| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <math.h> |
| |
| #include "config/aom_dsp_rtcd.h" |
| |
| #include "aom_dsp/ssim.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/system_state.h" |
| |
| void aom_ssim_parms_16x16_c(const uint8_t *s, int sp, const uint8_t *r, int rp, |
| uint32_t *sum_s, uint32_t *sum_r, |
| uint32_t *sum_sq_s, uint32_t *sum_sq_r, |
| uint32_t *sum_sxr) { |
| int i, j; |
| for (i = 0; i < 16; i++, s += sp, r += rp) { |
| for (j = 0; j < 16; j++) { |
| *sum_s += s[j]; |
| *sum_r += r[j]; |
| *sum_sq_s += s[j] * s[j]; |
| *sum_sq_r += r[j] * r[j]; |
| *sum_sxr += s[j] * r[j]; |
| } |
| } |
| } |
| |
| void aom_ssim_parms_8x8_c(const uint8_t *s, int sp, const uint8_t *r, int rp, |
| uint32_t *sum_s, uint32_t *sum_r, uint32_t *sum_sq_s, |
| uint32_t *sum_sq_r, uint32_t *sum_sxr) { |
| int i, j; |
| for (i = 0; i < 8; i++, s += sp, r += rp) { |
| for (j = 0; j < 8; j++) { |
| *sum_s += s[j]; |
| *sum_r += r[j]; |
| *sum_sq_s += s[j] * s[j]; |
| *sum_sq_r += r[j] * r[j]; |
| *sum_sxr += s[j] * r[j]; |
| } |
| } |
| } |
| |
| void aom_highbd_ssim_parms_8x8_c(const uint16_t *s, int sp, const uint16_t *r, |
| int rp, uint32_t *sum_s, uint32_t *sum_r, |
| uint32_t *sum_sq_s, uint32_t *sum_sq_r, |
| uint32_t *sum_sxr) { |
| int i, j; |
| for (i = 0; i < 8; i++, s += sp, r += rp) { |
| for (j = 0; j < 8; j++) { |
| *sum_s += s[j]; |
| *sum_r += r[j]; |
| *sum_sq_s += s[j] * s[j]; |
| *sum_sq_r += r[j] * r[j]; |
| *sum_sxr += s[j] * r[j]; |
| } |
| } |
| } |
| |
| static const int64_t cc1 = 26634; // (64^2*(.01*255)^2 |
| static const int64_t cc2 = 239708; // (64^2*(.03*255)^2 |
| static const int64_t cc1_10 = 428658; // (64^2*(.01*1023)^2 |
| static const int64_t cc2_10 = 3857925; // (64^2*(.03*1023)^2 |
| static const int64_t cc1_12 = 6868593; // (64^2*(.01*4095)^2 |
| static const int64_t cc2_12 = 61817334; // (64^2*(.03*4095)^2 |
| |
| static double similarity(uint32_t sum_s, uint32_t sum_r, uint32_t sum_sq_s, |
| uint32_t sum_sq_r, uint32_t sum_sxr, int count, |
| uint32_t bd) { |
| int64_t ssim_n, ssim_d; |
| int64_t c1, c2; |
| if (bd == 8) { |
| // scale the constants by number of pixels |
| c1 = (cc1 * count * count) >> 12; |
| c2 = (cc2 * count * count) >> 12; |
| } else if (bd == 10) { |
| c1 = (cc1_10 * count * count) >> 12; |
| c2 = (cc2_10 * count * count) >> 12; |
| } else if (bd == 12) { |
| c1 = (cc1_12 * count * count) >> 12; |
| c2 = (cc2_12 * count * count) >> 12; |
| } else { |
| c1 = c2 = 0; |
| assert(0); |
| } |
| |
| ssim_n = (2 * sum_s * sum_r + c1) * |
| ((int64_t)2 * count * sum_sxr - (int64_t)2 * sum_s * sum_r + c2); |
| |
| ssim_d = (sum_s * sum_s + sum_r * sum_r + c1) * |
| ((int64_t)count * sum_sq_s - (int64_t)sum_s * sum_s + |
| (int64_t)count * sum_sq_r - (int64_t)sum_r * sum_r + c2); |
| |
| return ssim_n * 1.0 / ssim_d; |
| } |
| |
| static double ssim_8x8(const uint8_t *s, int sp, const uint8_t *r, int rp) { |
| uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0; |
| aom_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r, |
| &sum_sxr); |
| return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 64, 8); |
| } |
| |
| static double highbd_ssim_8x8(const uint16_t *s, int sp, const uint16_t *r, |
| int rp, uint32_t bd, uint32_t shift) { |
| uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0; |
| aom_highbd_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r, |
| &sum_sxr); |
| return similarity(sum_s >> shift, sum_r >> shift, sum_sq_s >> (2 * shift), |
| sum_sq_r >> (2 * shift), sum_sxr >> (2 * shift), 64, bd); |
| } |
| |
| // We are using a 8x8 moving window with starting location of each 8x8 window |
| // on the 4x4 pixel grid. Such arrangement allows the windows to overlap |
| // block boundaries to penalize blocking artifacts. |
| static double aom_ssim2(const uint8_t *img1, const uint8_t *img2, |
