blob: 3947c7166505aad7d5babc4804fae2cb78c94999 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <algorithm>
#include <vector>
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
#include "./av1_rtcd.h"
#include "./aom_dsp_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_ports/mem.h"
#include "av1/common/filter.h"
#include "av1/common/convolve.h"
#include "test/acm_random.h"
#include "test/util.h"
using libaom_test::ACMRandom;
namespace {
using std::tr1::tuple;
static void filter_block1d_horiz_c(const uint8_t *src_ptr, int src_stride,
const int16_t *filter, int tap,
uint8_t *dst_ptr, int dst_stride, int w,
int h) {
src_ptr -= tap / 2 - 1;
for (int r = 0; r < h; ++r) {
for (int c = 0; c < w; ++c) {
int sum = 0;
for (int i = 0; i < tap; ++i) {
sum += src_ptr[c + i] * filter[i];
}
dst_ptr[c] = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
}
src_ptr += src_stride;
dst_ptr += dst_stride;
}
}
static void filter_block1d_vert_c(const uint8_t *src_ptr, int src_stride,
const int16_t *filter, int tap,
uint8_t *dst_ptr, int dst_stride, int w,
int h) {
src_ptr -= (tap / 2 - 1) * src_stride;
for (int r = 0; r < h; ++r) {
for (int c = 0; c < w; ++c) {
int sum = 0;
for (int i = 0; i < tap; ++i) {
sum += src_ptr[c + i * src_stride] * filter[i];
}
dst_ptr[c] = clip_pixel(ROUND_POWER_OF_TWO(sum, FILTER_BITS));
}
src_ptr += src_stride;
dst_ptr += dst_stride;
}
}
static int match(const uint8_t *out, int out_stride, const uint8_t *ref_out,
int ref_out_stride, int w, int h) {
for (int r = 0; r < h; ++r) {
for (int c = 0; c < w; ++c) {
if (out[r * out_stride + c] != ref_out[r * ref_out_stride + c]) return 0;
}
}
return 1;
}
typedef void (*ConvolveFunc)(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams filter_params,
const int subpel_q4, int step_q4,
ConvolveParams *conv_params);
struct ConvolveFunctions {
ConvolveFunctions(ConvolveFunc hf, ConvolveFunc vf) : hf_(hf), vf_(vf) {}
ConvolveFunc hf_;
ConvolveFunc vf_;
};
typedef tuple<ConvolveFunctions *, InterpFilter /*filter_x*/,
InterpFilter /*filter_y*/>
ConvolveParam;
class Av1ConvolveTest : public ::testing::TestWithParam<ConvolveParam> {
public:
virtual void SetUp() {
rnd_(ACMRandom::DeterministicSeed());
cfs_ = GET_PARAM(0);
interp_filter_ls_[0] = GET_PARAM(2);
interp_filter_ls_[2] = interp_filter_ls_[0];
interp_filter_ls_[1] = GET_PARAM(1);
interp_filter_ls_[3] = interp_filter_ls_[1];
}
virtual void TearDown() {
while (buf_ls_.size() > 0) {
uint8_t *buf = buf_ls_.back();
aom_free(buf);
buf_ls_.pop_back();
}
}
virtual uint8_t *add_input(int w, int h, int *stride) {
uint8_t *buf =
reinterpret_cast<uint8_t *>(aom_memalign(kDataAlignment, kBufferSize));
buf_ls_.push_back(buf);
*stride = w + MAX_FILTER_TAP - 1;
int offset = MAX_FILTER_TAP / 2 - 1;
for (int r = 0; r < h + MAX_FILTER_TAP - 1; ++r) {
for (int c = 0; c < w + MAX_FILTER_TAP - 1; ++c) {
