|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <limits.h> | 
|  | #include <math.h> | 
|  | #include <stdio.h> | 
|  |  | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "aom_mem/aom_mem.h" | 
|  | #include "aom_ports/bitops.h" | 
|  | #include "aom_ports/mem.h" | 
|  | #include "aom_ports/aom_once.h" | 
|  |  | 
|  | #include "av1/common/common.h" | 
|  | #include "av1/common/entropy.h" | 
|  | #include "av1/common/entropymode.h" | 
|  | #include "av1/common/pred_common.h" | 
|  | #include "av1/common/quant_common.h" | 
|  | #include "av1/common/reconinter.h" | 
|  | #include "av1/common/reconintra.h" | 
|  | #include "av1/common/seg_common.h" | 
|  |  | 
|  | #include "av1/encoder/cost.h" | 
|  | #include "av1/encoder/encodemv.h" | 
|  | #include "av1/encoder/encoder.h" | 
|  | #include "av1/encoder/nonrd_opt.h" | 
|  | #include "av1/encoder/ratectrl.h" | 
|  | #include "av1/encoder/rd.h" | 
|  |  | 
|  | #define RD_THRESH_POW 1.25 | 
|  |  | 
|  | // The baseline rd thresholds for breaking out of the rd loop for | 
|  | // certain modes are assumed to be based on 8x8 blocks. | 
|  | // This table is used to correct for block size. | 
|  | // The factors here are << 2 (2 = x0.5, 32 = x8 etc). | 
|  | static const uint8_t rd_thresh_block_size_factor[BLOCK_SIZES_ALL] = { | 
|  | 2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32, 48, 48, 64, 4, 4, 8, 8, 16, 16 | 
|  | }; | 
|  |  | 
|  | static const int use_intra_ext_tx_for_txsize[EXT_TX_SETS_INTRA] | 
|  | [EXT_TX_SIZES] = { | 
|  | { 1, 1, 1, 1 },  // unused | 
|  | { 1, 1, 0, 0 }, | 
|  | { 0, 0, 1, 0 }, | 
|  | }; | 
|  |  | 
|  | static const int use_inter_ext_tx_for_txsize[EXT_TX_SETS_INTER] | 
|  | [EXT_TX_SIZES] = { | 
|  | { 1, 1, 1, 1 },  // unused | 
|  | { 1, 1, 0, 0 }, | 
|  | { 0, 0, 1, 0 }, | 
|  | { 0, 1, 1, 1 }, | 
|  | }; | 
|  |  | 
|  | static const int av1_ext_tx_set_idx_to_type[2][AOMMAX(EXT_TX_SETS_INTRA, | 
|  | EXT_TX_SETS_INTER)] = { | 
|  | { | 
|  | // Intra | 
|  | EXT_TX_SET_DCTONLY, | 
|  | EXT_TX_SET_DTT4_IDTX_1DDCT, | 
|  | EXT_TX_SET_DTT4_IDTX, | 
|  | }, | 
|  | { | 
|  | // Inter | 
|  | EXT_TX_SET_DCTONLY, | 
|  | EXT_TX_SET_ALL16, | 
|  | EXT_TX_SET_DTT9_IDTX_1DDCT, | 
|  | EXT_TX_SET_DCT_IDTX, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | void av1_fill_mode_rates(AV1_COMMON *const cm, ModeCosts *mode_costs, | 
|  | FRAME_CONTEXT *fc) { | 
|  | int i, j; | 
|  |  | 
|  | for (i = 0; i < PARTITION_CONTEXTS; ++i) | 
|  | av1_cost_tokens_from_cdf(mode_costs->partition_cost[i], | 
|  | fc->partition_cdf[i], NULL); | 
|  |  | 
|  | if (cm->current_frame.skip_mode_info.skip_mode_flag) { | 
|  | for (i = 0; i < SKIP_MODE_CONTEXTS; ++i) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->skip_mode_cost[i], | 
|  | fc->skip_mode_cdfs[i], NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < SKIP_CONTEXTS; ++i) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->skip_txfm_cost[i], | 
|  | fc->skip_txfm_cdfs[i], NULL); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < KF_MODE_CONTEXTS; ++i) | 
|  | for (j = 0; j < KF_MODE_CONTEXTS; ++j) | 
|  | av1_cost_tokens_from_cdf(mode_costs->y_mode_costs[i][j], | 
|  | fc->kf_y_cdf[i][j], NULL); | 
|  |  | 
|  | for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) | 
|  | av1_cost_tokens_from_cdf(mode_costs->mbmode_cost[i], fc->y_mode_cdf[i], | 
|  | NULL); | 
|  | for (i = 0; i < CFL_ALLOWED_TYPES; ++i) | 
|  | for (j = 0; j < INTRA_MODES; ++j) | 
|  | av1_cost_tokens_from_cdf(mode_costs->intra_uv_mode_cost[i][j], | 
|  | fc->uv_mode_cdf[i][j], NULL); | 
|  |  | 
|  | av1_cost_tokens_from_cdf(mode_costs->filter_intra_mode_cost, | 
|  | fc->filter_intra_mode_cdf, NULL); | 
|  | for (i = 0; i < BLOCK_SIZES_ALL; ++i) { | 
|  | if (av1_filter_intra_allowed_bsize(cm, i)) | 
|  | av1_cost_tokens_from_cdf(mode_costs->filter_intra_cost[i], | 
|  | fc->filter_intra_cdfs[i], NULL); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; ++i) | 
|  | av1_cost_tokens_from_cdf(mode_costs->switchable_interp_costs[i], | 
|  | fc->switchable_interp_cdf[i], NULL); | 
|  |  | 
|  | for (i = 0; i < PALATTE_BSIZE_CTXS; ++i) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->palette_y_size_cost[i], | 
|  | fc->palette_y_size_cdf[i], NULL); | 
|  | av1_cost_tokens_from_cdf(mode_costs->palette_uv_size_cost[i], | 
|  | fc->palette_uv_size_cdf[i], NULL); | 
|  | for (j = 0; j < PALETTE_Y_MODE_CONTEXTS; ++j) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->palette_y_mode_cost[i][j], | 
|  | fc->palette_y_mode_cdf[i][j], NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < PALETTE_UV_MODE_CONTEXTS; ++i) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->palette_uv_mode_cost[i], | 
|  | fc->palette_uv_mode_cdf[i], NULL); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < PALETTE_SIZES; ++i) { | 
|  | for (j = 0; j < PALETTE_COLOR_INDEX_CONTEXTS; ++j) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->palette_y_color_cost[i][j], | 
|  | fc->palette_y_color_index_cdf[i][j], NULL); | 
|  | av1_cost_tokens_from_cdf(mode_costs->palette_uv_color_cost[i][j], | 
|  | fc->palette_uv_color_index_cdf[i][j], NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | int sign_cost[CFL_JOINT_SIGNS]; | 
|  | av1_cost_tokens_from_cdf(sign_cost, fc->cfl_sign_cdf, NULL); | 
|  | for (int joint_sign = 0; joint_sign < CFL_JOINT_SIGNS; joint_sign++) { | 
|  | int *cost_u = mode_costs->cfl_cost[joint_sign][CFL_PRED_U]; | 
|  | int *cost_v = mode_costs->cfl_cost[joint_sign][CFL_PRED_V]; | 
|  | if (CFL_SIGN_U(joint_sign) == CFL_SIGN_ZERO) { | 
|  | memset(cost_u, 0, CFL_ALPHABET_SIZE * sizeof(*cost_u)); | 
|  | } else { | 
|  | const aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; | 
|  | av1_cost_tokens_from_cdf(cost_u, cdf_u, NULL); | 
|  | } | 
|  | if (CFL_SIGN_V(joint_sign) == CFL_SIGN_ZERO) { | 
|  | memset(cost_v, 0, CFL_ALPHABET_SIZE * sizeof(*cost_v)); | 
|  | } else { | 
|  | const aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; | 
|  | av1_cost_tokens_from_cdf(cost_v, cdf_v, NULL); | 
|  | } | 
|  | for (int u = 0; u < CFL_ALPHABET_SIZE; u++) | 
|  | cost_u[u] += sign_cost[joint_sign]; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < MAX_TX_CATS; ++i) | 
|  | for (j = 0; j < TX_SIZE_CONTEXTS; ++j) | 
|  | av1_cost_tokens_from_cdf(mode_costs->tx_size_cost[i][j], | 
|  | fc->tx_size_cdf[i][j], NULL); | 
|  |  | 
|  | for (i = 0; i < TXFM_PARTITION_CONTEXTS; ++i) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->txfm_partition_cost[i], | 
|  | fc->txfm_partition_cdf[i], NULL); | 
|  | } | 
|  |  | 
|  | for (i = TX_4X4; i < EXT_TX_SIZES; ++i) { | 
|  | int s; | 
|  | for (s = 1; s < EXT_TX_SETS_INTER; ++s) { | 
|  | if (use_inter_ext_tx_for_txsize[s][i]) { | 
|  | av1_cost_tokens_from_cdf( | 
|  | mode_costs->inter_tx_type_costs[s][i], fc->inter_ext_tx_cdf[s][i], | 
|  | av1_ext_tx_inv[av1_ext_tx_set_idx_to_type[1][s]]); | 
|  | } | 
|  | } | 
|  | for (s = 1; s < EXT_TX_SETS_INTRA; ++s) { | 
|  | if (use_intra_ext_tx_for_txsize[s][i]) { | 
|  | for (j = 0; j < INTRA_MODES; ++j) { | 
|  | av1_cost_tokens_from_cdf( | 
|  | mode_costs->intra_tx_type_costs[s][i][j], | 
|  | fc->intra_ext_tx_cdf[s][i][j], | 
|  | av1_ext_tx_inv[av1_ext_tx_set_idx_to_type[0][s]]); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | for (i = 0; i < DIRECTIONAL_MODES; ++i) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->angle_delta_cost[i], | 
|  | fc->angle_delta_cdf[i], NULL); | 
|  | } | 
|  | av1_cost_tokens_from_cdf(mode_costs->intrabc_cost, fc->intrabc_cdf, NULL); | 
|  |  | 
|  | for (i = 0; i < SPATIAL_PREDICTION_PROBS; ++i) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->spatial_pred_cost[i], | 
|  | fc->seg.spatial_pred_seg_cdf[i], NULL); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < SEG_TEMPORAL_PRED_CTXS; ++i) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->tmp_pred_cost[i], fc->seg.pred_cdf[i], | 
|  | NULL); | 
|  | } | 
|  |  | 
|  | if (!frame_is_intra_only(cm)) { | 
|  | for (i = 0; i < COMP_INTER_CONTEXTS; ++i) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->comp_inter_cost[i], | 
|  | fc->comp_inter_cdf[i], NULL); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < REF_CONTEXTS; ++i) { | 
|  | for (j = 0; j < SINGLE_REFS - 1; ++j) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->single_ref_cost[i][j], | 
|  | fc->single_ref_cdf[i][j], NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < COMP_REF_TYPE_CONTEXTS; ++i) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->comp_ref_type_cost[i], | 
|  | fc->comp_ref_type_cdf[i], NULL); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < UNI_COMP_REF_CONTEXTS; ++i) { | 
|  | for (j = 0; j < UNIDIR_COMP_REFS - 1; ++j) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->uni_comp_ref_cost[i][j], | 
