blob: 46270cd1f90d20efeb3dac9999aeadd3b9ab1956 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <string.h>
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/convolve.h"
#include "av1/common/filter.h"
#include "av1/common/resize.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_ports/mem.h"
void av1_convolve_horiz_rs_c(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const int16_t *x_filters, int x0_qn,
int x_step_qn) {
src -= UPSCALE_NORMATIVE_TAPS / 2 - 1;
for (int y = 0; y < h; ++y) {
int x_qn = x0_qn;
for (int x = 0; x < w; ++x) {
const uint8_t *const src_x = &src[x_qn >> RS_SCALE_SUBPEL_BITS];
const int x_filter_idx =
(x_qn & RS_SCALE_SUBPEL_MASK) >> RS_SCALE_EXTRA_BITS;
assert(x_filter_idx <= RS_SUBPEL_MASK);
const int16_t *const x_filter =
&x_filters[x_filter_idx * UPSCALE_NORMATIVE_TAPS];
int sum = 0;
for (int k = 0; k < UPSCALE_NORMATIVE_TAPS; ++k)
sum += src_x[k] * x_filter[k];
dst[x] = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
x_qn += x_step_qn;
}
src += src_stride;
dst += dst_stride;
}
}
#if CONFIG_AV1_HIGHBITDEPTH
void av1_highbd_convolve_horiz_rs_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
const int16_t *x_filters, int x0_qn,
int x_step_qn, int bd) {
src -= UPSCALE_NORMATIVE_TAPS / 2 - 1;
for (int y = 0; y < h; ++y) {
int x_qn = x0_qn;
for (int x = 0; x < w; ++x) {
const uint16_t *const src_x = &src[x_qn >> RS_SCALE_SUBPEL_BITS];
const int x_filter_idx =
(x_qn & RS_SCALE_SUBPEL_MASK) >> RS_SCALE_EXTRA_BITS;
assert(x_filter_idx <= RS_SUBPEL_MASK);
const int16_t *const x_filter =
&x_filters[x_filter_idx * UPSCALE_NORMATIVE_TAPS];
int sum = 0;
for (int k = 0; k < UPSCALE_NORMATIVE_TAPS; ++k)
sum += src_x[k] * x_filter[k];
dst[x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, FILTER_BITS), bd);
x_qn += x_step_qn;
}
src += src_stride;
dst += dst_stride;
}
}
#endif // CONFIG_AV1_HIGHBITDEPTH
void av1_convolve_2d_sr_c(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y,
const int subpel_x_qn, const int subpel_y_qn,
ConvolveParams *conv_params) {
int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE];
int im_h = h + filter_params_y->taps - 1;
int im_stride = w;
assert(w <= MAX_SB_SIZE && h <= MAX_SB_SIZE);
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bd = 8;
const int bits =
FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1;
// horizontal filter
const uint8_t *src_horiz = src - fo_vert * src_stride;
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
for (int y = 0; y < im_h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t sum = (1 << (bd + FILTER_BITS - 1));
for (int k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k];
}
// TODO(aomedia:3393): for 12-tap filter, in extreme cases, the result can
// be beyond the following range. For better prediction, a clamping can be
// added for 12 tap filter to ensure the horizontal filtering result is
// within 16 bit. The same applies to the vertical filtering.
assert(filter_params_x->taps > 8 ||
(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1))));
im_block[y * im_stride + x] =
(int16_t)ROUND_POWER_OF_TWO(sum, conv_params->round_0);
}
}
// vertical filter
int16_t *src_vert = im_block + fo_vert * im_stride;
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t sum = 1 << offset_bits;
for (int k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x];
}
assert(filter_params_y->taps > 8 ||
(0 <= sum && sum < (1 << (offset_bits + 2))));
int16_t res = ROUND_POWER_OF_TWO(sum, conv_params->round_1) -
((1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1)));
dst[y * dst_stride + x] = clip_pixel(ROUND_POWER_OF_TWO(res, bits));
}
}
}
void av1_convolve_y_sr_c(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams *filter_params_y,
const int subpel_y_qn) {
const int fo_vert = filter_params_y->taps / 2 - 1;
// vertical filter
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t res = 0;
for (int k = 0; k < filter_params_y->taps; ++k) {
res += y_filter[k] * src[(y - fo_vert + k) * src_stride + x];
}
dst[y * dst_stride + x] =
clip_pixel(ROUND_POWER_OF_TWO(res, FILTER_BITS));
}
}
}
void av1_convolve_x_sr_c(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const int subpel_x_qn, ConvolveParams *conv_params) {
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bits = FILTER_BITS - conv_params->round_0;
assert(bits >= 0);
assert((FILTER_BITS - conv_params->round_1) >= 0 ||
((conv_params->round_0 + conv_params->round_1) == 2 * FILTER_BITS));
// horizontal filter
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t res = 0;
for (int k = 0; k < filter_params_x->taps; ++k) {
res += x_filter[k] * src[y * src_stride + x - fo_horiz + k];
}
res = ROUND_POWER_OF_TWO(res, conv_params->round_0);
dst[y * dst_stride + x] = clip_pixel(ROUND_POWER_OF_TWO(res, bits));
}
}
}
// This function is exactly the same as av1_convolve_2d_sr_c, and is an
// optimized version for intrabc. Use the following 2-tap filter:
// DECLARE_ALIGNED(256, static const int16_t,
// av1_intrabc_bilinear_filter[2 * SUBPEL_SHIFTS]) = {
// 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// };
void av1_convolve_2d_sr_intrabc_c(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y,
const int subpel_x_qn, const int subpel_y_qn,
ConvolveParams *conv_params) {
assert(subpel_x_qn == 8);
assert(subpel_y_qn == 8);
assert(filter_params_x->taps == 2 && filter_params_y->taps == 2);
assert((conv_params->round_0 + conv_params->round_1) == 2 * FILTER_BITS);
(void)filter_params_x;
(void)subpel_x_qn;
(void)filter_params_y;
(void)subpel_y_qn;
(void)conv_params;
int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE];
int im_h = h + 1;
int im_stride = w;
assert(w <= MAX_SB_SIZE && h <= MAX_SB_SIZE);
const int bd = 8;
// horizontal filter
// explicitly operate for subpel_x_qn = 8.