| int stride_img1, int stride_img2, int width, |
| int height) { |
| int i, j; |
| int samples = 0; |
| double ssim_total = 0; |
| |
| // sample point start with each 4x4 location |
| for (i = 0; i <= height - 8; |
| i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) { |
| for (j = 0; j <= width - 8; j += 4) { |
| double v = ssim_8x8(img1 + j, stride_img1, img2 + j, stride_img2); |
| ssim_total += v; |
| samples++; |
| } |
| } |
| ssim_total /= samples; |
| return ssim_total; |
| } |
| |
| static double aom_highbd_ssim2(const uint8_t *img1, const uint8_t *img2, |
| int stride_img1, int stride_img2, int width, |
| int height, uint32_t bd, uint32_t shift) { |
| int i, j; |
| int samples = 0; |
| double ssim_total = 0; |
| |
| // sample point start with each 4x4 location |
| for (i = 0; i <= height - 8; |
| i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) { |
| for (j = 0; j <= width - 8; j += 4) { |
| double v = highbd_ssim_8x8(CONVERT_TO_SHORTPTR(img1 + j), stride_img1, |
| CONVERT_TO_SHORTPTR(img2 + j), stride_img2, bd, |
| shift); |
| ssim_total += v; |
| samples++; |
| } |
| } |
| ssim_total /= samples; |
| return ssim_total; |
| } |
| |
| double aom_calc_ssim(const YV12_BUFFER_CONFIG *source, |
| const YV12_BUFFER_CONFIG *dest, double *weight) { |
| double abc[3]; |
| for (int i = 0; i < 3; ++i) { |
| const int is_uv = i > 0; |
| abc[i] = aom_ssim2(source->buffers[i], dest->buffers[i], |
| source->strides[is_uv], dest->strides[is_uv], |
| source->crop_widths[is_uv], source->crop_heights[is_uv]); |
| } |
| |
| *weight = 1; |
| return abc[0] * .8 + .1 * (abc[1] + abc[2]); |
| } |
| |
| // traditional ssim as per: http://en.wikipedia.org/wiki/Structural_similarity |
| // |
| // Re working out the math -> |
| // |
| // ssim(x,y) = (2*mean(x)*mean(y) + c1)*(2*cov(x,y)+c2) / |
| // ((mean(x)^2+mean(y)^2+c1)*(var(x)+var(y)+c2)) |
| // |
| // mean(x) = sum(x) / n |
| // |
| // cov(x,y) = (n*sum(xi*yi)-sum(x)*sum(y))/(n*n) |
| // |
| // var(x) = (n*sum(xi*xi)-sum(xi)*sum(xi))/(n*n) |
| // |
| // ssim(x,y) = |
| // (2*sum(x)*sum(y)/(n*n) + c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))/(n*n)+c2) / |
| // (((sum(x)*sum(x)+sum(y)*sum(y))/(n*n) +c1) * |
| // ((n*sum(xi*xi) - sum(xi)*sum(xi))/(n*n)+ |
| // (n*sum(yi*yi) - sum(yi)*sum(yi))/(n*n)+c2))) |
| // |
| // factoring out n*n |
| // |
| // ssim(x,y) = |
| // (2*sum(x)*sum(y) + n*n*c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))+n*n*c2) / |
| // (((sum(x)*sum(x)+sum(y)*sum(y)) + n*n*c1) * |
| // (n*sum(xi*xi)-sum(xi)*sum(xi)+n*sum(yi*yi)-sum(yi)*sum(yi)+n*n*c2)) |
| // |
| // Replace c1 with n*n * c1 for the final step that leads to this code: |
| // The final step scales by 12 bits so we don't lose precision in the constants. |
| |
| static double ssimv_similarity(const Ssimv *sv, int64_t n) { |
| // Scale the constants by number of pixels. |
| const int64_t c1 = (cc1 * n * n) >> 12; |
| const int64_t c2 = (cc2 * n * n) >> 12; |
| |
| const double l = 1.0 * (2 * sv->sum_s * sv->sum_r + c1) / |
| (sv->sum_s * sv->sum_s + sv->sum_r * sv->sum_r + c1); |
| |
| // Since these variables are unsigned sums, convert to double so |
| // math is done in double arithmetic. |
| const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) / |
| (n * sv->sum_sq_s - sv->sum_s * sv->sum_s + |
| n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2); |
| |
| return l * v; |
| } |
| |
| // The first term of the ssim metric is a luminance factor. |
| // |
| // (2*mean(x)*mean(y) + c1)/ (mean(x)^2+mean(y)^2+c1) |
| // |
| // This luminance factor is super sensitive to the dark side of luminance |
| // values and completely insensitive on the white side. check out 2 sets |
| // (1,3) and (250,252) the term gives ( 2*1*3/(1+9) = .60 |
| // 2*250*252/ (250^2+252^2) => .99999997 |
| // |
