|  | /* | 
|  | * Copyright (c) 2018, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <immintrin.h> | 
|  | #include "aom_dsp/x86/mem_sse2.h" | 
|  | #include "aom_dsp/x86/synonyms_avx2.h" | 
|  |  | 
|  | #include "config/av1_rtcd.h" | 
|  | #include "av1/encoder/rdopt.h" | 
|  |  | 
|  | // Process horizontal and vertical correlations in a 4x4 block of pixels. | 
|  | // We actually use the 4x4 pixels to calculate correlations corresponding to | 
|  | // the top-left 3x3 pixels, so this function must be called with 1x1 overlap, | 
|  | // moving the window along/down by 3 pixels at a time. | 
|  | INLINE static void horver_correlation_4x4(const int16_t *diff, int stride, | 
|  | __m256i *xy_sum_32, | 
|  | __m256i *xz_sum_32, __m256i *x_sum_32, | 
|  | __m256i *x2_sum_32) { | 
|  | // Pixels in this 4x4   [ a b c d ] | 
|  | // are referred to as:  [ e f g h ] | 
|  | //                      [ i j k l ] | 
|  | //                      [ m n o p ] | 
|  |  | 
|  | const __m256i pixels = _mm256_set_epi64x( | 
|  | loadu_int64(&diff[0 * stride]), loadu_int64(&diff[1 * stride]), | 
|  | loadu_int64(&diff[2 * stride]), loadu_int64(&diff[3 * stride])); | 
|  | // pixels = [d c b a h g f e] [l k j i p o n m] as i16 | 
|  |  | 
|  | const __m256i slli = _mm256_slli_epi64(pixels, 16); | 
|  | // slli = [c b a 0 g f e 0] [k j i 0 o n m 0] as i16 | 
|  |  | 
|  | const __m256i madd_xy = _mm256_madd_epi16(pixels, slli); | 
|  | // madd_xy = [bc+cd ab fg+gh ef] [jk+kl ij no+op mn] as i32 | 
|  | *xy_sum_32 = _mm256_add_epi32(*xy_sum_32, madd_xy); | 
|  |  | 
|  | // Permute control [3 2] [1 0] => [2 1] [0 0], 0b10010000 = 0x90 | 
|  | const __m256i perm = _mm256_permute4x64_epi64(slli, 0x90); | 
|  | // perm = [g f e 0 k j i 0] [o n m 0 o n m 0] as i16 | 
|  |  | 
|  | const __m256i madd_xz = _mm256_madd_epi16(slli, perm); | 
|  | // madd_xz = [cg+bf ae gk+fj ei] [ko+jn im oo+nn mm] as i32 | 
|  | *xz_sum_32 = _mm256_add_epi32(*xz_sum_32, madd_xz); | 
|  |  | 
|  | // Sum every element in slli (and then also their squares) | 
|  | const __m256i madd1_slli = _mm256_madd_epi16(slli, _mm256_set1_epi16(1)); | 
|  | // madd1_slli = [c+b a g+f e] [k+j i o+n m] as i32 | 
|  | *x_sum_32 = _mm256_add_epi32(*x_sum_32, madd1_slli); | 
|  |  | 
|  | const __m256i madd_slli = _mm256_madd_epi16(slli, slli); | 
|  | // madd_slli = [cc+bb aa gg+ff ee] [kk+jj ii oo+nn mm] as i32 | 
|  | *x2_sum_32 = _mm256_add_epi32(*x2_sum_32, madd_slli); | 
|  | } | 
|  |  | 
|  | void av1_get_horver_correlation_full_avx2(const int16_t *diff, int stride, | 
|  | int width, int height, float *hcorr, | 
|  | float *vcorr) { | 
|  | // The following notation is used: | 
|  | // x - current pixel | 
|  | // y - right neighbour pixel | 
|  | // z - below neighbour pixel | 
|  | // w - down-right neighbour pixel | 
|  | int64_t xy_sum = 0, xz_sum = 0; | 
|  | int64_t x_sum = 0, x2_sum = 0; | 
|  |  | 
|  | // Process horizontal and vertical correlations through the body in 4x4 | 
|  | // blocks.  This excludes the final row and column and possibly one extra | 
|  | // column depending how 3 divides into width and height | 
|  | int32_t xy_xz_tmp[8] = { 0 }, x_x2_tmp[8] = { 0 }; | 
|  | __m256i xy_sum_32 = _mm256_setzero_si256(); | 
|  | __m256i xz_sum_32 = _mm256_setzero_si256(); | 
|  | __m256i x_sum_32 = _mm256_setzero_si256(); | 
|  | __m256i x2_sum_32 = _mm256_setzero_si256(); | 