int16_t *im = im_block;
for (int y = 0; y < im_h; ++y) {
for (int x = 0; x < w; ++x) {
const int32_t sum = (1 << bd) + src[x] + src[x + 1];
assert(0 <= sum && sum < (1 << (bd + 2)));
im[x] = sum;
}
src += src_stride;
im += im_stride;
}
// vertical filter
// explicitly operate for subpel_y_qn = 8.
int16_t *src_vert = im_block;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
const int32_t sum =
(1 << (bd + 2)) + src_vert[x] + src_vert[im_stride + x];
assert(0 <= sum && sum < (1 << (bd + 4)));
const int16_t res =
ROUND_POWER_OF_TWO(sum, 2) - ((1 << bd) + (1 << (bd - 1)));
dst[x] = clip_pixel(res);
}
src_vert += im_stride;
dst += dst_stride;
}
}
// This function is exactly the same as av1_convolve_y_sr_c, and is an
// optimized version for intrabc.
void av1_convolve_y_sr_intrabc_c(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_y,
const int subpel_y_qn) {
assert(subpel_y_qn == 8);
assert(filter_params_y->taps == 2);
(void)filter_params_y;
(void)subpel_y_qn;
// vertical filter
// explicitly operate for subpel_y_qn = 8.
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
const int32_t res = src[x] + src[src_stride + x];
dst[x] = clip_pixel(ROUND_POWER_OF_TWO(res, 1));
}
src += src_stride;
dst += dst_stride;
}
}
// This function is exactly the same as av1_convolve_x_sr_c, and is an
// optimized version for intrabc.
void av1_convolve_x_sr_intrabc_c(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const int subpel_x_qn,
ConvolveParams *conv_params) {
assert(subpel_x_qn == 8);
assert(filter_params_x->taps == 2);
assert((conv_params->round_0 + conv_params->round_1) == 2 * FILTER_BITS);
(void)filter_params_x;
(void)subpel_x_qn;
(void)conv_params;
// horizontal filter
// explicitly operate for subpel_x_qn = 8.
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
const int32_t res = src[x] + src[x + 1];
dst[x] = clip_pixel(ROUND_POWER_OF_TWO(res, 1));
}
src += src_stride;
dst += dst_stride;
}
}
void av1_dist_wtd_convolve_2d_c(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y,
const int subpel_x_qn, const int subpel_y_qn,
ConvolveParams *conv_params) {
CONV_BUF_TYPE *dst16 = conv_params->dst;
int dst16_stride = conv_params->dst_stride;
int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE];
int im_h = h + filter_params_y->taps - 1;
int im_stride = w;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bd = 8;
const int round_bits =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
// horizontal filter
const uint8_t *src_horiz = src - fo_vert * src_stride;
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
for (int y = 0; y < im_h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t sum = (1 << (bd + FILTER_BITS - 1));
for (int k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k];
}
assert(filter_params_x->taps > 8 ||
(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1))));
im_block[y * im_stride + x] =
(int16_t)ROUND_POWER_OF_TWO(sum, conv_params->round_0);
}
}
// vertical filter
int16_t *src_vert = im_block + fo_vert * im_stride;
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t sum = 1 << offset_bits;
for (int k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x];
}
assert(filter_params_y->taps > 8 ||
(0 <= sum && sum < (1 << (offset_bits + 2))));
CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1);
if (conv_params->do_average) {
int32_t tmp = dst16[y * dst16_stride + x];
if (conv_params->use_dist_wtd_comp_avg) {
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
tmp = tmp >> DIST_PRECISION_BITS;
} else {
tmp += res;
tmp = tmp >> 1;
}
tmp -= (1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1));
dst[y * dst_stride + x] =
clip_pixel(ROUND_POWER_OF_TWO(tmp, round_bits));
} else {
dst16[y * dst16_stride + x] = res;
}
}
}
}
void av1_dist_wtd_convolve_y_c(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams *filter_params_y,
const int subpel_y_qn,
ConvolveParams *conv_params) {
CONV_BUF_TYPE *dst16 = conv_params->dst;
int dst16_stride = conv_params->dst_stride;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int bits = FILTER_BITS - conv_params->round_0;
const int bd = 8;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int round_offset = (1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1));
const int round_bits =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
// vertical filter
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t res = 0;
for (int k = 0; k < filter_params_y->taps; ++k) {
res += y_filter[k] * src[(y - fo_vert + k) * src_stride + x];
}
res *= (1 << bits);
res = ROUND_POWER_OF_TWO(res, conv_params->round_1) + round_offset;
if (conv_params->do_average) {
int32_t tmp = dst16[y * dst16_stride + x];
if (conv_params->use_dist_wtd_comp_avg) {
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
tmp = tmp >> DIST_PRECISION_BITS;
} else {
tmp += res;
tmp = tmp >> 1;
}
tmp -= round_offset;
dst[y * dst_stride + x] =
clip_pixel(ROUND_POWER_OF_TWO(tmp, round_bits));
} else {
dst16[y * dst16_stride + x] = res;
}
}
}
}
void av1_dist_wtd_convolve_x_c(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const int subpel_x_qn,
ConvolveParams *conv_params) {
CONV_BUF_TYPE *dst16 = conv_params->dst;
int dst16_stride = conv_params->dst_stride;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bits = FILTER_BITS - conv_params->round_1;
const int bd = 8;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int round_offset = (1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1));
const int round_bits =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
// horizontal filter
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t res = 0;
for (int k = 0; k < filter_params_x->taps; ++k) {
res += x_filter[k] * src[y * src_stride + x - fo_horiz + k];
}
res = (1 << bits) * ROUND_POWER_OF_TWO(res, conv_params->round_0);
res += round_offset;
if (conv_params->do_average) {
int32_t tmp = dst16[y * dst16_stride + x];
if (conv_params->use_dist_wtd_comp_avg) {
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
tmp = tmp >> DIST_PRECISION_BITS;
} else {
tmp += res;
tmp = tmp >> 1;
}
tmp -= round_offset;
dst[y * dst_stride + x] =
clip_pixel(ROUND_POWER_OF_TWO(tmp, round_bits));
} else {
dst16[y * dst16_stride + x] = res;
}
}
}
}
void av1_dist_wtd_convolve_2d_copy_c(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
ConvolveParams *conv_params) {
CONV_BUF_TYPE *dst16 = conv_params->dst;
int dst16_stride = conv_params->dst_stride;