|  | fc->uni_comp_ref_cdf[i][j], NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < REF_CONTEXTS; ++i) { | 
|  | for (j = 0; j < FWD_REFS - 1; ++j) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->comp_ref_cost[i][j], | 
|  | fc->comp_ref_cdf[i][j], NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < REF_CONTEXTS; ++i) { | 
|  | for (j = 0; j < BWD_REFS - 1; ++j) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->comp_bwdref_cost[i][j], | 
|  | fc->comp_bwdref_cdf[i][j], NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < INTRA_INTER_CONTEXTS; ++i) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->intra_inter_cost[i], | 
|  | fc->intra_inter_cdf[i], NULL); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < NEWMV_MODE_CONTEXTS; ++i) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->newmv_mode_cost[i], fc->newmv_cdf[i], | 
|  | NULL); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < GLOBALMV_MODE_CONTEXTS; ++i) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->zeromv_mode_cost[i], | 
|  | fc->zeromv_cdf[i], NULL); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < REFMV_MODE_CONTEXTS; ++i) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->refmv_mode_cost[i], fc->refmv_cdf[i], | 
|  | NULL); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < DRL_MODE_CONTEXTS; ++i) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->drl_mode_cost0[i], fc->drl_cdf[i], | 
|  | NULL); | 
|  | } | 
|  | for (i = 0; i < INTER_MODE_CONTEXTS; ++i) | 
|  | av1_cost_tokens_from_cdf(mode_costs->inter_compound_mode_cost[i], | 
|  | fc->inter_compound_mode_cdf[i], NULL); | 
|  | for (i = 0; i < BLOCK_SIZES_ALL; ++i) | 
|  | av1_cost_tokens_from_cdf(mode_costs->compound_type_cost[i], | 
|  | fc->compound_type_cdf[i], NULL); | 
|  | for (i = 0; i < BLOCK_SIZES_ALL; ++i) { | 
|  | if (av1_is_wedge_used(i)) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->wedge_idx_cost[i], | 
|  | fc->wedge_idx_cdf[i], NULL); | 
|  | } | 
|  | } | 
|  | for (i = 0; i < BLOCK_SIZE_GROUPS; ++i) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->interintra_cost[i], | 
|  | fc->interintra_cdf[i], NULL); | 
|  | av1_cost_tokens_from_cdf(mode_costs->interintra_mode_cost[i], | 
|  | fc->interintra_mode_cdf[i], NULL); | 
|  | } | 
|  | for (i = 0; i < BLOCK_SIZES_ALL; ++i) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->wedge_interintra_cost[i], | 
|  | fc->wedge_interintra_cdf[i], NULL); | 
|  | } | 
|  | for (i = BLOCK_8X8; i < BLOCK_SIZES_ALL; i++) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->motion_mode_cost[i], | 
|  | fc->motion_mode_cdf[i], NULL); | 
|  | } | 
|  | for (i = BLOCK_8X8; i < BLOCK_SIZES_ALL; i++) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->motion_mode_cost1[i], | 
|  | fc->obmc_cdf[i], NULL); | 
|  | } | 
|  | for (i = 0; i < COMP_INDEX_CONTEXTS; ++i) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->comp_idx_cost[i], | 
|  | fc->compound_index_cdf[i], NULL); | 
|  | } | 
|  | for (i = 0; i < COMP_GROUP_IDX_CONTEXTS; ++i) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->comp_group_idx_cost[i], | 
|  | fc->comp_group_idx_cdf[i], NULL); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_fill_lr_rates(ModeCosts *mode_costs, FRAME_CONTEXT *fc) { | 
|  | av1_cost_tokens_from_cdf(mode_costs->switchable_restore_cost, | 
|  | fc->switchable_restore_cdf, NULL); | 
|  | av1_cost_tokens_from_cdf(mode_costs->wiener_restore_cost, | 
|  | fc->wiener_restore_cdf, NULL); | 
|  | av1_cost_tokens_from_cdf(mode_costs->sgrproj_restore_cost, | 
|  | fc->sgrproj_restore_cdf, NULL); | 
|  | } | 
|  |  | 
|  | // Values are now correlated to quantizer. | 
|  | static int sad_per_bit_lut_8[QINDEX_RANGE]; | 
|  | static int sad_per_bit_lut_10[QINDEX_RANGE]; | 
|  | static int sad_per_bit_lut_12[QINDEX_RANGE]; | 
|  |  | 
|  | static void init_me_luts_bd(int *bit16lut, int range, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | int i; | 
|  | // Initialize the sad lut tables using a formulaic calculation for now. | 
|  | // This is to make it easier to resolve the impact of experimental changes | 
|  | // to the quantizer tables. | 
|  | for (i = 0; i < range; i++) { | 
|  | const double q = av1_convert_qindex_to_q(i, bit_depth); | 
|  | bit16lut[i] = (int)(0.0418 * q + 2.4107); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void init_me_luts(void) { | 
|  | init_me_luts_bd(sad_per_bit_lut_8, QINDEX_RANGE, AOM_BITS_8); | 
|  | init_me_luts_bd(sad_per_bit_lut_10, QINDEX_RANGE, AOM_BITS_10); | 
|  | init_me_luts_bd(sad_per_bit_lut_12, QINDEX_RANGE, AOM_BITS_12); | 
|  | } | 
|  |  | 
|  | void av1_init_me_luts(void) { aom_once(init_me_luts); } | 
|  |  | 
|  | static const int rd_boost_factor[16] = { 64, 32, 32, 32, 24, 16, 12, 12, | 
|  | 8,  8,  4,  4,  2,  2,  1,  0 }; | 
|  |  | 
|  | static const int rd_layer_depth_factor[7] = { | 
|  | 160, 160, 160, 160, 192, 208, 224 | 
|  | }; | 
|  |  | 
|  | // Returns the default rd multiplier for inter frames for a given qindex. | 
|  | // The function here is a first pass estimate based on data from | 
|  | // a previous Vizer run | 
|  | static double def_inter_rd_multiplier(int qindex) { | 
|  | return 3.2 + (0.0015 * (double)qindex); | 
|  | } | 
|  |  | 
|  | // Returns the default rd multiplier for ARF/Golden Frames for a given qindex. | 
|  | // The function here is a first pass estimate based on data from | 
|  | // a previous Vizer run | 
|  | static double def_arf_rd_multiplier(int qindex) { | 
|  | return 3.25 + (0.0015 * (double)qindex); | 
|  | } | 
|  |  | 
|  | // Returns the default rd multiplier for key frames for a given qindex. | 
|  | // The function here is a first pass estimate based on data from | 
|  | // a previous Vizer run | 
|  | static double def_kf_rd_multiplier(int qindex) { | 
|  | return 3.3 + (0.0015 * (double)qindex); | 
|  | } | 
|  |  | 
|  | int av1_compute_rd_mult_based_on_qindex(aom_bit_depth_t bit_depth, | 
|  | FRAME_UPDATE_TYPE update_type, | 
|  | int qindex) { | 
|  | const int q = av1_dc_quant_QTX(qindex, 0, bit_depth); | 
|  | int64_t rdmult = q * q; | 
|  | if (update_type == KF_UPDATE) { | 
|  | double def_rd_q_mult = def_kf_rd_multiplier(q); | 
|  | rdmult = (int64_t)((double)rdmult * def_rd_q_mult); | 
|  | } else if ((update_type == GF_UPDATE) || (update_type == ARF_UPDATE)) { | 
|  | double def_rd_q_mult = def_arf_rd_multiplier(q); | 
|  | rdmult = (int64_t)((double)rdmult * def_rd_q_mult); | 
|  | } else { | 
|  | double def_rd_q_mult = def_inter_rd_multiplier(q); | 
|  | rdmult = (int64_t)((double)rdmult * def_rd_q_mult); | 
|  | } | 
|  |  | 
|  | switch (bit_depth) { | 
|  | case AOM_BITS_8: break; | 
|  | case AOM_BITS_10: rdmult = ROUND_POWER_OF_TWO(rdmult, 4); break; | 
|  | case AOM_BITS_12: rdmult = ROUND_POWER_OF_TWO(rdmult, 8); break; | 
|  | default: | 
|  | assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); | 
|  | return -1; | 
|  | } | 
|  | return rdmult > 0 ? (int)AOMMIN(rdmult, INT_MAX) : 1; | 
|  | } | 
|  |  | 
|  | int av1_compute_rd_mult(const int qindex, const aom_bit_depth_t bit_depth, | 
|  | const FRAME_UPDATE_TYPE update_type, | 
|  | const int layer_depth, const int boost_index, | 
|  | const FRAME_TYPE frame_type, | 
|  | const int use_fixed_qp_offsets, | 
|  | const int is_stat_consumption_stage) { | 
|  | int64_t rdmult = | 
|  | av1_compute_rd_mult_based_on_qindex(bit_depth, update_type, qindex); | 
|  | if (is_stat_consumption_stage && !use_fixed_qp_offsets && | 
|  | (frame_type != KEY_FRAME)) { | 
|  | // Layer depth adjustment | 
|  | rdmult = (rdmult * rd_layer_depth_factor[layer_depth]) >> 7; | 
|  | // ARF boost adjustment | 
|  | rdmult += ((rdmult * rd_boost_factor[boost_index]) >> 7); | 
|  | } | 
|  | return (int)rdmult; | 
|  | } | 
|  |  | 
|  | int av1_get_deltaq_offset(aom_bit_depth_t bit_depth, int qindex, double beta) { | 
|  | assert(beta > 0.0); | 
|  | int q = av1_dc_quant_QTX(qindex, 0, bit_depth); | 
|  | int newq = (int)rint(q / sqrt(beta)); | 
|  | int orig_qindex = qindex; | 
|  | if (newq == q) { | 
|  | return 0; | 
|  | } | 
|  | if (newq < q) { | 
|  | while (qindex > 0) { | 
|  | qindex--; | 
|  | q = av1_dc_quant_QTX(qindex, 0, bit_depth); | 
|  | if (newq >= q) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | while (qindex < MAXQ) { | 
|  | qindex++; | 
|  | q = av1_dc_quant_QTX(qindex, 0, bit_depth); | 
|  | if (newq <= q) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | return qindex - orig_qindex; | 
|  | } | 
|  |  | 
|  | int av1_adjust_q_from_delta_q_res(int delta_q_res, int prev_qindex, | 
|  | int curr_qindex) { | 
|  | curr_qindex = clamp(curr_qindex, delta_q_res, 256 - delta_q_res); | 
