blob: 02beb5e357be2253874fbeb1336394b552d4d122 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
/*!\file
* \brief Declares top-level encoder structures and functions.
*/
#ifndef AOM_AV1_ENCODER_ENCODER_H_
#define AOM_AV1_ENCODER_ENCODER_H_
#include <stdbool.h>
#include <stdio.h>
#include "config/aom_config.h"
#include "aom/aomcx.h"
#include "av1/common/alloccommon.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/entropymode.h"
#include "av1/common/enums.h"
#include "av1/common/resize.h"
#include "av1/common/thread_common.h"
#include "av1/common/timing.h"
#include "av1/encoder/aq_cyclicrefresh.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/block.h"
#include "av1/encoder/context_tree.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/firstpass.h"
#include "av1/encoder/global_motion.h"
#include "av1/encoder/level.h"
#include "av1/encoder/lookahead.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/ratectrl.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/speed_features.h"
#include "av1/encoder/svc_layercontext.h"
#include "av1/encoder/tokenize.h"
#include "av1/encoder/tpl_model.h"
#if CONFIG_INTERNAL_STATS
#include "aom_dsp/ssim.h"
#endif
#include "aom_dsp/variance.h"
#if CONFIG_DENOISE
#include "aom_dsp/noise_model.h"
#endif
#if CONFIG_TUNE_VMAF
#include "aom_dsp/vmaf.h"
#endif
#include "aom/internal/aom_codec_internal.h"
#include "aom_util/aom_thread.h"
#ifdef __cplusplus
extern "C" {
#endif
// TODO(yunqing, any): Added suppression tag to quiet Doxygen warnings. Need to
// adjust it while we work on documentation.
/*!\cond */
// Number of frames required to test for scene cut detection
#define SCENE_CUT_KEY_TEST_INTERVAL 16
// Rational number with an int64 numerator
// This structure holds a fractional value
typedef struct aom_rational64 {
int64_t num; // fraction numerator
int den; // fraction denominator
} aom_rational64_t; // alias for struct aom_rational
typedef struct {
#if CONFIG_SUPERRES_IN_RECODE
struct loopfilter lf;
CdefInfo cdef_info;
YV12_BUFFER_CONFIG copy_buffer;
RATE_CONTROL rc;
#endif // CONFIG_SUPERRES_IN_RECODE
} CODING_CONTEXT;
enum {
NORMAL = 0,
FOURFIVE = 1,
THREEFIVE = 2,
ONETWO = 3
} UENUM1BYTE(AOM_SCALING);
enum {
// Good Quality Fast Encoding. The encoder balances quality with the amount of
// time it takes to encode the output. Speed setting controls how fast.
GOOD,
// Realtime Fast Encoding. Will force some restrictions on bitrate
// constraints.
REALTIME
} UENUM1BYTE(MODE);
enum {
FRAMEFLAGS_KEY = 1 << 0,
FRAMEFLAGS_GOLDEN = 1 << 1,
FRAMEFLAGS_BWDREF = 1 << 2,
// TODO(zoeliu): To determine whether a frame flag is needed for ALTREF2_FRAME
FRAMEFLAGS_ALTREF = 1 << 3,
FRAMEFLAGS_INTRAONLY = 1 << 4,
FRAMEFLAGS_SWITCH = 1 << 5,
FRAMEFLAGS_ERROR_RESILIENT = 1 << 6,
} UENUM1BYTE(FRAMETYPE_FLAGS);
enum {
NO_AQ = 0,
VARIANCE_AQ = 1,
COMPLEXITY_AQ = 2,
CYCLIC_REFRESH_AQ = 3,
AQ_MODE_COUNT // This should always be the last member of the enum
} UENUM1BYTE(AQ_MODE);
enum {
NO_DELTA_Q = 0,
DELTA_Q_OBJECTIVE = 1, // Modulation to improve objective quality
DELTA_Q_PERCEPTUAL = 2, // Modulation to improve perceptual quality
DELTA_Q_MODE_COUNT // This should always be the last member of the enum
} UENUM1BYTE(DELTAQ_MODE);
enum {
RESIZE_NONE = 0, // No frame resizing allowed.
RESIZE_FIXED = 1, // All frames are coded at the specified scale.
RESIZE_RANDOM = 2, // All frames are coded at a random scale.
RESIZE_MODES
} UENUM1BYTE(RESIZE_MODE);
typedef enum {
kInvalid = 0,
kLowSad = 1,
kHighSad = 2,
kLowVarHighSumdiff = 3,
} CONTENT_STATE_SB;
enum {
SS_CFG_SRC = 0,
SS_CFG_LOOKAHEAD = 1,
SS_CFG_FPF = 2,
SS_CFG_TOTAL = 3
} UENUM1BYTE(SS_CFG_OFFSET);
enum {
DISABLE_SCENECUT, // For LAP, lag_in_frames < 19
ENABLE_SCENECUT_MODE_1, // For LAP, lag_in_frames >=19 and < 33
ENABLE_SCENECUT_MODE_2 // For twopass and LAP - lag_in_frames >=33
} UENUM1BYTE(SCENECUT_MODE);
// TODO(jingning): This needs to be cleaned up next.
// TPL stats buffers are prepared for every frame in the GOP,
// including (internal) overlays and (internal) arfs.
// In addition, frames in the lookahead that are outside of the GOP
// are also used.
// Thus it should use
// (gop_length) + (# overlays) + (MAX_LAG_BUFFERS - gop_len) =
// MAX_LAG_BUFFERS + (# overlays)
// 2 * MAX_LAG_BUFFERS is therefore a safe estimate.
// TODO(bohanli): test setting it to 1.5 * MAX_LAG_BUFFER
#define MAX_TPL_FRAME_IDX (2 * MAX_LAG_BUFFERS)
// The first REF_FRAMES + 1 buffers are reserved.
// tpl_data->tpl_frame starts after REF_FRAMES + 1
#define MAX_LENGTH_TPL_FRAME_STATS (MAX_TPL_FRAME_IDX + REF_FRAMES + 1)
#define MAX_TPL_EXTEND (MAX_LAG_BUFFERS - MAX_GF_INTERVAL)
#define MAX_VBR_CORPUS_COMPLEXITY 10000
typedef struct TplDepStats {
int64_t intra_cost;
int64_t inter_cost;
int64_t srcrf_dist;
int64_t recrf_dist;
int64_t srcrf_rate;
int64_t recrf_rate;
int64_t mc_dep_rate;
int64_t mc_dep_dist;
int_mv mv[INTER_REFS_PER_FRAME];
int ref_frame_index;
int64_t pred_error[INTER_REFS_PER_FRAME];
int64_t mc_count;
int64_t mc_saved;
} TplDepStats;
typedef struct TplDepFrame {
uint8_t is_valid;
TplDepStats *tpl_stats_ptr;
const YV12_BUFFER_CONFIG *gf_picture;
YV12_BUFFER_CONFIG *rec_picture;
int ref_map_index[REF_FRAMES];
int stride;
int width;
int height;
int mi_rows;
int mi_cols;
unsigned int frame_display_index;
int base_rdmult;
} TplDepFrame;
typedef struct TplParams {
// Block granularity of tpl score storage.
uint8_t tpl_stats_block_mis_log2;
// Buffer to store the frame level tpl information for each frame in a gf
// group. tpl_stats_buffer[i] stores the tpl information of ith frame in a gf
// group
TplDepFrame tpl_stats_buffer[MAX_LENGTH_TPL_FRAME_STATS];
// Buffer to store tpl stats at block granularity.
// tpl_stats_pool[i][j] stores the tpl stats of jth block of ith frame in a gf
// group.
TplDepStats *tpl_stats_pool[MAX_LAG_BUFFERS];
// Buffer to store tpl reconstructed frame.
// tpl_rec_pool[i] stores the reconstructed frame of ith frame in a gf group.
YV12_BUFFER_CONFIG tpl_rec_pool[MAX_LAG_BUFFERS];
// Pointer to tpl_stats_buffer.
TplDepFrame *tpl_frame;
// Scale factors for the current frame.
struct scale_factors sf;
// GF group index of the current frame.
int frame_idx;
// Array of pointers to the frame buffers holding the source frame.
// src_ref_frame[i] stores the pointer to the source frame of the ith
// reference frame type.
const YV12_BUFFER_CONFIG *src_ref_frame[INTER_REFS_PER_FRAME];
// Array of pointers to the frame buffers holding the tpl reconstructed frame.
// ref_frame[i] stores the pointer to the tpl reconstructed frame of the ith
// reference frame type.
const YV12_BUFFER_CONFIG *ref_frame[INTER_REFS_PER_FRAME];
// Parameters related to synchronization for top-right dependency in row based
// multi-threading of tpl
AV1TplRowMultiThreadSync tpl_mt_sync;
} TplParams;
typedef enum {
COST_UPD_SB,
COST_UPD_SBROW,
COST_UPD_TILE,
COST_UPD_OFF,
} COST_UPDATE_TYPE;
#define TPL_DEP_COST_SCALE_LOG2 4
typedef struct AV1EncoderConfig {
BITSTREAM_PROFILE profile;
aom_bit_depth_t bit_depth; // Codec bit-depth.
int width; // width of data passed to the compressor
int height; // height of data passed to the compressor
int forced_max_frame_width; // forced maximum width of frame (if != 0)
int forced_max_frame_height; // forced maximum height of frame (if != 0)
unsigned int input_bit_depth; // Input bit depth.
double init_framerate; // set to passed in framerate
int64_t target_bandwidth; // bandwidth to be used in bits per second
int noise_sensitivity; // pre processing blur: recommendation 0
int sharpness; // sharpening output: recommendation 0:
int speed;
// maximum allowed bitrate for any intra frame in % of bitrate target.
unsigned int rc_max_intra_bitrate_pct;
// maximum allowed bitrate for any inter frame in % of bitrate target.
unsigned int rc_max_inter_bitrate_pct;
// percent of rate boost for golden frame in CBR mode.
unsigned int gf_cbr_boost_pct;
MODE mode;
int pass;
// Key Framing Operations
int auto_key; // autodetect cut scenes and set the keyframes
int key_freq; // maximum distance to key frame.
int sframe_dist;
int sframe_mode;
int sframe_enabled;
int lag_in_frames; // how many frames lag before we start encoding
int fwd_kf_enabled;
// ----------------------------------------------------------------
// DATARATE CONTROL OPTIONS
// vbr, cbr, constrained quality or constant quality
enum aom_rc_mode rc_mode;
// buffer targeting aggressiveness
int under_shoot_pct;
int over_shoot_pct;
// buffering parameters
int64_t starting_buffer_level_ms;
int64_t optimal_buffer_level_ms;
int64_t maximum_buffer_size_ms;
// Frame drop threshold.
int drop_frames_water_mark;
// controlling quality
int fixed_q;
int worst_allowed_q;
int best_allowed_q;
int cq_level;
int enable_chroma_deltaq;
AQ_MODE aq_mode; // Adaptive Quantization mode
DELTAQ_MODE deltaq_mode;
int deltalf_mode;
int enable_cdef;
int enable_restoration;
int force_video_mode;
int enable_obmc;
int disable_trellis_quant;
int using_qm;
int qm_y;
int qm_u;
int qm_v;
int qm_minlevel;
int qm_maxlevel;
unsigned int vbr_corpus_complexity_lap; // 0 indicates corpus complexity vbr
// mode is disabled
unsigned int num_tile_groups;
unsigned int mtu;
// Internal frame size scaling.
