blob: 2d547e33d9ed206b617b2bdd496e005c708854f8 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "aom_dsp/quantize.h"
#include "aom_mem/aom_mem.h"
#include "config/aom_dsp_rtcd.h"
#if !CONFIG_REALTIME_ONLY
void aom_quantize_b_adaptive_helper_c(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan, const qm_val_t *qm_ptr,
const qm_val_t *iqm_ptr, const int log_scale) {
const int zbins[2] = { ROUND_POWER_OF_TWO(zbin_ptr[0], log_scale),
ROUND_POWER_OF_TWO(zbin_ptr[1], log_scale) };
const int nzbins[2] = { zbins[0] * -1, zbins[1] * -1 };
int i, non_zero_count = (int)n_coeffs, eob = -1;
(void)iscan;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
int prescan_add[2];
for (i = 0; i < 2; ++i)
prescan_add[i] = ROUND_POWER_OF_TWO(dequant_ptr[i] * EOB_FACTOR, 7);
// Pre-scan pass
for (i = (int)n_coeffs - 1; i >= 0; i--) {
const int rc = scan[i];
const qm_val_t wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS);
const int coeff = coeff_ptr[rc] * wt;
const int prescan_add_val = prescan_add[rc != 0];
if (coeff < (zbins[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val) &&
coeff > (nzbins[rc != 0] * (1 << AOM_QM_BITS) - prescan_add_val))
non_zero_count--;
else
break;
}
// Quantization pass: All coefficients with index >= zero_flag are
// skippable. Note: zero_flag can be zero.
#if SKIP_EOB_FACTOR_ADJUST
int first = -1;
#endif // SKIP_EOB_FACTOR_ADJUST
for (i = 0; i < non_zero_count; i++) {
const int rc = scan[i];
const int coeff = coeff_ptr[rc];
const int coeff_sign = AOMSIGN(coeff);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
int tmp32;
const qm_val_t wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS);
if (abs_coeff * wt >= (zbins[rc != 0] << AOM_QM_BITS)) {
int64_t tmp =
clamp(abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], log_scale),
INT16_MIN, INT16_MAX);
tmp *= wt;
tmp32 = (int)(((((tmp * quant_ptr[rc != 0]) >> 16) + tmp) *
quant_shift_ptr[rc != 0]) >>
(16 - log_scale + AOM_QM_BITS)); // quantization
qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
const int iwt = iqm_ptr != NULL ? iqm_ptr[rc] : (1 << AOM_QM_BITS);
const int dequant =
(dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >>
AOM_QM_BITS;
const tran_low_t abs_dqcoeff = (tmp32 * dequant) >> log_scale;
dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
if (tmp32) {
eob = i;
#if SKIP_EOB_FACTOR_ADJUST
if (first == -1) first = i;
#endif // SKIP_EOB_FACTOR_ADJUST
}
}
}
#if SKIP_EOB_FACTOR_ADJUST
if (eob >= 0 && first == eob) {
const int rc = scan[eob];
if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) {
const qm_val_t wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS);
const int coeff = coeff_ptr[rc] * wt;
const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST;
const int prescan_add_val =
ROUND_POWER_OF_TWO(dequant_ptr[rc != 0] * factor, 7);
if (coeff < (zbins[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val) &&
coeff > (nzbins[rc != 0] * (1 << AOM_QM_BITS) - prescan_add_val)) {
qcoeff_ptr[rc] = 0;
dqcoeff_ptr[rc] = 0;
eob = -1;
}
}
}
#endif // SKIP_EOB_FACTOR_ADJUST
*eob_ptr = eob + 1;
}
#endif // !CONFIG_REALTIME_ONLY
void aom_quantize_b_helper_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const int16_t *zbin_ptr, const int16_t *round_ptr,
const int16_t *quant_ptr,
const int16_t *quant_shift_ptr,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan,
const qm_val_t *qm_ptr, const qm_val_t *iqm_ptr,
const int log_scale) {
const int zbins[2] = { ROUND_POWER_OF_TWO(zbin_ptr[0], log_scale),
ROUND_POWER_OF_TWO(zbin_ptr[1], log_scale) };
const int nzbins[2] = { zbins[0] * -1, zbins[1] * -1 };
int i, non_zero_count = (int)n_coeffs, eob = -1;
(void)iscan;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
// Pre-scan pass
for (i = (int)n_coeffs - 1; i >= 0; i--) {
const int rc = scan[i];
const qm_val_t wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS);
const int coeff = coeff_ptr[rc] * wt;
if (coeff < (zbins[rc != 0] * (1 << AOM_QM_BITS)) &&
coeff > (nzbins[rc != 0] * (1 << AOM_QM_BITS)))
non_zero_count--;
else
break;
}
// Quantization pass: All coefficients with index >= zero_flag are
// skippable. Note: zero_flag can be zero.
