blob: cff7f43eee0c8bd579ba3e8d2fb514fb74471f98 [file] [log] [blame]
/*
* Copyright (c) 2018, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <emmintrin.h> // SSE2
#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/x86/convolve.h"
#include "aom_ports/mem.h"
void aom_filter_block1d16_h4_sse2(const uint8_t *src_ptr,
ptrdiff_t src_pixels_per_line,
uint8_t *output_ptr, ptrdiff_t output_pitch,
uint32_t output_height,
const int16_t *filter) {
__m128i filtersReg;
__m128i addFilterReg32;
__m128i secondFilters, thirdFilters;
__m128i srcRegFilt32b1_1, srcRegFilt32b1_2, srcRegFilt32b2_1,
srcRegFilt32b2_2;
__m128i srcReg32b1, srcReg32b2;
unsigned int i;
src_ptr -= 3;
addFilterReg32 = _mm_set1_epi16(32);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
filtersReg = _mm_srai_epi16(filtersReg, 1);
// coeffs 0 1 0 1 2 3 2 3
const __m128i tmp_0 = _mm_unpacklo_epi32(filtersReg, filtersReg);
// coeffs 4 5 4 5 6 7 6 7
const __m128i tmp_1 = _mm_unpackhi_epi32(filtersReg, filtersReg);
secondFilters = _mm_unpackhi_epi64(tmp_0, tmp_0); // coeffs 2 3 2 3 2 3 2 3
thirdFilters = _mm_unpacklo_epi64(tmp_1, tmp_1); // coeffs 4 5 4 5 4 5 4 5
for (i = output_height; i > 0; i -= 1) {
srcReg32b1 = _mm_loadu_si128((const __m128i *)src_ptr);
__m128i ss_2 = _mm_srli_si128(srcReg32b1, 2);
__m128i ss_4 = _mm_srli_si128(srcReg32b1, 4);
__m128i ss_1_1 = _mm_unpacklo_epi8(ss_2, _mm_setzero_si128());
__m128i ss_2_1 = _mm_unpacklo_epi8(ss_4, _mm_setzero_si128());
__m128i d1 = _mm_madd_epi16(ss_1_1, secondFilters);
__m128i d2 = _mm_madd_epi16(ss_2_1, thirdFilters);
srcRegFilt32b1_1 = _mm_add_epi32(d1, d2);
__m128i ss_1 = _mm_srli_si128(srcReg32b1, 3);
__m128i ss_3 = _mm_srli_si128(srcReg32b1, 5);
__m128i ss_1_2 = _mm_unpacklo_epi8(ss_1, _mm_setzero_si128());
__m128i ss_2_2 = _mm_unpacklo_epi8(ss_3, _mm_setzero_si128());
d1 = _mm_madd_epi16(ss_1_2, secondFilters);
d2 = _mm_madd_epi16(ss_2_2, thirdFilters);
srcRegFilt32b1_2 = _mm_add_epi32(d1, d2);
__m128i res_lo = _mm_unpacklo_epi32(srcRegFilt32b1_1, srcRegFilt32b1_2);
__m128i res_hi = _mm_unpackhi_epi32(srcRegFilt32b1_1, srcRegFilt32b1_2);
srcRegFilt32b1_1 = _mm_packs_epi32(res_lo, res_hi);
// reading stride of the next 16 bytes
// (part of it was being read by earlier read)
srcReg32b2 = _mm_loadu_si128((const __m128i *)(src_ptr + 8));
ss_2 = _mm_srli_si128(srcReg32b2, 2);
ss_4 = _mm_srli_si128(srcReg32b2, 4);
ss_1_1 = _mm_unpacklo_epi8(ss_2, _mm_setzero_si128());
ss_2_1 = _mm_unpacklo_epi8(ss_4, _mm_setzero_si128());
d1 = _mm_madd_epi16(ss_1_1, secondFilters);
d2 = _mm_madd_epi16(ss_2_1, thirdFilters);
srcRegFilt32b2_1 = _mm_add_epi32(d1, d2);
ss_1 = _mm_srli_si128(srcReg32b2, 3);