RESIZE_MODE resize_mode;
uint8_t resize_scale_denominator;
uint8_t resize_kf_scale_denominator;
// Frame Super-Resolution size scaling.
aom_superres_mode superres_mode;
uint8_t superres_scale_denominator;
uint8_t superres_kf_scale_denominator;
int superres_qthresh;
int superres_kf_qthresh;
// Enable feature to reduce the frame quantization every x frames.
int frame_periodic_boost;
// two pass datarate control
int two_pass_vbrbias; // two pass datarate control tweaks
int two_pass_vbrmin_section;
int two_pass_vbrmax_section;
// END DATARATE CONTROL OPTIONS
// ----------------------------------------------------------------
int enable_auto_arf;
int enable_auto_brf; // (b)ackward (r)ef (f)rame
/* Bitfield defining the error resiliency features to enable.
* Can provide decodable frames after losses in previous
* frames and decodable partitions after losses in the same frame.
*/
unsigned int error_resilient_mode;
unsigned int s_frame_mode;
/* Bitfield defining the parallel decoding mode where the
* decoding in successive frames may be conducted in parallel
* just by decoding the frame headers.
*/
unsigned int frame_parallel_decoding_mode;
unsigned int limit;
int arnr_max_frames;
int arnr_strength;
int min_gf_interval;
int max_gf_interval;
int gf_min_pyr_height;
int gf_max_pyr_height;
int row_mt;
int tile_columns;
int tile_rows;
int tile_width_count;
int tile_height_count;
int tile_widths[MAX_TILE_COLS];
int tile_heights[MAX_TILE_ROWS];
int enable_tpl_model;
int enable_keyframe_filtering;
int max_threads;
aom_fixed_buf_t two_pass_stats_in;
aom_tune_metric tuning;
const char *vmaf_model_path;
aom_tune_content content;
int use_highbitdepth;
aom_color_primaries_t color_primaries;
aom_transfer_characteristics_t transfer_characteristics;
aom_matrix_coefficients_t matrix_coefficients;
aom_chroma_sample_position_t chroma_sample_position;
int color_range;
int render_width;
int render_height;
int timing_info_present;
aom_timing_info_t timing_info;
int decoder_model_info_present_flag;
int display_model_info_present_flag;
int buffer_removal_time_present;
aom_dec_model_info_t buffer_model;
int film_grain_test_vector;
const char *film_grain_table_filename;
uint8_t cdf_update_mode;
aom_superblock_size_t superblock_size;
unsigned int large_scale_tile;
unsigned int single_tile_decoding;
uint8_t monochrome;
unsigned int full_still_picture_hdr;
int enable_dual_filter;
unsigned int motion_vector_unit_test;
unsigned int sb_multipass_unit_test;
unsigned int ext_tile_debug;
int enable_rect_partitions;
int enable_ab_partitions;
int enable_1to4_partitions;
int min_partition_size;
int max_partition_size;
int enable_intra_edge_filter;
int enable_tx64;
int enable_flip_idtx;
int enable_order_hint;
int enable_dist_wtd_comp;
int enable_ref_frame_mvs;
unsigned int max_reference_frames;
int enable_reduced_reference_set;
unsigned int allow_ref_frame_mvs;
int enable_masked_comp;
int enable_onesided_comp;
int enable_interintra_comp;
int enable_smooth_interintra;
int enable_diff_wtd_comp;
int enable_interinter_wedge;
int enable_interintra_wedge;
int enable_global_motion;
int enable_warped_motion;
int allow_warped_motion;
int enable_filter_intra;
int enable_smooth_intra;
int enable_paeth_intra;
int enable_cfl_intra;
int enable_superres;
int enable_overlay;
int enable_palette;
int enable_intrabc;
int enable_angle_delta;
unsigned int save_as_annexb;
#if CONFIG_DENOISE
float noise_level;
int noise_block_size;
#endif
unsigned int chroma_subsampling_x;
unsigned int chroma_subsampling_y;
int reduced_tx_type_set;
int use_intra_dct_only;
int use_inter_dct_only;
int use_intra_default_tx_only;
int quant_b_adapt;
COST_UPDATE_TYPE coeff_cost_upd_freq;
COST_UPDATE_TYPE mode_cost_upd_freq;
COST_UPDATE_TYPE mv_cost_upd_freq;
int border_in_pixels;
AV1_LEVEL target_seq_level_idx[MAX_NUM_OPERATING_POINTS];
// Bit mask to specify which tier each of the 32 possible operating points
// conforms to.
unsigned int tier_mask;
// If true, encoder will use fixed QP offsets, that are either:
// - Given by the user, and stored in 'fixed_qp_offsets' array, OR
// - Picked automatically from cq_level.
int use_fixed_qp_offsets;
// List of QP offsets for: keyframe, ALTREF, and 3 levels of internal ARFs.
// If any of these values are negative, fixed offsets are disabled.
// Uses internal q range.
double fixed_qp_offsets[FIXED_QP_OFFSET_COUNT];
// min_cr / 100 is the target minimum compression ratio for each frame.
unsigned int min_cr;
const cfg_options_t *encoder_cfg;
} AV1EncoderConfig;
static INLINE int is_lossless_requested(const AV1EncoderConfig *cfg) {
return cfg->best_allowed_q == 0 && cfg->worst_allowed_q == 0;
}
typedef struct {
// obmc_probs[i][j] is the probability of OBMC being the best motion mode for
// jth block size and ith frame update type, averaged over past frames. If
// obmc_probs[i][j] < thresh, then OBMC search is pruned.
int obmc_probs[FRAME_UPDATE_TYPES][BLOCK_SIZES_ALL];
// warped_probs[i] is the probability of warped motion being the best motion
// mode for ith frame update type, averaged over past frames. If
// warped_probs[i] < thresh, then warped motion search is pruned.
int warped_probs[FRAME_UPDATE_TYPES];
// tx_type_probs[i][j][k] is the probability of kth tx_type being the best
// for jth transform size and ith frame update type, averaged over past
// frames. If tx_type_probs[i][j][k] < thresh, then transform search for that
// type is pruned.
int tx_type_probs[FRAME_UPDATE_TYPES][TX_SIZES_ALL][TX_TYPES];
// switchable_interp_probs[i][j][k] is the probability of kth interpolation
// filter being the best for jth filter context and ith frame update type,
// averaged over past frames. If switchable_interp_probs[i][j][k] < thresh,
// then interpolation filter search is pruned for that case.