buf[r * (*stride) + c] = rnd_.Rand8();
}
}
return buf + offset * (*stride) + offset;
}
virtual uint8_t *add_output(int w, int /*h*/, int *stride) {
uint8_t *buf =
reinterpret_cast<uint8_t *>(aom_memalign(kDataAlignment, kBufferSize));
buf_ls_.push_back(buf);
*stride = w;
return buf;
}
virtual void random_init_buf(uint8_t *buf, int w, int h, int stride) {
for (int r = 0; r < h; ++r) {
for (int c = 0; c < w; ++c) {
buf[r * stride + c] = rnd_.Rand8();
}
}
}
protected:
static const int kDataAlignment = 16;
static const int kOuterBlockSize = MAX_SB_SIZE + MAX_FILTER_TAP - 1;
static const int kBufferSize = kOuterBlockSize * kOuterBlockSize;
std::vector<uint8_t *> buf_ls_;
InterpFilter interp_filter_ls_[4];
ConvolveFunctions *cfs_;
ACMRandom rnd_;
};
int bsize_ls[] = { 1, 2, 4, 8, 16, 32, 64, 3, 7, 15, 31, 63 };
int bsize_num = NELEMENTS(bsize_ls);
TEST_P(Av1ConvolveTest, av1_convolve_vert) {
const int y_step_q4 = 16;
ConvolveParams conv_params = get_conv_params(0, 0, 0);
int in_stride, out_stride, ref_out_stride, avg_out_stride, ref_avg_out_stride;
uint8_t *in = add_input(MAX_SB_SIZE, MAX_SB_SIZE, &in_stride);
uint8_t *out = add_output(MAX_SB_SIZE, MAX_SB_SIZE, &out_stride);
uint8_t *ref_out = add_output(MAX_SB_SIZE, MAX_SB_SIZE, &ref_out_stride);
uint8_t *avg_out = add_output(MAX_SB_SIZE, MAX_SB_SIZE, &avg_out_stride);
uint8_t *ref_avg_out =
add_output(MAX_SB_SIZE, MAX_SB_SIZE, &ref_avg_out_stride);
for (int hb_idx = 0; hb_idx < bsize_num; ++hb_idx) {
for (int vb_idx = 0; vb_idx < bsize_num; ++vb_idx) {
int w = bsize_ls[hb_idx];
int h = bsize_ls[vb_idx];
for (int subpel_y_q4 = 0; subpel_y_q4 < SUBPEL_SHIFTS; ++subpel_y_q4) {
InterpFilter filter_y = interp_filter_ls_[0];
InterpFilterParams param_vert = av1_get_interp_filter_params(filter_y);
const int16_t *filter_vert =
av1_get_interp_filter_subpel_kernel(param_vert, subpel_y_q4);
filter_block1d_vert_c(in, in_stride, filter_vert, param_vert.taps,
ref_out, ref_out_stride, w, h);
conv_params.ref = 0;
conv_params.do_average = 0;
cfs_->vf_(in, in_stride, out, out_stride, w, h, param_vert, subpel_y_q4,
y_step_q4, &conv_params);
EXPECT_EQ(match(out, out_stride, ref_out, ref_out_stride, w, h), 1)
<< " hb_idx " << hb_idx << " vb_idx " << vb_idx << " filter_y "
<< filter_y << " subpel_y_q4 " << subpel_y_q4;
random_init_buf(avg_out, w, h, avg_out_stride);
for (int r = 0; r < h; ++r) {
for (int c = 0; c < w; ++c) {
ref_avg_out[r * ref_avg_out_stride + c] = ROUND_POWER_OF_TWO(
avg_out[r * avg_out_stride + c] + out[r * out_stride + c], 1);
}
}
conv_params.ref = 1;
conv_params.do_average = 1;
cfs_->vf_(in, in_stride, avg_out, avg_out_stride, w, h, param_vert,
subpel_y_q4, y_step_q4, &conv_params);
EXPECT_EQ(match(avg_out, avg_out_stride, ref_avg_out,
ref_avg_out_stride, w, h),
1)
<< " hb_idx " << hb_idx << " vb_idx " << vb_idx << " filter_y "