| // As a result in this tweaked version of the calculation in which the |
| // luminance is taken as percentage off from peak possible. |
| // |
| // 255 * 255 - (sum_s - sum_r) / count * (sum_s - sum_r) / count |
| // |
| static double ssimv_similarity2(const Ssimv *sv, int64_t n) { |
| // Scale the constants by number of pixels. |
| const int64_t c1 = (cc1 * n * n) >> 12; |
| const int64_t c2 = (cc2 * n * n) >> 12; |
| |
| const double mean_diff = (1.0 * sv->sum_s - sv->sum_r) / n; |
| const double l = (255 * 255 - mean_diff * mean_diff + c1) / (255 * 255 + c1); |
| |
| // Since these variables are unsigned, sums convert to double so |
| // math is done in double arithmetic. |
| const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) / |
| (n * sv->sum_sq_s - sv->sum_s * sv->sum_s + |
| n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2); |
| |
| return l * v; |
| } |
| static void ssimv_parms(uint8_t *img1, int img1_pitch, uint8_t *img2, |
| int img2_pitch, Ssimv *sv) { |
| aom_ssim_parms_8x8(img1, img1_pitch, img2, img2_pitch, &sv->sum_s, &sv->sum_r, |
| &sv->sum_sq_s, &sv->sum_sq_r, &sv->sum_sxr); |
| } |
| |
| double aom_get_ssim_metrics(uint8_t *img1, int img1_pitch, uint8_t *img2, |
| int img2_pitch, int width, int height, Ssimv *sv2, |
| Metrics *m, int do_inconsistency) { |
| double dssim_total = 0; |
| double ssim_total = 0; |
| double ssim2_total = 0; |
| double inconsistency_total = 0; |
| int i, j; |
| int c = 0; |
| double norm; |
| double old_ssim_total = 0; |
| aom_clear_system_state(); |
| // We can sample points as frequently as we like start with 1 per 4x4. |
| for (i = 0; i < height; |
| i += 4, img1 += img1_pitch * 4, img2 += img2_pitch * 4) { |
| for (j = 0; j < width; j += 4, ++c) { |
| Ssimv sv = { 0 }; |
| double ssim; |
| double ssim2; |
| double dssim; |
| uint32_t var_new; |
| uint32_t var_old; |
| uint32_t mean_new; |
| uint32_t mean_old; |
| double ssim_new; |
| double ssim_old; |
| |
| // Not sure there's a great way to handle the edge pixels |
| // in ssim when using a window. Seems biased against edge pixels |
| // however you handle this. This uses only samples that are |
| // fully in the frame. |
| if (j + 8 <= width && i + 8 <= height) { |
| ssimv_parms(img1 + j, img1_pitch, img2 + j, img2_pitch, &sv); |
| } |
| |
| ssim = ssimv_similarity(&sv, 64); |
| ssim2 = ssimv_similarity2(&sv, 64); |
| |
| sv.ssim = ssim2; |
| |
| // dssim is calculated to use as an actual error metric and |
| // is scaled up to the same range as sum square error. |
| // Since we are subsampling every 16th point maybe this should be |
| // *16 ? |
| dssim = 255 * 255 * (1 - ssim2) / 2; |
| |
| // Here I introduce a new error metric: consistency-weighted |
| // SSIM-inconsistency. This metric isolates frames where the |
| // SSIM 'suddenly' changes, e.g. if one frame in every 8 is much |
| // sharper or blurrier than the others. Higher values indicate a |
| // temporally inconsistent SSIM. There are two ideas at work: |
| // |
| // 1) 'SSIM-inconsistency': the total inconsistency value |
| // reflects how much SSIM values are changing between this |
| // source / reference frame pair and the previous pair. |
| // |
| // 2) 'consistency-weighted': weights de-emphasize areas in the |
| // frame where the scene content has changed. Changes in scene |
| // content are detected via changes in local variance and local |
| // mean. |
| // |
| // Thus the overall measure reflects how inconsistent the SSIM |
| // values are, over consistent regions of the frame. |
| // |
| // The metric has three terms: |
| // |
| // term 1 -> uses change in scene Variance to weight error score |
| // 2 * var(Fi)*var(Fi-1) / (var(Fi)^2+var(Fi-1)^2) |
| // larger changes from one frame to the next mean we care |
| // less about consistency. |
| // |
| // term 2 -> uses change in local scene luminance to weight error |