int switchable_interp_probs[FRAME_UPDATE_TYPES][SWITCHABLE_FILTER_CONTEXTS]
[SWITCHABLE_FILTERS];
} FrameProbInfo;
typedef struct FRAME_COUNTS {
// Note: This structure should only contain 'unsigned int' fields, or
// aggregates built solely from 'unsigned int' fields/elements
#if CONFIG_ENTROPY_STATS
unsigned int kf_y_mode[KF_MODE_CONTEXTS][KF_MODE_CONTEXTS][INTRA_MODES];
unsigned int angle_delta[DIRECTIONAL_MODES][2 * MAX_ANGLE_DELTA + 1];
unsigned int y_mode[BLOCK_SIZE_GROUPS][INTRA_MODES];
unsigned int uv_mode[CFL_ALLOWED_TYPES][INTRA_MODES][UV_INTRA_MODES];
unsigned int cfl_sign[CFL_JOINT_SIGNS];
unsigned int cfl_alpha[CFL_ALPHA_CONTEXTS][CFL_ALPHABET_SIZE];
unsigned int palette_y_mode[PALATTE_BSIZE_CTXS][PALETTE_Y_MODE_CONTEXTS][2];
unsigned int palette_uv_mode[PALETTE_UV_MODE_CONTEXTS][2];
unsigned int palette_y_size[PALATTE_BSIZE_CTXS][PALETTE_SIZES];
unsigned int palette_uv_size[PALATTE_BSIZE_CTXS][PALETTE_SIZES];
unsigned int palette_y_color_index[PALETTE_SIZES]
[PALETTE_COLOR_INDEX_CONTEXTS]
[PALETTE_COLORS];
unsigned int palette_uv_color_index[PALETTE_SIZES]
[PALETTE_COLOR_INDEX_CONTEXTS]
[PALETTE_COLORS];
unsigned int partition[PARTITION_CONTEXTS][EXT_PARTITION_TYPES];
unsigned int txb_skip[TOKEN_CDF_Q_CTXS][TX_SIZES][TXB_SKIP_CONTEXTS][2];
unsigned int eob_extra[TOKEN_CDF_Q_CTXS][TX_SIZES][PLANE_TYPES]
[EOB_COEF_CONTEXTS][2];
unsigned int dc_sign[PLANE_TYPES][DC_SIGN_CONTEXTS][2];
unsigned int coeff_lps[TX_SIZES][PLANE_TYPES][BR_CDF_SIZE - 1][LEVEL_CONTEXTS]
[2];
unsigned int eob_flag[TX_SIZES][PLANE_TYPES][EOB_COEF_CONTEXTS][2];
unsigned int eob_multi16[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][5];
unsigned int eob_multi32[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][6];
unsigned int eob_multi64[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][7];
unsigned int eob_multi128[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][8];
unsigned int eob_multi256[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][9];
unsigned int eob_multi512[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][10];
unsigned int eob_multi1024[TOKEN_CDF_Q_CTXS][PLANE_TYPES][2][11];
unsigned int coeff_lps_multi[TOKEN_CDF_Q_CTXS][TX_SIZES][PLANE_TYPES]
[LEVEL_CONTEXTS][BR_CDF_SIZE];
unsigned int coeff_base_multi[TOKEN_CDF_Q_CTXS][TX_SIZES][PLANE_TYPES]
[SIG_COEF_CONTEXTS][NUM_BASE_LEVELS + 2];
unsigned int coeff_base_eob_multi[TOKEN_CDF_Q_CTXS][TX_SIZES][PLANE_TYPES]
[SIG_COEF_CONTEXTS_EOB][NUM_BASE_LEVELS + 1];
unsigned int newmv_mode[NEWMV_MODE_CONTEXTS][2];
unsigned int zeromv_mode[GLOBALMV_MODE_CONTEXTS][2];
unsigned int refmv_mode[REFMV_MODE_CONTEXTS][2];
unsigned int drl_mode[DRL_MODE_CONTEXTS][2];
unsigned int inter_compound_mode[INTER_MODE_CONTEXTS][INTER_COMPOUND_MODES];
unsigned int wedge_idx[BLOCK_SIZES_ALL][16];
unsigned int interintra[BLOCK_SIZE_GROUPS][2];
unsigned int interintra_mode[BLOCK_SIZE_GROUPS][INTERINTRA_MODES];
unsigned int wedge_interintra[BLOCK_SIZES_ALL][2];
unsigned int compound_type[BLOCK_SIZES_ALL][MASKED_COMPOUND_TYPES];
unsigned int motion_mode[BLOCK_SIZES_ALL][MOTION_MODES];
unsigned int obmc[BLOCK_SIZES_ALL][2];
unsigned int intra_inter[INTRA_INTER_CONTEXTS][2];
unsigned int comp_inter[COMP_INTER_CONTEXTS][2];
unsigned int comp_ref_type[COMP_REF_TYPE_CONTEXTS][2];
unsigned int uni_comp_ref[UNI_COMP_REF_CONTEXTS][UNIDIR_COMP_REFS - 1][2];
unsigned int single_ref[REF_CONTEXTS][SINGLE_REFS - 1][2];
unsigned int comp_ref[REF_CONTEXTS][FWD_REFS - 1][2];
unsigned int comp_bwdref[REF_CONTEXTS][BWD_REFS - 1][2];
unsigned int intrabc[2];
unsigned int txfm_partition[TXFM_PARTITION_CONTEXTS][2];
unsigned int intra_tx_size[MAX_TX_CATS][TX_SIZE_CONTEXTS][MAX_TX_DEPTH + 1];
unsigned int skip_mode[SKIP_MODE_CONTEXTS][2];
unsigned int skip_txfm[SKIP_CONTEXTS][2];
unsigned int compound_index[COMP_INDEX_CONTEXTS][2];
unsigned int comp_group_idx[COMP_GROUP_IDX_CONTEXTS][2];
unsigned int delta_q[DELTA_Q_PROBS][2];
unsigned int delta_lf_multi[FRAME_LF_COUNT][DELTA_LF_PROBS][2];
unsigned int delta_lf[DELTA_LF_PROBS][2];
unsigned int inter_ext_tx[EXT_TX_SETS_INTER][EXT_TX_SIZES][TX_TYPES];
unsigned int intra_ext_tx[EXT_TX_SETS_INTRA][EXT_TX_SIZES][INTRA_MODES]
[TX_TYPES];
unsigned int filter_intra_mode[FILTER_INTRA_MODES];
unsigned int filter_intra[BLOCK_SIZES_ALL][2];
unsigned int switchable_restore[RESTORE_SWITCHABLE_TYPES];
unsigned int wiener_restore[2];
unsigned int sgrproj_restore[2];
#endif // CONFIG_ENTROPY_STATS
unsigned int switchable_interp[SWITCHABLE_FILTER_CONTEXTS]
[SWITCHABLE_FILTERS];
} FRAME_COUNTS;
#define INTER_MODE_RD_DATA_OVERALL_SIZE 6400
typedef struct {
int ready;
double a;
double b;
double dist_mean;
double ld_mean;
double sse_mean;
double sse_sse_mean;
double sse_ld_mean;
int num;
double dist_sum;
double ld_sum;
double sse_sum;
double sse_sse_sum;
double sse_ld_sum;
} InterModeRdModel;
typedef struct {
int idx;
int64_t rd;
} RdIdxPair;
// TODO(angiebird): This is an estimated size. We still need to figure what is
// the maximum number of modes.
#define MAX_INTER_MODES 1024
// TODO(any): rename this struct to something else. There is already another
// struct called inter_mode_info, which makes this terribly confusing.
typedef struct inter_modes_info {
int num;
MB_MODE_INFO mbmi_arr[MAX_INTER_MODES];
int mode_rate_arr[MAX_INTER_MODES];
int64_t sse_arr[MAX_INTER_MODES];
int64_t est_rd_arr[MAX_INTER_MODES];
RdIdxPair rd_idx_pair_arr[MAX_INTER_MODES];
RD_STATS rd_cost_arr[MAX_INTER_MODES];
RD_STATS rd_cost_y_arr[MAX_INTER_MODES];
RD_STATS rd_cost_uv_arr[MAX_INTER_MODES];
} InterModesInfo;
typedef struct {
// TODO(kyslov): consider changing to 64bit
// This struct is used for computing variance in choose_partitioning(), where
// the max number of samples within a superblock is 32x32 (with 4x4 avg).
// With 8bit bitdepth, uint32_t is enough for sum_square_error (2^8 * 2^8 * 32
// * 32 = 2^26). For high bitdepth we need to consider changing this to 64 bit
uint32_t sum_square_error;
int32_t sum_error;
int log2_count;
int variance;
} VPartVar;
typedef struct {
VPartVar none;
VPartVar horz[2];
VPartVar vert[2];
} VPVariance;
typedef struct {
VPVariance part_variances;
VPartVar split[4];
} VP4x4;
typedef struct {
VPVariance part_variances;
VP4x4 split[4];
} VP8x8;
typedef struct {
VPVariance part_variances;
VP8x8 split[4];
} VP16x16;
typedef struct {
VPVariance part_variances;
VP16x16 split[4];
} VP32x32;
typedef struct {
VPVariance part_variances;
VP32x32 split[4];
} VP64x64;
typedef struct {
VPVariance part_variances;
VP64x64 *split;
} VP128x128;
typedef struct {
// Thresholds for variance based partitioning. If block variance > threshold,
// then that block is forced to split.
// thresholds[0] - threshold for 128x128;
// thresholds[1] - threshold for 64x64;
// thresholds[2] - threshold for 32x32;
// thresholds[3] - threshold for 16x16;
// thresholds[4] - threshold for 8x8;
int64_t thresholds[5];
// MinMax variance threshold for 8x8 sub blocks of a 16x16 block. If actual
// minmax > threshold_minmax, the 16x16 is forced to split.
int64_t threshold_minmax;
} VarBasedPartitionInfo;
// Synchronization parameters for row based multi-threading of encoder.
typedef struct {
#if CONFIG_MULTITHREAD
// Synchronization objects for top-right dependency.
pthread_mutex_t *mutex_;
pthread_cond_t *cond_;
#endif
// Buffer to store the superblock whose encoding is complete.
// cur_col[i] stores the number of superblocks which finished encoding in the
// ith superblock row.
int *num_finished_cols;
// Number of extra superblocks of the top row to be complete for encoding
// of the current superblock to start. A value of 1 indicates top-right
// dependency.
int sync_range;
// Number of superblock rows.
int rows;
// The superblock row (in units of MI blocks) to be processed next.
int next_mi_row;
// Number of threads processing the current tile.
int num_threads_working;
} AV1EncRowMultiThreadSync;
// TODO(jingning) All spatially adaptive variables should go to TileDataEnc.
typedef struct TileDataEnc {
TileInfo tile_info;
DECLARE_ALIGNED(16, FRAME_CONTEXT, tctx);
FRAME_CONTEXT *row_ctx;
uint8_t allow_update_cdf;
InterModeRdModel inter_mode_rd_models[BLOCK_SIZES_ALL];
AV1EncRowMultiThreadSync row_mt_sync;
MV firstpass_top_mv;
} TileDataEnc;
typedef struct RD_COUNTS {
int64_t comp_pred_diff[REFERENCE_MODES];
// Stores number of 4x4 blocks using global motion per reference frame.
int global_motion_used[REF_FRAMES];
int compound_ref_used_flag;
int skip_mode_used_flag;
int tx_type_used[TX_SIZES_ALL][TX_TYPES];
int obmc_used[BLOCK_SIZES_ALL][2];
int warped_used[2];
} RD_COUNTS;
typedef struct ThreadData {
MACROBLOCK mb;
RD_COUNTS rd_counts;
FRAME_COUNTS *counts;
PC_TREE_SHARED_BUFFERS shared_coeff_buf;
SIMPLE_MOTION_DATA_TREE *sms_tree;
SIMPLE_MOTION_DATA_TREE *sms_root;
InterModesInfo *inter_modes_info;
uint32_t *hash_value_buffer[2][2];
OBMCBuffer obmc_buffer;
PALETTE_BUFFER *palette_buffer;
CompoundTypeRdBuffers comp_rd_buffer;
CONV_BUF_TYPE *tmp_conv_dst;
uint8_t *tmp_pred_bufs[2];
int intrabc_used;
int deltaq_used;
FRAME_CONTEXT *tctx;
MB_MODE_INFO_EXT *mbmi_ext;
VP64x64 *vt64x64;
int32_t num_64x64_blocks;
PICK_MODE_CONTEXT *firstpass_ctx;
} ThreadData;
struct EncWorkerData;
// Encoder row multi-threading related data.
typedef struct {
// Number of tile rows for which row synchronization memory is allocated.
int allocated_tile_rows;
// Number of tile cols for which row synchronization memory is allocated.
int allocated_tile_cols;
// Number of superblock rows for which row synchronization memory is allocated
// per tile.
int allocated_sb_rows;
// thread_id_to_tile_id[i] indicates the tile id assigned to the ith thread.
int thread_id_to_tile_id[MAX_NUM_THREADS];
#if CONFIG_MULTITHREAD
// Mutex lock used while dispatching jobs.
pthread_mutex_t *mutex_;
#endif
// Row synchronization related function pointers.
void (*sync_read_ptr)(AV1EncRowMultiThreadSync *const, int, int);
void (*sync_write_ptr)(AV1EncRowMultiThreadSync *const, int, int, int);
} AV1EncRowMultiThreadInfo;
typedef struct {
// Number of workers created for encoder multi-threading.
int num_workers;
// Synchronization object used to launch job in the worker thread.