<< filter_y << " subpel_y_q4 " << subpel_y_q4;
}
}
}
};
TEST_P(Av1ConvolveTest, av1_convolve_horiz) {
const int x_step_q4 = 16;
ConvolveParams conv_params = get_conv_params(0, 0, 0);
int in_stride, out_stride, ref_out_stride, avg_out_stride, ref_avg_out_stride;
uint8_t *in = add_input(MAX_SB_SIZE, MAX_SB_SIZE, &in_stride);
uint8_t *out = add_output(MAX_SB_SIZE, MAX_SB_SIZE, &out_stride);
uint8_t *ref_out = add_output(MAX_SB_SIZE, MAX_SB_SIZE, &ref_out_stride);
uint8_t *avg_out = add_output(MAX_SB_SIZE, MAX_SB_SIZE, &avg_out_stride);
uint8_t *ref_avg_out =
add_output(MAX_SB_SIZE, MAX_SB_SIZE, &ref_avg_out_stride);
for (int hb_idx = 0; hb_idx < bsize_num; ++hb_idx) {
for (int vb_idx = 0; vb_idx < bsize_num; ++vb_idx) {
int w = bsize_ls[hb_idx];
int h = bsize_ls[vb_idx];
for (int subpel_x_q4 = 0; subpel_x_q4 < SUBPEL_SHIFTS; ++subpel_x_q4) {
InterpFilter filter_x = interp_filter_ls_[1];
InterpFilterParams param_horiz = av1_get_interp_filter_params(filter_x);
const int16_t *filter_horiz =
av1_get_interp_filter_subpel_kernel(param_horiz, subpel_x_q4);
filter_block1d_horiz_c(in, in_stride, filter_horiz, param_horiz.taps,
ref_out, ref_out_stride, w, h);
conv_params.ref = 0;
conv_params.do_average = 0;
cfs_->hf_(in, in_stride, out, out_stride, w, h, param_horiz,
subpel_x_q4, x_step_q4, &conv_params);
EXPECT_EQ(match(out, out_stride, ref_out, ref_out_stride, w, h), 1)
<< " hb_idx " << hb_idx << " vb_idx " << vb_idx << " filter_x "
<< filter_x << " subpel_x_q4 " << subpel_x_q4;
random_init_buf(avg_out, w, h, avg_out_stride);
for (int r = 0; r < h; ++r) {
for (int c = 0; c < w; ++c) {
ref_avg_out[r * ref_avg_out_stride + c] = ROUND_POWER_OF_TWO(
avg_out[r * avg_out_stride + c] + out[r * out_stride + c], 1);
}
}
conv_params.ref = 1;
conv_params.do_average = 1;
cfs_->hf_(in, in_stride, avg_out, avg_out_stride, w, h, param_horiz,
subpel_x_q4, x_step_q4, &conv_params);
EXPECT_EQ(match(avg_out, avg_out_stride, ref_avg_out,
ref_avg_out_stride, w, h),
1)
<< "hb_idx " << hb_idx << "vb_idx" << vb_idx << " filter_x "
<< filter_x << "subpel_x_q4 " << subpel_x_q4;
}
}
}
};
ConvolveFunctions convolve_functions_c(av1_convolve_horiz_c,
av1_convolve_vert_c);
InterpFilter filter_ls[] = { EIGHTTAP_REGULAR, EIGHTTAP_SMOOTH,
MULTITAP_SHARP };
INSTANTIATE_TEST_CASE_P(
C, Av1ConvolveTest,
::testing::Combine(::testing::Values(&convolve_functions_c),
::testing::ValuesIn(filter_ls),
::testing::ValuesIn(filter_ls)));
#if CONFIG_HIGHBITDEPTH
#ifndef __clang_analyzer__
TEST(AV1ConvolveTest, av1_highbd_convolve) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
#if CONFIG_DUAL_FILTER
InterpFilter interp_filter[4] = { EIGHTTAP_REGULAR, EIGHTTAP_REGULAR,
EIGHTTAP_REGULAR, EIGHTTAP_REGULAR };
InterpFilterParams filter_params =
av1_get_interp_filter_params(interp_filter[0]);
#else
InterpFilter interp_filter = EIGHTTAP_REGULAR;