const int bits =
FILTER_BITS * 2 - conv_params->round_1 - conv_params->round_0;
const int bd = 8;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int round_offset = (1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1));
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE res = src[y * src_stride + x] << bits;
res += round_offset;
if (conv_params->do_average) {
int32_t tmp = dst16[y * dst16_stride + x];
if (conv_params->use_dist_wtd_comp_avg) {
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
tmp = tmp >> DIST_PRECISION_BITS;
} else {
tmp += res;
tmp = tmp >> 1;
}
tmp -= round_offset;
dst[y * dst_stride + x] = clip_pixel(ROUND_POWER_OF_TWO(tmp, bits));
} else {
dst16[y * dst16_stride + x] = res;
}
}
}
}
void av1_convolve_2d_scale_c(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y,
const int subpel_x_qn, const int x_step_qn,
const int subpel_y_qn, const int y_step_qn,
ConvolveParams *conv_params) {
int16_t im_block[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE];
int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) +
filter_params_y->taps;
CONV_BUF_TYPE *dst16 = conv_params->dst;
const int dst16_stride = conv_params->dst_stride;
const int bits =
FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1;
assert(bits >= 0);
int im_stride = w;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bd = 8;
// horizontal filter
const uint8_t *src_horiz = src - fo_vert * src_stride;
for (int y = 0; y < im_h; ++y) {
int x_qn = subpel_x_qn;
for (int x = 0; x < w; ++x, x_qn += x_step_qn) {
const uint8_t *const src_x = &src_horiz[(x_qn >> SCALE_SUBPEL_BITS)];
const int x_filter_idx = (x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
assert(x_filter_idx < SUBPEL_SHIFTS);
const int16_t *x_filter =
av1_get_interp_filter_subpel_kernel(filter_params_x, x_filter_idx);
int32_t sum = (1 << (bd + FILTER_BITS - 1));
for (int k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_x[k - fo_horiz];
}
assert(filter_params_x->taps > 8 ||
(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1))));
im_block[y * im_stride + x] =
(int16_t)ROUND_POWER_OF_TWO(sum, conv_params->round_0);
}
src_horiz += src_stride;
}
// vertical filter
int16_t *src_vert = im_block + fo_vert * im_stride;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
for (int x = 0; x < w; ++x) {
int y_qn = subpel_y_qn;
for (int y = 0; y < h; ++y, y_qn += y_step_qn) {
const int16_t *src_y = &src_vert[(y_qn >> SCALE_SUBPEL_BITS) * im_stride];
const int y_filter_idx = (y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
assert(y_filter_idx < SUBPEL_SHIFTS);
const int16_t *y_filter =
av1_get_interp_filter_subpel_kernel(filter_params_y, y_filter_idx);
int32_t sum = 1 << offset_bits;
for (int k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_y[(k - fo_vert) * im_stride];
}
assert(filter_params_y->taps > 8 ||
(0 <= sum && sum < (1 << (offset_bits + 2))));
CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1);
if (conv_params->is_compound) {
if (conv_params->do_average) {
int32_t tmp = dst16[y * dst16_stride + x];
if (conv_params->use_dist_wtd_comp_avg) {
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
tmp = tmp >> DIST_PRECISION_BITS;
} else {
tmp += res;
tmp = tmp >> 1;
}
/* Subtract round offset and convolve round */
tmp = tmp - ((1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1)));
dst[y * dst_stride + x] = clip_pixel(ROUND_POWER_OF_TWO(tmp, bits));
} else {
dst16[y * dst16_stride + x] = res;
}
} else {
/* Subtract round offset and convolve round */
int32_t tmp = res - ((1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1)));
dst[y * dst_stride + x] = clip_pixel(ROUND_POWER_OF_TWO(tmp, bits));
}
}
src_vert++;
}
}
static void convolve_2d_scale_wrapper(
const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w,
int h, const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y, const int subpel_x_qn,
const int x_step_qn, const int subpel_y_qn, const int y_step_qn,
ConvolveParams *conv_params) {
if (conv_params->is_compound) {
assert(conv_params->dst != NULL);
}
av1_convolve_2d_scale(src, src_stride, dst, dst_stride, w, h, filter_params_x,
filter_params_y, subpel_x_qn, x_step_qn, subpel_y_qn,
y_step_qn, conv_params);
}
static void convolve_2d_facade_compound(
const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w,
int h, const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y, const int subpel_x_qn,
const int subpel_y_qn, ConvolveParams *conv_params) {
const bool need_x = subpel_x_qn != 0;
const bool need_y = subpel_y_qn != 0;
if (!need_x && !need_y) {
av1_dist_wtd_convolve_2d_copy(src, src_stride, dst, dst_stride, w, h,
conv_params);
} else if (need_x && !need_y) {
av1_dist_wtd_convolve_x(src, src_stride, dst, dst_stride, w, h,
filter_params_x, subpel_x_qn, conv_params);
} else if (!need_x && need_y) {
av1_dist_wtd_convolve_y(src, src_stride, dst, dst_stride, w, h,
filter_params_y, subpel_y_qn, conv_params);
} else {
assert(need_y && need_x);
av1_dist_wtd_convolve_2d(src, src_stride, dst, dst_stride, w, h,
filter_params_x, filter_params_y, subpel_x_qn,
subpel_y_qn, conv_params);
}
}
static void convolve_2d_facade_single(
const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w,
int h, const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y, const int subpel_x_qn,
const int subpel_y_qn, ConvolveParams *conv_params) {
const bool need_x = subpel_x_qn != 0;
const bool need_y = subpel_y_qn != 0;
if (!need_x && !need_y) {
aom_convolve_copy(src, src_stride, dst, dst_stride, w, h);
} else if (need_x && !need_y) {
av1_convolve_x_sr(src, src_stride, dst, dst_stride, w, h, filter_params_x,
subpel_x_qn, conv_params);
} else if (!need_x && need_y) {
av1_convolve_y_sr(src, src_stride, dst, dst_stride, w, h, filter_params_y,
subpel_y_qn);
} else {
assert(need_x && need_y);
av1_convolve_2d_sr(src, src_stride, dst, dst_stride, w, h, filter_params_x,
filter_params_y, subpel_x_qn, subpel_y_qn, conv_params);
}
}
void av1_convolve_2d_facade(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams *interp_filters[2],
const int subpel_x_qn, int x_step_q4,
const int subpel_y_qn, int y_step_q4, int scaled,
ConvolveParams *conv_params) {
(void)x_step_q4;
(void)y_step_q4;
(void)dst;
(void)dst_stride;
const InterpFilterParams *filter_params_x = interp_filters[0];
const InterpFilterParams *filter_params_y = interp_filters[1];
// TODO(jingning, yunqing): Add SIMD support to 2-tap filter case.