AVxWorker *workers;
// Data specific to each worker in encoder multi-threading.
// tile_thr_data[i] stores the worker data of the ith thread.
struct EncWorkerData *tile_thr_data;
// When set, indicates that row based multi-threading of the encoder is
// enabled.
bool row_mt_enabled;
// Encoder row multi-threading data.
AV1EncRowMultiThreadInfo enc_row_mt;
// Tpl row multi-threading data.
AV1TplRowMultiThreadInfo tpl_row_mt;
// Loop Filter multi-threading object.
AV1LfSync lf_row_sync;
// Loop Restoration multi-threading object.
AV1LrSync lr_row_sync;
// Global Motion multi-threading object.
AV1GlobalMotionSync gm_sync;
} MultiThreadInfo;
typedef struct ActiveMap {
int enabled;
int update;
unsigned char *map;
} ActiveMap;
typedef struct {
// cs_rate_array[i] is the fraction of blocks in a frame which either match
// with the collocated block or are smooth, where i is the rate_index.
double cs_rate_array[32];
// rate_index is used to index cs_rate_array.
int rate_index;
// rate_size is the total number of entries populated in cs_rate_array.
int rate_size;
} ForceIntegerMVInfo;
#if CONFIG_INTERNAL_STATS
// types of stats
enum {
STAT_Y,
STAT_U,
STAT_V,
STAT_ALL,
NUM_STAT_TYPES // This should always be the last member of the enum
} UENUM1BYTE(StatType);
typedef struct IMAGE_STAT {
double stat[NUM_STAT_TYPES];
double worst;
} ImageStat;
#endif // CONFIG_INTERNAL_STATS
typedef struct {
int ref_count;
YV12_BUFFER_CONFIG buf;
} EncRefCntBuffer;
typedef struct {
// Buffer to store mode information at mi_alloc_bsize (4x4 or 8x8) level for
// use in bitstream preparation. frame_base[mi_row * stride + mi_col] stores
// the mode information of block (mi_row,mi_col).
MB_MODE_INFO_EXT_FRAME *frame_base;
// Size of frame_base buffer.
int alloc_size;
// Stride of frame_base buffer.
int stride;
} MBMIExtFrameBufferInfo;
#if CONFIG_COLLECT_PARTITION_STATS == 2
typedef struct PartitionStats {
int partition_decisions[6][EXT_PARTITION_TYPES];
int partition_attempts[6][EXT_PARTITION_TYPES];
int64_t partition_times[6][EXT_PARTITION_TYPES];
int partition_redo;
} PartitionStats;
#endif
#if CONFIG_COLLECT_COMPONENT_TIMING
#include "aom_ports/aom_timer.h"
// Adjust the following to add new components.
enum {
encode_frame_to_data_rate_time,
encode_with_recode_loop_time,
loop_filter_time,
cdef_time,
loop_restoration_time,
av1_pack_bitstream_final_time,
av1_encode_frame_time,
av1_compute_global_motion_time,
av1_setup_motion_field_time,
encode_sb_time,
rd_pick_partition_time,
rd_pick_sb_modes_time,
av1_rd_pick_intra_mode_sb_time,
av1_rd_pick_inter_mode_sb_time,
handle_intra_mode_time,
do_tx_search_time,
handle_newmv_time,
compound_type_rd_time,
interpolation_filter_search_time,
motion_mode_rd_time,
kTimingComponents,
} UENUM1BYTE(TIMING_COMPONENT);
static INLINE char const *get_component_name(int index) {
switch (index) {
case encode_frame_to_data_rate_time:
return "encode_frame_to_data_rate_time";
case encode_with_recode_loop_time: return "encode_with_recode_loop_time";
case loop_filter_time: return "loop_filter_time";
case cdef_time: return "cdef_time";
case loop_restoration_time: return "loop_restoration_time";
case av1_pack_bitstream_final_time: return "av1_pack_bitstream_final_time";
case av1_encode_frame_time: return "av1_encode_frame_time";
case av1_compute_global_motion_time:
return "av1_compute_global_motion_time";
case av1_setup_motion_field_time: return "av1_setup_motion_field_time";
case encode_sb_time: return "encode_sb_time";
case rd_pick_partition_time: return "rd_pick_partition_time";
case rd_pick_sb_modes_time: return "rd_pick_sb_modes_time";
case av1_rd_pick_intra_mode_sb_time:
return "av1_rd_pick_intra_mode_sb_time";
case av1_rd_pick_inter_mode_sb_time:
return "av1_rd_pick_inter_mode_sb_time";
case handle_intra_mode_time: return "handle_intra_mode_time";
case do_tx_search_time: return "do_tx_search_time";
case handle_newmv_time: return "handle_newmv_time";
case compound_type_rd_time: return "compound_type_rd_time";
case interpolation_filter_search_time:
return "interpolation_filter_search_time";
case motion_mode_rd_time: return "motion_mode_rd_time";
default: assert(0);
}
return "error";
}
#endif
// The maximum number of internal ARFs except ALTREF_FRAME
#define MAX_INTERNAL_ARFS (REF_FRAMES - BWDREF_FRAME - 1)
typedef struct {
// Array to store the cost for signalling each global motion model.
// gmtype_cost[i] stores the cost of signalling the ith Global Motion model.
int type_cost[TRANS_TYPES];
// Array to store the cost for signalling a particular global motion model for
// each reference frame. gmparams_cost[i] stores the cost of signalling global
// motion for the ith reference frame.
int params_cost[REF_FRAMES];
// Flag to indicate if global motion search needs to be rerun.
bool search_done;
// Array of pointers to the frame buffers holding the reference frames.
// ref_buf[i] stores the pointer to the reference frame of the ith
// reference frame type.
YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES];
// Pointer to the source frame buffer.
unsigned char *src_buffer;
// Holds the number of valid reference frames in past and future directions
// w.r.t. the current frame. num_ref_frames[i] stores the total number of
// valid reference frames in 'i' direction.
int num_ref_frames[MAX_DIRECTIONS];
// Array of structure which stores the valid reference frames in past and
// future directions and their corresponding distance from the source frame.
// reference_frames[i][j] holds the jth valid reference frame type in the
// direction 'i' and its temporal distance from the source frame .
FrameDistPair reference_frames[MAX_DIRECTIONS][REF_FRAMES - 1];
// The width and height for which segment map is allocated.
int segment_map_w;
int segment_map_h;
// Holds the total number of corner points detected in the source frame.
int num_src_corners;
// Holds the x and y co-ordinates of the corner points detected in the source
// frame. src_corners[i] holds the x co-ordinate and src_corners[i+1] holds
// the y co-ordinate of the ith corner point detected.
int src_corners[2 * MAX_CORNERS];
} GlobalMotionInfo;
typedef struct {
// Tracks the frame dimensions (width and height) using which:
// a) Frame buffers (like altref and util frame buffers) were allocated
// b) Motion estimation related initializations were done
// This structure is helpful to reallocate / reinitialize the above when there
// is a change in frame dimensions.
int width;
int height;
} InitialDimensions;
typedef struct {
// Stores the default value of skip flag depending on chroma format
// Set as 1 for monochrome and 3 for other color formats
int default_interp_skip_flags;
// Filter mask to allow certain interp_filter type.
uint16_t interp_filter_search_mask;
} InterpSearchFlags;
typedef struct {
// Largest MV component used in a frame.
// The value from the previous frame is used to set the full pixel search
// range for the current frame.
int max_mv_magnitude;
// Parameter indicating initial search window to be used in full-pixel search.
// Range [0, MAX_MVSEARCH_STEPS-2]. Lower value indicates larger window.
int mv_step_param;
// Pointer to sub-pixel search function.
// In encoder: av1_find_best_sub_pixel_tree
// av1_find_best_sub_pixel_tree_pruned
// av1_find_best_sub_pixel_tree_pruned_more
// av1_find_best_sub_pixel_tree_pruned_evenmore
// In MV unit test: av1_return_max_sub_pixel_mv
// av1_return_min_sub_pixel_mv
fractional_mv_step_fp *find_fractional_mv_step;
// Search site configuration for full-pel MV search.
// search_site_cfg[SS_CFG_SRC]: Used in tpl, rd/non-rd inter mode loop, simple
// motion search. search_site_cfg[SS_CFG_LOOKAHEAD]: Used in intraBC, temporal
// filter search_site_cfg[SS_CFG_FPF]: Used during first pass and lookahead
search_site_config search_site_cfg[SS_CFG_TOTAL];
} MotionVectorSearchParams;
typedef struct {
// Refresh frame flags for golden, bwd-ref and alt-ref frames.
// If the refresh flag is true for a particular reference frame, after the
// current frame is encoded, the reference frame gets refreshed (updated) to
// be the current frame. Note: Usually at most one flag will be set to true at
// a time. But, for key-frames, all flags are set to true at once.
bool golden_frame;
bool bwd_ref_frame;
bool alt_ref_frame;
} RefreshFrameFlagsInfo;
typedef struct {
// When resize is triggered externally, the desired dimensions are stored in
// this struct until used in the next frame to be coded. These values are
// effective only for one frame and are reset after they are used.
int width;
int height;
} ResizePendingParams;
typedef struct {
// Indicates the true relative distance of ref frame w.r.t. the current frame.
int ref_relative_dist[INTER_REFS_PER_FRAME];
// Indicate the nearest references w.r.t. current frame in past and future.
int8_t nearest_past_ref;
int8_t nearest_future_ref;
} RefFrameDistanceInfo;
// This struct contains some parameters used for winner mode processing. This is
// a basic two pass approach: in the first pass, we reduce the number of
// transform searches based on some thresholds during the rdopt process to find
// the "winner mode". In the second pass, we perform a more through tx search
// on the winner mode.