|  | const int sign_deltaq_index = curr_qindex - prev_qindex >= 0 ? 1 : -1; | 
|  | const int deltaq_deadzone = delta_q_res / 4; | 
|  | const int qmask = ~(delta_q_res - 1); | 
|  | int abs_deltaq_index = abs(curr_qindex - prev_qindex); | 
|  | abs_deltaq_index = (abs_deltaq_index + deltaq_deadzone) & qmask; | 
|  | int adjust_qindex = prev_qindex + sign_deltaq_index * abs_deltaq_index; | 
|  | adjust_qindex = AOMMAX(adjust_qindex, MINQ + 1); | 
|  | return adjust_qindex; | 
|  | } | 
|  |  | 
|  | int av1_get_adaptive_rdmult(const AV1_COMP *cpi, double beta) { | 
|  | assert(beta > 0.0); | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  |  | 
|  | const GF_GROUP *const gf_group = &cpi->ppi->gf_group; | 
|  | const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100)); | 
|  | const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6); | 
|  | const FRAME_TYPE frame_type = cm->current_frame.frame_type; | 
|  |  | 
|  | const int qindex_rdmult = cm->quant_params.base_qindex; | 
|  | return (int)(av1_compute_rd_mult( | 
|  | qindex_rdmult, cm->seq_params->bit_depth, | 
|  | cpi->ppi->gf_group.update_type[cpi->gf_frame_index], | 
|  | layer_depth, boost_index, frame_type, | 
|  | cpi->oxcf.q_cfg.use_fixed_qp_offsets, | 
|  | is_stat_consumption_stage(cpi)) / | 
|  | beta); | 
|  | } | 
|  |  | 
|  | static int compute_rd_thresh_factor(int qindex, aom_bit_depth_t bit_depth) { | 
|  | double q; | 
|  | switch (bit_depth) { | 
|  | case AOM_BITS_8: q = av1_dc_quant_QTX(qindex, 0, AOM_BITS_8) / 4.0; break; | 
|  | case AOM_BITS_10: | 
|  | q = av1_dc_quant_QTX(qindex, 0, AOM_BITS_10) / 16.0; | 
|  | break; | 
|  | case AOM_BITS_12: | 
|  | q = av1_dc_quant_QTX(qindex, 0, AOM_BITS_12) / 64.0; | 
|  | break; | 
|  | default: | 
|  | assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); | 
|  | return -1; | 
|  | } | 
|  | // TODO(debargha): Adjust the function below. | 
|  | return AOMMAX((int)(pow(q, RD_THRESH_POW) * 5.12), 8); | 
|  | } | 
|  |  | 
|  | void av1_set_sad_per_bit(const AV1_COMP *cpi, int *sadperbit, int qindex) { | 
|  | switch (cpi->common.seq_params->bit_depth) { | 
|  | case AOM_BITS_8: *sadperbit = sad_per_bit_lut_8[qindex]; break; | 
|  | case AOM_BITS_10: *sadperbit = sad_per_bit_lut_10[qindex]; break; | 
|  | case AOM_BITS_12: *sadperbit = sad_per_bit_lut_12[qindex]; break; | 
|  | default: | 
|  | assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_block_thresholds(const AV1_COMMON *cm, RD_OPT *rd, | 
|  | int use_nonrd_pick_mode) { | 
|  | int i, bsize, segment_id; | 
|  | THR_MODES mode_indices[RTC_REFS * RTC_MODES] = { 0 }; | 
|  | int num_modes_count = use_nonrd_pick_mode ? 0 : MAX_MODES; | 
|  |  | 
|  | if (use_nonrd_pick_mode) { | 
|  | for (int r_idx = 0; r_idx < RTC_REFS; r_idx++) { | 
|  | const MV_REFERENCE_FRAME ref = real_time_ref_combos[r_idx][0]; | 
|  | if (ref != INTRA_FRAME) { | 
|  | for (i = 0; i < RTC_INTER_MODES; i++) | 
|  | mode_indices[num_modes_count++] = | 
|  | mode_idx[ref][mode_offset(inter_mode_list[i])]; | 
|  | } else { | 
|  | for (i = 0; i < RTC_INTRA_MODES; i++) | 
|  | mode_indices[num_modes_count++] = | 
|  | mode_idx[ref][mode_offset(intra_mode_list[i])]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (segment_id = 0; segment_id < MAX_SEGMENTS; ++segment_id) { | 
|  | const int qindex = clamp( | 
|  | av1_get_qindex(&cm->seg, segment_id, cm->quant_params.base_qindex) + | 
|  | cm->quant_params.y_dc_delta_q, | 
|  | 0, MAXQ); | 
|  | const int q = compute_rd_thresh_factor(qindex, cm->seq_params->bit_depth); | 
|  |  | 
|  | for (bsize = 0; bsize < BLOCK_SIZES_ALL; ++bsize) { | 
|  | // Threshold here seems unnecessarily harsh but fine given actual | 
|  | // range of values used for cpi->sf.thresh_mult[]. | 
|  | const int t = q * rd_thresh_block_size_factor[bsize]; | 
|  | const int thresh_max = INT_MAX / t; | 
|  |  | 
|  | for (i = 0; i < num_modes_count; ++i) { | 
|  | const int mode_index = use_nonrd_pick_mode ? mode_indices[i] : i; | 
|  | rd->threshes[segment_id][bsize][mode_index] = | 
|  | rd->thresh_mult[mode_index] < thresh_max | 
|  | ? rd->thresh_mult[mode_index] * t / 4 | 
|  | : INT_MAX; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_fill_coeff_costs(CoeffCosts *coeff_costs, FRAME_CONTEXT *fc, | 
|  | const int num_planes) { | 
|  | const int nplanes = AOMMIN(num_planes, PLANE_TYPES); | 
|  | for (int eob_multi_size = 0; eob_multi_size < 7; ++eob_multi_size) { | 
|  | for (int plane = 0; plane < nplanes; ++plane) { | 
|  | LV_MAP_EOB_COST *pcost = &coeff_costs->eob_costs[eob_multi_size][plane]; | 
|  |  | 
|  | for (int ctx = 0; ctx < 2; ++ctx) { | 
|  | aom_cdf_prob *pcdf; | 
|  | switch (eob_multi_size) { | 
|  | case 0: pcdf = fc->eob_flag_cdf16[plane][ctx]; break; | 
|  | case 1: pcdf = fc->eob_flag_cdf32[plane][ctx]; break; | 
|  | case 2: pcdf = fc->eob_flag_cdf64[plane][ctx]; break; | 
|  | case 3: pcdf = fc->eob_flag_cdf128[plane][ctx]; break; | 
|  | case 4: pcdf = fc->eob_flag_cdf256[plane][ctx]; break; | 
|  | case 5: pcdf = fc->eob_flag_cdf512[plane][ctx]; break; | 
|  | case 6: | 
|  | default: pcdf = fc->eob_flag_cdf1024[plane][ctx]; break; | 
|  | } | 
|  | av1_cost_tokens_from_cdf(pcost->eob_cost[ctx], pcdf, NULL); | 
|  | } | 
|  | } | 
|  | } | 
|  | for (int tx_size = 0; tx_size < TX_SIZES; ++tx_size) { | 
|  | for (int plane = 0; plane < nplanes; ++plane) { | 
|  | LV_MAP_COEFF_COST *pcost = &coeff_costs->coeff_costs[tx_size][plane]; | 
|  |  | 
|  | for (int ctx = 0; ctx < TXB_SKIP_CONTEXTS; ++ctx) | 
|  | av1_cost_tokens_from_cdf(pcost->txb_skip_cost[ctx], | 
|  | fc->txb_skip_cdf[tx_size][ctx], NULL); | 
|  |  | 
|  | for (int ctx = 0; ctx < SIG_COEF_CONTEXTS_EOB; ++ctx) | 
|  | av1_cost_tokens_from_cdf(pcost->base_eob_cost[ctx], | 
|  | fc->coeff_base_eob_cdf[tx_size][plane][ctx], | 
|  | NULL); | 
|  | for (int ctx = 0; ctx < SIG_COEF_CONTEXTS; ++ctx) | 
|  | av1_cost_tokens_from_cdf(pcost->base_cost[ctx], | 
|  | fc->coeff_base_cdf[tx_size][plane][ctx], NULL); | 
|  |  | 
|  | for (int ctx = 0; ctx < SIG_COEF_CONTEXTS; ++ctx) { | 
|  | pcost->base_cost[ctx][4] = 0; | 
|  | pcost->base_cost[ctx][5] = pcost->base_cost[ctx][1] + | 
|  | av1_cost_literal(1) - | 
|  | pcost->base_cost[ctx][0]; | 
|  | pcost->base_cost[ctx][6] = | 
|  | pcost->base_cost[ctx][2] - pcost->base_cost[ctx][1]; | 
|  | pcost->base_cost[ctx][7] = | 
|  | pcost->base_cost[ctx][3] - pcost->base_cost[ctx][2]; | 
|  | } | 
|  |  | 
|  | for (int ctx = 0; ctx < EOB_COEF_CONTEXTS; ++ctx) | 
|  | av1_cost_tokens_from_cdf(pcost->eob_extra_cost[ctx], | 
|  | fc->eob_extra_cdf[tx_size][plane][ctx], NULL); | 
|  |  | 
|  | for (int ctx = 0; ctx < DC_SIGN_CONTEXTS; ++ctx) | 
|  | av1_cost_tokens_from_cdf(pcost->dc_sign_cost[ctx], | 
|  | fc->dc_sign_cdf[plane][ctx], NULL); | 
|  |  | 
|  | for (int ctx = 0; ctx < LEVEL_CONTEXTS; ++ctx) { | 
|  | int br_rate[BR_CDF_SIZE]; | 
|  | int prev_cost = 0; | 
|  | int i, j; | 
|  | av1_cost_tokens_from_cdf( | 
|  | br_rate, fc->coeff_br_cdf[AOMMIN(tx_size, TX_32X32)][plane][ctx], | 
|  | NULL); | 
|  | // printf("br_rate: "); | 
|  | // for(j = 0; j < BR_CDF_SIZE; j++) | 
|  | //  printf("%4d ", br_rate[j]); | 
|  | // printf("\n"); | 
|  | for (i = 0; i < COEFF_BASE_RANGE; i += BR_CDF_SIZE - 1) { | 
|  | for (j = 0; j < BR_CDF_SIZE - 1; j++) { | 
|  | pcost->lps_cost[ctx][i + j] = prev_cost + br_rate[j]; | 
|  | } | 
|  | prev_cost += br_rate[j]; | 
|  | } | 
|  | pcost->lps_cost[ctx][i] = prev_cost; | 
|  | // printf("lps_cost: %d %d %2d : ", tx_size, plane, ctx); | 
|  | // for (i = 0; i <= COEFF_BASE_RANGE; i++) | 
|  | //  printf("%5d ", pcost->lps_cost[ctx][i]); | 
|  | // printf("\n"); | 
|  | } | 
|  | for (int ctx = 0; ctx < LEVEL_CONTEXTS; ++ctx) { | 
|  | pcost->lps_cost[ctx][0 + COEFF_BASE_RANGE + 1] = | 
|  | pcost->lps_cost[ctx][0]; | 
|  | for (int i = 1; i <= COEFF_BASE_RANGE; ++i) { | 
|  | pcost->lps_cost[ctx][i + COEFF_BASE_RANGE + 1] = | 
|  | pcost->lps_cost[ctx][i] - pcost->lps_cost[ctx][i - 1]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_fill_mv_costs(const nmv_context *nmvc, int integer_mv, int usehp, | 
|  | MvCosts *mv_costs) { | 
|  | // Avoid accessing 'mv_costs' when it is not allocated. | 
|  | if (mv_costs == NULL) return; | 
|  |  | 
|  | mv_costs->nmv_cost[0] = &mv_costs->nmv_cost_alloc[0][MV_MAX]; | 
|  | mv_costs->nmv_cost[1] = &mv_costs->nmv_cost_alloc[1][MV_MAX]; | 
|  | mv_costs->nmv_cost_hp[0] = &mv_costs->nmv_cost_hp_alloc[0][MV_MAX]; | 
|  | mv_costs->nmv_cost_hp[1] = &mv_costs->nmv_cost_hp_alloc[1][MV_MAX]; | 
|  | if (integer_mv) { | 
|  | mv_costs->mv_cost_stack = (int **)&mv_costs->nmv_cost; | 
|  | av1_build_nmv_cost_table(mv_costs->nmv_joint_cost, mv_costs->mv_cost_stack, | 
|  | nmvc, MV_SUBPEL_NONE); | 
|  | } else { | 
