blob: 088b55732e08fffae06a96eebb1612d31eb0acf2 [file] [log] [blame]
/*
* Copyright (c) 2017, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "./obudec.h"
#include "aom_ports/mem_ops.h"
#include "av1/common/common.h"
#include "av1/decoder/obu.h"
#define OBU_BUFFER_SIZE (500 * 1024)
#define OBU_HEADER_SIZE 1
#define OBU_EXTENSION_SIZE 1
#define OBU_MAX_LENGTH_FIELD_SIZE 8
#define OBU_DETECTION_SIZE \
(OBU_HEADER_SIZE + OBU_EXTENSION_SIZE + 3 * OBU_MAX_LENGTH_FIELD_SIZE)
// Reads unsigned LEB128 integer and returns 0 upon successful read and decode.
// Stores raw bytes in 'value_buffer', length of the number in 'value_length',
// and decoded value in 'value'.
static int obudec_read_leb128(FILE *f, uint8_t *value_buffer,
uint64_t *value_length, uint64_t *value) {
if (!f || !value_buffer || !value_length || !value) return -1;
int len;
for (len = 0; len < OBU_MAX_LENGTH_FIELD_SIZE; ++len) {
const size_t num_read = fread(&value_buffer[len], 1, 1, f);
if (num_read == 0) {
if (len == 0 && feof(f)) {
*value_length = 0;
return 0;
}
// Ran out of data before completing read of value.
return -1;
}
if ((value_buffer[len] >> 7) == 0) {
++len;
*value_length = (size_t)len;
break;
}
}
return aom_uleb_decode(value_buffer, len, value, NULL);
}
// Reads OBU header from 'f'. The 'buffer_capacity' passed in must be large
// enough to store an OBU header with extension (2 bytes). Raw OBU data is
// written to 'obu_data', parsed OBU header values are written to 'obu_header',
// and total bytes read from file are written to 'bytes_read'. Returns 0 for
// success, and non-zero on failure. When end of file is reached, the return
// value is 0 and the 'bytes_read' value is set to 0.
static int obudec_read_obu_header(FILE *f, size_t buffer_capacity,
int is_annexb, uint8_t *obu_data,
ObuHeader *obu_header, uint64_t *bytes_read) {
if (!f || buffer_capacity < (OBU_HEADER_SIZE + OBU_EXTENSION_SIZE) ||
!obu_data || !obu_header || !bytes_read) {
return -1;
}
*bytes_read = fread(obu_data, 1, 1, f);
if (feof(f) && *bytes_read == 0) {
return 0;
} else if (*bytes_read != 1) {
fprintf(stderr, "obudec: Failure reading OBU header.\n");
return -1;
}
const int has_extension = (obu_data[0] >> 2) & 0x1;
if (has_extension) {
if (fread(&obu_data[1], 1, 1, f) != 1) {
fprintf(stderr, "obudec: Failure reading OBU extension.");
return -1;
}
++*bytes_read;
}
size_t obu_bytes_parsed = 0;
const aom_codec_err_t parse_result = aom_read_obu_header(
obu_data, *bytes_read, &obu_bytes_parsed, obu_header, is_annexb);
if (parse_result != AOM_CODEC_OK || *bytes_read != obu_bytes_parsed) {
fprintf(stderr, "obudec: Error parsing OBU header.\n");
return -1;
}
return 0;
}
// Reads OBU payload from 'f' and returns 0 for success when all payload bytes
// are read from the file. Payload data is written to 'obu_data', and actual
// bytes read written to 'bytes_read'.
static int obudec_read_obu_payload(FILE *f, uint64_t payload_length,
uint8_t *obu_data, uint64_t *bytes_read) {
if (!f || payload_length == 0 || !obu_data || !bytes_read) return -1;
if (fread(obu_data, 1, (size_t)payload_length, f) != payload_length) {
fprintf(stderr, "obudec: Failure reading OBU payload.\n");
return -1;
}
*bytes_read += payload_length;
return 0;
}
static int obudec_read_obu_header_and_size(FILE *f, size_t buffer_capacity,
int is_annexb, uint8_t *buffer,
uint64_t *bytes_read,
uint64_t *payload_length,
ObuHeader *obu_header) {
const size_t kMinimumBufferSize =
(OBU_HEADER_SIZE + OBU_EXTENSION_SIZE + OBU_MAX_LENGTH_FIELD_SIZE);
if (!f || !buffer || !bytes_read || !payload_length || !obu_header ||
buffer_capacity < kMinimumBufferSize) {
return -1;
}
uint64_t leb128_length = 0;
uint64_t obu_size = 0;
uint64_t header_size = 0;
if (is_annexb) {
if (obudec_read_leb128(f, &buffer[0], &leb128_length, &obu_size) != 0) {
fprintf(stderr, "obudec: Failure reading OBU size length.\n");
return -1;
} else if (leb128_length == 0) {
*payload_length = 0;
return 0;
}
}
if (obudec_read_obu_header(f, buffer_capacity - leb128_length, is_annexb,
buffer + leb128_length, obu_header,
&header_size) != 0) {
return -1;
} else if (header_size == 0) {
*payload_length = 0;
return 0;