|  | for (int i = 0; i <= height - 4; i += 3) { | 
|  | for (int j = 0; j <= width - 4; j += 3) { | 
|  | horver_correlation_4x4(&diff[i * stride + j], stride, &xy_sum_32, | 
|  | &xz_sum_32, &x_sum_32, &x2_sum_32); | 
|  | } | 
|  | const __m256i hadd_xy_xz = _mm256_hadd_epi32(xy_sum_32, xz_sum_32); | 
|  | // hadd_xy_xz = [ae+bf+cg ei+fj+gk ab+bc+cd ef+fg+gh] | 
|  | //              [im+jn+ko mm+nn+oo ij+jk+kl mn+no+op] as i32 | 
|  | yy_storeu_256(xy_xz_tmp, hadd_xy_xz); | 
|  | xy_sum += (int64_t)xy_xz_tmp[5] + xy_xz_tmp[4] + xy_xz_tmp[1]; | 
|  | xz_sum += (int64_t)xy_xz_tmp[7] + xy_xz_tmp[6] + xy_xz_tmp[3]; | 
|  |  | 
|  | const __m256i hadd_x_x2 = _mm256_hadd_epi32(x_sum_32, x2_sum_32); | 
|  | // hadd_x_x2 = [aa+bb+cc ee+ff+gg a+b+c e+f+g] | 
|  | //             [ii+jj+kk mm+nn+oo i+j+k m+n+o] as i32 | 
|  | yy_storeu_256(x_x2_tmp, hadd_x_x2); | 
|  | x_sum += (int64_t)x_x2_tmp[5] + x_x2_tmp[4] + x_x2_tmp[1]; | 
|  | x2_sum += (int64_t)x_x2_tmp[7] + x_x2_tmp[6] + x_x2_tmp[3]; | 
|  |  | 
|  | xy_sum_32 = _mm256_setzero_si256(); | 
|  | xz_sum_32 = _mm256_setzero_si256(); | 
|  | x_sum_32 = _mm256_setzero_si256(); | 
|  | x2_sum_32 = _mm256_setzero_si256(); | 
|  | } | 
|  |  | 
|  | // x_sum now covers every pixel except the final 1-2 rows and 1-2 cols | 
|  | int64_t x_finalrow = 0, x_finalcol = 0, x2_finalrow = 0, x2_finalcol = 0; | 
|  |  | 
|  | // Do we have 2 rows remaining or just the one?  Note that width and height | 
|  | // are powers of 2, so each modulo 3 must be 1 or 2. | 
|  | if (height % 3 == 1) {  // Just horiz corrs on the final row | 
|  | const int16_t x0 = diff[(height - 1) * stride]; | 
|  | x_sum += x0; | 
|  | x_finalrow += x0; | 
|  | x2_sum += x0 * x0; | 
|  | x2_finalrow += x0 * x0; | 
|  | for (int j = 0; j < width - 1; ++j) { | 
|  | const int16_t x = diff[(height - 1) * stride + j]; | 
|  | const int16_t y = diff[(height - 1) * stride + j + 1]; | 
|  | xy_sum += x * y; | 
|  | x_sum += y; | 
|  | x2_sum += y * y; | 
|  | x_finalrow += y; | 
|  | x2_finalrow += y * y; | 
|  | } | 
|  | } else {  // Two rows remaining to do | 
|  | const int16_t x0 = diff[(height - 2) * stride]; | 
|  | const int16_t z0 = diff[(height - 1) * stride]; | 
|  | x_sum += x0 + z0; | 
|  | x2_sum += x0 * x0 + z0 * z0; | 
|  | x_finalrow += z0; | 
|  | x2_finalrow += z0 * z0; | 
|  | for (int j = 0; j < width - 1; ++j) { | 
|  | const int16_t x = diff[(height - 2) * stride + j]; | 
|  | const int16_t y = diff[(height - 2) * stride + j + 1]; | 
|  | const int16_t z = diff[(height - 1) * stride + j]; | 
|  | const int16_t w = diff[(height - 1) * stride + j + 1]; | 
|  |  | 
|  | // Horizontal and vertical correlations for the penultimate row: | 
|  | xy_sum += x * y; | 
|  | xz_sum += x * z; | 
|  |  | 
|  | // Now just horizontal correlations for the final row: | 
|  | xy_sum += z * w; | 
|  |  | 
|  | x_sum += y + w; | 
|  | x2_sum += y * y + w * w; | 
|  | x_finalrow += w; | 
|  | x2_finalrow += w * w; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Do we have 2 columns remaining or just the one? | 
|  | if (width % 3 == 1) {  // Just vert corrs on the final col | 
|  | const int16_t x0 = diff[width - 1]; | 
|  | x_sum += x0; | 
|  | x_finalcol += x0; | 
|  | x2_sum += x0 * x0; | 
|  | x2_finalcol += x0 * x0; | 
|  | for (int i = 0; i < height - 1; ++i) { | 
|  | const int16_t x = diff[i * stride + width - 1]; | 
|  | const int16_t z = diff[(i + 1) * stride + width - 1]; | 