|  | mv_costs->mv_cost_stack = | 
|  | usehp ? mv_costs->nmv_cost_hp : mv_costs->nmv_cost; | 
|  | av1_build_nmv_cost_table(mv_costs->nmv_joint_cost, mv_costs->mv_cost_stack, | 
|  | nmvc, usehp); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_fill_dv_costs(const nmv_context *ndvc, IntraBCMVCosts *dv_costs) { | 
|  | dv_costs->dv_costs[0] = &dv_costs->dv_costs_alloc[0][MV_MAX]; | 
|  | dv_costs->dv_costs[1] = &dv_costs->dv_costs_alloc[1][MV_MAX]; | 
|  | av1_build_nmv_cost_table(dv_costs->joint_mv, dv_costs->dv_costs, ndvc, | 
|  | MV_SUBPEL_NONE); | 
|  | } | 
|  |  | 
|  | // Populates speed features based on codec control settings (of type | 
|  | // COST_UPDATE_TYPE) and expected speed feature settings (of type | 
|  | // INTERNAL_COST_UPDATE_TYPE) by considering the least frequent cost update. | 
|  | // The populated/updated speed features are used for cost updates in the | 
|  | // encoder. | 
|  | // WARNING: Population of unified cost update frequency needs to be taken care | 
|  | // accordingly, in case of any modifications/additions to the enum | 
|  | // COST_UPDATE_TYPE/INTERNAL_COST_UPDATE_TYPE. | 
|  | static INLINE void populate_unified_cost_update_freq( | 
|  | const CostUpdateFreq cost_upd_freq, SPEED_FEATURES *const sf) { | 
|  | INTER_MODE_SPEED_FEATURES *const inter_sf = &sf->inter_sf; | 
|  | // Mapping of entropy cost update frequency from the encoder's codec control | 
|  | // settings of type COST_UPDATE_TYPE to speed features of type | 
|  | // INTERNAL_COST_UPDATE_TYPE. | 
|  | static const INTERNAL_COST_UPDATE_TYPE | 
|  | map_cost_upd_to_internal_cost_upd[NUM_COST_UPDATE_TYPES] = { | 
|  | INTERNAL_COST_UPD_SB, INTERNAL_COST_UPD_SBROW, INTERNAL_COST_UPD_TILE, | 
|  | INTERNAL_COST_UPD_OFF | 
|  | }; | 
|  |  | 
|  | inter_sf->mv_cost_upd_level = | 
|  | AOMMIN(inter_sf->mv_cost_upd_level, | 
|  | map_cost_upd_to_internal_cost_upd[cost_upd_freq.mv]); | 
|  | inter_sf->coeff_cost_upd_level = | 
|  | AOMMIN(inter_sf->coeff_cost_upd_level, | 
|  | map_cost_upd_to_internal_cost_upd[cost_upd_freq.coeff]); | 
|  | inter_sf->mode_cost_upd_level = | 
|  | AOMMIN(inter_sf->mode_cost_upd_level, | 
|  | map_cost_upd_to_internal_cost_upd[cost_upd_freq.mode]); | 
|  | sf->intra_sf.dv_cost_upd_level = | 
|  | AOMMIN(sf->intra_sf.dv_cost_upd_level, | 
|  | map_cost_upd_to_internal_cost_upd[cost_upd_freq.dv]); | 
|  | } | 
|  |  | 
|  | // Checks if entropy costs should be initialized/updated at frame level or not. | 
|  | static INLINE int is_frame_level_cost_upd_freq_set( | 
|  | const AV1_COMMON *const cm, const INTERNAL_COST_UPDATE_TYPE cost_upd_level, | 
|  | const int use_nonrd_pick_mode, const int frames_since_key) { | 
|  | const int fill_costs = | 
|  | frame_is_intra_only(cm) || | 
|  | (use_nonrd_pick_mode ? frames_since_key < 2 | 
|  | : (cm->current_frame.frame_number & 0x07) == 1); | 
|  | return ((!use_nonrd_pick_mode && cost_upd_level != INTERNAL_COST_UPD_OFF) || | 
|  | cost_upd_level == INTERNAL_COST_UPD_TILE || fill_costs); | 
|  | } | 
|  |  | 
|  | // Decide whether we want to update the mode entropy cost for the current frame. | 
|  | // The logit is currently inherited from selective_disable_cdf_rtc. | 
|  | static AOM_INLINE int should_force_mode_cost_update(const AV1_COMP *cpi) { | 
|  | const REAL_TIME_SPEED_FEATURES *const rt_sf = &cpi->sf.rt_sf; | 
|  | if (!rt_sf->frame_level_mode_cost_update) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (cpi->oxcf.algo_cfg.cdf_update_mode == 2) { | 
|  | return cpi->frames_since_last_update == 1; | 
|  | } else if (cpi->oxcf.algo_cfg.cdf_update_mode == 1) { | 
|  | if (cpi->svc.number_spatial_layers == 1 && | 
|  | cpi->svc.number_temporal_layers == 1) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | const RATE_CONTROL *const rc = &cpi->rc; | 
|  |  | 
|  | return frame_is_intra_only(cm) || is_frame_resize_pending(cpi) || | 
|  | rc->high_source_sad || rc->frames_since_key < 10 || | 
|  | cpi->cyclic_refresh->counter_encode_maxq_scene_change < 10 || | 
|  | cm->current_frame.frame_number % 8 == 0; | 
|  | } else if (cpi->svc.number_temporal_layers > 1) { | 
|  | return cpi->svc.temporal_layer_id != cpi->svc.number_temporal_layers - 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void av1_initialize_rd_consts(AV1_COMP *cpi) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCK *const x = &cpi->td.mb; | 
|  | SPEED_FEATURES *const sf = &cpi->sf; | 
|  | RD_OPT *const rd = &cpi->rd; | 
|  | int use_nonrd_pick_mode = cpi->sf.rt_sf.use_nonrd_pick_mode; | 
|  | int frames_since_key = cpi->rc.frames_since_key; | 
|  |  | 
|  | const GF_GROUP *const gf_group = &cpi->ppi->gf_group; | 
|  | const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100)); | 
|  | const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6); | 
|  | const FRAME_TYPE frame_type = cm->current_frame.frame_type; | 
|  |  | 
|  | const int qindex_rdmult = | 
|  | cm->quant_params.base_qindex + cm->quant_params.y_dc_delta_q; | 
|  | rd->RDMULT = av1_compute_rd_mult( | 
|  | qindex_rdmult, cm->seq_params->bit_depth, | 
|  | cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth, | 
|  | boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets, | 
|  | is_stat_consumption_stage(cpi)); | 
|  | #if CONFIG_RD_COMMAND | 
|  | if (cpi->oxcf.pass == 2) { | 
|  | const RD_COMMAND *rd_command = &cpi->rd_command; | 
|  | if (rd_command->option_ls[rd_command->frame_index] == | 
|  | RD_OPTION_SET_Q_RDMULT) { | 
|  | rd->RDMULT = rd_command->rdmult_ls[rd_command->frame_index]; | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_RD_COMMAND | 
|  |  | 
|  | av1_set_error_per_bit(&x->errorperbit, rd->RDMULT); | 
|  |  | 
|  | set_block_thresholds(cm, rd, cpi->sf.rt_sf.use_nonrd_pick_mode); | 
|  |  | 
|  | populate_unified_cost_update_freq(cpi->oxcf.cost_upd_freq, sf); | 
|  | const INTER_MODE_SPEED_FEATURES *const inter_sf = &cpi->sf.inter_sf; | 
|  | // Frame level mv cost update | 
|  | if (is_frame_level_cost_upd_freq_set(cm, inter_sf->mv_cost_upd_level, | 
|  | use_nonrd_pick_mode, frames_since_key)) | 
|  | av1_fill_mv_costs(&cm->fc->nmvc, cm->features.cur_frame_force_integer_mv, | 
|  | cm->features.allow_high_precision_mv, x->mv_costs); | 
|  |  | 
|  | // Frame level coefficient cost update | 
|  | if (is_frame_level_cost_upd_freq_set(cm, inter_sf->coeff_cost_upd_level, | 
|  | use_nonrd_pick_mode, frames_since_key)) | 
|  | av1_fill_coeff_costs(&x->coeff_costs, cm->fc, av1_num_planes(cm)); | 
|  |  | 
|  | // Frame level mode cost update | 
|  | if (should_force_mode_cost_update(cpi) || | 
|  | is_frame_level_cost_upd_freq_set(cm, inter_sf->mode_cost_upd_level, | 
|  | use_nonrd_pick_mode, frames_since_key)) | 
|  | av1_fill_mode_rates(cm, &x->mode_costs, cm->fc); | 
|  |  | 
|  | // Frame level dv cost update | 
|  | if (av1_need_dv_costs(cpi)) { | 
|  | if (cpi->td.dv_costs_alloc == NULL) { | 
|  | CHECK_MEM_ERROR( | 
|  | cm, cpi->td.dv_costs_alloc, | 
|  | (IntraBCMVCosts *)aom_malloc(sizeof(*cpi->td.dv_costs_alloc))); | 
|  | cpi->td.mb.dv_costs = cpi->td.dv_costs_alloc; | 
|  | } | 
|  | av1_fill_dv_costs(&cm->fc->ndvc, x->dv_costs); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void model_rd_norm(int xsq_q10, int *r_q10, int *d_q10) { | 
|  | // NOTE: The tables below must be of the same size. | 
|  |  | 
|  | // The functions described below are sampled at the four most significant | 
|  | // bits of x^2 + 8 / 256. | 
|  |  | 
|  | // Normalized rate: | 
|  | // This table models the rate for a Laplacian source with given variance | 
|  | // when quantized with a uniform quantizer with given stepsize. The | 
|  | // closed form expression is: | 
|  | // Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)], | 
|  | // where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance), | 
|  | // and H(x) is the binary entropy function. | 
|  | static const int rate_tab_q10[] = { | 
|  | 65536, 6086, 5574, 5275, 5063, 4899, 4764, 4651, 4553, 4389, 4255, 4142, | 
|  | 4044,  3958, 3881, 3811, 3748, 3635, 3538, 3453, 3376, 3307, 3244, 3186, | 
|  | 3133,  3037, 2952, 2877, 2809, 2747, 2690, 2638, 2589, 2501, 2423, 2353, | 
|  | 2290,  2232, 2179, 2130, 2084, 2001, 1928, 1862, 1802, 1748, 1698, 1651, | 
|  | 1608,  1530, 1460, 1398, 1342, 1290, 1243, 1199, 1159, 1086, 1021, 963, | 
|  | 911,   864,  821,  781,  745,  680,  623,  574,  530,  490,  455,  424, | 
|  | 395,   345,  304,  269,  239,  213,  190,  171,  154,  126,  104,  87, | 
|  | 73,    61,   52,   44,   38,   28,   21,   16,   12,   10,   8,    6, | 
|  | 5,     3,    2,    1,    1,    1,    0,    0, | 
|  | }; | 
|  | // Normalized distortion: | 
|  | // This table models the normalized distortion for a Laplacian source | 