ss_3 = _mm_srli_si128(srcReg32b2, 5);
ss_1_2 = _mm_unpacklo_epi8(ss_1, _mm_setzero_si128());
ss_2_2 = _mm_unpacklo_epi8(ss_3, _mm_setzero_si128());
d1 = _mm_madd_epi16(ss_1_2, secondFilters);
d2 = _mm_madd_epi16(ss_2_2, thirdFilters);
srcRegFilt32b2_2 = _mm_add_epi32(d1, d2);
res_lo = _mm_unpacklo_epi32(srcRegFilt32b2_1, srcRegFilt32b2_2);
res_hi = _mm_unpackhi_epi32(srcRegFilt32b2_1, srcRegFilt32b2_2);
srcRegFilt32b2_1 = _mm_packs_epi32(res_lo, res_hi);
// shift by 6 bit each 16 bit
srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b1_1, addFilterReg32);
srcRegFilt32b2_1 = _mm_adds_epi16(srcRegFilt32b2_1, addFilterReg32);
srcRegFilt32b1_1 = _mm_srai_epi16(srcRegFilt32b1_1, 6);
srcRegFilt32b2_1 = _mm_srai_epi16(srcRegFilt32b2_1, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve result
srcRegFilt32b1_1 = _mm_packus_epi16(srcRegFilt32b1_1, srcRegFilt32b2_1);
src_ptr += src_pixels_per_line;
_mm_store_si128((__m128i *)output_ptr, srcRegFilt32b1_1);
output_ptr += output_pitch;
}
}
void aom_filter_block1d16_v4_sse2(const uint8_t *src_ptr, ptrdiff_t src_pitch,
uint8_t *output_ptr, ptrdiff_t out_pitch,
uint32_t output_height,
const int16_t *filter) {
__m128i filtersReg;
__m128i srcReg2, srcReg3, srcReg4, srcReg5, srcReg6;
__m128i srcReg23_lo, srcReg23_hi, srcReg34_lo, srcReg34_hi;
__m128i srcReg45_lo, srcReg45_hi, srcReg56_lo, srcReg56_hi;
__m128i resReg23_lo, resReg34_lo, resReg45_lo, resReg56_lo;
__m128i resReg23_hi, resReg34_hi, resReg45_hi, resReg56_hi;
__m128i resReg23_45_lo, resReg34_56_lo, resReg23_45_hi, resReg34_56_hi;
__m128i resReg23_45, resReg34_56;
__m128i addFilterReg32, secondFilters, thirdFilters;
__m128i tmp_0, tmp_1;
unsigned int i;
ptrdiff_t src_stride, dst_stride;
addFilterReg32 = _mm_set1_epi16(32);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
filtersReg = _mm_srai_epi16(filtersReg, 1);
// coeffs 0 1 0 1 2 3 2 3
const __m128i tmp0 = _mm_unpacklo_epi32(filtersReg, filtersReg);
// coeffs 4 5 4 5 6 7 6 7
const __m128i tmp1 = _mm_unpackhi_epi32(filtersReg, filtersReg);
secondFilters = _mm_unpackhi_epi64(tmp0, tmp0); // coeffs 2 3 2 3 2 3 2 3
thirdFilters = _mm_unpacklo_epi64(tmp1, tmp1); // coeffs 4 5 4 5 4 5 4 5
// multiply the size of the source and destination stride by two
src_stride = src_pitch << 1;
dst_stride = out_pitch << 1;
srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2));
srcReg3 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3));
srcReg23_lo = _mm_unpacklo_epi8(srcReg2, srcReg3);
srcReg23_hi = _mm_unpackhi_epi8(srcReg2, srcReg3);