// 2-tap filter indicates that it is for IntraBC.
if (filter_params_x->taps == 2 || filter_params_y->taps == 2) {
assert(filter_params_x->taps == 2 && filter_params_y->taps == 2);
assert(!scaled);
if (subpel_x_qn && subpel_y_qn) {
av1_convolve_2d_sr_intrabc_c(src, src_stride, dst, dst_stride, w, h,
filter_params_x, filter_params_y,
subpel_x_qn, subpel_y_qn, conv_params);
return;
} else if (subpel_x_qn) {
av1_convolve_x_sr_intrabc_c(src, src_stride, dst, dst_stride, w, h,
filter_params_x, subpel_x_qn, conv_params);
return;
} else if (subpel_y_qn) {
av1_convolve_y_sr_intrabc_c(src, src_stride, dst, dst_stride, w, h,
filter_params_y, subpel_y_qn);
return;
}
}
if (scaled) {
convolve_2d_scale_wrapper(src, src_stride, dst, dst_stride, w, h,
filter_params_x, filter_params_y, subpel_x_qn,
x_step_q4, subpel_y_qn, y_step_q4, conv_params);
} else if (conv_params->is_compound) {
convolve_2d_facade_compound(src, src_stride, dst, dst_stride, w, h,
filter_params_x, filter_params_y, subpel_x_qn,
subpel_y_qn, conv_params);
} else {
convolve_2d_facade_single(src, src_stride, dst, dst_stride, w, h,
filter_params_x, filter_params_y, subpel_x_qn,
subpel_y_qn, conv_params);
}
}
#if CONFIG_AV1_HIGHBITDEPTH
void av1_highbd_convolve_x_sr_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const int subpel_x_qn,
ConvolveParams *conv_params, int bd) {
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bits = FILTER_BITS - conv_params->round_0;
assert(bits >= 0);
assert((FILTER_BITS - conv_params->round_1) >= 0 ||
((conv_params->round_0 + conv_params->round_1) == 2 * FILTER_BITS));
// horizontal filter
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t res = 0;
for (int k = 0; k < filter_params_x->taps; ++k) {
res += x_filter[k] * src[y * src_stride + x - fo_horiz + k];
}
res = ROUND_POWER_OF_TWO(res, conv_params->round_0);
dst[y * dst_stride + x] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(res, bits), bd);
}
}
}
void av1_highbd_convolve_y_sr_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_y,
const int subpel_y_qn, int bd) {
const int fo_vert = filter_params_y->taps / 2 - 1;
// vertical filter
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t res = 0;
for (int k = 0; k < filter_params_y->taps; ++k) {
res += y_filter[k] * src[(y - fo_vert + k) * src_stride + x];
}
dst[y * dst_stride + x] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(res, FILTER_BITS), bd);
}
}
}
void av1_highbd_convolve_2d_sr_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y,
const int subpel_x_qn, const int subpel_y_qn,
ConvolveParams *conv_params, int bd) {
int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE];
int im_h = h + filter_params_y->taps - 1;
int im_stride = w;
assert(w <= MAX_SB_SIZE && h <= MAX_SB_SIZE);
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bits =
FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1;
assert(bits >= 0);
// horizontal filter
const uint16_t *src_horiz = src - fo_vert * src_stride;
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
for (int y = 0; y < im_h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t sum = (1 << (bd + FILTER_BITS - 1));
for (int k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k];
}
assert(filter_params_x->taps > 8 ||
(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1))));
im_block[y * im_stride + x] =
ROUND_POWER_OF_TWO(sum, conv_params->round_0);
}
}
// vertical filter
int16_t *src_vert = im_block + fo_vert * im_stride;
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t sum = 1 << offset_bits;
for (int k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x];
}
assert(filter_params_y->taps > 8 ||
(0 <= sum && sum < (1 << (offset_bits + 2))));
int32_t res = ROUND_POWER_OF_TWO(sum, conv_params->round_1) -
((1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1)));
dst[y * dst_stride + x] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(res, bits), bd);
}
}
}
// This function is exactly the same as av1_highbd_convolve_2d_sr_c, and is an
// optimized version for intrabc. Use the following 2-tap filter:
// DECLARE_ALIGNED(256, static const int16_t,
// av1_intrabc_bilinear_filter[2 * SUBPEL_SHIFTS]) = {
// 128, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// 64, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
// };
void av1_highbd_convolve_2d_sr_intrabc_c(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w,
int h, const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y, const int subpel_x_qn,
const int subpel_y_qn, ConvolveParams *conv_params, int bd) {
const int bits =
FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1;
assert(bits >= 0);
assert(subpel_x_qn == 8);
assert(subpel_y_qn == 8);
assert(filter_params_x->taps == 2 && filter_params_y->taps == 2);
assert((conv_params->round_0 + conv_params->round_1) == 2 * FILTER_BITS);
(void)filter_params_x;
(void)subpel_x_qn;
(void)filter_params_y;
(void)subpel_y_qn;
(void)conv_params;
int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE];
int im_h = h + 1;
int im_stride = w;
assert(w <= MAX_SB_SIZE && h <= MAX_SB_SIZE);
// horizontal filter
// explicitly operate for subpel_x_qn = 8.