|  | // with given variance when quantized with a uniform quantizer | 
|  | // with given stepsize. The closed form expression is: | 
|  | // Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2)) | 
|  | // where x = qpstep / sqrt(variance). | 
|  | // Note the actual distortion is Dn * variance. | 
|  | static const int dist_tab_q10[] = { | 
|  | 0,    0,    1,    1,    1,    2,    2,    2,    3,    3,    4,    5, | 
|  | 5,    6,    7,    7,    8,    9,    11,   12,   13,   15,   16,   17, | 
|  | 18,   21,   24,   26,   29,   31,   34,   36,   39,   44,   49,   54, | 
|  | 59,   64,   69,   73,   78,   88,   97,   106,  115,  124,  133,  142, | 
|  | 151,  167,  184,  200,  215,  231,  245,  260,  274,  301,  327,  351, | 
|  | 375,  397,  418,  439,  458,  495,  528,  559,  587,  613,  637,  659, | 
|  | 680,  717,  749,  777,  801,  823,  842,  859,  874,  899,  919,  936, | 
|  | 949,  960,  969,  977,  983,  994,  1001, 1006, 1010, 1013, 1015, 1017, | 
|  | 1018, 1020, 1022, 1022, 1023, 1023, 1023, 1024, | 
|  | }; | 
|  | static const int xsq_iq_q10[] = { | 
|  | 0,      4,      8,      12,     16,     20,     24,     28,     32, | 
|  | 40,     48,     56,     64,     72,     80,     88,     96,     112, | 
|  | 128,    144,    160,    176,    192,    208,    224,    256,    288, | 
|  | 320,    352,    384,    416,    448,    480,    544,    608,    672, | 
|  | 736,    800,    864,    928,    992,    1120,   1248,   1376,   1504, | 
|  | 1632,   1760,   1888,   2016,   2272,   2528,   2784,   3040,   3296, | 
|  | 3552,   3808,   4064,   4576,   5088,   5600,   6112,   6624,   7136, | 
|  | 7648,   8160,   9184,   10208,  11232,  12256,  13280,  14304,  15328, | 
|  | 16352,  18400,  20448,  22496,  24544,  26592,  28640,  30688,  32736, | 
|  | 36832,  40928,  45024,  49120,  53216,  57312,  61408,  65504,  73696, | 
|  | 81888,  90080,  98272,  106464, 114656, 122848, 131040, 147424, 163808, | 
|  | 180192, 196576, 212960, 229344, 245728, | 
|  | }; | 
|  | const int tmp = (xsq_q10 >> 2) + 8; | 
|  | const int k = get_msb(tmp) - 3; | 
|  | const int xq = (k << 3) + ((tmp >> k) & 0x7); | 
|  | const int one_q10 = 1 << 10; | 
|  | const int a_q10 = ((xsq_q10 - xsq_iq_q10[xq]) << 10) >> (2 + k); | 
|  | const int b_q10 = one_q10 - a_q10; | 
|  | *r_q10 = (rate_tab_q10[xq] * b_q10 + rate_tab_q10[xq + 1] * a_q10) >> 10; | 
|  | *d_q10 = (dist_tab_q10[xq] * b_q10 + dist_tab_q10[xq + 1] * a_q10) >> 10; | 
|  | } | 
|  |  | 
|  | void av1_model_rd_from_var_lapndz(int64_t var, unsigned int n_log2, | 
|  | unsigned int qstep, int *rate, | 
|  | int64_t *dist) { | 
|  | // This function models the rate and distortion for a Laplacian | 
|  | // source with given variance when quantized with a uniform quantizer | 
|  | // with given stepsize. The closed form expressions are in: | 
|  | // Hang and Chen, "Source Model for transform video coder and its | 
|  | // application - Part I: Fundamental Theory", IEEE Trans. Circ. | 
|  | // Sys. for Video Tech., April 1997. | 
|  | if (var == 0) { | 
|  | *rate = 0; | 
|  | *dist = 0; | 
|  | } else { | 
|  | int d_q10, r_q10; | 
|  | static const uint32_t MAX_XSQ_Q10 = 245727; | 
|  | const uint64_t xsq_q10_64 = | 
|  | (((uint64_t)qstep * qstep << (n_log2 + 10)) + (var >> 1)) / var; | 
|  | const int xsq_q10 = (int)AOMMIN(xsq_q10_64, MAX_XSQ_Q10); | 
|  | model_rd_norm(xsq_q10, &r_q10, &d_q10); | 
|  | *rate = ROUND_POWER_OF_TWO(r_q10 << n_log2, 10 - AV1_PROB_COST_SHIFT); | 
|  | *dist = (var * (int64_t)d_q10 + 512) >> 10; | 
|  | } | 
|  | } | 
|  |  | 
|  | static double interp_cubic(const double *p, double x) { | 
|  | return p[1] + 0.5 * x * | 
|  | (p[2] - p[0] + | 
|  | x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] + | 
|  | x * (3.0 * (p[1] - p[2]) + p[3] - p[0]))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | static double interp_bicubic(const double *p, int p_stride, double x, | 
|  | double y) { | 
|  | double q[4]; | 
|  | q[0] = interp_cubic(p, x); | 
|  | q[1] = interp_cubic(p + p_stride, x); | 
|  | q[2] = interp_cubic(p + 2 * p_stride, x); | 
|  | q[3] = interp_cubic(p + 3 * p_stride, x); | 
|  | return interp_cubic(q, y); | 
|  | } | 
|  | */ | 
|  |  | 
|  | static const uint8_t bsize_curvfit_model_cat_lookup[BLOCK_SIZES_ALL] = { | 
|  | 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 1, 1, 2, 2, 3, 3 | 
|  | }; | 
|  |  | 
|  | static int sse_norm_curvfit_model_cat_lookup(double sse_norm) { | 
|  | return (sse_norm > 16.0); | 
|  | } | 
|  |  | 
|  | // Models distortion by sse using a logistic function on | 
|  | // l = log2(sse / q^2) as: | 
|  | // dbysse = 16 / (1 + k exp(l + c)) | 
|  | static double get_dbysse_logistic(double l, double c, double k) { | 
|  | const double A = 16.0; | 
|  | const double dbysse = A / (1 + k * exp(l + c)); | 
|  | return dbysse; | 
|  | } | 
|  |  | 
|  | // Models rate using a clamped linear function on | 
|  | // l = log2(sse / q^2) as: | 
|  | // rate = max(0, a + b * l) | 
|  | static double get_rate_clamplinear(double l, double a, double b) { | 
|  | const double rate = a + b * l; | 
|  | return (rate < 0 ? 0 : rate); | 
|  | } | 
|  |  | 
|  | static const uint8_t bsize_surffit_model_cat_lookup[BLOCK_SIZES_ALL] = { | 
|  | 0, 0, 0, 0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 0, 0, 2, 2, 4, 4 | 
|  | }; | 
|  |  | 
|  | static const double surffit_rate_params[9][4] = { | 
|  | { | 
|  | 638.390212, | 
|  | 2.253108, | 
|  | 166.585650, | 
|  | -3.939401, | 
|  | }, | 
|  | { | 
|  | 5.256905, | 
|  | 81.997240, | 
|  | -1.321771, | 
|  | 17.694216, | 
|  | }, | 
|  | { | 
|  | -74.193045, | 
|  | 72.431868, | 
|  | -19.033152, | 
|  | 15.407276, | 
|  | }, | 
|  | { | 
|  | 416.770113, | 
|  | 14.794188, | 
|  | 167.686830, | 
|  | -6.997756, | 
|  | }, | 
|  | { | 
|  | 378.511276, | 
|  | 9.558376, | 
|  | 154.658843, | 
|  | -6.635663, | 
|  | }, | 
|  | { | 
|  | 277.818787, | 
|  | 4.413180, | 
|  | 150.317637, | 
|  | -9.893038, | 
|  | }, | 
|  | { | 
|  | 142.212132, | 
|  | 11.542038, | 
|  | 94.393964, | 
|  | -5.518517, | 
|  | }, | 
|  | { | 
|  | 219.100256, | 
|  | 4.007421, | 
|  | 108.932852, | 
|  | -6.981310, | 
|  | }, | 
|  | { | 
|  | 222.261971, | 
|  | 3.251049, | 
|  | 95.972916, | 
|  | -5.609789, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const double surffit_dist_params[7] = { 1.475844,  4.328362, -5.680233, | 
|  | -0.500994, 0.554585, 4.839478, | 
|  | -0.695837 }; | 
|  |  | 
|  | static void rate_surffit_model_params_lookup(BLOCK_SIZE bsize, double xm, | 
|  | double *rpar) { | 
|  | const int cat = bsize_surffit_model_cat_lookup[bsize]; | 
|  | rpar[0] = surffit_rate_params[cat][0] + surffit_rate_params[cat][1] * xm; | 
|  | rpar[1] = surffit_rate_params[cat][2] + surffit_rate_params[cat][3] * xm; | 
|  | } | 
|  |  | 
|  | static void dist_surffit_model_params_lookup(BLOCK_SIZE bsize, double xm, | 
|  | double *dpar) { | 
|  | (void)bsize; | 
|  | const double *params = surffit_dist_params; | 
|  | dpar[0] = params[0] + params[1] / (1 + exp((xm + params[2]) * params[3])); | 
|  | dpar[1] = params[4] + params[5] * exp(params[6] * xm); | 
|  | } | 
|  |  | 
|  | void av1_model_rd_surffit(BLOCK_SIZE bsize, double sse_norm, double xm, | 
|  | double yl, double *rate_f, double *distbysse_f) { | 
|  | (void)sse_norm; | 
|  | double rpar[2], dpar[2]; | 
|  | rate_surffit_model_params_lookup(bsize, xm, rpar); | 
|  | dist_surffit_model_params_lookup(bsize, xm, dpar); | 
|  |  | 
|  | *rate_f = get_rate_clamplinear(yl, rpar[0], rpar[1]); | 
|  | *distbysse_f = get_dbysse_logistic(yl, dpar[0], dpar[1]); | 
|  | } | 
|  |  | 
|  | static const double interp_rgrid_curv[4][65] = { | 
|  | { | 
|  | 0.000000,    0.000000,    0.000000,    0.000000,    0.000000, | 
|  | 0.000000,    0.000000,    0.000000,    0.000000,    0.000000, | 
|  | 0.000000,    118.257702,  120.210658,  121.434853,  122.100487, | 
|  | 122.377758,  122.436865,  72.290102,   96.974289,   101.652727, | 
|  | 126.830141,  140.417377,  157.644879,  184.315291,  215.823873, | 
|  | 262.300169,  335.919859,  420.624173,  519.185032,  619.854243, | 
|  | 726.053595,  827.663369,  933.127475,  1037.988755, 1138.839609, | 
|  | 1233.342933, 1333.508064, 1428.760126, 1533.396364, 1616.952052, | 
|  | 1744.539319, 1803.413586, 1951.466618, 1994.227838, 2086.031680, | 
|  | 2148.635443, 2239.068450, 2222.590637, 2338.859809, 2402.929011, | 
|  | 2418.727875, 2435.342670, 2471.159469, 2523.187446, 2591.183827, | 
|  | 2674.905840, 2774.110714, 2888.555675, 3017.997952, 3162.194773, | 
|  | 3320.903365, 3493.880956, 3680.884773, 3881.672045, 4096.000000, | 
|  | }, | 
|  | { | 
|  | 0.000000,    0.000000,    0.000000,    0.000000,    0.000000, | 
|  | 0.000000,    0.000000,    0.000000,    0.000000,    0.000000, | 
