile, cm, col);
}
// Find smallest k>=0 such that (blk_size << k) >= target
static int tile_log2(int blk_size, int target) {
int k;
for (k = 0; (blk_size << k) < target; k++) {
}
return k;
}
void av1_get_tile_limits(AV1_COMMON *const cm) {
const SequenceHeader *const seq_params = cm->seq_params;
CommonTileParams *const tiles = &cm->tiles;
const int sb_cols =
CEIL_POWER_OF_TWO(cm->mi_params.mi_cols, seq_params->mib_size_log2);
const int sb_rows =
CEIL_POWER_OF_TWO(cm->mi_params.mi_rows, seq_params->mib_size_log2);
const int sb_size_log2 = seq_params->mib_size_log2 + MI_SIZE_LOG2;
tiles->max_width_sb = MAX_TILE_WIDTH >> sb_size_log2;
#if CONFIG_CWG_C013
bool use_level_7_above = false;
for (int i = 0; i < seq_params->operating_points_cnt_minus_1 + 1; i++) {
if (seq_params->seq_level_idx[i] >= SEQ_LEVEL_7_0 &&
seq_params->seq_level_idx[i] <= SEQ_LEVEL_8_3) {
// Currently it is assumed that levels 7.x and 8.x are either used for all
// operating points, or none of them.
if (i != 0 && !use_level_7_above) {
aom_internal_error(cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Either all the operating points are levels 7.x or "
"8.x, or none of them are.");
}
use_level_7_above = true;
}
}
const int max_tile_area_sb =
(use_level_7_above ? MAX_TILE_AREA_LEVEL_7_AND_ABOVE : MAX_TILE_AREA) >>
(2 * sb_size_log2);
#else
const int max_tile_area_sb = MAX_TILE_AREA >> (2 * sb_size_log2);
#endif
tiles->min_log2_cols = tile_log2(tiles->max_width_sb, sb_cols);
tiles->max_log2_cols = tile_log2(1, AOMMIN(sb_cols, MAX_TILE_COLS));
tiles->max_log2_rows = tile_log2(1, AOMMIN(sb_rows, MAX_TILE_ROWS));
tiles->min_log2 = tile_log2(max_tile_area_sb, sb_cols * sb_rows);
tiles->min_log2 = AOMMAX(tiles->min_log2, tiles->min_log2_cols);
}
void av1_calculate_tile_cols(const SequenceHeader *const seq_params,
int cm_mi_rows, int cm_mi_cols,
CommonTileParams *const tiles) {
int sb_cols = CEIL_POWER_OF_TWO(cm_mi_cols, seq_params->mib_size_log2);
int sb_rows = CEIL_POWER_OF_TWO(cm_mi_rows, seq_params->mib_size_log2);
int i;
// This will be overridden if there is at least two columns of tiles
// (otherwise there is no inner tile width)
tiles->min_inner_width = -1;
if (tiles->uniform_spacing) {
int start_sb;
int size_sb = CEIL_POWER_OF_TWO(sb_cols, tiles->log2_cols);
assert(size_sb > 0);
for (i = 0, start_sb = 0; start_sb < sb_cols; i++) {
tiles->col_start_sb[i] = start_sb;
start_sb += size_sb;
}
tiles->cols = i;
tiles->col_start_sb[i] = sb_cols;
tiles->min_log2_rows = AOMMAX(tiles->min_log2 - tiles->log2_cols, 0);
tiles->max_height_sb = sb_rows >> tiles->min_log2_rows;
tiles->width = size_sb << seq_params->mib_size_log2;
tiles->width = AOMMIN(tiles->width, cm_mi_cols);
if (tiles->cols > 1) {
tiles->min_inner_width = tiles->width;
}
} else {
int max_tile_area_sb = (sb_rows * sb_cols);
int widest_tile_sb = 1;
int narrowest_inner_tile_sb = 65536;
tiles->log2_cols = tile_log2(1, tiles->cols);
for (i = 0; i < tiles->cols; i++) {
int size_sb = tiles->col_start_sb[i + 1] - tiles->col_start_sb[i];
widest_tile_sb = AOMMAX(widest_tile_sb, size_sb);
// ignore the rightmost tile in frame for determining the narrowest
if (i < tiles->cols - 1)
narrowest_inner_tile_sb = AOMMIN(narrowest_inner_tile_sb, size_sb);
}
if (tiles->min_log2) {
max_tile_area_sb >>= (tiles->min_log2 + 1);
}
tiles->max_height_sb = AOMMAX(max_tile_area_sb / widest_tile_sb, 1);
if (tiles->cols > 1) {