int16_t *im = im_block;
for (int y = 0; y < im_h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t sum = (1 << (bd + FILTER_BITS - 1)) + 64 * (src[x] + src[x + 1]);
assert(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1)));
sum = ROUND_POWER_OF_TWO(sum, conv_params->round_0);
im[x] = sum;
}
src += src_stride;
im += im_stride;
}
// vertical filter
// explicitly operate for subpel_y_qn = 8.
int16_t *src_vert = im_block;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
const int32_t sum =
(1 << offset_bits) + 64 * (src_vert[x] + src_vert[im_stride + x]);
assert(0 <= sum && sum < (1 << (offset_bits + 2)));
const int32_t res = ROUND_POWER_OF_TWO(sum, conv_params->round_1) -
((1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1)));
dst[x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(res, bits), bd);
}
src_vert += im_stride;
dst += dst_stride;
}
}
// This function is exactly the same as av1_highbd_convolve_y_sr_c, and is an
// optimized version for intrabc.
void av1_highbd_convolve_y_sr_intrabc_c(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w,
int h, const InterpFilterParams *filter_params_y, const int subpel_y_qn,
int bd) {
assert(subpel_y_qn == 8);
assert(filter_params_y->taps == 2);
(void)filter_params_y;
(void)subpel_y_qn;
// vertical filter
// explicitly operate for subpel_y_qn = 8.
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
const int32_t res = src[x] + src[src_stride + x];
dst[x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(res, 1), bd);
}
src += src_stride;
dst += dst_stride;
}
}
// This function is exactly the same as av1_highbd_convolve_x_sr_c, and is an
// optimized version for intrabc.
void av1_highbd_convolve_x_sr_intrabc_c(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w,
int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn,
ConvolveParams *conv_params, int bd) {
const int bits = FILTER_BITS - conv_params->round_0;
assert(bits >= 0);
assert(subpel_x_qn == 8);
assert(filter_params_x->taps == 2);
assert((conv_params->round_0 + conv_params->round_1) == 2 * FILTER_BITS);
(void)filter_params_x;
(void)subpel_x_qn;
// horizontal filter
// explicitly operate for subpel_x_qn = 8.
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t res = 64 * (src[x] + src[x + 1]);
res = ROUND_POWER_OF_TWO(res, conv_params->round_0);
dst[x] = clip_pixel_highbd(ROUND_POWER_OF_TWO(res, bits), bd);
}
src += src_stride;
dst += dst_stride;
}
}
void av1_highbd_dist_wtd_convolve_2d_c(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride, int w,
int h, const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y, const int subpel_x_qn,
const int subpel_y_qn, ConvolveParams *conv_params, int bd) {
int x, y, k;
int16_t im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE];
CONV_BUF_TYPE *dst16 = conv_params->dst;
int dst16_stride = conv_params->dst_stride;
int im_h = h + filter_params_y->taps - 1;
int im_stride = w;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int round_bits =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
assert(round_bits >= 0);
// horizontal filter
const uint16_t *src_horiz = src - fo_vert * src_stride;
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
for (y = 0; y < im_h; ++y) {
for (x = 0; x < w; ++x) {
int32_t sum = (1 << (bd + FILTER_BITS - 1));
for (k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_horiz[y * src_stride + x - fo_horiz + k];
}
assert(filter_params_x->taps > 8 ||
(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1))));
(void)bd;
im_block[y * im_stride + x] =
(int16_t)ROUND_POWER_OF_TWO(sum, conv_params->round_0);
}
}
// vertical filter
int16_t *src_vert = im_block + fo_vert * im_stride;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
for (y = 0; y < h; ++y) {
for (x = 0; x < w; ++x) {
int32_t sum = 1 << offset_bits;
for (k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_vert[(y - fo_vert + k) * im_stride + x];
}
assert(filter_params_y->taps > 8 ||
(0 <= sum && sum < (1 << (offset_bits + 2))));
CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1);
if (conv_params->do_average) {
int32_t tmp = dst16[y * dst16_stride + x];
if (conv_params->use_dist_wtd_comp_avg) {
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
tmp = tmp >> DIST_PRECISION_BITS;
} else {
tmp += res;
tmp = tmp >> 1;
}
tmp -= (1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1));
dst[y * dst_stride + x] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, round_bits), bd);
} else {
dst16[y * dst16_stride + x] = res;
}
}
}
}
void av1_highbd_dist_wtd_convolve_x_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w,
int h,
const InterpFilterParams *filter_params_x,
const int subpel_x_qn,
ConvolveParams *conv_params, int bd) {
CONV_BUF_TYPE *dst16 = conv_params->dst;
int dst16_stride = conv_params->dst_stride;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const int bits = FILTER_BITS - conv_params->round_1;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int round_offset = (1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1));
const int round_bits =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
assert(round_bits >= 0);
assert(bits >= 0);
// horizontal filter
const int16_t *x_filter = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t res = 0;
for (int k = 0; k < filter_params_x->taps; ++k) {
res += x_filter[k] * src[y * src_stride + x - fo_horiz + k];
}
res = (1 << bits) * ROUND_POWER_OF_TWO(res, conv_params->round_0);
res += round_offset;
if (conv_params->do_average) {
int32_t tmp = dst16[y * dst16_stride + x];
if (conv_params->use_dist_wtd_comp_avg) {
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
tmp = tmp >> DIST_PRECISION_BITS;
} else {
tmp += res;
tmp = tmp >> 1;
}
tmp -= round_offset;
dst[y * dst_stride + x] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, round_bits), bd);
} else {
dst16[y * dst16_stride + x] = res;
}
}
}
}
void av1_highbd_dist_wtd_convolve_y_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w,
int h,
const InterpFilterParams *filter_params_y,
const int subpel_y_qn,
ConvolveParams *conv_params, int bd) {
CONV_BUF_TYPE *dst16 = conv_params->dst;
int dst16_stride = conv_params->dst_stride;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int bits = FILTER_BITS - conv_params->round_0;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int round_offset = (1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1));
const int round_bits =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
assert(round_bits >= 0);
assert(bits >= 0);
// vertical filter
const int16_t *y_filter = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
int32_t res = 0;
for (int k = 0; k < filter_params_y->taps; ++k) {
res += y_filter[k] * src[(y - fo_vert + k) * src_stride + x];
}
res *= (1 << bits);
res = ROUND_POWER_OF_TWO(res, conv_params->round_1) + round_offset;
if (conv_params->do_average) {
int32_t tmp = dst16[y * dst16_stride + x];
if (conv_params->use_dist_wtd_comp_avg) {