__m128i resReg23_lo_1 = _mm_unpacklo_epi8(srcReg23_lo, _mm_setzero_si128());
__m128i resReg23_lo_2 = _mm_unpackhi_epi8(srcReg23_lo, _mm_setzero_si128());
__m128i resReg23_hi_1 = _mm_unpacklo_epi8(srcReg23_hi, _mm_setzero_si128());
__m128i resReg23_hi_2 = _mm_unpackhi_epi8(srcReg23_hi, _mm_setzero_si128());
srcReg4 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4));
srcReg34_lo = _mm_unpacklo_epi8(srcReg3, srcReg4);
srcReg34_hi = _mm_unpackhi_epi8(srcReg3, srcReg4);
__m128i resReg34_lo_1 = _mm_unpacklo_epi8(srcReg34_lo, _mm_setzero_si128());
__m128i resReg34_lo_2 = _mm_unpackhi_epi8(srcReg34_lo, _mm_setzero_si128());
__m128i resReg34_hi_1 = _mm_unpacklo_epi8(srcReg34_hi, _mm_setzero_si128());
__m128i resReg34_hi_2 = _mm_unpackhi_epi8(srcReg34_hi, _mm_setzero_si128());
for (i = output_height; i > 1; i -= 2) {
srcReg5 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5));
srcReg45_lo = _mm_unpacklo_epi8(srcReg4, srcReg5);
srcReg45_hi = _mm_unpackhi_epi8(srcReg4, srcReg5);
srcReg6 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6));
srcReg56_lo = _mm_unpacklo_epi8(srcReg5, srcReg6);
srcReg56_hi = _mm_unpackhi_epi8(srcReg5, srcReg6);
// multiply 2 adjacent elements with the filter and add the result
tmp_0 = _mm_madd_epi16(resReg23_lo_1, secondFilters);
tmp_1 = _mm_madd_epi16(resReg23_lo_2, secondFilters);
resReg23_lo = _mm_packs_epi32(tmp_0, tmp_1);
tmp_0 = _mm_madd_epi16(resReg34_lo_1, secondFilters);
tmp_1 = _mm_madd_epi16(resReg34_lo_2, secondFilters);
resReg34_lo = _mm_packs_epi32(tmp_0, tmp_1);
__m128i resReg45_lo_1 = _mm_unpacklo_epi8(srcReg45_lo, _mm_setzero_si128());
__m128i resReg45_lo_2 = _mm_unpackhi_epi8(srcReg45_lo, _mm_setzero_si128());
tmp_0 = _mm_madd_epi16(resReg45_lo_1, thirdFilters);
tmp_1 = _mm_madd_epi16(resReg45_lo_2, thirdFilters);
resReg45_lo = _mm_packs_epi32(tmp_0, tmp_1);
__m128i resReg56_lo_1 = _mm_unpacklo_epi8(srcReg56_lo, _mm_setzero_si128());
__m128i resReg56_lo_2 = _mm_unpackhi_epi8(srcReg56_lo, _mm_setzero_si128());
tmp_0 = _mm_madd_epi16(resReg56_lo_1, thirdFilters);
tmp_1 = _mm_madd_epi16(resReg56_lo_2, thirdFilters);
resReg56_lo = _mm_packs_epi32(tmp_0, tmp_1);
// add and saturate the results together
resReg23_45_lo = _mm_adds_epi16(resReg23_lo, resReg45_lo);
resReg34_56_lo = _mm_adds_epi16(resReg34_lo, resReg56_lo);
// multiply 2 adjacent elements with the filter and add the result
tmp_0 = _mm_madd_epi16(resReg23_hi_1, secondFilters);
tmp_1 = _mm_madd_epi16(resReg23_hi_2, secondFilters);
resReg23_hi = _mm_packs_epi32(tmp_0, tmp_1);
tmp_0 = _mm_madd_epi16(resReg34_hi_1, secondFilters);
tmp_1 = _mm_madd_epi16(resReg34_hi_2, secondFilters);
resReg34_hi = _mm_packs_epi32(tmp_0, tmp_1);