// There are some arrays in the struct, and their indices are used in the
// following manner:
// Index 0: Default mode evaluation, Winner mode processing is not applicable
// (Eg : IntraBc).
// Index 1: Mode evaluation.
// Index 2: Winner mode evaluation
// Index 1 and 2 are only used when the respective speed feature is on.
typedef struct {
// Threshold to determine the best number of transform coefficients to keep
// using trellis optimization.
// Corresponds to enable_winner_mode_for_coeff_opt speed feature.
unsigned int coeff_opt_dist_threshold[MODE_EVAL_TYPES];
// Determines the tx size search method during rdopt.
// Corresponds to enable_winner_mode_for_tx_size_srch speed feature.
TX_SIZE_SEARCH_METHOD tx_size_search_methods[MODE_EVAL_TYPES];
// Controls how often we should approximate prediction error with tx
// coefficients. If it's 0, then never. If 1, then it's during the tx_type
// search only. If 2, then always.
// Corresponds to tx_domain_dist_level speed feature.
unsigned int use_transform_domain_distortion[MODE_EVAL_TYPES];
// Threshold to approximate pixel domain distortion with transform domain
// distortion. This is only used if use_txform_domain_distortion is on.
// Corresponds to enable_winner_mode_for_use_tx_domain_dist speed feature.
unsigned int tx_domain_dist_threshold[MODE_EVAL_TYPES];
// Controls how often we should try to skip the transform process based on
// result from dct.
// Corresponds to use_skip_flag_prediction speed feature.
unsigned int skip_txfm_level[MODE_EVAL_TYPES];
} WinnerModeParams;
typedef struct {
// Flags set by external interface to determine which reference buffers are
// refreshed by this frame. When set, the encoder will update the particular
// reference frame buffer with the contents of the current frame.
bool last_frame;
bool golden_frame;
bool bwd_ref_frame;
bool alt2_ref_frame;
bool alt_ref_frame;
// Flag to indicate that update of refresh frame flags from external interface
// is pending.
bool update_pending;
} ExtRefreshFrameFlagsInfo;
typedef struct {
// Bit mask to disable certain reference frame types.
int ref_frame_flags;
// Frame refresh flags set by the external interface.
ExtRefreshFrameFlagsInfo refresh_frame;
// Flag to enable the update of frame contexts at the end of a frame decode.
bool refresh_frame_context;
// Flag to indicate that update of refresh_frame_context from external
// interface is pending.
bool refresh_frame_context_pending;
// Flag to enable temporal MV prediction.
bool use_ref_frame_mvs;
// Indicates whether the current frame is to be coded as error resilient.
bool use_error_resilient;
// Indicates whether the current frame is to be coded as s-frame.
bool use_s_frame;
// Indicates whether the current frame's primary_ref_frame is set to
// PRIMARY_REF_NONE.
bool use_primary_ref_none;
} ExternalFlags;
typedef struct {
int arf_stack[FRAME_BUFFERS];
int arf_stack_size;
int lst_stack[FRAME_BUFFERS];
int lst_stack_size;
int gld_stack[FRAME_BUFFERS];
int gld_stack_size;
} RefBufferStack;
typedef struct {
// Some misc info
int high_prec;
int q;
int order;
// MV counters
int inter_count;
int intra_count;
int default_mvs;
int mv_joint_count[4];
int last_bit_zero;
int last_bit_nonzero;
// Keep track of the rates
int total_mv_rate;
int hp_total_mv_rate;
int lp_total_mv_rate;
// Texture info
int horz_text;
int vert_text;
int diag_text;
// Whether the current struct contains valid data
int valid;
} MV_STATS;
typedef struct {
int frame_width;
int frame_height;
int mi_rows;
int mi_cols;
int mb_rows;
int mb_cols;
int num_mbs;
aom_bit_depth_t bit_depth;
int subsampling_x;
int subsampling_y;
} FRAME_INFO;
typedef struct {
// 3-bit number containing the segment affiliation for each 4x4 block in the
// frame. map[y * stride + x] contains the segment id of the 4x4 block at
// (x,y) position.
uint8_t *map;
// Flag to indicate if current frame has lossless segments or not.
// 1: frame has at least one lossless segment.
// 0: frame has no lossless segments.
bool has_lossless_segment;
} EncSegmentationInfo;
typedef struct {
// Start time stamp of the previous frame
int64_t prev_start_seen;
// End time stamp of the previous frame
int64_t prev_end_seen;
// Start time stamp of the first frame
int64_t first_ever;
} TimeStamps;
typedef struct AV1_COMP {
// Quantization and dequantization parameters for internal quantizer setup
// in the encoder.
EncQuantDequantParams enc_quant_dequant_params;
// Structure holding thread specific variables.
ThreadData td;
// Statistics collected at frame level.
FRAME_COUNTS counts;
// Holds buffer storing mode information at 4x4/8x8 level.
MBMIExtFrameBufferInfo mbmi_ext_info;
// Buffer holding the transform block related information.
// coeff_buffer_base[i] stores the transform block related information of the
// ith superblock in raster scan order.
CB_COEFF_BUFFER *coeff_buffer_base;
// Structure holding variables common to encoder and decoder.
AV1_COMMON common;
// Encoder configuration related parameters.
AV1EncoderConfig oxcf;
// Look-ahead context.
struct lookahead_ctx *lookahead;
// When set, this flag indicates that the current frame is a forward keyframe.
int no_show_kf;
// Stores the trellis optimization type at segment level.
// optimize_seg_arr[i] stores the trellis opt type for ith segment.
TRELLIS_OPT_TYPE optimize_seg_arr[MAX_SEGMENTS];
// Pointer to the frame buffer holding the source frame to be used during the
// current stage of encoding. It can be the raw input, temporally filtered
// input or scaled input.
YV12_BUFFER_CONFIG *source;
// Pointer to the frame buffer holding the last raw source frame.
// NULL for first frame and alt_ref frames.
YV12_BUFFER_CONFIG *last_source;
// Pointer to the frame buffer holding the unscaled source frame.
// It can be either the raw input or temporally filtered input.
YV12_BUFFER_CONFIG *unscaled_source;
// Frame buffer holding the resized source frame (cropping / superres).
YV12_BUFFER_CONFIG scaled_source;
// Pointer to the frame buffer holding the unscaled last source frame.
YV12_BUFFER_CONFIG *unscaled_last_source;
// Frame buffer holding the resized last source frame.
YV12_BUFFER_CONFIG scaled_last_source;
// Pointer to the original source frame. This is used to determine if the
// content is screen.
YV12_BUFFER_CONFIG *unfiltered_source;
// Parameters related to tpl.
TplParams tpl_data;
// For a still frame, this flag is set to 1 to skip partition search.
int partition_search_skippable_frame;
// Variables related to forcing integer mv decisions for the current frame.
ForceIntegerMVInfo force_intpel_info;
// Pointer to the buffer holding the scaled reference frames.
// scaled_ref_buf[i] holds the scaled reference frame of type i.
RefCntBuffer *scaled_ref_buf[INTER_REFS_PER_FRAME];
// Pointer to the buffer holding the last show frame.
RefCntBuffer *last_show_frame_buf;
// Refresh frame flags for golden, bwd-ref and alt-ref frames.
RefreshFrameFlagsInfo refresh_frame;
// For each type of reference frame, this contains the index of a reference
// frame buffer for a reference frame of the same type. We use this to
// choose our primary reference frame (which is the most recent reference
// frame of the same type as the current frame).
int fb_of_context_type[REF_FRAMES];
// Flags signalled by the external interface at frame level.
ExternalFlags ext_flags;
// Temporary frame buffer used to store the non-loop filtered reconstructed
// frame during the search of loop filter level.
YV12_BUFFER_CONFIG last_frame_uf;
// Temporary frame buffer used to store the loop restored frame during loop
// restoration search.
YV12_BUFFER_CONFIG trial_frame_rst;
// Ambient reconstruction err target for force key frames.
int64_t ambient_err;
// Parameters related to rate distortion optimization.
RD_OPT rd;
// Temporary coding context used to save and restore when encoding with and
// without super-resolution.
CODING_CONTEXT coding_context;
// Parameters related to global motion search.
GlobalMotionInfo gm_info;
// Parameters related to winner mode processing.
WinnerModeParams winner_mode_params;
// Frame time stamps.
TimeStamps time_stamps;
// Rate control related parameters.
RATE_CONTROL rc;
// Frame rate of the video.
double framerate;
// Pointer to internal utility functions that manipulate aom_codec_* data
// structures.
struct aom_codec_pkt_list *output_pkt_list;
// Bitmask indicating which reference buffers may be referenced by this frame.
int ref_frame_flags;
// speed is passed as a per-frame parameter into the encoder.
int speed;
// sf contains fine-grained config set internally based on speed.
SPEED_FEATURES sf;
// Parameters for motion vector search process.
MotionVectorSearchParams mv_search_params;
// When set, indicates that all reference frames are forward references,
// i.e., all the reference frames are output before the current frame.
int all_one_sided_refs;
// Segmentation related information for current frame.
EncSegmentationInfo enc_seg;
// Parameters related to cyclic refresh aq-mode.
CYCLIC_REFRESH *cyclic_refresh;
// Parameters related to active map. Active maps indicate
// if there is any activity on a 4x4 block basis.
ActiveMap active_map;
// Function pointers to variants of sse/sad/variance computation functions.
// fn_ptr[i] indicates the list of function pointers corresponding to block
// size i.
aom_variance_fn_ptr_t fn_ptr[BLOCK_SIZES_ALL];
// Number of show frames encoded in current gf_group.
int num_gf_group_show_frames;
// Information related to two pass encoding.
TWO_PASS twopass;
// Information related to a gf group.
GF_GROUP gf_group;
// To control the reference frame buffer and selection.
RefBufferStack ref_buffer_stack;
// Frame buffer holding the temporally filtered source frame. It can be KEY
// frame or ARF frame.