tiles->min_inner_width = narrowest_inner_tile_sb
<< seq_params->mib_size_log2;
}
}
}
void av1_calculate_tile_rows(const SequenceHeader *const seq_params,
int cm_mi_rows, CommonTileParams *const tiles) {
int sb_rows = CEIL_POWER_OF_TWO(cm_mi_rows, seq_params->mib_size_log2);
int start_sb, size_sb, i;
if (tiles->uniform_spacing) {
size_sb = CEIL_POWER_OF_TWO(sb_rows, tiles->log2_rows);
assert(size_sb > 0);
for (i = 0, start_sb = 0; start_sb < sb_rows; i++) {
tiles->row_start_sb[i] = start_sb;
start_sb += size_sb;
}
tiles->rows = i;
tiles->row_start_sb[i] = sb_rows;
tiles->height = size_sb << seq_params->mib_size_log2;
tiles->height = AOMMIN(tiles->height, cm_mi_rows);
} else {
tiles->log2_rows = tile_log2(1, tiles->rows);
}
}
void av1_tile_set_row(TileInfo *tile, const AV1_COMMON *cm, int row) {
assert(row < cm->tiles.rows);
int mi_row_start = cm->tiles.row_start_sb[row]
<< cm->seq_params->mib_size_log2;
int mi_row_end = cm->tiles.row_start_sb[row + 1]
<< cm->seq_params->mib_size_log2;
tile->tile_row = row;
tile->mi_row_start = mi_row_start;
tile->mi_row_end = AOMMIN(mi_row_end, cm->mi_params.mi_rows);
assert(tile->mi_row_end > tile->mi_row_start);
}
void av1_tile_set_col(TileInfo *tile, const AV1_COMMON *cm, int col) {
assert(col < cm->tiles.cols);
int mi_col_start = cm->tiles.col_start_sb[col]
<< cm->seq_params->mib_size_log2;
int mi_col_end = cm->tiles.col_start_sb[col + 1]
<< cm->seq_params->mib_size_log2;
tile->tile_col = col;
tile->mi_col_start = mi_col_start;
tile->mi_col_end = AOMMIN(mi_col_end, cm->mi_params.mi_cols);
assert(tile->mi_col_end > tile->mi_col_start);
}
int av1_get_sb_rows_in_tile(const AV1_COMMON *cm, const TileInfo *tile) {
return CEIL_POWER_OF_TWO(tile->mi_row_end - tile->mi_row_start,
cm->seq_params->mib_size_log2);
}
int av1_get_sb_cols_in_tile(const AV1_COMMON *cm, const TileInfo *tile) {
return CEIL_POWER_OF_TWO(tile->mi_col_end - tile->mi_col_start,
cm->seq_params->mib_size_log2);
}
// Section 7.3.1 of the AV1 spec says, on pages 200-201:
// It is a requirement of bitstream conformance that the following conditions
// are met:
// ...
// * TileHeight is equal to (use_128x128_superblock ? 128 : 64) for all
// tiles (i.e. the tile is exactly one superblock high)
// * TileWidth is identical for all tiles and is an integer multiple of
// TileHeight (i.e. the tile is an integer number of superblocks wide)
// ...
bool av1_get_uniform_tile_size(const AV1_COMMON *cm, int *w, int *h) {
const CommonTileParams *const tiles = &cm->tiles;
if (tiles->uniform_spacing) {
*w = tiles->width;
*h = tiles->height;
} else {
for (int i = 0; i < tiles->cols; ++i) {
const int tile_width_sb =
tiles->col_start_sb[i + 1] - tiles->col_start_sb[i];
const int tile_w = tile_width_sb * cm->seq_params->mib_size;
// ensure all tiles have same dimension
if (i != 0 && tile_w != *w) {
return false;
}
*w = tile_w;
}
for (int i = 0; i < tiles->rows; ++i) {
const int tile_height_sb =
tiles->row_start_sb[i + 1] - tiles->row_start_sb[i];
const int tile_h = tile_height_sb * cm->seq_params->mib_size;
// ensure all tiles have same dimension
if (i != 0 && tile_h != *h) {
return false;
}
*h = tile_h;
}
}
return true;
}
int av1_is_min_tile_width_satisfied(const AV1_COMMON *cm) {
// Disable check if there is a single tile col in the frame
if (cm->tiles.cols == 1) return 1;
return ((cm->tiles.min_inner_width << MI_SIZE_LOG2) >=
(64 << av1_superres_scaled(cm)));
}