|  | xz_sum += x * z; | 
|  | x_finalcol += z; | 
|  | x2_finalcol += z * z; | 
|  | // So the bottom-right elements don't get counted twice: | 
|  | if (i < height - (height % 3 == 1 ? 2 : 3)) { | 
|  | x_sum += z; | 
|  | x2_sum += z * z; | 
|  | } | 
|  | } | 
|  | } else {  // Two cols remaining | 
|  | const int16_t x0 = diff[width - 2]; | 
|  | const int16_t y0 = diff[width - 1]; | 
|  | x_sum += x0 + y0; | 
|  | x2_sum += x0 * x0 + y0 * y0; | 
|  | x_finalcol += y0; | 
|  | x2_finalcol += y0 * y0; | 
|  | for (int i = 0; i < height - 1; ++i) { | 
|  | const int16_t x = diff[i * stride + width - 2]; | 
|  | const int16_t y = diff[i * stride + width - 1]; | 
|  | const int16_t z = diff[(i + 1) * stride + width - 2]; | 
|  | const int16_t w = diff[(i + 1) * stride + width - 1]; | 
|  |  | 
|  | // Horizontal and vertical correlations for the penultimate col: | 
|  | // Skip these on the last iteration of this loop if we also had two | 
|  | // rows remaining, otherwise the final horizontal and vertical correlation | 
|  | // get erroneously processed twice | 
|  | if (i < height - 2 || height % 3 == 1) { | 
|  | xy_sum += x * y; | 
|  | xz_sum += x * z; | 
|  | } | 
|  |  | 
|  | x_finalcol += w; | 
|  | x2_finalcol += w * w; | 
|  | // So the bottom-right elements don't get counted twice: | 
|  | if (i < height - (height % 3 == 1 ? 2 : 3)) { | 
|  | x_sum += z + w; | 
|  | x2_sum += z * z + w * w; | 
|  | } | 
|  |  | 
|  | // Now just vertical correlations for the final column: | 
|  | xz_sum += y * w; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calculate the simple sums and squared-sums | 
|  | int64_t x_firstrow = 0, x_firstcol = 0; | 
|  | int64_t x2_firstrow = 0, x2_firstcol = 0; | 
|  |  | 
|  | for (int j = 0; j < width; ++j) { | 
|  | x_firstrow += diff[j]; | 
|  | x2_firstrow += diff[j] * diff[j]; | 
|  | } | 
|  | for (int i = 0; i < height; ++i) { | 
|  | x_firstcol += diff[i * stride]; | 
|  | x2_firstcol += diff[i * stride] * diff[i * stride]; | 
|  | } | 
|  |  | 
|  | int64_t xhor_sum = x_sum - x_finalcol; | 
|  | int64_t xver_sum = x_sum - x_finalrow; | 
|  | int64_t y_sum = x_sum - x_firstcol; | 
|  | int64_t z_sum = x_sum - x_firstrow; | 
|  | int64_t x2hor_sum = x2_sum - x2_finalcol; | 
|  | int64_t x2ver_sum = x2_sum - x2_finalrow; | 
|  | int64_t y2_sum = x2_sum - x2_firstcol; | 
|  | int64_t z2_sum = x2_sum - x2_firstrow; | 
|  |  | 
|  | const float num_hor = (float)(height * (width - 1)); | 
|  | const float num_ver = (float)((height - 1) * width); | 
|  |  | 
|  | const float xhor_var_n = x2hor_sum - (xhor_sum * xhor_sum) / num_hor; | 
|  | const float xver_var_n = x2ver_sum - (xver_sum * xver_sum) / num_ver; | 
|  |  | 
|  | const float y_var_n = y2_sum - (y_sum * y_sum) / num_hor; | 
|  | const float z_var_n = z2_sum - (z_sum * z_sum) / num_ver; | 
|  |  | 
|  | const float xy_var_n = xy_sum - (xhor_sum * y_sum) / num_hor; | 
|  | const float xz_var_n = xz_sum - (xver_sum * z_sum) / num_ver; | 
|  |  | 
|  | if (xhor_var_n > 0 && y_var_n > 0) { | 
|  | *hcorr = xy_var_n / sqrtf(xhor_var_n * y_var_n); | 
|  | *hcorr = *hcorr < 0 ? 0 : *hcorr; | 
|  | } else { | 
|  | *hcorr = 1.0; | 
|  | } | 
|  | if (xver_var_n > 0 && z_var_n > 0) { | 
|  | *vcorr = xz_var_n / sqrtf(xver_var_n * z_var_n); | 
|  | *vcorr = *vcorr < 0 ? 0 : *vcorr; | 
|  | } else { | 
|  | *vcorr = 1.0; | 
|  | } | 
|  | } |