for (i = 0; i < non_zero_count; i++) {
const int rc = scan[i];
const int coeff = coeff_ptr[rc];
const int coeff_sign = AOMSIGN(coeff);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
int tmp32;
const qm_val_t wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS);
if (abs_coeff * wt >= (zbins[rc != 0] << AOM_QM_BITS)) {
int64_t tmp =
clamp(abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], log_scale),
INT16_MIN, INT16_MAX);
tmp *= wt;
tmp32 = (int)(((((tmp * quant_ptr[rc != 0]) >> 16) + tmp) *
quant_shift_ptr[rc != 0]) >>
(16 - log_scale + AOM_QM_BITS)); // quantization
qcoeff_ptr[rc] = (tmp32 ^ coeff_sign) - coeff_sign;
const int iwt = iqm_ptr != NULL ? iqm_ptr[rc] : (1 << AOM_QM_BITS);
const int dequant =
(dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >>
AOM_QM_BITS;
const tran_low_t abs_dqcoeff = (tmp32 * dequant) >> log_scale;
dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
if (tmp32) eob = i;
}
}
*eob_ptr = eob + 1;
}
#if CONFIG_AV1_HIGHBITDEPTH
#if !CONFIG_REALTIME_ONLY
void aom_highbd_quantize_b_adaptive_helper_c(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan, const qm_val_t *qm_ptr,
const qm_val_t *iqm_ptr, const int log_scale) {
const int zbins[2] = { ROUND_POWER_OF_TWO(zbin_ptr[0], log_scale),
ROUND_POWER_OF_TWO(zbin_ptr[1], log_scale) };
const int nzbins[2] = { zbins[0] * -1, zbins[1] * -1 };
(void)iscan;
int i, non_zero_count = (int)n_coeffs, eob = -1;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
int prescan_add[2];
for (i = 0; i < 2; ++i)
prescan_add[i] = ROUND_POWER_OF_TWO(dequant_ptr[i] * EOB_FACTOR, 7);
// Pre-scan pass
for (i = (int)n_coeffs - 1; i >= 0; i--) {
const int rc = scan[i];
const qm_val_t wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS);
const int coeff = coeff_ptr[rc] * wt;
const int prescan_add_val = prescan_add[rc != 0];
if (coeff < (zbins[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val) &&
coeff > (nzbins[rc != 0] * (1 << AOM_QM_BITS) - prescan_add_val))
non_zero_count--;
else
break;
}
// Quantization pass: All coefficients with index >= zero_flag are
// skippable. Note: zero_flag can be zero.
