| /* |
| * Copyright (c) 2021, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "aom/aom_codec.h" |
| #include "aom/aomdx.h" |
| #include "aom_dsp/psnr.h" |
| #include "aom_mem/aom_mem.h" |
| #include "av1/av1_iface_common.h" |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/firstpass.h" |
| #include "av1/encoder/thirdpass.h" |
| #include "av1/common/blockd.h" |
| |
| #if CONFIG_THREE_PASS |
| #include "common/ivfdec.h" |
| #endif |
| |
| #if CONFIG_THREE_PASS |
| static void setup_two_pass_stream_input( |
| struct AvxInputContext **input_ctx_ptr, const char *input_file_name, |
| struct aom_internal_error_info *err_info) { |
| FILE *infile; |
| infile = fopen(input_file_name, "rb"); |
| if (!infile) { |
| aom_internal_error(err_info, AOM_CODEC_INVALID_PARAM, |
| "Failed to open input file '%s'.", input_file_name); |
| } |
| struct AvxInputContext *aom_input_ctx = aom_malloc(sizeof(*aom_input_ctx)); |
| if (!aom_input_ctx) { |
| fclose(infile); |
| aom_internal_error(err_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate memory for third-pass context."); |
| } |
| memset(aom_input_ctx, 0, sizeof(*aom_input_ctx)); |
| aom_input_ctx->filename = input_file_name; |
| aom_input_ctx->file = infile; |
| |
| if (file_is_ivf(aom_input_ctx)) { |
| aom_input_ctx->file_type = FILE_TYPE_IVF; |
| } else { |
| fclose(infile); |
| aom_free(aom_input_ctx); |
| aom_internal_error(err_info, AOM_CODEC_INVALID_PARAM, |
| "Unrecognized input file type."); |
| } |
| *input_ctx_ptr = aom_input_ctx; |
| } |
| |
| static void init_third_pass(THIRD_PASS_DEC_CTX *ctx) { |
| if (!ctx->input_ctx) { |
| if (ctx->input_file_name == NULL) { |
| aom_internal_error(ctx->err_info, AOM_CODEC_INVALID_PARAM, |
| "No third pass input specified."); |
| } |
| setup_two_pass_stream_input(&ctx->input_ctx, ctx->input_file_name, |
| ctx->err_info); |
| } |
| |
| #if CONFIG_AV1_DECODER |
| if (!ctx->decoder.iface) { |
| aom_codec_iface_t *decoder_iface = &aom_codec_av1_inspect_algo; |
| if (aom_codec_dec_init(&ctx->decoder, decoder_iface, NULL, 0)) { |
| aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
| "Failed to initialize decoder."); |
| } |
| } |
| #else |
| aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
| "To utilize three-pass encoding, libaom must be built " |
| "with CONFIG_AV1_DECODER=1."); |
| #endif |
| } |
| #endif // CONFIG_THREE_PASS |
| |
| // Return 0: success |
| // 1: cannot read because this is end of file |
| // -1: failure to read the frame |
| static int read_frame(THIRD_PASS_DEC_CTX *ctx) { |
| #if CONFIG_THREE_PASS |
| if (!ctx->input_ctx || !ctx->decoder.iface) { |
| init_third_pass(ctx); |
| } |
| if (!ctx->have_frame) { |
| if (ivf_read_frame(ctx->input_ctx->file, &ctx->buf, &ctx->bytes_in_buffer, |
| &ctx->buffer_size, NULL) != 0) { |
| if (feof(ctx->input_ctx->file)) { |
| return 1; |
| } else { |
| return -1; |
| } |
| } |
| ctx->frame = ctx->buf; |
| ctx->end_frame = ctx->frame + ctx->bytes_in_buffer; |
| ctx->have_frame = 1; |
| } |
| #else |
| aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
| "Cannot parse bitstream without CONFIG_THREE_PASS."); |
| #endif |
| Av1DecodeReturn adr; |
| if (aom_codec_decode(&ctx->decoder, ctx->frame, |
| (unsigned int)ctx->bytes_in_buffer, |
| &adr) != AOM_CODEC_OK) { |
| aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
| "Failed to decode frame for third pass."); |
| } |
| ctx->this_frame_bits = (int)(adr.buf - ctx->frame) << 3; |
| ctx->frame = adr.buf; |
| ctx->bytes_in_buffer = ctx->end_frame - ctx->frame; |
| if (ctx->frame == ctx->end_frame) ctx->have_frame = 0; |
| return 0; |
| } |
| |
| static void free_frame_info(THIRD_PASS_FRAME_INFO *frame_info) { |
| if (!frame_info) return; |
| aom_free(frame_info->mi_info); |
| frame_info->mi_info = NULL; |
| } |
| |
| // This function gets the information needed from the recently decoded frame, |
| // via various decoder APIs, and saves the info into ctx->frame_info. |
| // Return 0: success |
| // 1: cannot read because this is end of file |
| // -1: failure to read the frame |
| static int get_frame_info(THIRD_PASS_DEC_CTX *ctx) { |
| int ret = read_frame(ctx); |
| if (ret != 0) return ret; |
| int cur = ctx->frame_info_count; |
| |
| ctx->frame_info[cur].actual_bits = ctx->this_frame_bits; |
| |
| if (cur >= MAX_THIRD_PASS_BUF) { |
| aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
| "Third pass frame info ran out of available slots."); |
| } |
| int frame_type_flags = 0; |
| if (aom_codec_control(&ctx->decoder, AOMD_GET_FRAME_FLAGS, |
| &frame_type_flags) != AOM_CODEC_OK) { |
| aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
| "Failed to read frame flags."); |
| } |
| if (frame_type_flags & AOM_FRAME_IS_KEY) { |
| ctx->frame_info[cur].frame_type = KEY_FRAME; |
| } else if (frame_type_flags & AOM_FRAME_IS_INTRAONLY) { |
| ctx->frame_info[cur].frame_type = INTRA_ONLY_FRAME; |
| } else if (frame_type_flags & AOM_FRAME_IS_SWITCH) { |
| ctx->frame_info[cur].frame_type = S_FRAME; |
| } else { |
| ctx->frame_info[cur].frame_type = INTER_FRAME; |
| } |
| |
| // Get frame width and height |
| int frame_size[2]; |
| if (aom_codec_control(&ctx->decoder, AV1D_GET_FRAME_SIZE, frame_size) != |
| AOM_CODEC_OK) { |
| aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
| "Failed to read frame size."); |
| } |
| |
| // Check if we need to re-alloc the mi fields. |
| const int mi_cols = (frame_size[0] + 3) >> 2; |
| const int mi_rows = (frame_size[1] + 3) >> 2; |
| ctx->frame_info[cur].mi_stride = mi_cols; |
| ctx->frame_info[cur].mi_rows = mi_rows; |
| ctx->frame_info[cur].mi_cols = mi_cols; |
| |
| if (ctx->frame_info[cur].width != frame_size[0] || |
| ctx->frame_info[cur].height != frame_size[1] || |
| !ctx->frame_info[cur].mi_info) { |
| free_frame_info(&ctx->frame_info[cur]); |
| |
| ctx->frame_info[cur].mi_info = |
| aom_malloc(mi_cols * mi_rows * sizeof(*ctx->frame_info[cur].mi_info)); |
| |
| if (!ctx->frame_info[cur].mi_info) { |
| aom_internal_error(ctx->err_info, AOM_CODEC_MEM_ERROR, |
| "Failed to allocate mi buffer for the third pass."); |
| } |
| } |
| |
| ctx->frame_info[cur].width = frame_size[0]; |
| ctx->frame_info[cur].height = frame_size[1]; |
| |
| // Get frame base q idx |
| if (aom_codec_control(&ctx->decoder, AOMD_GET_BASE_Q_IDX, |
| &ctx->frame_info[cur].base_q_idx) != AOM_CODEC_OK) { |
| aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
| "Failed to read base q index."); |
| } |
| |
| // Get show existing frame flag |
| if (aom_codec_control(&ctx->decoder, AOMD_GET_SHOW_EXISTING_FRAME_FLAG, |