YV12_BUFFER_CONFIG alt_ref_buffer;
// Tell if OVERLAY frame shows existing alt_ref frame.
int show_existing_alt_ref;
#if CONFIG_INTERNAL_STATS
uint64_t time_receive_data;
uint64_t time_compress_data;
unsigned int mode_chosen_counts[MAX_MODES];
int count;
uint64_t total_sq_error;
uint64_t total_samples;
ImageStat psnr;
double total_blockiness;
double worst_blockiness;
int bytes;
double summed_quality;
double summed_weights;
unsigned int tot_recode_hits;
double worst_ssim;
ImageStat fastssim;
ImageStat psnrhvs;
int b_calculate_blockiness;
int b_calculate_consistency;
double total_inconsistency;
double worst_consistency;
Ssimv *ssim_vars;
Metrics metrics;
#endif
// Calculates PSNR on each frame when set to 1.
int b_calculate_psnr;
#if CONFIG_SPEED_STATS
unsigned int tx_search_count;
#endif // CONFIG_SPEED_STATS
// When set, indicates that the frame is droppable, i.e., this frame
// does not update any reference buffers.
int droppable;
// Stores the frame parameters during encoder initialization.
FRAME_INFO frame_info;
// Structure to store the dimensions of current frame.
InitialDimensions initial_dimensions;
// Number of MBs in the full-size frame; to be used to
// normalize the firstpass stats. This will differ from the
// number of MBs in the current frame when the frame is
// scaled.
int initial_mbs;
// Resize related parameters.
ResizePendingParams resize_pending_params;
// Pointer to struct holding adaptive data/contexts/models for the tile during
// encoding.
TileDataEnc *tile_data;
// Number of tiles for which memory has been allocated for tile_data.
int allocated_tiles;
// Structure to store the palette token related information.
TokenInfo token_info;
// Sequence parameters have been transmitted already and locked
// or not. Once locked av1_change_config cannot change the seq
// parameters.
int seq_params_locked;
// VARIANCE_AQ segment map refresh.
int vaq_refresh;
// Thresholds for variance based partitioning.
VarBasedPartitionInfo vbp_info;
// Probabilities for pruning of various AV1 tools.
FrameProbInfo frame_probs;
// Multi-threading parameters.
MultiThreadInfo mt_info;
// Specifies the frame to be output. It is valid only if show_existing_frame
// is 1. When show_existing_frame is 0, existing_fb_idx_to_show is set to
// INVALID_IDX.
int existing_fb_idx_to_show;
// When set, indicates that internal ARFs are enabled.
int internal_altref_allowed;
// A flag to indicate if intrabc is ever used in current frame.
int intrabc_used;
// Tables to calculate IntraBC MV cost.
IntraBCMVCosts dv_costs;
// Mark which ref frames can be skipped for encoding current frame during RDO.
int prune_ref_frame_mask;
// Loop Restoration context.
AV1LrStruct lr_ctxt;
// Pointer to list of tables with film grain parameters.
aom_film_grain_table_t *film_grain_table;
#if CONFIG_DENOISE
// Pointer to structure holding the denoised image buffers and the helper
// noise models.
struct aom_denoise_and_model_t *denoise_and_model;
#endif
// Flags related to interpolation filter search.
InterpSearchFlags interp_search_flags;
// Set for screen contents or when screen content tools are enabled.
int is_screen_content_type;
#if CONFIG_COLLECT_PARTITION_STATS == 2
PartitionStats partition_stats;
#endif
#if CONFIG_COLLECT_COMPONENT_TIMING
// component_time[] are initialized to zero while encoder starts.
uint64_t component_time[kTimingComponents];
struct aom_usec_timer component_timer[kTimingComponents];
// frame_component_time[] are initialized to zero at beginning of each frame.
uint64_t frame_component_time[kTimingComponents];
#endif
// Parameters for AV1 bitstream levels.
AV1LevelParams level_params;
// Whether any no-zero delta_q was actually used.
int deltaq_used;
// Refrence frame distance related variables.
RefFrameDistanceInfo ref_frame_dist_info;
// Scaling factors used in the RD multiplier modulation.
// TODO(sdeng): consider merge the following arrays.
// tpl_rdmult_scaling_factors is a temporary buffer used to store the
// intermediate scaling factors which are used in the calculation of
// tpl_sb_rdmult_scaling_factors. tpl_rdmult_scaling_factors[i] stores the
// intermediate scaling factor of the ith 16 x 16 block in raster scan order.
double *tpl_rdmult_scaling_factors;
// tpl_sb_rdmult_scaling_factors[i] stores the RD multiplier scaling factor of
// the ith 16 x 16 block in raster scan order.
double *tpl_sb_rdmult_scaling_factors;
// ssim_rdmult_scaling_factors[i] stores the RD multiplier scaling factor of
// the ith 16 x 16 block in raster scan order. This scaling factor is used for
// RD multiplier modulation when SSIM tuning is enabled.
double *ssim_rdmult_scaling_factors;
#if CONFIG_TUNE_VMAF
// Parameters for VMAF tuning.
TuneVMAFInfo vmaf_info;
#endif
// Indicates whether to use SVC.
int use_svc;
// Parameters for scalable video coding.
SVC svc;
// Flag indicating whether look ahead processing (LAP) is enabled.
int lap_enabled;
// Indicates whether current processing stage is encode stage or LAP stage.
COMPRESSOR_STAGE compressor_stage;
// Some motion vector stats from the last encoded frame to help us decide what
// precision to use to encode the current frame.
MV_STATS mv_stats;
// Frame type of the last frame. May be used in some heuristics for speeding
// up the encoding.
FRAME_TYPE last_frame_type;
// Number of tile-groups.
int num_tg;
// Super-resolution mode currently being used by the encoder.
// This may / may not be same as user-supplied mode in oxcf->superres_mode
// (when we are recoding to try multiple options for example).
aom_superres_mode superres_mode;
// First pass related data.
FirstPassData firstpass_data;
} AV1_COMP;
typedef struct EncodeFrameInput {
YV12_BUFFER_CONFIG *source;
YV12_BUFFER_CONFIG *last_source;
int64_t ts_duration;
} EncodeFrameInput;
// EncodeFrameParams contains per-frame encoding parameters decided upon by
// av1_encode_strategy() and passed down to av1_encode()
struct EncodeFrameParams {
int error_resilient_mode;
FRAME_TYPE frame_type;
int primary_ref_frame;
int order_offset;
int show_frame;
int refresh_frame_flags;
int show_existing_frame;
int existing_fb_idx_to_show;
// Bitmask of which reference buffers may be referenced by this frame
int ref_frame_flags;
// Reference buffer assignment for this frame.
int remapped_ref_idx[REF_FRAMES];
// Flags which determine which reference buffers are refreshed by this frame.
RefreshFrameFlagsInfo refresh_frame;
// Speed level to use for this frame: Bigger number means faster.
int speed;
};
typedef struct EncodeFrameParams EncodeFrameParams;
// EncodeFrameResults contains information about the result of encoding a
// single frame
typedef struct {
size_t size; // Size of resulting bitstream
} EncodeFrameResults;
// Must not be called more than once.
void av1_initialize_enc(void);
struct AV1_COMP *av1_create_compressor(AV1EncoderConfig *oxcf,
BufferPool *const pool,
FIRSTPASS_STATS *frame_stats_buf,
COMPRESSOR_STAGE stage,
int num_lap_buffers,
int lap_lag_in_frames,
STATS_BUFFER_CTX *stats_buf_context);
void av1_remove_compressor(AV1_COMP *cpi);
void av1_change_config(AV1_COMP *cpi, const AV1EncoderConfig *oxcf);
void av1_check_initial_width(AV1_COMP *cpi, int use_highbitdepth,
int subsampling_x, int subsampling_y);
/*!\endcond */
/*!\brief Obtain the raw frame data
*
* \ingroup high_level_algo
* This function receives the raw frame data from input.
*
* \param[in] cpi Top-level encoder structure
* \param[in] frame_flags Flags to decide how to encoding the frame
* \param[in] sd Contain raw frame data
* \param[in] time_stamp Time stamp of the frame
* \param[in] end_time_stamp End time stamp
*
* \return Returns a value to indicate if the frame data is received
* successfully.
* \note The caller can assume that a copy of this frame is made and not just a
* copy of the pointer.
*/
int av1_receive_raw_frame(AV1_COMP *cpi, aom_enc_frame_flags_t frame_flags,
YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
int64_t end_time_stamp);
/*!\brief Encode a frame
*
* \ingroup high_level_algo
* \callgraph
* This function encodes the raw frame data, and outputs the frame bit stream
* to the designated buffer.
*
* \param[in] cpi Top-level encoder structure
* \param[in] frame_flags Flags to decide how to encoding the frame
* \param[in] size Bitstream size
* \param[in] dest Bitstream output
* \param[in] time_stamp Time stamp of the frame
* \param[in] time_end Time end
* \param[in] flush Decide to encode one frame or the rest of frames
* \param[in] timebase Time base used
*
* \return Returns a value to indicate if the encoding is done successfully.
*/
int av1_get_compressed_data(AV1_COMP *cpi, unsigned int *frame_flags,
size_t *size, uint8_t *dest, int64_t *time_stamp,
int64_t *time_end, int flush,
const aom_rational64_t *timebase);
/*!\brief Run 1-pass/2-pass encoding
*
* \ingroup high_level_algo
*/
int av1_encode(AV1_COMP *const cpi, uint8_t *const dest,
const EncodeFrameInput *const frame_input,
const EncodeFrameParams *const frame_params,
EncodeFrameResults *const frame_results);
/*!\cond */
int av1_get_preview_raw_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *dest);
int av1_get_last_show_frame(AV1_COMP *cpi, YV12_BUFFER_CONFIG *frame);
aom_codec_err_t av1_copy_new_frame_enc(AV1_COMMON *cm,
YV12_BUFFER_CONFIG *new_frame,
YV12_BUFFER_CONFIG *sd);
int av1_use_as_reference(int *ext_ref_frame_flags, int ref_frame_flags);
int av1_copy_reference_enc(AV1_COMP *cpi, int idx, YV12_BUFFER_CONFIG *sd);
int av1_set_reference_enc(AV1_COMP *cpi, int idx, YV12_BUFFER_CONFIG *sd);
int av1_set_size_literal(AV1_COMP *cpi, int width, int height);
void av1_set_frame_size(AV1_COMP *cpi, int width, int height);
int av1_update_entropy(bool *ext_refresh_frame_context,
bool *ext_refresh_frame_context_pending, bool update);
int av1_set_active_map(AV1_COMP *cpi, unsigned char *map, int rows, int cols);
int av1_get_active_map(AV1_COMP *cpi, unsigned char *map, int rows, int cols);
int av1_set_internal_size(AV1EncoderConfig *const oxcf,
ResizePendingParams *resize_pending_params,
AOM_SCALING horiz_mode, AOM_SCALING vert_mode);
int av1_get_quantizer(struct AV1_COMP *cpi);
int av1_convert_sect5obus_to_annexb(uint8_t *buffer, size_t *input_size);
void av1_alloc_obmc_buffers(OBMCBuffer *obmc_buffer, AV1_COMMON *cm);
void av1_release_obmc_buffers(OBMCBuffer *obmc_buffer);
void av1_alloc_compound_type_rd_buffers(AV1_COMMON *const cm,
CompoundTypeRdBuffers *const bufs);
void av1_release_compound_type_rd_buffers(CompoundTypeRdBuffers *const bufs);
// Set screen content options.