| // 2 * avg(Fi)*avg(Fi-1) / (avg(Fi)^2+avg(Fi-1)^2) |
| // larger changes from one frame to the next mean we care |
| // less about consistency. |
| // |
| // term3 -> measures inconsistency in ssim scores between frames |
| // 1 - ( 2 * ssim(Fi)*ssim(Fi-1)/(ssim(Fi)^2+sssim(Fi-1)^2). |
| // |
| // This term compares the ssim score for the same location in 2 |
| // subsequent frames. |
| var_new = sv.sum_sq_s - sv.sum_s * sv.sum_s / 64; |
| var_old = sv2[c].sum_sq_s - sv2[c].sum_s * sv2[c].sum_s / 64; |
| mean_new = sv.sum_s; |
| mean_old = sv2[c].sum_s; |
| ssim_new = sv.ssim; |
| ssim_old = sv2[c].ssim; |
| |
| if (do_inconsistency) { |
| // We do the metric once for every 4x4 block in the image. Since |
| // we are scaling the error to SSE for use in a psnr calculation |
| // 1.0 = 4x4x255x255 the worst error we can possibly have. |
| static const double kScaling = 4. * 4 * 255 * 255; |
| |
| // The constants have to be non 0 to avoid potential divide by 0 |
| // issues other than that they affect kind of a weighting between |
| // the terms. No testing of what the right terms should be has been |
| // done. |
| static const double c1 = 1, c2 = 1, c3 = 1; |
| |
| // This measures how much consistent variance is in two consecutive |
| // source frames. 1.0 means they have exactly the same variance. |
| const double variance_term = |
| (2.0 * var_old * var_new + c1) / |
| (1.0 * var_old * var_old + 1.0 * var_new * var_new + c1); |
| |
| // This measures how consistent the local mean are between two |
| // consecutive frames. 1.0 means they have exactly the same mean. |
| const double mean_term = |
| (2.0 * mean_old * mean_new + c2) / |
| (1.0 * mean_old * mean_old + 1.0 * mean_new * mean_new + c2); |
| |
| // This measures how consistent the ssims of two |
| // consecutive frames is. 1.0 means they are exactly the same. |
| double ssim_term = |
| pow((2.0 * ssim_old * ssim_new + c3) / |
| (ssim_old * ssim_old + ssim_new * ssim_new + c3), |
| 5); |
| |
| double this_inconsistency; |
| |
| // Floating point math sometimes makes this > 1 by a tiny bit. |
| // We want the metric to scale between 0 and 1.0 so we can convert |
| // it to an snr scaled value. |
| if (ssim_term > 1) ssim_term = 1; |
| |
| // This converts the consistency metric to an inconsistency metric |
| // ( so we can scale it like psnr to something like sum square error. |
| // The reason for the variance and mean terms is the assumption that |
| // if there are big changes in the source we shouldn't penalize |
| // inconsistency in ssim scores a bit less as it will be less visible |
| // to the user. |
| this_inconsistency = (1 - ssim_term) * variance_term * mean_term; |
| |
| this_inconsistency *= kScaling; |
| inconsistency_total += this_inconsistency; |
| } |
| sv2[c] = sv; |
| ssim_total += ssim; |
| ssim2_total += ssim2; |
| dssim_total += dssim; |
| |
| old_ssim_total += ssim_old; |
| } |
| old_ssim_total += 0; |
| } |
| |
| norm = 1. / (width / 4) / (height / 4); |
| ssim_total *= norm; |
| ssim2_total *= norm; |
| m->ssim2 = ssim2_total; |
| m->ssim = ssim_total; |
| if (old_ssim_total == 0) inconsistency_total = 0; |
| |
| m->ssimc = inconsistency_total; |
| |
| m->dssim = dssim_total; |
| return inconsistency_total; |
| } |
| |
| double aom_highbd_calc_ssim(const YV12_BUFFER_CONFIG *source, |
| const YV12_BUFFER_CONFIG *dest, double *weight, |
| uint32_t bd, uint32_t in_bd) { |
| assert(bd >= in_bd); |
| const uint32_t shift = bd - in_bd; |
| |
| double abc[3]; |
| for (int i = 0; i < 3; ++i) { |
| const int is_uv = i > 0; |
| abc[i] = aom_highbd_ssim2(source->buffers[i], dest->buffers[i], |
| source->strides[is_uv], dest->strides[is_uv], |
| source->crop_widths[is_uv], |
| source->crop_heights[is_uv], in_bd, shift); |
| } |
| |
| *weight = 1; |
| return abc[0] * .8 + .1 * (abc[1] + abc[2]); |
| } |