InterpFilterParams filter_params =
av1_get_interp_filter_params(interp_filter);
#endif
int filter_size = filter_params.taps;
int filter_center = filter_size / 2 - 1;
uint16_t src[12 * 12];
int src_stride = filter_size;
uint16_t dst[1] = { 0 };
int dst_stride = 1;
int x_step_q4 = 16;
int y_step_q4 = 16;
int avg = 0;
int bd = 10;
int w = 1;
int h = 1;
int subpel_x_q4;
int subpel_y_q4;
for (int i = 0; i < filter_size * filter_size; i++) {
src[i] = rnd.Rand16() % (1 << bd);
}
for (subpel_x_q4 = 0; subpel_x_q4 < SUBPEL_SHIFTS; subpel_x_q4++) {
for (subpel_y_q4 = 0; subpel_y_q4 < SUBPEL_SHIFTS; subpel_y_q4++) {
av1_highbd_convolve(
CONVERT_TO_BYTEPTR(src + src_stride * filter_center + filter_center),
src_stride, CONVERT_TO_BYTEPTR(dst), dst_stride, w, h, interp_filter,
subpel_x_q4, x_step_q4, subpel_y_q4, y_step_q4, avg, bd);
const int16_t *x_filter =
av1_get_interp_filter_subpel_kernel(filter_params, subpel_x_q4);
const int16_t *y_filter =
av1_get_interp_filter_subpel_kernel(filter_params, subpel_y_q4);
int temp[12];
int dst_ref = 0;
for (int r = 0; r < filter_size; r++) {
temp[r] = 0;
for (int c = 0; c < filter_size; c++) {
temp[r] += x_filter[c] * src[r * filter_size + c];
}
temp[r] =
clip_pixel_highbd(ROUND_POWER_OF_TWO(temp[r], FILTER_BITS), bd);
dst_ref += temp[r] * y_filter[r];
}
dst_ref = clip_pixel_highbd(ROUND_POWER_OF_TWO(dst_ref, FILTER_BITS), bd);
EXPECT_EQ(dst[0], dst_ref);
}
}
}
#endif
TEST(AV1ConvolveTest, av1_highbd_convolve_avg) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
#if CONFIG_DUAL_FILTER
InterpFilter interp_filter[4] = { EIGHTTAP_REGULAR, EIGHTTAP_REGULAR,
EIGHTTAP_REGULAR, EIGHTTAP_REGULAR };
InterpFilterParams filter_params =
av1_get_interp_filter_params(interp_filter[0]);
#else
InterpFilter interp_filter = EIGHTTAP_REGULAR;
InterpFilterParams filter_params =
av1_get_interp_filter_params(interp_filter);
#endif
int filter_size = filter_params.taps;
int filter_center = filter_size / 2 - 1;
uint16_t src0[12 * 12];
uint16_t src1[12 * 12];
int src_stride = filter_size;
uint16_t dst0[1] = { 0 };
uint16_t dst1[1] = { 0 };
uint16_t dst[1] = { 0 };
int dst_stride = 1;
int x_step_q4 = 16;
int y_step_q4 = 16;
int avg = 0;
int bd = 10;
int w = 1;
int h = 1;
int subpel_x_q4;
int subpel_y_q4;
for (int i = 0; i < filter_size * filter_size; i++) {
src0[i] = rnd.Rand16() % (1 << bd);
src1[i] = rnd.Rand16() % (1 << bd);
}
for (subpel_x_q4 = 0; subpel_x_q4 < SUBPEL_SHIFTS; subpel_x_q4++) {
for (subpel_y_q4 = 0; subpel_y_q4 < SUBPEL_SHIFTS; subpel_y_q4++) {
int offset = filter_size * filter_center + filter_center;
avg = 0;
av1_highbd_convolve(CONVERT_TO_BYTEPTR(src0 + offset), src_stride,
CONVERT_TO_BYTEPTR(dst0), dst_stride, w, h,
interp_filter, subpel_x_q4, x_step_q4, subpel_y_q4,
y_step_q4, avg, bd);
avg = 0;
av1_highbd_convolve(CONVERT_TO_BYTEPTR(src1 + offset), src_stride,