// This function estimates whether to use screen content tools, by counting
// the portion of blocks that have few luma colors.
// Modifies:
// cpi->commom.allow_screen_content_tools
// cpi->common.allow_intrabc
// However, the estimation is not accurate and may misclassify videos.
// A slower but more accurate approach that determines whether to use screen
// content tools is employed later. See determine_sc_tools_with_encoding().
void av1_set_screen_content_options(const struct AV1_COMP *cpi,
FeatureFlags *features);
// TODO(jingning): Move these functions as primitive members for the new cpi
// class.
static INLINE void stack_push(int *stack, int *stack_size, int item) {
for (int i = *stack_size - 1; i >= 0; --i) stack[i + 1] = stack[i];
stack[0] = item;
++*stack_size;
}
static INLINE int stack_pop(int *stack, int *stack_size) {
if (*stack_size <= 0) return -1;
int item = stack[0];
for (int i = 0; i < *stack_size; ++i) stack[i] = stack[i + 1];
--*stack_size;
return item;
}
static INLINE int stack_pop_end(int *stack, int *stack_size) {
int item = stack[*stack_size - 1];
stack[*stack_size - 1] = -1;
--*stack_size;
return item;
}
static INLINE void stack_reset(int *stack, int *stack_size) {
for (int i = 0; i < *stack_size; ++i) stack[i] = INVALID_IDX;
*stack_size = 0;
}
// av1 uses 10,000,000 ticks/second as time stamp
#define TICKS_PER_SEC 10000000LL
static INLINE int64_t
timebase_units_to_ticks(const aom_rational64_t *timestamp_ratio, int64_t n) {
return n * timestamp_ratio->num / timestamp_ratio->den;
}
static INLINE int64_t
ticks_to_timebase_units(const aom_rational64_t *timestamp_ratio, int64_t n) {
int64_t round = timestamp_ratio->num / 2;
if (round > 0) --round;
return (n * timestamp_ratio->den + round) / timestamp_ratio->num;
}
static INLINE int frame_is_kf_gf_arf(const AV1_COMP *cpi) {
const GF_GROUP *const gf_group = &cpi->gf_group;
const FRAME_UPDATE_TYPE update_type = gf_group->update_type[gf_group->index];
return frame_is_intra_only(&cpi->common) || update_type == ARF_UPDATE ||
update_type == GF_UPDATE;
}
// TODO(huisu@google.com, youzhou@microsoft.com): enable hash-me for HBD.
static INLINE int av1_use_hash_me(const AV1_COMP *const cpi) {
return (cpi->common.features.allow_screen_content_tools &&
cpi->common.features.allow_intrabc &&
frame_is_intra_only(&cpi->common));
}
static INLINE const YV12_BUFFER_CONFIG *get_ref_frame_yv12_buf(
const AV1_COMMON *const cm, MV_REFERENCE_FRAME ref_frame) {
const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
return buf != NULL ? &buf->buf : NULL;
}
static INLINE int enc_is_ref_frame_buf(const AV1_COMMON *const cm,
const RefCntBuffer *const frame_buf) {
MV_REFERENCE_FRAME ref_frame;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame);
if (buf == NULL) continue;
if (frame_buf == buf) break;
}
return (ref_frame <= ALTREF_FRAME);
}
static INLINE void alloc_frame_mvs(AV1_COMMON *const cm, RefCntBuffer *buf) {
assert(buf != NULL);
ensure_mv_buffer(buf, cm);
buf->width = cm->width;
buf->height = cm->height;
}
// Get the allocated token size for a tile. It does the same calculation as in
// the frame token allocation.
static INLINE unsigned int allocated_tokens(TileInfo tile, int sb_size_log2,
int num_planes) {
int tile_mb_rows = (tile.mi_row_end - tile.mi_row_start + 2) >> 2;
int tile_mb_cols = (tile.mi_col_end - tile.mi_col_start + 2) >> 2;
return get_token_alloc(tile_mb_rows, tile_mb_cols, sb_size_log2, num_planes);
}
static INLINE void get_start_tok(AV1_COMP *cpi, int tile_row, int tile_col,
int mi_row, TokenExtra **tok, int sb_size_log2,
int num_planes) {
AV1_COMMON *const cm = &cpi->common;
const int tile_cols = cm->tiles.cols;
TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
const TileInfo *const tile_info = &this_tile->tile_info;
const int tile_mb_cols =
(tile_info->mi_col_end - tile_info->mi_col_start + 2) >> 2;
const int tile_mb_row = (mi_row - tile_info->mi_row_start + 2) >> 2;
*tok = cpi->token_info.tile_tok[tile_row][tile_col] +
get_token_alloc(tile_mb_row, tile_mb_cols, sb_size_log2, num_planes);
}
void av1_apply_encoding_flags(AV1_COMP *cpi, aom_enc_frame_flags_t flags);
#define ALT_MIN_LAG 3
static INLINE int is_altref_enabled(const AV1_COMP *const cpi) {
return cpi->oxcf.lag_in_frames >= ALT_MIN_LAG && cpi->oxcf.enable_auto_arf;
}
// Check if statistics generation stage
static INLINE int is_stat_generation_stage(const AV1_COMP *const cpi) {
assert(IMPLIES(cpi->compressor_stage == LAP_STAGE,
cpi->oxcf.pass == 0 && cpi->lap_enabled));
return (cpi->oxcf.pass == 1 || (cpi->compressor_stage == LAP_STAGE));
}
// Check if statistics consumption stage
static INLINE int is_stat_consumption_stage_twopass(const AV1_COMP *const cpi) {
return (cpi->oxcf.pass == 2);
}
// Check if statistics consumption stage
static INLINE int is_stat_consumption_stage(const AV1_COMP *const cpi) {
return (is_stat_consumption_stage_twopass(cpi) ||
(cpi->oxcf.pass == 0 && (cpi->compressor_stage == ENCODE_STAGE) &&
cpi->lap_enabled));
}
// Check if the current stage has statistics
static INLINE int has_no_stats_stage(const AV1_COMP *const cpi) {
assert(IMPLIES(!cpi->lap_enabled, cpi->compressor_stage == ENCODE_STAGE));
return (cpi->oxcf.pass == 0 && !cpi->lap_enabled);
}
// Function return size of frame stats buffer
static INLINE int get_stats_buf_size(int num_lap_buffer, int num_lag_buffer) {
/* if lookahead is enabled return num_lap_buffers else num_lag_buffers */
return (num_lap_buffer > 0 ? num_lap_buffer + 1 : num_lag_buffer);
}
// TODO(zoeliu): To set up cpi->oxcf.enable_auto_brf
static INLINE void set_ref_ptrs(const AV1_COMMON *cm, MACROBLOCKD *xd,
MV_REFERENCE_FRAME ref0,
MV_REFERENCE_FRAME ref1) {
xd->block_ref_scale_factors[0] =
get_ref_scale_factors_const(cm, ref0 >= LAST_FRAME ? ref0 : 1);
xd->block_ref_scale_factors[1] =
get_ref_scale_factors_const(cm, ref1 >= LAST_FRAME ? ref1 : 1);
}
static INLINE int get_chessboard_index(int frame_index) {
return frame_index & 0x1;
}
static INLINE const int *cond_cost_list_const(const struct AV1_COMP *cpi,
const int *cost_list) {
const int use_cost_list = cpi->sf.mv_sf.subpel_search_method != SUBPEL_TREE &&
cpi->sf.mv_sf.use_fullpel_costlist;
return use_cost_list ? cost_list : NULL;
}
static INLINE int *cond_cost_list(const struct AV1_COMP *cpi, int *cost_list) {
const int use_cost_list = cpi->sf.mv_sf.subpel_search_method != SUBPEL_TREE &&
cpi->sf.mv_sf.use_fullpel_costlist;
return use_cost_list ? cost_list : NULL;
}
// Compression ratio of current frame.
double av1_get_compression_ratio(const AV1_COMMON *const cm,
size_t encoded_frame_size);
void av1_new_framerate(AV1_COMP *cpi, double framerate);
void av1_setup_frame_size(AV1_COMP *cpi);
#define LAYER_IDS_TO_IDX(sl, tl, num_tl) ((sl) * (num_tl) + (tl))
// Returns 1 if a frame is scaled and 0 otherwise.
static INLINE int av1_resize_scaled(const AV1_COMMON *cm) {
return !(cm->superres_upscaled_width == cm->render_width &&
cm->superres_upscaled_height == cm->render_height);
}
static INLINE int av1_frame_scaled(const AV1_COMMON *cm) {
return !av1_superres_scaled(cm) && av1_resize_scaled(cm);
}
// Don't allow a show_existing_frame to coincide with an error resilient
// frame. An exception can be made for a forward keyframe since it has no
// previous dependencies.
static INLINE int encode_show_existing_frame(const AV1_COMMON *cm) {
return cm->show_existing_frame && (!cm->features.error_resilient_mode ||
cm->current_frame.frame_type == KEY_FRAME);
}
// Get index into the 'cpi->mbmi_ext_info.frame_base' array for the given
// 'mi_row' and 'mi_col'.
static INLINE int get_mi_ext_idx(const int mi_row, const int mi_col,
const BLOCK_SIZE mi_alloc_bsize,
const int mbmi_ext_stride) {
const int mi_ext_size_1d = mi_size_wide[mi_alloc_bsize];
const int mi_ext_row = mi_row / mi_ext_size_1d;
const int mi_ext_col = mi_col / mi_ext_size_1d;
return mi_ext_row * mbmi_ext_stride + mi_ext_col;
}
// Lighter version of set_offsets that only sets the mode info
// pointers.
static INLINE void set_mode_info_offsets(
const CommonModeInfoParams *const mi_params,
const MBMIExtFrameBufferInfo *const mbmi_ext_info, MACROBLOCK *const x,
MACROBLOCKD *const xd, int mi_row, int mi_col) {
set_mi_offsets(mi_params, xd, mi_row, mi_col);
const int ext_idx = get_mi_ext_idx(mi_row, mi_col, mi_params->mi_alloc_bsize,
mbmi_ext_info->stride);
x->mbmi_ext_frame = mbmi_ext_info->frame_base + ext_idx;
}
// Check to see if the given partition size is allowed for a specified number
// of mi block rows and columns remaining in the image.