| &ctx->frame_info[cur].is_show_existing_frame) != |
| AOM_CODEC_OK) { |
| aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
| "Failed to read show existing frame flag."); |
| } |
| |
| // Get show frame flag |
| if (aom_codec_control(&ctx->decoder, AOMD_GET_SHOW_FRAME_FLAG, |
| &ctx->frame_info[cur].is_show_frame) != AOM_CODEC_OK) { |
| aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
| "Failed to read show frame flag."); |
| } |
| |
| // Get order hint |
| if (aom_codec_control(&ctx->decoder, AOMD_GET_ORDER_HINT, |
| &ctx->frame_info[cur].order_hint) != AOM_CODEC_OK) { |
| aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
| "Failed to read order hint."); |
| } |
| |
| // Clear MI info |
| for (int mi_row = 0; mi_row < mi_rows; mi_row++) { |
| for (int mi_col = 0; mi_col < mi_cols; mi_col++) { |
| ctx->frame_info[cur].mi_info[mi_row * mi_cols + mi_col].bsize = |
| BLOCK_INVALID; |
| } |
| } |
| |
| // Get relevant information regarding each 4x4 MI |
| MB_MODE_INFO cur_mi_info; |
| THIRD_PASS_MI_INFO *const this_mi = ctx->frame_info[cur].mi_info; |
| for (int mi_row = 0; mi_row < mi_rows; mi_row++) { |
| for (int mi_col = 0; mi_col < mi_cols; mi_col++) { |
| const int offset = mi_row * mi_cols + mi_col; |
| if (this_mi[offset].bsize != BLOCK_INVALID) { |
| continue; |
| } |
| // Get info of this MI |
| if (aom_codec_control(&ctx->decoder, AV1D_GET_MI_INFO, mi_row, mi_col, |
| &cur_mi_info) != AOM_CODEC_OK) { |
| aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
| "Failed to read mi info."); |
| } |
| const int blk_mi_rows = mi_size_high[cur_mi_info.bsize]; |
| const int blk_mi_cols = mi_size_wide[cur_mi_info.bsize]; |
| |
| for (int h = 0; h < blk_mi_rows; h++) { |
| for (int w = 0; w < blk_mi_cols; w++) { |
| if (h + mi_row >= mi_rows || w + mi_col >= mi_cols) { |
| continue; |
| } |
| const int this_offset = offset + h * mi_cols + w; |
| this_mi[this_offset].bsize = cur_mi_info.bsize; |
| this_mi[this_offset].partition = cur_mi_info.partition; |
| this_mi[this_offset].mi_row_start = mi_row; |
| this_mi[this_offset].mi_col_start = mi_col; |
| this_mi[this_offset].mv[0] = cur_mi_info.mv[0]; |
| this_mi[this_offset].mv[1] = cur_mi_info.mv[1]; |
| this_mi[this_offset].ref_frame[0] = cur_mi_info.ref_frame[0]; |
| this_mi[this_offset].ref_frame[1] = cur_mi_info.ref_frame[1]; |
| this_mi[this_offset].pred_mode = cur_mi_info.mode; |
| } |
| } |
| } |
| } |
| |
| ctx->frame_info_count++; |
| |
| return 0; |
| } |
| |
| #define USE_SECOND_PASS_FILE 1 |
| |
| #if !USE_SECOND_PASS_FILE |
| // Parse the frames in the gop and determine the last frame of the current GOP. |
| // Decode more frames if necessary. The variable max_num is the maximum static |
| // GOP length if we detect an IPPP structure, and it is expected that max_mum >= |
| // MAX_GF_INTERVAL. |
| static void get_current_gop_end(THIRD_PASS_DEC_CTX *ctx, int max_num, |
| int *last_idx) { |
| assert(max_num >= MAX_GF_INTERVAL); |
| *last_idx = 0; |
| int cur_idx = 0; |
| int arf_order_hint = -1; |
| int num_show_frames = 0; |
| while (num_show_frames < max_num) { |
| assert(cur_idx < MAX_THIRD_PASS_BUF); |
| // Read in from bitstream if needed. |
| if (cur_idx >= ctx->frame_info_count) { |
| int ret = get_frame_info(ctx); |
| if (ret == 1) { |
| // At the end of the file, GOP ends in the prev frame. |