__m128i resReg45_hi_1 = _mm_unpacklo_epi8(srcReg45_hi, _mm_setzero_si128());
__m128i resReg45_hi_2 = _mm_unpackhi_epi8(srcReg45_hi, _mm_setzero_si128());
tmp_0 = _mm_madd_epi16(resReg45_hi_1, thirdFilters);
tmp_1 = _mm_madd_epi16(resReg45_hi_2, thirdFilters);
resReg45_hi = _mm_packs_epi32(tmp_0, tmp_1);
__m128i resReg56_hi_1 = _mm_unpacklo_epi8(srcReg56_hi, _mm_setzero_si128());
__m128i resReg56_hi_2 = _mm_unpackhi_epi8(srcReg56_hi, _mm_setzero_si128());
tmp_0 = _mm_madd_epi16(resReg56_hi_1, thirdFilters);
tmp_1 = _mm_madd_epi16(resReg56_hi_2, thirdFilters);
resReg56_hi = _mm_packs_epi32(tmp_0, tmp_1);
// add and saturate the results together
resReg23_45_hi = _mm_adds_epi16(resReg23_hi, resReg45_hi);
resReg34_56_hi = _mm_adds_epi16(resReg34_hi, resReg56_hi);
// shift by 6 bit each 16 bit
resReg23_45_lo = _mm_adds_epi16(resReg23_45_lo, addFilterReg32);
resReg34_56_lo = _mm_adds_epi16(resReg34_56_lo, addFilterReg32);
resReg23_45_hi = _mm_adds_epi16(resReg23_45_hi, addFilterReg32);
resReg34_56_hi = _mm_adds_epi16(resReg34_56_hi, addFilterReg32);
resReg23_45_lo = _mm_srai_epi16(resReg23_45_lo, 6);
resReg34_56_lo = _mm_srai_epi16(resReg34_56_lo, 6);
resReg23_45_hi = _mm_srai_epi16(resReg23_45_hi, 6);
resReg34_56_hi = _mm_srai_epi16(resReg34_56_hi, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
resReg23_45 = _mm_packus_epi16(resReg23_45_lo, resReg23_45_hi);
resReg34_56 = _mm_packus_epi16(resReg34_56_lo, resReg34_56_hi);
src_ptr += src_stride;
_mm_store_si128((__m128i *)output_ptr, (resReg23_45));
_mm_store_si128((__m128i *)(output_ptr + out_pitch), (resReg34_56));
output_ptr += dst_stride;
// save part of the registers for next strides
resReg23_lo_1 = resReg45_lo_1;
resReg23_lo_2 = resReg45_lo_2;
resReg23_hi_1 = resReg45_hi_1;
resReg23_hi_2 = resReg45_hi_2;
resReg34_lo_1 = resReg56_lo_1;
resReg34_lo_2 = resReg56_lo_2;
resReg34_hi_1 = resReg56_hi_1;
resReg34_hi_2 = resReg56_hi_2;
srcReg4 = srcReg6;
}
}
void aom_filter_block1d8_h4_sse2(const uint8_t *src_ptr,
ptrdiff_t src_pixels_per_line,
uint8_t *output_ptr, ptrdiff_t output_pitch,
uint32_t output_height,
const int16_t *filter) {
__m128i filtersReg;
__m128i addFilterReg32;
__m128i secondFilters, thirdFilters;
__m128i srcRegFilt32b1_1, srcRegFilt32b1_2;
__m128i srcReg32b1;
unsigned int i;
src_ptr -= 3;
addFilterReg32 = _mm_set1_epi16(32);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
filtersReg = _mm_srai_epi16(filtersReg, 1);
// coeffs 0 1 0 1 2 3 2 3
const __m128i tmp_0 = _mm_unpacklo_epi32(filtersReg, filtersReg);
// coeffs 4 5 4 5 6 7 6 7
const __m128i tmp_1 = _mm_unpackhi_epi32(filtersReg, filtersReg);
secondFilters = _mm_unpackhi_epi64(tmp_0, tmp_0); // coeffs 2 3 2 3 2 3 2 3