|  | 0.000000,    13.087244,   15.919735,   25.930313,   24.412411, | 
|  | 28.567417,   29.924194,   30.857010,   32.742979,   36.382570, | 
|  | 39.210386,   42.265690,   47.378572,   57.014850,   82.740067, | 
|  | 137.346562,  219.968084,  316.781856,  415.643773,  516.706538, | 
|  | 614.914364,  714.303763,  815.512135,  911.210485,  1008.501528, | 
|  | 1109.787854, 1213.772279, 1322.922561, 1414.752579, 1510.505641, | 
|  | 1615.741888, 1697.989032, 1780.123933, 1847.453790, 1913.742309, | 
|  | 1960.828122, 2047.500168, 2085.454095, 2129.230668, 2158.171824, | 
|  | 2182.231724, 2217.684864, 2269.589211, 2337.264824, 2420.618694, | 
|  | 2519.557814, 2633.989178, 2763.819779, 2908.956609, 3069.306660, | 
|  | 3244.776927, 3435.274401, 3640.706076, 3860.978945, 4096.000000, | 
|  | }, | 
|  | { | 
|  | 0.000000,    0.000000,    0.000000,    0.000000,    0.000000, | 
|  | 0.000000,    0.000000,    0.000000,    0.000000,    0.000000, | 
|  | 0.000000,    4.656893,    5.123633,    5.594132,    6.162376, | 
|  | 6.918433,    7.768444,    8.739415,    10.105862,   11.477328, | 
|  | 13.236604,   15.421030,   19.093623,   25.801871,   46.724612, | 
|  | 98.841054,   181.113466,  272.586364,  359.499769,  445.546343, | 
|  | 525.944439,  605.188743,  681.793483,  756.668359,  838.486885, | 
|  | 926.950356,  1015.482542, 1113.353926, 1204.897193, 1288.871992, | 
|  | 1373.464145, 1455.746628, 1527.796460, 1588.475066, 1658.144771, | 
|  | 1710.302500, 1807.563351, 1863.197608, 1927.281616, 1964.450872, | 
|  | 2022.719898, 2100.041145, 2185.205712, 2280.993936, 2387.616216, | 
|  | 2505.282950, 2634.204540, 2774.591385, 2926.653884, 3090.602436, | 
|  | 3266.647443, 3454.999303, 3655.868416, 3869.465182, 4096.000000, | 
|  | }, | 
|  | { | 
|  | 0.000000,    0.000000,    0.000000,    0.000000,    0.000000, | 
|  | 0.000000,    0.000000,    0.000000,    0.000000,    0.000000, | 
|  | 0.000000,    0.337370,    0.391916,    0.468839,    0.566334, | 
|  | 0.762564,    1.069225,    1.384361,    1.787581,    2.293948, | 
|  | 3.251909,    4.412991,    8.050068,    11.606073,   27.668092, | 
|  | 65.227758,   128.463938,  202.097653,  262.715851,  312.464873, | 
|  | 355.601398,  400.609054,  447.201352,  495.761568,  552.871938, | 
|  | 619.067625,  691.984883,  773.753288,  860.628503,  946.262808, | 
|  | 1019.805896, 1106.061360, 1178.422145, 1244.852258, 1302.173987, | 
|  | 1399.650266, 1548.092912, 1545.928652, 1670.817500, 1694.523823, | 
|  | 1779.195362, 1882.155494, 1990.662097, 2108.325181, 2235.456119, | 
|  | 2372.366287, 2519.367059, 2676.769812, 2844.885918, 3024.026754, | 
|  | 3214.503695, 3416.628115, 3630.711389, 3857.064892, 4096.000000, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const double interp_dgrid_curv[3][65] = { | 
|  | { | 
|  | 16.000000, 15.962891, 15.925174, 15.886888, 15.848074, 15.808770, | 
|  | 15.769015, 15.728850, 15.688313, 15.647445, 15.606284, 15.564870, | 
|  | 15.525918, 15.483820, 15.373330, 15.126844, 14.637442, 14.184387, | 
|  | 13.560070, 12.880717, 12.165995, 11.378144, 10.438769, 9.130790, | 
|  | 7.487633,  5.688649,  4.267515,  3.196300,  2.434201,  1.834064, | 
|  | 1.369920,  1.035921,  0.775279,  0.574895,  0.427232,  0.314123, | 
|  | 0.233236,  0.171440,  0.128188,  0.092762,  0.067569,  0.049324, | 
|  | 0.036330,  0.027008,  0.019853,  0.015539,  0.011093,  0.008733, | 
|  | 0.007624,  0.008105,  0.005427,  0.004065,  0.003427,  0.002848, | 
|  | 0.002328,  0.001865,  0.001457,  0.001103,  0.000801,  0.000550, | 
|  | 0.000348,  0.000193,  0.000085,  0.000021,  0.000000, | 
|  | }, | 
|  | { | 
|  | 16.000000, 15.996116, 15.984769, 15.966413, 15.941505, 15.910501, | 
|  | 15.873856, 15.832026, 15.785466, 15.734633, 15.679981, 15.621967, | 
|  | 15.560961, 15.460157, 15.288367, 15.052462, 14.466922, 13.921212, | 
|  | 13.073692, 12.222005, 11.237799, 9.985848,  8.898823,  7.423519, | 
|  | 5.995325,  4.773152,  3.744032,  2.938217,  2.294526,  1.762412, | 
|  | 1.327145,  1.020728,  0.765535,  0.570548,  0.425833,  0.313825, | 
|  | 0.232959,  0.171324,  0.128174,  0.092750,  0.067558,  0.049319, | 
|  | 0.036330,  0.027008,  0.019853,  0.015539,  0.011093,  0.008733, | 
|  | 0.007624,  0.008105,  0.005427,  0.004065,  0.003427,  0.002848, | 
|  | 0.002328,  0.001865,  0.001457,  0.001103,  0.000801,  0.000550, | 
|  | 0.000348,  0.000193,  0.000085,  0.000021,  -0.000000, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | void av1_model_rd_curvfit(BLOCK_SIZE bsize, double sse_norm, double xqr, | 
|  | double *rate_f, double *distbysse_f) { | 
|  | const double x_start = -15.5; | 
|  | const double x_end = 16.5; | 
|  | const double x_step = 0.5; | 
|  | const double epsilon = 1e-6; | 
|  | const int rcat = bsize_curvfit_model_cat_lookup[bsize]; | 
|  | const int dcat = sse_norm_curvfit_model_cat_lookup(sse_norm); | 
|  | (void)x_end; | 
|  |  | 
|  | xqr = AOMMAX(xqr, x_start + x_step + epsilon); | 
|  | xqr = AOMMIN(xqr, x_end - x_step - epsilon); | 
|  | const double x = (xqr - x_start) / x_step; | 
|  | const int xi = (int)floor(x); | 
|  | const double xo = x - xi; | 
|  |  | 
|  | assert(xi > 0); | 
|  |  | 
|  | const double *prate = &interp_rgrid_curv[rcat][(xi - 1)]; | 
|  | *rate_f = interp_cubic(prate, xo); | 
|  | const double *pdist = &interp_dgrid_curv[dcat][(xi - 1)]; | 
|  | *distbysse_f = interp_cubic(pdist, xo); | 
|  | } | 
|  |  | 
|  | static void get_entropy_contexts_plane(BLOCK_SIZE plane_bsize, | 
|  | const struct macroblockd_plane *pd, | 
|  | ENTROPY_CONTEXT t_above[MAX_MIB_SIZE], | 
|  | ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]) { | 
|  | const int num_4x4_w = mi_size_wide[plane_bsize]; | 
|  | const int num_4x4_h = mi_size_high[plane_bsize]; | 
|  | const ENTROPY_CONTEXT *const above = pd->above_entropy_context; | 
|  | const ENTROPY_CONTEXT *const left = pd->left_entropy_context; | 
|  |  | 
|  | memcpy(t_above, above, sizeof(ENTROPY_CONTEXT) * num_4x4_w); | 
|  | memcpy(t_left, left, sizeof(ENTROPY_CONTEXT) * num_4x4_h); | 
|  | } | 
|  |  | 
|  | void av1_get_entropy_contexts(BLOCK_SIZE plane_bsize, | 
|  | const struct macroblockd_plane *pd, | 
|  | ENTROPY_CONTEXT t_above[MAX_MIB_SIZE], | 
|  | ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]) { | 
|  | assert(plane_bsize < BLOCK_SIZES_ALL); | 
|  | get_entropy_contexts_plane(plane_bsize, pd, t_above, t_left); | 
|  | } | 
|  |  | 
|  | // Special clamping used in the encoder when calculating a prediction | 
|  | // | 
|  | // Logically, all pixel fetches used for prediction are clamped against the | 
|  | // edges of the frame. But doing this directly is slow, so instead we allocate | 
|  | // a finite border around the frame and fill it with copies of the outermost | 
|  | // pixels. | 
|  | // | 
|  | // Since this border is finite, we need to clamp the motion vector before | 
|  | // prediction in order to avoid out-of-bounds reads. At the same time, this | 
|  | // clamp must not change the prediction result. | 
|  | // | 
|  | // We can balance both of these concerns by calculating how far we would have | 
|  | // to go in each direction before the extended prediction region (the current | 
|  | // block + AOM_INTERP_EXTEND many pixels around the block) would be mapped | 
|  | // so that it touches the frame only at one row or column. This is a special | 
|  | // point because any more extreme MV will always lead to the same prediction. | 
|  | // So it is safe to clamp at that point. | 
|  | // | 
|  | // In the worst case, this requires a border of | 
|  | //   max_block_width + 2*AOM_INTERP_EXTEND = 128 + 2*4 = 136 pixels | 
|  | // around the frame edges. | 
|  | static INLINE void enc_clamp_mv(const AV1_COMMON *cm, const MACROBLOCKD *xd, | 
|  | MV *mv) { | 
|  | int bw = xd->width << MI_SIZE_LOG2; | 
|  | int bh = xd->height << MI_SIZE_LOG2; | 
|  |  | 
|  | int px_to_left_edge = xd->mi_col << MI_SIZE_LOG2; | 
|  | int px_to_right_edge = (cm->mi_params.mi_cols - xd->mi_col) << MI_SIZE_LOG2; | 
|  | int px_to_top_edge = xd->mi_row << MI_SIZE_LOG2; | 
|  | int px_to_bottom_edge = (cm->mi_params.mi_rows - xd->mi_row) << MI_SIZE_LOG2; | 
|  |  | 
|  | const SubpelMvLimits mv_limits = { | 
|  | .col_min = -GET_MV_SUBPEL(px_to_left_edge + bw + AOM_INTERP_EXTEND), | 
|  | .col_max = GET_MV_SUBPEL(px_to_right_edge + AOM_INTERP_EXTEND), | 
|  | .row_min = -GET_MV_SUBPEL(px_to_top_edge + bh + AOM_INTERP_EXTEND), | 
|  | .row_max = GET_MV_SUBPEL(px_to_bottom_edge + AOM_INTERP_EXTEND) | 
|  | }; | 
|  | clamp_mv(mv, &mv_limits); | 
|  | } | 
|  |  | 
|  | void av1_mv_pred(const AV1_COMP *cpi, MACROBLOCK *x, uint8_t *ref_y_buffer, | 
|  | int ref_y_stride, int ref_frame, BLOCK_SIZE block_size) { | 