#if SKIP_EOB_FACTOR_ADJUST
int first = -1;
#endif // SKIP_EOB_FACTOR_ADJUST
for (i = 0; i < non_zero_count; i++) {
const int rc = scan[i];
const int coeff = coeff_ptr[rc];
const int coeff_sign = AOMSIGN(coeff);
const qm_val_t wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
if (abs_coeff * wt >= (zbins[rc != 0] << AOM_QM_BITS)) {
const int64_t tmp1 =
abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], log_scale);
const int64_t tmpw = tmp1 * wt;
const int64_t tmp2 = ((tmpw * quant_ptr[rc != 0]) >> 16) + tmpw;
const int abs_qcoeff = (int)((tmp2 * quant_shift_ptr[rc != 0]) >>
(16 - log_scale + AOM_QM_BITS));
qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
const qm_val_t iwt = iqm_ptr != NULL ? iqm_ptr[rc] : (1 << AOM_QM_BITS);
const int dequant =
(dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >>
AOM_QM_BITS;
const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant) >> log_scale;
dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
if (abs_qcoeff) {
eob = i;
#if SKIP_EOB_FACTOR_ADJUST
if (first == -1) first = eob;
#endif // SKIP_EOB_FACTOR_ADJUST
}
}
}
#if SKIP_EOB_FACTOR_ADJUST
if (eob >= 0 && first == eob) {
const int rc = scan[eob];
if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) {
const qm_val_t wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS);
const int coeff = coeff_ptr[rc] * wt;
const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST;
const int prescan_add_val =
ROUND_POWER_OF_TWO(dequant_ptr[rc != 0] * factor, 7);
if (coeff < (zbins[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val) &&
coeff > (nzbins[rc != 0] * (1 << AOM_QM_BITS) - prescan_add_val)) {
qcoeff_ptr[rc] = 0;
dqcoeff_ptr[rc] = 0;
eob = -1;
}
}
}
#endif // SKIP_EOB_FACTOR_ADJUST
*eob_ptr = eob + 1;
}
#endif // !CONFIG_REALTIME_ONLY
void aom_highbd_quantize_b_helper_c(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan, const qm_val_t *qm_ptr,
const qm_val_t *iqm_ptr, const int log_scale) {
int i, eob = -1;
const int zbins[2] = { ROUND_POWER_OF_TWO(zbin_ptr[0], log_scale),
ROUND_POWER_OF_TWO(zbin_ptr[1], log_scale) };
const int nzbins[2] = { zbins[0] * -1, zbins[1] * -1 };
int dequant;
int idx_arr[4096];
(void)iscan;
int idx = 0;
memset(qcoeff_ptr, 0, n_coeffs * sizeof(*qcoeff_ptr));
memset(dqcoeff_ptr, 0, n_coeffs * sizeof(*dqcoeff_ptr));
// Pre-scan pass
for (i = 0; i < n_coeffs; i++) {
const int rc = scan[i];
const qm_val_t wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS);
const int coeff = coeff_ptr[rc] * wt;
// If the coefficient is out of the base ZBIN range, keep it for
// quantization.
if (coeff >= (zbins[rc != 0] * (1 << AOM_QM_BITS)) ||
coeff <= (nzbins[rc != 0] * (1 << AOM_QM_BITS)))
idx_arr[idx++] = i;
}
// Quantization pass: only process the coefficients selected in
// pre-scan pass. Note: idx can be zero.
for (i = 0; i < idx; i++) {
const int rc = scan[idx_arr[i]];
const int coeff = coeff_ptr[rc];
const int coeff_sign = AOMSIGN(coeff);
const qm_val_t wt = qm_ptr != NULL ? qm_ptr[rc] : (1 << AOM_QM_BITS);
const qm_val_t iwt = iqm_ptr != NULL ? iqm_ptr[rc] : (1 << AOM_QM_BITS);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
const int64_t tmp1 =
abs_coeff + ROUND_POWER_OF_TWO(round_ptr[rc != 0], log_scale);
const int64_t tmpw = tmp1 * wt;
const int64_t tmp2 = ((tmpw * quant_ptr[rc != 0]) >> 16) + tmpw;
const int abs_qcoeff = (int)((tmp2 * quant_shift_ptr[rc != 0]) >>
(16 - log_scale + AOM_QM_BITS));
qcoeff_ptr[rc] = (tran_low_t)((abs_qcoeff ^ coeff_sign) - coeff_sign);
dequant =
(dequant_ptr[rc != 0] * iwt + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
const tran_low_t abs_dqcoeff = (abs_qcoeff * dequant) >> log_scale;
dqcoeff_ptr[rc] = (tran_low_t)((abs_dqcoeff ^ coeff_sign) - coeff_sign);
if (abs_qcoeff) eob = idx_arr[i];
}
*eob_ptr = eob + 1;
}
#endif // CONFIG_AV1_HIGHBITDEPTH
#if !CONFIG_REALTIME_ONLY
/* These functions should only be called when quantisation matrices
are not used. */
void aom_quantize_b_adaptive_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const int16_t *zbin_ptr,
const int16_t *round_ptr,