thirdFilters = _mm_unpacklo_epi64(tmp_1, tmp_1); // coeffs 4 5 4 5 4 5 4 5
for (i = output_height; i > 0; i -= 1) {
srcReg32b1 = _mm_loadu_si128((const __m128i *)src_ptr);
__m128i ss_2 = _mm_srli_si128(srcReg32b1, 2);
__m128i ss_4 = _mm_srli_si128(srcReg32b1, 4);
ss_2 = _mm_unpacklo_epi8(ss_2, _mm_setzero_si128());
ss_4 = _mm_unpacklo_epi8(ss_4, _mm_setzero_si128());
__m128i d1 = _mm_madd_epi16(ss_2, secondFilters);
__m128i d2 = _mm_madd_epi16(ss_4, thirdFilters);
srcRegFilt32b1_1 = _mm_add_epi32(d1, d2);
__m128i ss_3 = _mm_srli_si128(srcReg32b1, 3);
__m128i ss_5 = _mm_srli_si128(srcReg32b1, 5);
ss_3 = _mm_unpacklo_epi8(ss_3, _mm_setzero_si128());
ss_5 = _mm_unpacklo_epi8(ss_5, _mm_setzero_si128());
d1 = _mm_madd_epi16(ss_3, secondFilters);
d2 = _mm_madd_epi16(ss_5, thirdFilters);
srcRegFilt32b1_2 = _mm_add_epi32(d1, d2);
__m128i res_lo = _mm_unpacklo_epi32(srcRegFilt32b1_1, srcRegFilt32b1_2);
__m128i res_hi = _mm_unpackhi_epi32(srcRegFilt32b1_1, srcRegFilt32b1_2);
srcRegFilt32b1_1 = _mm_packs_epi32(res_lo, res_hi);
// shift by 6 bit each 16 bit
srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b1_1, addFilterReg32);
srcRegFilt32b1_1 = _mm_srai_epi16(srcRegFilt32b1_1, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve result
srcRegFilt32b1_1 = _mm_packus_epi16(srcRegFilt32b1_1, _mm_setzero_si128());
src_ptr += src_pixels_per_line;
_mm_storel_epi64((__m128i *)output_ptr, srcRegFilt32b1_1);
output_ptr += output_pitch;
}
}
void aom_filter_block1d8_v4_sse2(const uint8_t *src_ptr, ptrdiff_t src_pitch,
uint8_t *output_ptr, ptrdiff_t out_pitch,
uint32_t output_height,
const int16_t *filter) {
__m128i filtersReg;
__m128i srcReg2, srcReg3, srcReg4, srcReg5, srcReg6;
__m128i srcReg23_lo, srcReg34_lo;
__m128i srcReg45_lo, srcReg56_lo;
__m128i resReg23_lo, resReg34_lo, resReg45_lo, resReg56_lo;
__m128i resReg23_45_lo, resReg34_56_lo;
__m128i resReg23_45, resReg34_56;
__m128i addFilterReg32, secondFilters, thirdFilters;
__m128i tmp_0, tmp_1;
unsigned int i;
ptrdiff_t src_stride, dst_stride;
addFilterReg32 = _mm_set1_epi16(32);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
filtersReg = _mm_srai_epi16(filtersReg, 1);
// coeffs 0 1 0 1 2 3 2 3
const __m128i tmp0 = _mm_unpacklo_epi32(filtersReg, filtersReg);
// coeffs 4 5 4 5 6 7 6 7
const __m128i tmp1 = _mm_unpackhi_epi32(filtersReg, filtersReg);
secondFilters = _mm_unpackhi_epi64(tmp0, tmp0); // coeffs 2 3 2 3 2 3 2 3
thirdFilters = _mm_unpacklo_epi64(tmp1, tmp1); // coeffs 4 5 4 5 4 5 4 5
// multiply the size of the source and destination stride by two
src_stride = src_pitch << 1;
dst_stride = out_pitch << 1;
srcReg2 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 2));