| if (arf_order_hint >= 0) { |
| aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
| "Failed to derive GOP length."); |
| } |
| *last_idx = cur_idx - 1; |
| return; |
| } |
| if (ret < 0) { |
| aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
| "Failed to read frame for third pass."); |
| } |
| } |
| |
| // TODO(bohanli): verify that fwd_kf works here. |
| if (ctx->frame_info[cur_idx].frame_type == KEY_FRAME && |
| ctx->frame_info[cur_idx].is_show_frame) { |
| if (cur_idx != 0) { |
| // If this is a key frame and is not the first kf in this kf group, we |
| // have reached the next key frame. Stop here. |
| *last_idx = cur_idx - 1; |
| return; |
| } |
| } else if (!ctx->frame_info[cur_idx].is_show_frame && |
| arf_order_hint == -1) { |
| // If this is an arf (the first no show) |
| if (num_show_frames <= 1) { |
| // This is an arf and we should end the GOP with its overlay. |
| arf_order_hint = ctx->frame_info[cur_idx].order_hint; |
| } else { |
| // There are multiple show frames before the this arf, so we treat the |
| // frames previous to this arf as a GOP. |
| *last_idx = cur_idx - 1; |
| return; |
| } |
| } else if (arf_order_hint >= 0 && ctx->frame_info[cur_idx].order_hint == |
| (unsigned int)arf_order_hint) { |
| // If this is the overlay/show existing of the arf |
| assert(ctx->frame_info[cur_idx].is_show_frame); |
| *last_idx = cur_idx; |
| return; |
| } else { |
| // This frame is part of the GOP. |
| if (ctx->frame_info[cur_idx].is_show_frame) num_show_frames++; |
| } |
| cur_idx++; |
| } |
| // This is a long IPPP GOP and we will use a length of max_num here. |
| assert(arf_order_hint < 0); |
| *last_idx = max_num - 1; |
| return; |
| } |
| #endif |
| |
| static AOM_INLINE void read_gop_frames(THIRD_PASS_DEC_CTX *ctx) { |
| int cur_idx = 0; |
| while (cur_idx < ctx->gop_info.num_frames) { |
| assert(cur_idx < MAX_THIRD_PASS_BUF); |
| // Read in from bitstream if needed. |
| if (cur_idx >= ctx->frame_info_count) { |
| int ret = get_frame_info(ctx); |
| if (ret != 0) { |
| aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
| "Failed to read frame for third pass."); |
| } |
| } |
| cur_idx++; |
| } |
| return; |
| } |
| |
| void av1_set_gop_third_pass(THIRD_PASS_DEC_CTX *ctx) { |
| // Read in future frames in the current GOP. |
| read_gop_frames(ctx); |
| |
| int gf_len = 0; |
| // Check the GOP length against the value read from second_pass_file |
| for (int i = 0; i < ctx->gop_info.num_frames; i++) { |
| if (ctx->frame_info[i].is_show_frame) gf_len++; |
| } |
| |
| if (gf_len != ctx->gop_info.gf_length) { |
| aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
| "Mismatch in third pass GOP length!"); |
| } |
| } |
| |
| void av1_pop_third_pass_info(THIRD_PASS_DEC_CTX *ctx) { |
| if (ctx->frame_info_count == 0) { |
| aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
| "No available frame info for third pass."); |
| } |
| ctx->frame_info_count--; |
| free_frame_info(&ctx->frame_info[0]); |
| for (int i = 0; i < ctx->frame_info_count; i++) { |
| ctx->frame_info[i] = ctx->frame_info[i + 1]; |
| } |
| ctx->frame_info[ctx->frame_info_count].mi_info = NULL; |
| } |
| |
| void av1_init_thirdpass_ctx(AV1_COMMON *cm, THIRD_PASS_DEC_CTX **ctx, |
| const char *file) { |