// If not then return the largest allowed partition size
static INLINE BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left,
int cols_left, int *bh, int *bw) {
int int_size = (int)bsize;
if (rows_left <= 0 || cols_left <= 0) {
return AOMMIN(bsize, BLOCK_8X8);
} else {
for (; int_size > 0; int_size -= 3) {
*bh = mi_size_high[int_size];
*bw = mi_size_wide[int_size];
if ((*bh <= rows_left) && (*bw <= cols_left)) {
break;
}
}
}
return (BLOCK_SIZE)int_size;
}
static const uint8_t av1_ref_frame_flag_list[REF_FRAMES] = { 0,
AOM_LAST_FLAG,
AOM_LAST2_FLAG,
AOM_LAST3_FLAG,
AOM_GOLD_FLAG,
AOM_BWD_FLAG,
AOM_ALT2_FLAG,
AOM_ALT_FLAG };
// When more than 'max_allowed_refs' are available, we reduce the number of
// reference frames one at a time based on this order.
static const MV_REFERENCE_FRAME disable_order[] = {
LAST3_FRAME,
LAST2_FRAME,
ALTREF2_FRAME,
GOLDEN_FRAME,
};
static INLINE int get_max_allowed_ref_frames(const AV1_COMP *cpi) {
const unsigned int max_allowed_refs_for_given_speed =
(cpi->sf.inter_sf.selective_ref_frame >= 3) ? INTER_REFS_PER_FRAME - 1
: INTER_REFS_PER_FRAME;
return AOMMIN(max_allowed_refs_for_given_speed,
cpi->oxcf.max_reference_frames);
}
static const MV_REFERENCE_FRAME
ref_frame_priority_order[INTER_REFS_PER_FRAME] = {
LAST_FRAME, ALTREF_FRAME, BWDREF_FRAME, GOLDEN_FRAME,
ALTREF2_FRAME, LAST2_FRAME, LAST3_FRAME,
};
static INLINE int get_ref_frame_flags(const SPEED_FEATURES *const sf,
const YV12_BUFFER_CONFIG **ref_frames,
const int ext_ref_frame_flags) {
// cpi->ext_flags.ref_frame_flags allows certain reference types to be
// disabled by the external interface. These are set by
// av1_apply_encoding_flags(). Start with what the external interface allows,
// then suppress any reference types which we have found to be duplicates.
int flags = ext_ref_frame_flags;
for (int i = 1; i < INTER_REFS_PER_FRAME; ++i) {
const YV12_BUFFER_CONFIG *const this_ref = ref_frames[i];
// If this_ref has appeared before, mark the corresponding ref frame as
// invalid. For nonrd mode, only disable GOLDEN_FRAME if it's the same
// as LAST_FRAME or ALTREF_FRAME (if ALTREF is being used in nonrd).
int index = (sf->rt_sf.use_nonrd_pick_mode &&
ref_frame_priority_order[i] == GOLDEN_FRAME)
? (1 + sf->rt_sf.use_nonrd_altref_frame)
: i;
for (int j = 0; j < index; ++j) {
if (this_ref == ref_frames[j]) {
flags &= ~(1 << (ref_frame_priority_order[i] - 1));
break;
}
}
}
return flags;
}
// Enforce the number of references for each arbitrary frame based on user
// options and speed.
static AOM_INLINE void enforce_max_ref_frames(AV1_COMP *cpi,
int *ref_frame_flags) {
MV_REFERENCE_FRAME ref_frame;
int total_valid_refs = 0;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
if (*ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) {
total_valid_refs++;
}
}
const int max_allowed_refs = get_max_allowed_ref_frames(cpi);
for (int i = 0; i < 4 && total_valid_refs > max_allowed_refs; ++i) {
const MV_REFERENCE_FRAME ref_frame_to_disable = disable_order[i];
if (!(*ref_frame_flags & av1_ref_frame_flag_list[ref_frame_to_disable])) {
continue;
}
switch (ref_frame_to_disable) {
case LAST3_FRAME: *ref_frame_flags &= ~AOM_LAST3_FLAG; break;
case LAST2_FRAME: *ref_frame_flags &= ~AOM_LAST2_FLAG; break;
case ALTREF2_FRAME: *ref_frame_flags &= ~AOM_ALT2_FLAG; break;
case GOLDEN_FRAME: *ref_frame_flags &= ~AOM_GOLD_FLAG; break;
default: assert(0);
}
--total_valid_refs;
}
assert(total_valid_refs <= max_allowed_refs);
}
// Returns a Sequence Header OBU stored in an aom_fixed_buf_t, or NULL upon
// failure. When a non-NULL aom_fixed_buf_t pointer is returned by this
// function, the memory must be freed by the caller. Both the buf member of the
// aom_fixed_buf_t, and the aom_fixed_buf_t pointer itself must be freed. Memory
// returned must be freed via call to free().
//
// Note: The OBU returned is in Low Overhead Bitstream Format. Specifically,
// the obu_has_size_field bit is set, and the buffer contains the obu_size
// field.
aom_fixed_buf_t *av1_get_global_headers(AV1_COMP *cpi);
#define MAX_GFUBOOST_FACTOR 10.0
#define MIN_GFUBOOST_FACTOR 4.0
double av1_get_gfu_boost_projection_factor(double min_factor, double max_factor,
int frame_count);
double av1_get_kf_boost_projection_factor(int frame_count);
#define ENABLE_KF_TPL 1
#define MAX_PYR_LEVEL_FROMTOP_DELTAQ 0
static INLINE int is_frame_kf_and_tpl_eligible(AV1_COMP *const cpi) {
AV1_COMMON *cm = &cpi->common;
return (cm->current_frame.frame_type == KEY_FRAME) && cm->show_frame &&
(cpi->rc.frames_to_key > 1);
}
static INLINE int is_frame_arf_and_tpl_eligible(const GF_GROUP *gf_group) {
const FRAME_UPDATE_TYPE update_type = gf_group->update_type[gf_group->index];
return update_type == ARF_UPDATE || update_type == GF_UPDATE;
}
static INLINE int is_frame_tpl_eligible(AV1_COMP *const cpi) {
#if ENABLE_KF_TPL
return is_frame_kf_and_tpl_eligible(cpi) ||
is_frame_arf_and_tpl_eligible(&cpi->gf_group);
#else
return is_frame_arf_and_tpl_eligible(&cpi->gf_group);
#endif // ENABLE_KF_TPL
}
// Get update type of the current frame.
static INLINE FRAME_UPDATE_TYPE
get_frame_update_type(const GF_GROUP *gf_group) {
return gf_group->update_type[gf_group->index];
}
static INLINE int av1_pixels_to_mi(int pixels) {
return ALIGN_POWER_OF_TWO(pixels, 3) >> MI_SIZE_LOG2;
}
#if CONFIG_COLLECT_PARTITION_STATS == 2
static INLINE void av1_print_partition_stats(PartitionStats *part_stats) {
FILE *f = fopen("partition_stats.csv", "w");
if (!f) {
return;
}
fprintf(f, "bsize,redo,");
for (int part = 0; part < EXT_PARTITION_TYPES; part++) {
fprintf(f, "decision_%d,", part);
}
for (int part = 0; part < EXT_PARTITION_TYPES; part++) {
fprintf(f, "attempt_%d,", part);
}
for (int part = 0; part < EXT_PARTITION_TYPES; part++) {
fprintf(f, "time_%d,", part);
}
fprintf(f, "\n");
const int bsizes[6] = { 128, 64, 32, 16, 8, 4 };
for (int bsize_idx = 0; bsize_idx < 6; bsize_idx++) {
fprintf(f, "%d,%d,", bsizes[bsize_idx], part_stats->partition_redo);
for (int part = 0; part < EXT_PARTITION_TYPES; part++) {
fprintf(f, "%d,", part_stats->partition_decisions[bsize_idx][part]);
}
for (int part = 0; part < EXT_PARTITION_TYPES; part++) {
fprintf(f, "%d,", part_stats->partition_attempts[bsize_idx][part]);
}
for (int part = 0; part < EXT_PARTITION_TYPES; part++) {
fprintf(f, "%ld,", part_stats->partition_times[bsize_idx][part]);
}
fprintf(f, "\n");
}
fclose(f);
}
static INLINE int av1_get_bsize_idx_for_part_stats(BLOCK_SIZE bsize) {
assert(bsize == BLOCK_128X128 || bsize == BLOCK_64X64 ||
bsize == BLOCK_32X32 || bsize == BLOCK_16X16 || bsize == BLOCK_8X8 ||
bsize == BLOCK_4X4);
switch (bsize) {
case BLOCK_128X128: return 0;
case BLOCK_64X64: return 1;
case BLOCK_32X32: return 2;
case BLOCK_16X16: return 3;
case BLOCK_8X8: return 4;
case BLOCK_4X4: return 5;
default: assert(0 && "Invalid bsize for partition_stats."); return -1;
}
}
#endif
#if CONFIG_COLLECT_COMPONENT_TIMING
static INLINE void start_timing(AV1_COMP *cpi, int component) {
aom_usec_timer_start(&cpi->component_timer[component]);
}
static INLINE void end_timing(AV1_COMP *cpi, int component) {
aom_usec_timer_mark(&cpi->component_timer[component]);
cpi->frame_component_time[component] +=
aom_usec_timer_elapsed(&cpi->component_timer[component]);
}
static INLINE char const *get_frame_type_enum(int type) {
switch (type) {
case 0: return "KEY_FRAME";
case 1: return "INTER_FRAME";
case 2: return "INTRA_ONLY_FRAME";
case 3: return "S_FRAME";
default: assert(0);
}
return "error";
}
#endif
/*!\endcond */
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AOM_AV1_ENCODER_ENCODER_H_