srcReg3 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 3));
srcReg23_lo = _mm_unpacklo_epi8(srcReg2, srcReg3);
__m128i resReg23_lo_1 = _mm_unpacklo_epi8(srcReg23_lo, _mm_setzero_si128());
__m128i resReg23_lo_2 = _mm_unpackhi_epi8(srcReg23_lo, _mm_setzero_si128());
srcReg4 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 4));
srcReg34_lo = _mm_unpacklo_epi8(srcReg3, srcReg4);
__m128i resReg34_lo_1 = _mm_unpacklo_epi8(srcReg34_lo, _mm_setzero_si128());
__m128i resReg34_lo_2 = _mm_unpackhi_epi8(srcReg34_lo, _mm_setzero_si128());
for (i = output_height; i > 1; i -= 2) {
srcReg5 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 5));
srcReg45_lo = _mm_unpacklo_epi8(srcReg4, srcReg5);
srcReg6 = _mm_loadu_si128((const __m128i *)(src_ptr + src_pitch * 6));
srcReg56_lo = _mm_unpacklo_epi8(srcReg5, srcReg6);
// multiply 2 adjacent elements with the filter and add the result
tmp_0 = _mm_madd_epi16(resReg23_lo_1, secondFilters);
tmp_1 = _mm_madd_epi16(resReg23_lo_2, secondFilters);
resReg23_lo = _mm_packs_epi32(tmp_0, tmp_1);
tmp_0 = _mm_madd_epi16(resReg34_lo_1, secondFilters);
tmp_1 = _mm_madd_epi16(resReg34_lo_2, secondFilters);
resReg34_lo = _mm_packs_epi32(tmp_0, tmp_1);
__m128i resReg45_lo_1 = _mm_unpacklo_epi8(srcReg45_lo, _mm_setzero_si128());
__m128i resReg45_lo_2 = _mm_unpackhi_epi8(srcReg45_lo, _mm_setzero_si128());
tmp_0 = _mm_madd_epi16(resReg45_lo_1, thirdFilters);
tmp_1 = _mm_madd_epi16(resReg45_lo_2, thirdFilters);
resReg45_lo = _mm_packs_epi32(tmp_0, tmp_1);
__m128i resReg56_lo_1 = _mm_unpacklo_epi8(srcReg56_lo, _mm_setzero_si128());
__m128i resReg56_lo_2 = _mm_unpackhi_epi8(srcReg56_lo, _mm_setzero_si128());
tmp_0 = _mm_madd_epi16(resReg56_lo_1, thirdFilters);
tmp_1 = _mm_madd_epi16(resReg56_lo_2, thirdFilters);
resReg56_lo = _mm_packs_epi32(tmp_0, tmp_1);
// add and saturate the results together
resReg23_45_lo = _mm_adds_epi16(resReg23_lo, resReg45_lo);
resReg34_56_lo = _mm_adds_epi16(resReg34_lo, resReg56_lo);
// shift by 6 bit each 16 bit
resReg23_45_lo = _mm_adds_epi16(resReg23_45_lo, addFilterReg32);
resReg34_56_lo = _mm_adds_epi16(resReg34_56_lo, addFilterReg32);
resReg23_45_lo = _mm_srai_epi16(resReg23_45_lo, 6);
resReg34_56_lo = _mm_srai_epi16(resReg34_56_lo, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
resReg23_45 = _mm_packus_epi16(resReg23_45_lo, _mm_setzero_si128());
resReg34_56 = _mm_packus_epi16(resReg34_56_lo, _mm_setzero_si128());
src_ptr += src_stride;
_mm_storel_epi64((__m128i *)output_ptr, (resReg23_45));
_mm_storel_epi64((__m128i *)(output_ptr + out_pitch), (resReg34_56));
output_ptr += dst_stride;
// save part of the registers for next strides