| av1_free_thirdpass_ctx(*ctx); |
| CHECK_MEM_ERROR(cm, *ctx, aom_calloc(1, sizeof(**ctx))); |
| THIRD_PASS_DEC_CTX *ctx_ptr = *ctx; |
| ctx_ptr->input_file_name = file; |
| ctx_ptr->prev_gop_end = -1; |
| ctx_ptr->err_info = cm->error; |
| } |
| |
| void av1_free_thirdpass_ctx(THIRD_PASS_DEC_CTX *ctx) { |
| if (ctx == NULL) return; |
| if (ctx->decoder.iface) { |
| aom_codec_destroy(&ctx->decoder); |
| } |
| #if CONFIG_THREE_PASS |
| if (ctx->input_ctx && ctx->input_ctx->file) fclose(ctx->input_ctx->file); |
| aom_free(ctx->input_ctx); |
| #endif |
| if (ctx->buf) free(ctx->buf); |
| for (int i = 0; i < MAX_THIRD_PASS_BUF; i++) { |
| free_frame_info(&ctx->frame_info[i]); |
| } |
| aom_free(ctx); |
| } |
| |
| void av1_write_second_pass_gop_info(AV1_COMP *cpi) { |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| const GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
| const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| |
| if (oxcf->pass == AOM_RC_SECOND_PASS && oxcf->second_pass_log) { |
| // Write the GOP length to a log file. |
| av1_open_second_pass_log(cpi, 0); |
| |
| THIRD_PASS_GOP_INFO gop_info; |
| |
| gop_info.num_frames = gf_group->size; |
| gop_info.use_arf = (gf_group->arf_index >= 0); |
| gop_info.gf_length = p_rc->baseline_gf_interval; |
| |
| size_t count = |
| fwrite(&gop_info, sizeof(gop_info), 1, cpi->second_pass_log_stream); |
| if (count < 1) { |
| aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, |
| "Could not write to second pass log file!"); |
| } |
| } |
| } |
| |
| void av1_write_second_pass_per_frame_info(AV1_COMP *cpi, int gf_index) { |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| const GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
| |
| if (oxcf->pass == AOM_RC_SECOND_PASS && oxcf->second_pass_log) { |
| // write target bitrate |
| int bits = gf_group->bit_allocation[gf_index]; |
| size_t count = fwrite(&bits, sizeof(bits), 1, cpi->second_pass_log_stream); |
| if (count < 1) { |
| aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, |
| "Could not write to second pass log file!"); |
| } |
| |
| // write sse |
| uint64_t sse = 0; |
| int pkt_idx = cpi->ppi->output_pkt_list->cnt - 1; |
| if (pkt_idx >= 0 && |
| cpi->ppi->output_pkt_list->pkts[pkt_idx].kind == AOM_CODEC_PSNR_PKT) { |
| sse = cpi->ppi->output_pkt_list->pkts[pkt_idx].data.psnr.sse[0]; |
| #if CONFIG_INTERNAL_STATS |
| } else if (cpi->ppi->b_calculate_psnr) { |
| sse = cpi->ppi->total_sq_error[0]; |
| #endif |
| } else { |
| const YV12_BUFFER_CONFIG *orig = cpi->source; |
| const YV12_BUFFER_CONFIG *recon = &cpi->common.cur_frame->buf; |
| PSNR_STATS psnr; |
| #if CONFIG_AV1_HIGHBITDEPTH |
| const uint32_t in_bit_depth = cpi->oxcf.input_cfg.input_bit_depth; |
| const uint32_t bit_depth = cpi->td.mb.e_mbd.bd; |
| aom_calc_highbd_psnr(orig, recon, &psnr, bit_depth, in_bit_depth); |
| #else |
| aom_calc_psnr(orig, recon, &psnr); |
| #endif |
| sse = psnr.sse[0]; |
| } |
| |
| count = fwrite(&sse, sizeof(sse), 1, cpi->second_pass_log_stream); |
| if (count < 1) { |
| aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, |
| "Could not write to second pass log file!"); |
| } |
| |
| // write bpm_factor |
| double factor = cpi->ppi->twopass.bpm_factor; |
| count = fwrite(&factor, sizeof(factor), 1, cpi->second_pass_log_stream); |