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
tmp = tmp >> DIST_PRECISION_BITS;
} else {
tmp += res;
tmp = tmp >> 1;
}
tmp -= round_offset;
dst[y * dst_stride + x] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, round_bits), bd);
} else {
dst16[y * dst16_stride + x] = res;
}
}
}
}
void av1_highbd_dist_wtd_convolve_2d_copy_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride,
int w, int h,
ConvolveParams *conv_params,
int bd) {
CONV_BUF_TYPE *dst16 = conv_params->dst;
int dst16_stride = conv_params->dst_stride;
const int bits =
FILTER_BITS * 2 - conv_params->round_1 - conv_params->round_0;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
const int round_offset = (1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1));
assert(bits >= 0);
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
CONV_BUF_TYPE res = src[y * src_stride + x] << bits;
res += round_offset;
if (conv_params->do_average) {
int32_t tmp = dst16[y * dst16_stride + x];
if (conv_params->use_dist_wtd_comp_avg) {
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
tmp = tmp >> DIST_PRECISION_BITS;
} else {
tmp += res;
tmp = tmp >> 1;
}
tmp -= round_offset;
dst[y * dst_stride + x] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, bits), bd);
} else {
dst16[y * dst16_stride + x] = res;
}
}
}
}
void av1_highbd_convolve_2d_scale_c(const uint16_t *src, int src_stride,
uint16_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y,
const int subpel_x_qn, const int x_step_qn,
const int subpel_y_qn, const int y_step_qn,
ConvolveParams *conv_params, int bd) {
int16_t im_block[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE];
int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) +
filter_params_y->taps;
int im_stride = w;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
CONV_BUF_TYPE *dst16 = conv_params->dst;
const int dst16_stride = conv_params->dst_stride;
const int bits =
FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1;
assert(bits >= 0);
// horizontal filter
const uint16_t *src_horiz = src - fo_vert * src_stride;
for (int y = 0; y < im_h; ++y) {
int x_qn = subpel_x_qn;
for (int x = 0; x < w; ++x, x_qn += x_step_qn) {
const uint16_t *const src_x = &src_horiz[(x_qn >> SCALE_SUBPEL_BITS)];
const int x_filter_idx = (x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
assert(x_filter_idx < SUBPEL_SHIFTS);
const int16_t *x_filter =
av1_get_interp_filter_subpel_kernel(filter_params_x, x_filter_idx);
int32_t sum = (1 << (bd + FILTER_BITS - 1));
for (int k = 0; k < filter_params_x->taps; ++k) {
sum += x_filter[k] * src_x[k - fo_horiz];
}
assert(filter_params_x->taps > 8 ||
(0 <= sum && sum < (1 << (bd + FILTER_BITS + 1))));
im_block[y * im_stride + x] =
(int16_t)ROUND_POWER_OF_TWO(sum, conv_params->round_0);
}
src_horiz += src_stride;
}
// vertical filter
int16_t *src_vert = im_block + fo_vert * im_stride;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
for (int x = 0; x < w; ++x) {
int y_qn = subpel_y_qn;
for (int y = 0; y < h; ++y, y_qn += y_step_qn) {
const int16_t *src_y = &src_vert[(y_qn >> SCALE_SUBPEL_BITS) * im_stride];
const int y_filter_idx = (y_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS;
assert(y_filter_idx < SUBPEL_SHIFTS);
const int16_t *y_filter =
av1_get_interp_filter_subpel_kernel(filter_params_y, y_filter_idx);
int32_t sum = 1 << offset_bits;
for (int k = 0; k < filter_params_y->taps; ++k) {
sum += y_filter[k] * src_y[(k - fo_vert) * im_stride];
}
assert(filter_params_y->taps > 8 ||
(0 <= sum && sum < (1 << (offset_bits + 2))));
CONV_BUF_TYPE res = ROUND_POWER_OF_TWO(sum, conv_params->round_1);
if (conv_params->is_compound) {
if (conv_params->do_average) {
int32_t tmp = dst16[y * dst16_stride + x];
if (conv_params->use_dist_wtd_comp_avg) {
tmp = tmp * conv_params->fwd_offset + res * conv_params->bck_offset;
tmp = tmp >> DIST_PRECISION_BITS;
} else {
tmp += res;
tmp = tmp >> 1;
}
/* Subtract round offset and convolve round */
tmp = tmp - ((1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1)));
dst[y * dst_stride + x] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, bits), bd);
} else {
dst16[y * dst16_stride + x] = res;
}
} else {
/* Subtract round offset and convolve round */
int32_t tmp = res - ((1 << (offset_bits - conv_params->round_1)) +
(1 << (offset_bits - conv_params->round_1 - 1)));
dst[y * dst_stride + x] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(tmp, bits), bd);
}
}
src_vert++;
}
}
static void highbd_convolve_2d_facade_compound(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
const int w, const int h, const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y, const int subpel_x_qn,
const int subpel_y_qn, ConvolveParams *conv_params, int bd) {
const bool need_x = subpel_x_qn != 0;
const bool need_y = subpel_y_qn != 0;
if (!need_x && !need_y) {
av1_highbd_dist_wtd_convolve_2d_copy(src, src_stride, dst, dst_stride, w, h,
conv_params, bd);
} else if (need_x && !need_y) {
av1_highbd_dist_wtd_convolve_x(src, src_stride, dst, dst_stride, w, h,
filter_params_x, subpel_x_qn, conv_params,
bd);
} else if (!need_x && need_y) {
av1_highbd_dist_wtd_convolve_y(src, src_stride, dst, dst_stride, w, h,
filter_params_y, subpel_y_qn, conv_params,
bd);
} else {
assert(need_x && need_y);
av1_highbd_dist_wtd_convolve_2d(src, src_stride, dst, dst_stride, w, h,
filter_params_x, filter_params_y,
subpel_x_qn, subpel_y_qn, conv_params, bd);
}
}
static void highbd_convolve_2d_facade_single(
const uint16_t *src, int src_stride, uint16_t *dst, int dst_stride,
const int w, const int h, const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y, const int subpel_x_qn,
const int subpel_y_qn, ConvolveParams *conv_params, int bd) {
const bool need_x = subpel_x_qn != 0;
const bool need_y = subpel_y_qn != 0;
if (!need_x && !need_y) {
aom_highbd_convolve_copy(src, src_stride, dst, dst_stride, w, h);
} else if (need_x && !need_y) {
av1_highbd_convolve_x_sr(src, src_stride, dst, dst_stride, w, h,
filter_params_x, subpel_x_qn, conv_params, bd);
} else if (!need_x && need_y) {
av1_highbd_convolve_y_sr(src, src_stride, dst, dst_stride, w, h,
filter_params_y, subpel_y_qn, bd);
} else {
assert(need_x && need_y);
av1_highbd_convolve_2d_sr(src, src_stride, dst, dst_stride, w, h,
filter_params_x, filter_params_y, subpel_x_qn,
subpel_y_qn, conv_params, bd);
}
}
void av1_highbd_convolve_2d_facade(const uint8_t *src8, int src_stride,
uint8_t *dst8, int dst_stride, int w, int h,
const InterpFilterParams *interp_filters[2],
const int subpel_x_qn, int x_step_q4,
const int subpel_y_qn, int y_step_q4,
int scaled, ConvolveParams *conv_params,
int bd) {
(void)x_step_q4;
(void)y_step_q4;
(void)dst_stride;
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
const InterpFilterParams *filter_params_x = interp_filters[0];
const InterpFilterParams *filter_params_y = interp_filters[1];
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
// 2-tap filter indicates that it is for IntraBC.