resReg23_lo_1 = resReg45_lo_1;
resReg23_lo_2 = resReg45_lo_2;
resReg34_lo_1 = resReg56_lo_1;
resReg34_lo_2 = resReg56_lo_2;
srcReg4 = srcReg6;
}
}
void aom_filter_block1d4_h4_sse2(const uint8_t *src_ptr,
ptrdiff_t src_pixels_per_line,
uint8_t *output_ptr, ptrdiff_t output_pitch,
uint32_t output_height,
const int16_t *filter) {
__m128i filtersReg;
__m128i addFilterReg32;
__m128i secondFilters, thirdFilters;
__m128i srcRegFilt32b1_1;
__m128i srcReg32b1;
unsigned int i;
src_ptr -= 3;
addFilterReg32 = _mm_set1_epi16(32);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
filtersReg = _mm_srai_epi16(filtersReg, 1);
// coeffs 0 1 0 1 2 3 2 3
const __m128i tmp_0 = _mm_unpacklo_epi32(filtersReg, filtersReg);
// coeffs 4 5 4 5 6 7 6 7
const __m128i tmp_1 = _mm_unpackhi_epi32(filtersReg, filtersReg);
secondFilters = _mm_unpackhi_epi64(tmp_0, tmp_0); // coeffs 2 3 2 3 2 3 2 3
thirdFilters = _mm_unpacklo_epi64(tmp_1, tmp_1); // coeffs 4 5 4 5 4 5 4 5
for (i = output_height; i > 0; i -= 1) {
srcReg32b1 = _mm_loadu_si128((const __m128i *)src_ptr);
__m128i ss_2 = _mm_srli_si128(srcReg32b1, 2);
__m128i ss_3 = _mm_srli_si128(srcReg32b1, 3);
__m128i ss_4 = _mm_srli_si128(srcReg32b1, 4);
__m128i ss_5 = _mm_srli_si128(srcReg32b1, 5);
ss_2 = _mm_unpacklo_epi8(ss_2, _mm_setzero_si128());
ss_3 = _mm_unpacklo_epi8(ss_3, _mm_setzero_si128());
ss_4 = _mm_unpacklo_epi8(ss_4, _mm_setzero_si128());
ss_5 = _mm_unpacklo_epi8(ss_5, _mm_setzero_si128());
__m128i ss_1_1 = _mm_unpacklo_epi32(ss_2, ss_3);
__m128i ss_1_2 = _mm_unpacklo_epi32(ss_4, ss_5);
__m128i d1 = _mm_madd_epi16(ss_1_1, secondFilters);
__m128i d2 = _mm_madd_epi16(ss_1_2, thirdFilters);
srcRegFilt32b1_1 = _mm_add_epi32(d1, d2);
srcRegFilt32b1_1 = _mm_packs_epi32(srcRegFilt32b1_1, _mm_setzero_si128());
// shift by 6 bit each 16 bit
srcRegFilt32b1_1 = _mm_adds_epi16(srcRegFilt32b1_1, addFilterReg32);
srcRegFilt32b1_1 = _mm_srai_epi16(srcRegFilt32b1_1, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve result
srcRegFilt32b1_1 = _mm_packus_epi16(srcRegFilt32b1_1, _mm_setzero_si128());
src_ptr += src_pixels_per_line;
*((uint32_t *)(output_ptr)) = _mm_cvtsi128_si32(srcRegFilt32b1_1);
output_ptr += output_pitch;
}
}
void aom_filter_block1d4_v4_sse2(const uint8_t *src_ptr, ptrdiff_t src_pitch,
uint8_t *output_ptr, ptrdiff_t out_pitch,
uint32_t output_height,
const int16_t *filter) {
__m128i filtersReg;
__m128i srcReg2, srcReg3, srcReg4, srcReg5, srcReg6;
__m128i srcReg23, srcReg34, srcReg45, srcReg56;
__m128i resReg23_34, resReg45_56;
__m128i resReg23_34_45_56;
__m128i addFilterReg32, secondFilters, thirdFilters;
__m128i tmp_0, tmp_1;
unsigned int i;