| if (count < 1) { |
| aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, |
| "Could not write to second pass log file!"); |
| } |
| } |
| } |
| void av1_open_second_pass_log(AV1_COMP *cpi, int is_read) { |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| if (oxcf->second_pass_log == NULL) { |
| aom_internal_error(cpi->common.error, AOM_CODEC_INVALID_PARAM, |
| "No second pass log file specified for the third pass!"); |
| } |
| // Read the GOP length from a file. |
| if (!cpi->second_pass_log_stream) { |
| if (is_read) { |
| cpi->second_pass_log_stream = fopen(cpi->oxcf.second_pass_log, "rb"); |
| } else { |
| cpi->second_pass_log_stream = fopen(cpi->oxcf.second_pass_log, "wb"); |
| } |
| if (!cpi->second_pass_log_stream) { |
| aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, |
| "Could not open second pass log file!"); |
| } |
| } |
| } |
| |
| void av1_close_second_pass_log(AV1_COMP *cpi) { |
| if (cpi->second_pass_log_stream) { |
| int ret = fclose(cpi->second_pass_log_stream); |
| if (ret != 0) { |
| aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, |
| "Could not close second pass log file!"); |
| } |
| cpi->second_pass_log_stream = 0; |
| } |
| } |
| |
| void av1_read_second_pass_gop_info(FILE *second_pass_log_stream, |
| THIRD_PASS_GOP_INFO *gop_info, |
| struct aom_internal_error_info *error) { |
| size_t count = fread(gop_info, sizeof(*gop_info), 1, second_pass_log_stream); |
| if (count < 1) { |
| aom_internal_error(error, AOM_CODEC_ERROR, |
| "Could not read from second pass log file!"); |
| } |
| } |
| |
| void av1_read_second_pass_per_frame_info( |
| FILE *second_pass_log_stream, THIRD_PASS_FRAME_INFO *frame_info_arr, |
| int frame_info_count, struct aom_internal_error_info *error) { |
| for (int i = 0; i < frame_info_count; i++) { |
| // read target bits |
| int bits = 0; |
| size_t count = fread(&bits, sizeof(bits), 1, second_pass_log_stream); |
| if (count < 1) { |
| aom_internal_error(error, AOM_CODEC_ERROR, |
| "Could not read from second pass log file!"); |
| } |
| frame_info_arr[i].bits_allocated = bits; |
| |
| // read distortion |
| uint64_t sse; |
| count = fread(&sse, sizeof(sse), 1, second_pass_log_stream); |
| if (count < 1) { |
| aom_internal_error(error, AOM_CODEC_ERROR, |
| "Could not read from second pass log file!"); |
| } |
| frame_info_arr[i].sse = sse; |
| |
| // read bpm factor |
| double factor; |
| count = fread(&factor, sizeof(factor), 1, second_pass_log_stream); |
| if (count < 1) { |
| aom_internal_error(error, AOM_CODEC_ERROR, |
| "Could not read from second pass log file!"); |
| } |
| frame_info_arr[i].bpm_factor = factor; |
| } |
| } |
| |
| int av1_check_use_arf(THIRD_PASS_DEC_CTX *ctx) { |
| if (ctx == NULL) return -1; |
| int use_arf = 0; |
| for (int i = 0; i < ctx->gop_info.gf_length; i++) { |
| if (ctx->frame_info[i].order_hint != 0 && |
| ctx->frame_info[i].is_show_frame == 0) { |
| use_arf = 1; |
| } |
| } |
| if (use_arf != ctx->gop_info.use_arf) { |
| aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, |
| "Mismatch in third pass GOP length!"); |
| } |
| return use_arf; |
| } |
| |
| void av1_get_third_pass_ratio(THIRD_PASS_DEC_CTX *ctx, int fidx, int fheight, |
| int fwidth, double *ratio_h, double *ratio_w) { |
| assert(ctx); |