|  | const MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, NONE_FRAME }; | 
|  | const int_mv ref_mv = | 
|  | av1_get_ref_mv_from_stack(0, ref_frames, 0, &x->mbmi_ext); | 
|  | const int_mv ref_mv1 = | 
|  | av1_get_ref_mv_from_stack(0, ref_frames, 1, &x->mbmi_ext); | 
|  | MV pred_mv[MAX_MV_REF_CANDIDATES + 1]; | 
|  | int num_mv_refs = 0; | 
|  | pred_mv[num_mv_refs++] = ref_mv.as_mv; | 
|  | if (ref_mv.as_int != ref_mv1.as_int) { | 
|  | pred_mv[num_mv_refs++] = ref_mv1.as_mv; | 
|  | } | 
|  |  | 
|  | assert(num_mv_refs <= (int)(sizeof(pred_mv) / sizeof(pred_mv[0]))); | 
|  |  | 
|  | const uint8_t *const src_y_ptr = x->plane[0].src.buf; | 
|  | int zero_seen = 0; | 
|  | int best_sad = INT_MAX; | 
|  | int max_mv = 0; | 
|  | // Get the sad for each candidate reference mv. | 
|  | for (int i = 0; i < num_mv_refs; ++i) { | 
|  | MV *this_mv = &pred_mv[i]; | 
|  | enc_clamp_mv(&cpi->common, &x->e_mbd, this_mv); | 
|  |  | 
|  | const int fp_row = (this_mv->row + 3 + (this_mv->row >= 0)) >> 3; | 
|  | const int fp_col = (this_mv->col + 3 + (this_mv->col >= 0)) >> 3; | 
|  | max_mv = AOMMAX(max_mv, AOMMAX(abs(this_mv->row), abs(this_mv->col)) >> 3); | 
|  |  | 
|  | if (fp_row == 0 && fp_col == 0 && zero_seen) continue; | 
|  | zero_seen |= (fp_row == 0 && fp_col == 0); | 
|  |  | 
|  | const uint8_t *const ref_y_ptr = | 
|  | &ref_y_buffer[ref_y_stride * fp_row + fp_col]; | 
|  | // Find sad for current vector. | 
|  | const int this_sad = cpi->ppi->fn_ptr[block_size].sdf( | 
|  | src_y_ptr, x->plane[0].src.stride, ref_y_ptr, ref_y_stride); | 
|  | // Note if it is the best so far. | 
|  | if (this_sad < best_sad) { | 
|  | best_sad = this_sad; | 
|  | } | 
|  | if (i == 0) | 
|  | x->pred_mv0_sad[ref_frame] = this_sad; | 
|  | else if (i == 1) | 
|  | x->pred_mv1_sad[ref_frame] = this_sad; | 
|  | } | 
|  |  | 
|  | // Note the index of the mv that worked best in the reference list. | 
|  | x->max_mv_context[ref_frame] = max_mv; | 
|  | x->pred_mv_sad[ref_frame] = best_sad; | 
|  | } | 
|  |  | 
|  | void av1_setup_pred_block(const MACROBLOCKD *xd, | 
|  | struct buf_2d dst[MAX_MB_PLANE], | 
|  | const YV12_BUFFER_CONFIG *src, | 
|  | const struct scale_factors *scale, | 
|  | const struct scale_factors *scale_uv, | 
|  | const int num_planes) { | 
|  | dst[0].buf = src->y_buffer; | 
|  | dst[0].stride = src->y_stride; | 
|  | dst[1].buf = src->u_buffer; | 
|  | dst[2].buf = src->v_buffer; | 
|  | dst[1].stride = dst[2].stride = src->uv_stride; | 
|  |  | 
|  | const int mi_row = xd->mi_row; | 
|  | const int mi_col = xd->mi_col; | 
|  | for (int i = 0; i < num_planes; ++i) { | 
|  | setup_pred_plane(dst + i, xd->mi[0]->bsize, dst[i].buf, | 
|  | i ? src->uv_crop_width : src->y_crop_width, | 
|  | i ? src->uv_crop_height : src->y_crop_height, | 
|  | dst[i].stride, mi_row, mi_col, i ? scale_uv : scale, | 
|  | xd->plane[i].subsampling_x, xd->plane[i].subsampling_y); | 
|  | } | 
|  | } | 
|  |  | 
|  | YV12_BUFFER_CONFIG *av1_get_scaled_ref_frame(const AV1_COMP *cpi, | 
|  | int ref_frame) { | 
|  | assert(ref_frame >= LAST_FRAME && ref_frame <= ALTREF_FRAME); | 
|  | RefCntBuffer *const scaled_buf = cpi->scaled_ref_buf[ref_frame - 1]; | 
|  | const RefCntBuffer *const ref_buf = | 
|  | get_ref_frame_buf(&cpi->common, ref_frame); | 
|  | return (scaled_buf != ref_buf && scaled_buf != NULL) ? &scaled_buf->buf | 
|  | : NULL; | 
|  | } | 
|  |  | 
|  | int av1_get_switchable_rate(const MACROBLOCK *x, const MACROBLOCKD *xd, | 
|  | InterpFilter interp_filter, int dual_filter) { | 
|  | if (interp_filter == SWITCHABLE) { | 
|  | const MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | int inter_filter_cost = 0; | 
|  | for (int dir = 0; dir < 2; ++dir) { | 
|  | if (dir && !dual_filter) break; | 
|  | const int ctx = av1_get_pred_context_switchable_interp(xd, dir); | 
|  | const InterpFilter filter = | 
|  | av1_extract_interp_filter(mbmi->interp_filters, dir); | 
|  | inter_filter_cost += x->mode_costs.switchable_interp_costs[ctx][filter]; | 
|  | } | 
|  | return SWITCHABLE_INTERP_RATE_FACTOR * inter_filter_cost; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_set_rd_speed_thresholds(AV1_COMP *cpi) { | 
|  | RD_OPT *const rd = &cpi->rd; | 
|  |  | 
|  | // Set baseline threshold values. | 
|  | av1_zero(rd->thresh_mult); | 
|  |  | 
|  | rd->thresh_mult[THR_NEARESTMV] = 300; | 
|  | rd->thresh_mult[THR_NEARESTL2] = 300; | 
|  | rd->thresh_mult[THR_NEARESTL3] = 300; | 
|  | rd->thresh_mult[THR_NEARESTB] = 300; | 
|  | rd->thresh_mult[THR_NEARESTA2] = 300; | 
|  | rd->thresh_mult[THR_NEARESTA] = 300; | 
|  | rd->thresh_mult[THR_NEARESTG] = 300; | 
|  |  | 
|  | rd->thresh_mult[THR_NEWMV] = 1000; | 
|  | rd->thresh_mult[THR_NEWL2] = 1000; | 
|  | rd->thresh_mult[THR_NEWL3] = 1000; | 
|  | rd->thresh_mult[THR_NEWB] = 1000; | 
|  | rd->thresh_mult[THR_NEWA2] = 1100; | 
|  | rd->thresh_mult[THR_NEWA] = 1000; | 
|  | rd->thresh_mult[THR_NEWG] = 1000; | 
|  |  | 
|  | rd->thresh_mult[THR_NEARMV] = 1000; | 
|  | rd->thresh_mult[THR_NEARL2] = 1000; | 
|  | rd->thresh_mult[THR_NEARL3] = 1000; | 
|  | rd->thresh_mult[THR_NEARB] = 1000; | 
|  | rd->thresh_mult[THR_NEARA2] = 1000; | 
|  | rd->thresh_mult[THR_NEARA] = 1000; | 
|  | rd->thresh_mult[THR_NEARG] = 1000; | 
|  |  | 
|  | rd->thresh_mult[THR_GLOBALMV] = 2200; | 
|  | rd->thresh_mult[THR_GLOBALL2] = 2000; | 
|  | rd->thresh_mult[THR_GLOBALL3] = 2000; | 
|  | rd->thresh_mult[THR_GLOBALB] = 2400; | 
|  | rd->thresh_mult[THR_GLOBALA2] = 2000; | 
|  | rd->thresh_mult[THR_GLOBALG] = 2000; | 
|  | rd->thresh_mult[THR_GLOBALA] = 2400; | 
|  |  | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEARESTLA] = 1100; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2A] = 1000; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3A] = 800; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEARESTGA] = 900; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEARESTLB] = 1000; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2B] = 1000; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3B] = 1000; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEARESTGB] = 1000; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEARESTLA2] = 1000; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEARESTL2A2] = 1000; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEARESTL3A2] = 1000; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEARESTGA2] = 1000; | 
|  |  | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEARESTLL2] = 2000; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEARESTLL3] = 2000; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEARESTLG] = 2000; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEARESTBA] = 2000; | 
|  |  | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEARLA] = 1200; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEWLA] = 1500; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARESTLA] = 1500; | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEWLA] = 1530; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARLA] = 1870; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEWLA] = 2400; | 
|  | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLA] = 2750; | 
|  |  | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEARL2A] = 1200; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEWL2A] = 1500; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARESTL2A] = 1500; | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEWL2A] = 1870; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARL2A] = 1700; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEWL2A] = 1800; | 
|  | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL2A] = 2500; | 
|  |  | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEARL3A] = 1200; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEWL3A] = 1500; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARESTL3A] = 1500; | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEWL3A] = 1700; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARL3A] = 1700; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEWL3A] = 2000; | 
|  | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL3A] = 3000; | 
|  |  | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEARGA] = 1320; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEWGA] = 1500; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARESTGA] = 1500; | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEWGA] = 2040; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARGA] = 1700; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEWGA] = 2000; | 
|  | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALGA] = 2250; | 