}
if (is_annexb) {
if (obu_size < header_size) {
fprintf(stderr, "obudec: OBU size is too small.\n");
return -1;
}
*payload_length = obu_size - header_size;
} else {
if (obudec_read_leb128(f, &buffer[header_size], &leb128_length,
payload_length) != 0) {
fprintf(stderr, "obudec: Failure reading OBU payload length.\n");
return -1;
}
}
*bytes_read = leb128_length + header_size;
return 0;
}
static int obudec_read_one_obu(FILE *f, uint8_t **obu_buffer,
size_t obu_bytes_buffered,
size_t *obu_buffer_capacity,
uint64_t *obu_length, ObuHeader *obu_header,
int is_annexb) {
uint64_t available_buffer_capacity =
*obu_buffer_capacity - obu_bytes_buffered;
if (!(*obu_buffer)) return -1;
uint64_t obu_payload_length = 0;
uint64_t bytes_read = 0;
const int status = obudec_read_obu_header_and_size(
f, available_buffer_capacity, is_annexb, *obu_buffer + obu_bytes_buffered,
&bytes_read, &obu_payload_length, obu_header);
if (status < 0) return status;
if (obu_payload_length > UINT64_MAX - bytes_read) return -1;
if (obu_payload_length > 256 * 1024 * 1024) {
fprintf(stderr, "obudec: Read invalid OBU size (%u)\n",
(unsigned int)obu_payload_length);
*obu_length = bytes_read + obu_payload_length;
return -1;
}
if (bytes_read + obu_payload_length > available_buffer_capacity) {
uint64_t new_capacity =
obu_bytes_buffered + bytes_read + 2 * obu_payload_length;
#if defined AOM_MAX_ALLOCABLE_MEMORY
if (new_capacity > AOM_MAX_ALLOCABLE_MEMORY) {
fprintf(stderr, "obudec: OBU size exceeds max alloc size.\n");
return -1;
}
#endif
uint8_t *new_buffer = (uint8_t *)realloc(*obu_buffer, new_capacity);
if (new_buffer) {
*obu_buffer = new_buffer;
*obu_buffer_capacity = new_capacity;
} else {
fprintf(stderr, "obudec: Failed to allocate compressed data buffer\n");
*obu_length = bytes_read + obu_payload_length;
return -1;
}
}
if (obu_payload_length > 0 &&
obudec_read_obu_payload(f, obu_payload_length,
*obu_buffer + obu_bytes_buffered + bytes_read,
&bytes_read) != 0) {
return -1;
}
*obu_length = bytes_read;
return 0;
}
int file_is_obu(struct ObuDecInputContext *obu_ctx) {
if (!obu_ctx || !obu_ctx->avx_ctx) return 0;
struct AvxInputContext *avx_ctx = obu_ctx->avx_ctx;
uint8_t detect_buf[OBU_DETECTION_SIZE] = { 0 };
const int is_annexb = obu_ctx->is_annexb;
FILE *f = avx_ctx->file;
uint64_t bytes_read = 0;
uint64_t payload_length = 0;
ObuHeader obu_header;
memset(&obu_header, 0, sizeof(obu_header));
uint64_t length_of_unit_size = 0;
uint64_t unit_size;
uint64_t annexb_header_length = 0;
if (is_annexb) {
// read the size of first temporal unit
if (obudec_read_leb128(f, &detect_buf[0], &length_of_unit_size,
&unit_size) != 0) {
fprintf(stderr, "obudec: Failure reading temporal unit header\n");
return 0;
}
// read the size of first frame unit
if (obudec_read_leb128(f, &detect_buf[length_of_unit_size],
&annexb_header_length, &unit_size) != 0) {
fprintf(stderr, "obudec: Failure reading frame unit header\n");
return 0;
}
annexb_header_length += length_of_unit_size;
}
if (obudec_read_obu_header_and_size(
f, OBU_DETECTION_SIZE - annexb_header_length, is_annexb,
&detect_buf[annexb_header_length], &bytes_read, &payload_length,
&obu_header) != 0) {
fprintf(stderr, "obudec: Failure reading first OBU.\n");
rewind(f);
return 0;
}
if (is_annexb) {
bytes_read += annexb_header_length;
}
if (obu_header.type != OBU_TEMPORAL_DELIMITER &&
obu_header.type != OBU_SEQUENCE_HEADER) {
return 0;
}
if (obu_header.has_length_field) {
if (obu_header.type == OBU_TEMPORAL_DELIMITER && payload_length != 0) {
fprintf(
stderr,
"obudec: Invalid OBU_TEMPORAL_DELIMITER payload length (non-zero).");
rewind(f);
return 0;
}
} else if (!is_annexb) {
fprintf(stderr, "obudec: OBU size fields required, cannot decode input.\n");
rewind(f);
return 0;
}
// Appears that input is valid Section 5 AV1 stream.
obu_ctx->buffer = (uint8_t *)malloc(OBU_BUFFER_SIZE);
if (!obu_ctx->buffer) {
fprintf(stderr, "Out of memory.\n");
rewind(f);
return 0;
}
obu_ctx->buffer_capacity = OBU_BUFFER_SIZE;
memcpy(obu_ctx->buffer, &detect_buf[0], (size_t)bytes_read);
obu_ctx->bytes_buffered = (size_t)bytes_read;
// If the first OBU is a SEQUENCE_HEADER, then it will have a payload.