ptrdiff_t src_stride, dst_stride;
addFilterReg32 = _mm_set1_epi16(32);
filtersReg = _mm_loadu_si128((const __m128i *)filter);
filtersReg = _mm_srai_epi16(filtersReg, 1);
// coeffs 0 1 0 1 2 3 2 3
const __m128i tmp0 = _mm_unpacklo_epi32(filtersReg, filtersReg);
// coeffs 4 5 4 5 6 7 6 7
const __m128i tmp1 = _mm_unpackhi_epi32(filtersReg, filtersReg);
secondFilters = _mm_unpackhi_epi64(tmp0, tmp0); // coeffs 2 3 2 3 2 3 2 3
thirdFilters = _mm_unpacklo_epi64(tmp1, tmp1); // coeffs 4 5 4 5 4 5 4 5
// multiply the size of the source and destination stride by two
src_stride = src_pitch << 1;
dst_stride = out_pitch << 1;
srcReg2 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 2));
srcReg3 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 3));
srcReg23 = _mm_unpacklo_epi8(srcReg2, srcReg3);
__m128i resReg23 = _mm_unpacklo_epi8(srcReg23, _mm_setzero_si128());
srcReg4 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 4));
srcReg34 = _mm_unpacklo_epi8(srcReg3, srcReg4);
__m128i resReg34 = _mm_unpacklo_epi8(srcReg34, _mm_setzero_si128());
for (i = output_height; i > 1; i -= 2) {
srcReg5 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 5));
srcReg45 = _mm_unpacklo_epi8(srcReg4, srcReg5);
srcReg6 = _mm_loadl_epi64((const __m128i *)(src_ptr + src_pitch * 6));
srcReg56 = _mm_unpacklo_epi8(srcReg5, srcReg6);
// multiply 2 adjacent elements with the filter and add the result
tmp_0 = _mm_madd_epi16(resReg23, secondFilters);
tmp_1 = _mm_madd_epi16(resReg34, secondFilters);
resReg23_34 = _mm_packs_epi32(tmp_0, tmp_1);
__m128i resReg45 = _mm_unpacklo_epi8(srcReg45, _mm_setzero_si128());
__m128i resReg56 = _mm_unpacklo_epi8(srcReg56, _mm_setzero_si128());
tmp_0 = _mm_madd_epi16(resReg45, thirdFilters);
tmp_1 = _mm_madd_epi16(resReg56, thirdFilters);
resReg45_56 = _mm_packs_epi32(tmp_0, tmp_1);
// add and saturate the results together
resReg23_34_45_56 = _mm_adds_epi16(resReg23_34, resReg45_56);
// shift by 6 bit each 16 bit
resReg23_34_45_56 = _mm_adds_epi16(resReg23_34_45_56, addFilterReg32);
resReg23_34_45_56 = _mm_srai_epi16(resReg23_34_45_56, 6);
// shrink to 8 bit each 16 bits, the first lane contain the first
// convolve result and the second lane contain the second convolve
// result
resReg23_34_45_56 =
_mm_packus_epi16(resReg23_34_45_56, _mm_setzero_si128());
src_ptr += src_stride;
*((uint32_t *)(output_ptr)) = _mm_cvtsi128_si32(resReg23_34_45_56);
*((uint32_t *)(output_ptr + out_pitch)) =
_mm_cvtsi128_si32(_mm_srli_si128(resReg23_34_45_56, 4));
output_ptr += dst_stride;
// save part of the registers for next strides
resReg23 = resReg45;
resReg34 = resReg56;
srcReg4 = srcReg6;
}
}