|  |  | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEARLB] = 1200; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEWLB] = 1500; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARESTLB] = 1500; | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEWLB] = 1360; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARLB] = 1700; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEWLB] = 2400; | 
|  | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLB] = 2250; | 
|  |  | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEARL2B] = 1200; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEWL2B] = 1500; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARESTL2B] = 1500; | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEWL2B] = 1700; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARL2B] = 1700; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEWL2B] = 2000; | 
|  | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL2B] = 2500; | 
|  |  | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEARL3B] = 1200; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEWL3B] = 1500; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARESTL3B] = 1500; | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEWL3B] = 1870; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARL3B] = 1700; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEWL3B] = 2000; | 
|  | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL3B] = 2500; | 
|  |  | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEARGB] = 1200; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEWGB] = 1500; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARESTGB] = 1500; | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEWGB] = 1700; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARGB] = 1700; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEWGB] = 2000; | 
|  | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALGB] = 2500; | 
|  |  | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEARLA2] = 1200; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEWLA2] = 1800; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARESTLA2] = 1500; | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEWLA2] = 1700; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARLA2] = 1700; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEWLA2] = 2000; | 
|  | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLA2] = 2500; | 
|  |  | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEARL2A2] = 1200; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEWL2A2] = 1500; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARESTL2A2] = 1500; | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEWL2A2] = 1700; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARL2A2] = 1700; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEWL2A2] = 2000; | 
|  | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL2A2] = 2500; | 
|  |  | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEARL3A2] = 1440; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEWL3A2] = 1500; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARESTL3A2] = 1500; | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEWL3A2] = 1700; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARL3A2] = 1700; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEWL3A2] = 2000; | 
|  | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALL3A2] = 2500; | 
|  |  | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEARGA2] = 1200; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEWGA2] = 1500; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARESTGA2] = 1500; | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEWGA2] = 1700; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARGA2] = 1700; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEWGA2] = 2000; | 
|  | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALGA2] = 2750; | 
|  |  | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEARLL2] = 1600; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEWLL2] = 2000; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARESTLL2] = 2000; | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEWLL2] = 2640; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARLL2] = 2200; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEWLL2] = 2400; | 
|  | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLL2] = 3200; | 
|  |  | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEARLL3] = 1600; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEWLL3] = 2000; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARESTLL3] = 1800; | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEWLL3] = 2200; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARLL3] = 2200; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEWLL3] = 2400; | 
|  | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLL3] = 3200; | 
|  |  | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEARLG] = 1760; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEWLG] = 2400; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARESTLG] = 2000; | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEWLG] = 1760; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARLG] = 2640; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEWLG] = 2400; | 
|  | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALLG] = 3200; | 
|  |  | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEARBA] = 1600; | 
|  | rd->thresh_mult[THR_COMP_NEAREST_NEWBA] = 2000; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARESTBA] = 2000; | 
|  | rd->thresh_mult[THR_COMP_NEAR_NEWBA] = 2200; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEARBA] = 1980; | 
|  | rd->thresh_mult[THR_COMP_NEW_NEWBA] = 2640; | 
|  | rd->thresh_mult[THR_COMP_GLOBAL_GLOBALBA] = 3200; | 
|  |  | 
|  | rd->thresh_mult[THR_DC] = 1000; | 
|  | rd->thresh_mult[THR_PAETH] = 1000; | 
|  | rd->thresh_mult[THR_SMOOTH] = 2200; | 
|  | rd->thresh_mult[THR_SMOOTH_V] = 2000; | 
|  | rd->thresh_mult[THR_SMOOTH_H] = 2000; | 
|  | rd->thresh_mult[THR_H_PRED] = 2000; | 
|  | rd->thresh_mult[THR_V_PRED] = 1800; | 
|  | rd->thresh_mult[THR_D135_PRED] = 2500; | 
|  | rd->thresh_mult[THR_D203_PRED] = 2000; | 
|  | rd->thresh_mult[THR_D157_PRED] = 2500; | 
|  | rd->thresh_mult[THR_D67_PRED] = 2000; | 
|  | rd->thresh_mult[THR_D113_PRED] = 2500; | 
|  | rd->thresh_mult[THR_D45_PRED] = 2500; | 
|  | } | 
|  |  | 
|  | static INLINE void update_thr_fact(int (*factor_buf)[MAX_MODES], | 
|  | THR_MODES best_mode_index, | 
|  | THR_MODES mode_start, THR_MODES mode_end, | 
|  | BLOCK_SIZE min_size, BLOCK_SIZE max_size, | 
|  | int max_rd_thresh_factor) { | 
|  | for (THR_MODES mode = mode_start; mode < mode_end; ++mode) { | 
|  | for (BLOCK_SIZE bs = min_size; bs <= max_size; ++bs) { | 
|  | int *const fact = &factor_buf[bs][mode]; | 
|  | if (mode == best_mode_index) { | 
|  | *fact -= (*fact >> RD_THRESH_LOG_DEC_FACTOR); | 
|  | } else { | 
|  | *fact = AOMMIN(*fact + RD_THRESH_INC, max_rd_thresh_factor); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_update_rd_thresh_fact( | 
|  | const AV1_COMMON *const cm, int (*factor_buf)[MAX_MODES], | 
|  | int use_adaptive_rd_thresh, BLOCK_SIZE bsize, THR_MODES best_mode_index, | 
|  | THR_MODES inter_mode_start, THR_MODES inter_mode_end, | 
|  | THR_MODES intra_mode_start, THR_MODES intra_mode_end) { | 
|  | assert(use_adaptive_rd_thresh > 0); | 
|  | const int max_rd_thresh_factor = use_adaptive_rd_thresh * RD_THRESH_MAX_FACT; | 
|  |  | 
|  | const int bsize_is_1_to_4 = bsize > cm->seq_params->sb_size; | 
|  | BLOCK_SIZE min_size, max_size; | 
|  | if (bsize_is_1_to_4) { | 
|  | // This part handles block sizes with 1:4 and 4:1 aspect ratios | 
|  | // TODO(any): Experiment with threshold update for parent/child blocks | 
|  | min_size = bsize; | 
|  | max_size = bsize; | 
|  | } else { | 
|  | min_size = AOMMAX(bsize - 2, BLOCK_4X4); | 
|  | max_size = AOMMIN(bsize + 2, (int)cm->seq_params->sb_size); | 
|  | } | 
|  |  | 
|  | update_thr_fact(factor_buf, best_mode_index, inter_mode_start, inter_mode_end, | 
|  | min_size, max_size, max_rd_thresh_factor); | 
|  | update_thr_fact(factor_buf, best_mode_index, intra_mode_start, intra_mode_end, | 
|  | min_size, max_size, max_rd_thresh_factor); | 
|  | } | 
|  |  | 
|  | int av1_get_intra_cost_penalty(int qindex, int qdelta, | 
|  | aom_bit_depth_t bit_depth) { | 
|  | const int q = av1_dc_quant_QTX(qindex, qdelta, bit_depth); | 
|  | switch (bit_depth) { | 
|  | case AOM_BITS_8: return 20 * q; | 
|  | case AOM_BITS_10: return 5 * q; | 
|  | case AOM_BITS_12: return ROUND_POWER_OF_TWO(5 * q, 2); | 
|  | default: | 
|  | assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); | 
|  | return -1; | 
|  | } | 
|  | } |