if (filter_params_x->taps == 2 || filter_params_y->taps == 2) {
assert(filter_params_x->taps == 2 && filter_params_y->taps == 2);
assert(!scaled);
if (subpel_x_qn && subpel_y_qn) {
av1_highbd_convolve_2d_sr_intrabc_c(
src, src_stride, dst, dst_stride, w, h, filter_params_x,
filter_params_y, subpel_x_qn, subpel_y_qn, conv_params, bd);
return;
} else if (subpel_x_qn) {
av1_highbd_convolve_x_sr_intrabc_c(src, src_stride, dst, dst_stride, w, h,
filter_params_x, subpel_x_qn,
conv_params, bd);
return;
} else if (subpel_y_qn) {
av1_highbd_convolve_y_sr_intrabc_c(src, src_stride, dst, dst_stride, w, h,
filter_params_y, subpel_y_qn, bd);
return;
}
}
if (scaled) {
if (conv_params->is_compound) {
assert(conv_params->dst != NULL);
}
av1_highbd_convolve_2d_scale(src, src_stride, dst, dst_stride, w, h,
filter_params_x, filter_params_y, subpel_x_qn,
x_step_q4, subpel_y_qn, y_step_q4, conv_params,
bd);
} else if (conv_params->is_compound) {
highbd_convolve_2d_facade_compound(
src, src_stride, dst, dst_stride, w, h, filter_params_x,
filter_params_y, subpel_x_qn, subpel_y_qn, conv_params, bd);
} else {
highbd_convolve_2d_facade_single(src, src_stride, dst, dst_stride, w, h,
filter_params_x, filter_params_y,
subpel_x_qn, subpel_y_qn, conv_params, bd);
}
}
#endif // CONFIG_AV1_HIGHBITDEPTH
// Note: Fixed size intermediate buffers, place limits on parameters
// of some functions. 2d filtering proceeds in 2 steps:
// (1) Interpolate horizontally into an intermediate buffer, temp.
// (2) Interpolate temp vertically to derive the sub-pixel result.
// Deriving the maximum number of rows in the temp buffer (135):
// --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative).
// --Largest block size is 128x128 pixels.
// --128 rows in the downscaled frame span a distance of (128 - 1) * 32 in the
// original frame (in 1/16th pixel units).
// --Must round-up because block may be located at sub-pixel position.
// --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails.
// --((128 - 1) * 32 + 15) >> 4 + 8 = 263.
#define WIENER_MAX_EXT_SIZE 263
static inline int horz_scalar_product(const uint8_t *a, const int16_t *b) {
int sum = 0;
for (int k = 0; k < SUBPEL_TAPS; ++k) sum += a[k] * b[k];
return sum;
}
#if CONFIG_AV1_HIGHBITDEPTH
static inline int highbd_horz_scalar_product(const uint16_t *a,
const int16_t *b) {
int sum = 0;
for (int k = 0; k < SUBPEL_TAPS; ++k) sum += a[k] * b[k];
return sum;
}
#endif
static inline int highbd_vert_scalar_product(const uint16_t *a,
ptrdiff_t a_stride,
const int16_t *b) {
int sum = 0;
for (int k = 0; k < SUBPEL_TAPS; ++k) sum += a[k * a_stride] * b[k];
return sum;
}
static const InterpKernel *get_filter_base(const int16_t *filter) {
// NOTE: This assumes that the filter table is 256-byte aligned.
// TODO(agrange) Modify to make independent of table alignment.