// We need to read this in so that our buffer only contains complete OBUs.
if (payload_length > 0) {
if (payload_length > (obu_ctx->buffer_capacity - bytes_read)) {
fprintf(stderr, "obudec: First OBU's payload is too large\n");
rewind(f);
return 0;
}
uint64_t payload_bytes = 0;
const int status = obudec_read_obu_payload(
f, payload_length, &obu_ctx->buffer[bytes_read], &payload_bytes);
if (status < 0) {
rewind(f);
return 0;
}
obu_ctx->bytes_buffered += payload_bytes;
}
return 1;
}
int obudec_read_temporal_unit(struct ObuDecInputContext *obu_ctx,
uint8_t **buffer, size_t *bytes_read,
size_t *buffer_size) {
FILE *f = obu_ctx->avx_ctx->file;
if (!f) return -1;
*buffer_size = 0;
*bytes_read = 0;
if (feof(f)) {
return 1;
}
uint64_t tu_size;
uint64_t obu_size = 0;
uint64_t length_of_temporal_unit_size = 0;
uint8_t tuheader[OBU_MAX_LENGTH_FIELD_SIZE] = { 0 };
if (obu_ctx->is_annexb) {
uint64_t size = 0;
if (obu_ctx->bytes_buffered == 0) {
if (obudec_read_leb128(f, &tuheader[0], &length_of_temporal_unit_size,
&size) != 0) {
fprintf(stderr, "obudec: Failure reading temporal unit header\n");
return -1;
}
if (size == 0 && feof(f)) {
return 1;
}
} else {
// temporal unit size was already stored in buffer
size_t bytes_consumed = 0;
if (aom_uleb_decode(obu_ctx->buffer, obu_ctx->bytes_buffered, &size,
&bytes_consumed) != 0) {
fprintf(stderr, "obudec: Failure reading temporal unit header\n");
return -1;
}
length_of_temporal_unit_size += bytes_consumed;
}
size += length_of_temporal_unit_size;
tu_size = size;
} else {
while (1) {
ObuHeader obu_header;
memset(&obu_header, 0, sizeof(obu_header));
if (obudec_read_one_obu(f, &obu_ctx->buffer, obu_ctx->bytes_buffered,
&obu_ctx->buffer_capacity, &obu_size, &obu_header,
0) != 0) {
fprintf(stderr, "obudec: read_one_obu failed in TU loop\n");
return -1;
}
if (obu_header.type == OBU_TEMPORAL_DELIMITER || obu_size == 0 ||
(obu_header.has_extension &&
obu_header.enhancement_layer_id > obu_ctx->last_layer_id)) {
tu_size = obu_ctx->bytes_buffered;
break;
} else {
obu_ctx->bytes_buffered += (size_t)obu_size;
}
}
}
#if defined AOM_MAX_ALLOCABLE_MEMORY
if (tu_size > AOM_MAX_ALLOCABLE_MEMORY) {
fprintf(stderr, "obudec: Temporal Unit size exceeds max alloc size.\n");
return -1;
}
#endif
uint8_t *new_buffer = (uint8_t *)realloc(*buffer, (size_t)tu_size);
if (!new_buffer) {
free(*buffer);
fprintf(stderr, "obudec: Out of memory.\n");
return -1;
}
*buffer = new_buffer;
*bytes_read = (size_t)tu_size;
*buffer_size = (size_t)tu_size;
if (!obu_ctx->is_annexb) {
memcpy(*buffer, obu_ctx->buffer, (size_t)tu_size);
// At this point, (obu_ctx->buffer + obu_ctx->bytes_buffered + obu_size)
// points to the end of the buffer.
memmove(obu_ctx->buffer, obu_ctx->buffer + obu_ctx->bytes_buffered,
(size_t)obu_size);
obu_ctx->bytes_buffered = (size_t)obu_size;
} else {
if (!feof(f)) {
size_t data_size;
size_t offset;
if (!obu_ctx->bytes_buffered) {
data_size = (uint32_t)(tu_size - length_of_temporal_unit_size);
memcpy(*buffer, &tuheader[0], length_of_temporal_unit_size);
offset = length_of_temporal_unit_size;
} else {
memcpy(*buffer, obu_ctx->buffer, obu_ctx->bytes_buffered);
offset = obu_ctx->bytes_buffered;
data_size = tu_size - obu_ctx->bytes_buffered;
obu_ctx->bytes_buffered = 0;
}
if (fread(new_buffer + offset, 1, data_size, f) != data_size) {
fprintf(stderr, "obudec: Failed to read full temporal unit\n");
return -1;
}
}
}
return 0;
}
void obudec_free(struct ObuDecInputContext *obu_ctx) { free(obu_ctx->buffer); }