const int16_t *quant_ptr,
const int16_t *quant_shift_ptr,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
aom_quantize_b_adaptive_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr,
quant_ptr, quant_shift_ptr, qcoeff_ptr,
dqcoeff_ptr, dequant_ptr, eob_ptr, scan,
iscan, NULL, NULL, 0);
}
void aom_quantize_b_32x32_adaptive_c(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
aom_quantize_b_adaptive_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr,
quant_ptr, quant_shift_ptr, qcoeff_ptr,
dqcoeff_ptr, dequant_ptr, eob_ptr, scan,
iscan, NULL, NULL, 1);
}
void aom_quantize_b_64x64_adaptive_c(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
aom_quantize_b_adaptive_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr,
quant_ptr, quant_shift_ptr, qcoeff_ptr,
dqcoeff_ptr, dequant_ptr, eob_ptr, scan,
iscan, NULL, NULL, 2);
}
#if CONFIG_AV1_HIGHBITDEPTH
void aom_highbd_quantize_b_adaptive_c(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
aom_highbd_quantize_b_adaptive_helper_c(coeff_ptr, n_coeffs, zbin_ptr,
round_ptr, quant_ptr, quant_shift_ptr,
qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
eob_ptr, scan, iscan, NULL, NULL, 0);
}
void aom_highbd_quantize_b_32x32_adaptive_c(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
aom_highbd_quantize_b_adaptive_helper_c(coeff_ptr, n_coeffs, zbin_ptr,
round_ptr, quant_ptr, quant_shift_ptr,
qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
eob_ptr, scan, iscan, NULL, NULL, 1);
}
void aom_highbd_quantize_b_64x64_adaptive_c(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
aom_highbd_quantize_b_adaptive_helper_c(coeff_ptr, n_coeffs, zbin_ptr,
round_ptr, quant_ptr, quant_shift_ptr,
qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
eob_ptr, scan, iscan, NULL, NULL, 2);
}
#endif // CONFIG_AV1_HIGHBITDEPTH
#endif // !CONFIG_REALTIME_ONLY
void aom_quantize_b_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const int16_t *zbin_ptr, const int16_t *round_ptr,
const int16_t *quant_ptr, const int16_t *quant_shift_ptr,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
aom_quantize_b_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
eob_ptr, scan, iscan, NULL, NULL, 0);
}
void aom_quantize_b_32x32_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const int16_t *zbin_ptr, const int16_t *round_ptr,
const int16_t *quant_ptr,
const int16_t *quant_shift_ptr,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
aom_quantize_b_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
eob_ptr, scan, iscan, NULL, NULL, 1);
}
void aom_quantize_b_64x64_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const int16_t *zbin_ptr, const int16_t *round_ptr,
const int16_t *quant_ptr,
const int16_t *quant_shift_ptr,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
aom_quantize_b_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr, quant_ptr,
quant_shift_ptr, qcoeff_ptr, dqcoeff_ptr, dequant_ptr,
eob_ptr, scan, iscan, NULL, NULL, 2);
}
#if CONFIG_AV1_HIGHBITDEPTH
void aom_highbd_quantize_b_c(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
const int16_t *zbin_ptr, const int16_t *round_ptr,
const int16_t *quant_ptr,
const int16_t *quant_shift_ptr,
tran_low_t *qcoeff_ptr, tran_low_t *dqcoeff_ptr,
const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
aom_highbd_quantize_b_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr,
quant_ptr, quant_shift_ptr, qcoeff_ptr,
dqcoeff_ptr, dequant_ptr, eob_ptr, scan, iscan,
NULL, NULL, 0);
}
void aom_highbd_quantize_b_32x32_c(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
aom_highbd_quantize_b_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr,
quant_ptr, quant_shift_ptr, qcoeff_ptr,
dqcoeff_ptr, dequant_ptr, eob_ptr, scan, iscan,
NULL, NULL, 1);
}
void aom_highbd_quantize_b_64x64_c(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
aom_highbd_quantize_b_helper_c(coeff_ptr, n_coeffs, zbin_ptr, round_ptr,
quant_ptr, quant_shift_ptr, qcoeff_ptr,
dqcoeff_ptr, dequant_ptr, eob_ptr, scan, iscan,
NULL, NULL, 2);
}
#endif // CONFIG_AV1_HIGHBITDEPTH