return (const InterpKernel *)(((intptr_t)filter) & ~((intptr_t)0xFF));
}
static int get_filter_offset(const int16_t *f, const InterpKernel *base) {
return (int)((const InterpKernel *)(intptr_t)f - base);
}
static void convolve_add_src_horiz_hip(const uint8_t *src, ptrdiff_t src_stride,
uint16_t *dst, ptrdiff_t dst_stride,
const InterpKernel *x_filters, int x0_q4,
int x_step_q4, int w, int h,
int round0_bits) {
const int bd = 8;
src -= SUBPEL_TAPS / 2 - 1;
for (int y = 0; y < h; ++y) {
int x_q4 = x0_q4;
for (int x = 0; x < w; ++x) {
const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
const int rounding = ((int)src_x[SUBPEL_TAPS / 2 - 1] << FILTER_BITS) +
(1 << (bd + FILTER_BITS - 1));
const int sum = horz_scalar_product(src_x, x_filter) + rounding;
dst[x] = (uint16_t)clamp(ROUND_POWER_OF_TWO(sum, round0_bits), 0,
WIENER_CLAMP_LIMIT(round0_bits, bd) - 1);
x_q4 += x_step_q4;
}
src += src_stride;
dst += dst_stride;
}
}
static void convolve_add_src_vert_hip(const uint16_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const InterpKernel *y_filters, int y0_q4,
int y_step_q4, int w, int h,
int round1_bits) {
const int bd = 8;
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
for (int x = 0; x < w; ++x) {
int y_q4 = y0_q4;
for (int y = 0; y < h; ++y) {
const uint16_t *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
const int rounding =
((int)src_y[(SUBPEL_TAPS / 2 - 1) * src_stride] << FILTER_BITS) -
(1 << (bd + round1_bits - 1));
const int sum =
highbd_vert_scalar_product(src_y, src_stride, y_filter) + rounding;
dst[y * dst_stride] = clip_pixel(ROUND_POWER_OF_TWO(sum, round1_bits));
y_q4 += y_step_q4;
}
++src;
++dst;
}
}
void av1_wiener_convolve_add_src_c(const uint8_t *src, ptrdiff_t src_stride,
uint8_t *dst, ptrdiff_t dst_stride,
const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4,
int w, int h,
const WienerConvolveParams *conv_params) {
const InterpKernel *const filters_x = get_filter_base(filter_x);
const int x0_q4 = get_filter_offset(filter_x, filters_x);
const InterpKernel *const filters_y = get_filter_base(filter_y);
const int y0_q4 = get_filter_offset(filter_y, filters_y);
uint16_t temp[WIENER_MAX_EXT_SIZE * MAX_SB_SIZE];
const int intermediate_height =
(((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS - 1;
memset(temp + (intermediate_height * MAX_SB_SIZE), 0, MAX_SB_SIZE);
assert(w <= MAX_SB_SIZE);
assert(h <= MAX_SB_SIZE);
assert(y_step_q4 <= 32);
assert(x_step_q4 <= 32);
convolve_add_src_horiz_hip(src - src_stride * (SUBPEL_TAPS / 2 - 1),
src_stride, temp, MAX_SB_SIZE, filters_x, x0_q4,
x_step_q4, w, intermediate_height,
conv_params->round_0);
convolve_add_src_vert_hip(temp + MAX_SB_SIZE * (SUBPEL_TAPS / 2 - 1),
MAX_SB_SIZE, dst, dst_stride, filters_y, y0_q4,
y_step_q4, w, h, conv_params->round_1);
}
#if CONFIG_AV1_HIGHBITDEPTH
static void highbd_convolve_add_src_horiz_hip(
const uint8_t *src8, ptrdiff_t src_stride, uint16_t *dst,
ptrdiff_t dst_stride, const InterpKernel *x_filters, int x0_q4,
int x_step_q4, int w, int h, int round0_bits, int bd) {
const int extraprec_clamp_limit = WIENER_CLAMP_LIMIT(round0_bits, bd);
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
src -= SUBPEL_TAPS / 2 - 1;
for (int y = 0; y < h; ++y) {
int x_q4 = x0_q4;
for (int x = 0; x < w; ++x) {
const uint16_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
const int16_t *const x_filter = x_filters[x_q4 & SUBPEL_MASK];
const int rounding = ((int)src_x[SUBPEL_TAPS / 2 - 1] << FILTER_BITS) +
(1 << (bd + FILTER_BITS - 1));
const int sum = highbd_horz_scalar_product(src_x, x_filter) + rounding;
dst[x] = (uint16_t)clamp(ROUND_POWER_OF_TWO(sum, round0_bits), 0,
extraprec_clamp_limit - 1);
x_q4 += x_step_q4;
}
src += src_stride;
dst += dst_stride;
}
}
static void highbd_convolve_add_src_vert_hip(
const uint16_t *src, ptrdiff_t src_stride, uint8_t *dst8,
ptrdiff_t dst_stride, const InterpKernel *y_filters, int y0_q4,
int y_step_q4, int w, int h, int round1_bits, int bd) {
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
for (int x = 0; x < w; ++x) {
int y_q4 = y0_q4;
for (int y = 0; y < h; ++y) {
const uint16_t *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
const int16_t *const y_filter = y_filters[y_q4 & SUBPEL_MASK];
const int rounding =
((int)src_y[(SUBPEL_TAPS / 2 - 1) * src_stride] << FILTER_BITS) -
(1 << (bd + round1_bits - 1));
const int sum =
highbd_vert_scalar_product(src_y, src_stride, y_filter) + rounding;
dst[y * dst_stride] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(sum, round1_bits), bd);
y_q4 += y_step_q4;
}
++src;
++dst;
}
}
void av1_highbd_wiener_convolve_add_src_c(
const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
ptrdiff_t dst_stride, const int16_t *filter_x, int x_step_q4,
const int16_t *filter_y, int y_step_q4, int w, int h,
const WienerConvolveParams *conv_params, int bd) {
const InterpKernel *const filters_x = get_filter_base(filter_x);
const int x0_q4 = get_filter_offset(filter_x, filters_x);
const InterpKernel *const filters_y = get_filter_base(filter_y);
const int y0_q4 = get_filter_offset(filter_y, filters_y);
uint16_t temp[WIENER_MAX_EXT_SIZE * MAX_SB_SIZE];
const int intermediate_height =
(((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS;
assert(w <= MAX_SB_SIZE);
assert(h <= MAX_SB_SIZE);
assert(y_step_q4 <= 32);
assert(x_step_q4 <= 32);
assert(bd + FILTER_BITS - conv_params->round_0 + 2 <= 16);
highbd_convolve_add_src_horiz_hip(src - src_stride * (SUBPEL_TAPS / 2 - 1),
src_stride, temp, MAX_SB_SIZE, filters_x,
x0_q4, x_step_q4, w, intermediate_height,
conv_params->round_0, bd);
highbd_convolve_add_src_vert_hip(
temp + MAX_SB_SIZE * (SUBPEL_TAPS / 2 - 1), MAX_SB_SIZE, dst, dst_stride,
filters_y, y0_q4, y_step_q4, w, h, conv_params->round_1, bd);
}
#endif // CONFIG_AV1_HIGHBITDEPTH