| assert(fidx < ctx->frame_info_count); |
| const int fheight_second_pass = ctx->frame_info[fidx].height; |
| const int fwidth_second_pass = ctx->frame_info[fidx].width; |
| assert(fheight_second_pass <= fheight && fwidth_second_pass <= fwidth); |
| |
| *ratio_h = (double)fheight / fheight_second_pass; |
| *ratio_w = (double)fwidth / fwidth_second_pass; |
| } |
| |
| THIRD_PASS_MI_INFO *av1_get_third_pass_mi(THIRD_PASS_DEC_CTX *ctx, int fidx, |
| int mi_row, int mi_col, |
| double ratio_h, double ratio_w) { |
| assert(ctx); |
| assert(fidx < ctx->frame_info_count); |
| |
| const int mi_rows_second_pass = ctx->frame_info[fidx].mi_rows; |
| const int mi_cols_second_pass = ctx->frame_info[fidx].mi_cols; |
| |
| const int mi_row_second_pass = |
| clamp((int)round(mi_row / ratio_h), 0, mi_rows_second_pass - 1); |
| const int mi_col_second_pass = |
| clamp((int)round(mi_col / ratio_w), 0, mi_cols_second_pass - 1); |
| |
| const int mi_stride_second_pass = ctx->frame_info[fidx].mi_stride; |
| THIRD_PASS_MI_INFO *this_mi = ctx->frame_info[fidx].mi_info + |
| mi_row_second_pass * mi_stride_second_pass + |
| mi_col_second_pass; |
| return this_mi; |
| } |
| |
| void av1_third_pass_get_adjusted_mi(THIRD_PASS_MI_INFO *third_pass_mi, |
| double ratio_h, double ratio_w, int *mi_row, |
| int *mi_col) { |
| *mi_row = (int)round(third_pass_mi->mi_row_start * ratio_h); |
| *mi_col = (int)round(third_pass_mi->mi_col_start * ratio_w); |
| } |
| |
| int_mv av1_get_third_pass_adjusted_mv(THIRD_PASS_MI_INFO *this_mi, |
| double ratio_h, double ratio_w, |
| MV_REFERENCE_FRAME frame) { |
| assert(this_mi != NULL); |
| int_mv cur_mv; |
| cur_mv.as_int = INVALID_MV; |
| |
| if (frame < LAST_FRAME || frame > ALTREF_FRAME) return cur_mv; |
| |
| for (int r = 0; r < 2; r++) { |
| if (this_mi->ref_frame[r] == frame) { |
| cur_mv.as_mv.row = (int16_t)round(this_mi->mv[r].as_mv.row * ratio_h); |
| cur_mv.as_mv.col = (int16_t)round(this_mi->mv[r].as_mv.col * ratio_w); |
| } |
| } |
| |
| return cur_mv; |
| } |
| |
| BLOCK_SIZE av1_get_third_pass_adjusted_blk_size(THIRD_PASS_MI_INFO *this_mi, |
| double ratio_h, |
| double ratio_w) { |
| assert(this_mi != NULL); |
| BLOCK_SIZE bsize = BLOCK_INVALID; |
| |
| const BLOCK_SIZE bsize_second_pass = this_mi->bsize; |
| assert(bsize_second_pass != BLOCK_INVALID); |
| |
| const int w_second_pass = block_size_wide[bsize_second_pass]; |
| const int h_second_pass = block_size_high[bsize_second_pass]; |
| |
| int part_type; |
| |
| if (w_second_pass == h_second_pass) { |
| part_type = PARTITION_NONE; |
| } else if (w_second_pass / h_second_pass == 2) { |
| part_type = PARTITION_HORZ; |
| } else if (w_second_pass / h_second_pass == 4) { |
| part_type = PARTITION_HORZ_4; |
| } else if (h_second_pass / w_second_pass == 2) { |
| part_type = PARTITION_VERT; |
| } else if (h_second_pass / w_second_pass == 4) { |
| part_type = PARTITION_VERT_4; |
| } else { |
| part_type = PARTITION_INVALID; |
| } |
| assert(part_type != PARTITION_INVALID); |
| |
| const int w = (int)(round(w_second_pass * ratio_w)); |
| const int h = (int)(round(h_second_pass * ratio_h)); |
| |
| for (int i = 0; i < SQR_BLOCK_SIZES; i++) { |
| const BLOCK_SIZE this_bsize = subsize_lookup[part_type][i]; |
| if (this_bsize == BLOCK_INVALID) continue; |
| |
| const int this_w = block_size_wide[this_bsize]; |
| const int this_h = block_size_high[this_bsize]; |
| |
| if (this_w >= w && this_h >= h) { |
| // find the smallest block size that contains the mapped block |
| bsize = this_bsize; |
| break; |
| } |
| } |
| if (bsize == BLOCK_INVALID) { |
| // could not find a proper one, just use the largest then. |
| bsize = BLOCK_128X128; |
| } |
| |
| return bsize; |
| } |
| |
| PARTITION_TYPE av1_third_pass_get_sb_part_type(THIRD_PASS_DEC_CTX *ctx, |
| THIRD_PASS_MI_INFO *this_mi) { |
| int mi_stride = ctx->frame_info[0].mi_stride; |
| |
| int mi_row = this_mi->mi_row_start; |
| int mi_col = this_mi->mi_col_start; |
| |
| THIRD_PASS_MI_INFO *corner_mi = |
| &ctx->frame_info[0].mi_info[mi_row * mi_stride + mi_col]; |
| |
| return corner_mi->partition; |
| } |
| |
| #if CONFIG_BITRATE_ACCURACY |
| static void fwrite_and_check(const void *ptr, size_t size, size_t nmemb, |
| FILE *stream, |
| struct aom_internal_error_info *error) { |
| int count = fwrite(ptr, size, nmemb, stream); |
| if (count < 1) { |
| aom_internal_error(error, AOM_CODEC_ERROR, "fwrite_and_check failed\n"); |
| } |
| } |
| |
| static void fread_and_check(void *ptr, size_t size, size_t nmemb, FILE *stream, |
| struct aom_internal_error_info *error) { |
| int count = fread(ptr, size, nmemb, stream); |
| if (count < 1) { |
| aom_internal_error(error, AOM_CODEC_ERROR, "fread_and_check failed\n"); |
| } |
| } |
| |
| void av1_pack_tpl_info(TPL_INFO *tpl_info, const GF_GROUP *gf_group, |
| const TplParams *tpl_data) { |
| tpl_info->tpl_ready = tpl_data->ready; |
| if (tpl_info->tpl_ready) { |
| tpl_info->gf_length = gf_group->size; |
| for (int i = 0; i < tpl_info->gf_length; ++i) { |
| tpl_info->txfm_stats_list[i] = tpl_data->txfm_stats_list[i]; |
| tpl_info->qstep_ratio_ls[i] = av1_tpl_get_qstep_ratio(tpl_data, i); |
| } |
| } |
| } |
| |
| void av1_write_tpl_info(const TPL_INFO *tpl_info, FILE *log_stream, |
| struct aom_internal_error_info *error) { |
| fwrite(&tpl_info->tpl_ready, sizeof(tpl_info->tpl_ready), 1, log_stream); |
| if (tpl_info->tpl_ready) { |
| fwrite_and_check(&tpl_info->gf_length, sizeof(tpl_info->gf_length), 1, |
| log_stream, error); |
| assert(tpl_info->gf_length <= MAX_LENGTH_TPL_FRAME_STATS); |
| fwrite_and_check(&tpl_info->txfm_stats_list, |
| sizeof(tpl_info->txfm_stats_list[0]), tpl_info->gf_length, |
| log_stream, error); |
| fwrite_and_check(&tpl_info->qstep_ratio_ls, |
| sizeof(tpl_info->qstep_ratio_ls[0]), tpl_info->gf_length, |
| log_stream, error); |
| } |
| } |
| |
| void av1_read_tpl_info(TPL_INFO *tpl_info, FILE *log_stream, |
| struct aom_internal_error_info *error) { |
| av1_zero(*tpl_info); |
| fread_and_check(&tpl_info->tpl_ready, sizeof(tpl_info->tpl_ready), 1, |
| log_stream, error); |
| if (tpl_info->tpl_ready) { |
| fread_and_check(&tpl_info->gf_length, sizeof(tpl_info->gf_length), 1, |
| log_stream, error); |
| assert(tpl_info->gf_length <= MAX_LENGTH_TPL_FRAME_STATS); |
| fread_and_check(&tpl_info->txfm_stats_list, |
| sizeof(tpl_info->txfm_stats_list[0]), tpl_info->gf_length, |
| log_stream, error); |
| fread_and_check(&tpl_info->qstep_ratio_ls, |
| sizeof(tpl_info->qstep_ratio_ls[0]), tpl_info->gf_length, |
| log_stream, error); |
| } |
| } |
| #endif // CONFIG_BITRATE_ACCURACY |