CONVERT_TO_BYTEPTR(dst1), dst_stride, w, h,
interp_filter, subpel_x_q4, x_step_q4, subpel_y_q4,
y_step_q4, avg, bd);
avg = 0;
av1_highbd_convolve(CONVERT_TO_BYTEPTR(src0 + offset), src_stride,
CONVERT_TO_BYTEPTR(dst), dst_stride, w, h,
interp_filter, subpel_x_q4, x_step_q4, subpel_y_q4,
y_step_q4, avg, bd);
avg = 1;
av1_highbd_convolve(CONVERT_TO_BYTEPTR(src1 + offset), src_stride,
CONVERT_TO_BYTEPTR(dst), dst_stride, w, h,
interp_filter, subpel_x_q4, x_step_q4, subpel_y_q4,
y_step_q4, avg, bd);
EXPECT_EQ(dst[0], ROUND_POWER_OF_TWO(dst0[0] + dst1[0], 1));
}
}
}
#endif // CONFIG_HIGHBITDEPTH
#define CONVOLVE_SPEED_TEST 0
#if CONVOLVE_SPEED_TEST
#define highbd_convolve_speed(func, block_size, frame_size) \
TEST(AV1ConvolveTest, func##_speed_##block_size##_##frame_size) { \
ACMRandom rnd(ACMRandom::DeterministicSeed()); \
InterpFilter interp_filter = EIGHTTAP; \
InterpFilterParams filter_params = \
av1_get_interp_filter_params(interp_filter); \
int filter_size = filter_params.tap; \
int filter_center = filter_size / 2 - 1; \
DECLARE_ALIGNED(16, uint16_t, \
src[(frame_size + 7) * (frame_size + 7)]) = { 0 }; \
int src_stride = frame_size + 7; \
DECLARE_ALIGNED(16, uint16_t, dst[frame_size * frame_size]) = { 0 }; \
int dst_stride = frame_size; \
int x_step_q4 = 16; \
int y_step_q4 = 16; \
int subpel_x_q4 = 8; \
int subpel_y_q4 = 6; \
int bd = 10; \
\
int w = block_size; \
int h = block_size; \
\
const int16_t *filter_x = \
av1_get_interp_filter_kernel(filter_params, subpel_x_q4); \
const int16_t *filter_y = \
av1_get_interp_filter_kernel(filter_params, subpel_y_q4); \
\
for (int i = 0; i < src_stride * src_stride; i++) { \
src[i] = rnd.Rand16() % (1 << bd); \
} \
\
int offset = filter_center * src_stride + filter_center; \
int row_offset = 0; \
int col_offset = 0; \
for (int i = 0; i < 100000; i++) { \
int src_total_offset = offset + col_offset * src_stride + row_offset; \
int dst_total_offset = col_offset * dst_stride + row_offset; \
func(CONVERT_TO_BYTEPTR(src + src_total_offset), src_stride, \
CONVERT_TO_BYTEPTR(dst + dst_total_offset), dst_stride, filter_x, \
x_step_q4, filter_y, y_step_q4, w, h, bd); \
if (offset + w + w < frame_size) { \
row_offset += w; \
} else { \
row_offset = 0; \
col_offset += h; \
} \
if (col_offset + h >= frame_size) { \
col_offset = 0; \
} \
} \
}
#define lowbd_convolve_speed(func, block_size, frame_size) \
TEST(AV1ConvolveTest, func##_speed_l_##block_size##_##frame_size) { \
ACMRandom rnd(ACMRandom::DeterministicSeed()); \
InterpFilter interp_filter = EIGHTTAP; \
InterpFilterParams filter_params = \
av1_get_interp_filter_params(interp_filter); \
int filter_size = filter_params.tap; \
int filter_center = filter_size / 2 - 1; \
DECLARE_ALIGNED(16, uint8_t, src[(frame_size + 7) * (frame_size + 7)]); \
int src_stride = frame_size + 7; \
DECLARE_ALIGNED(16, uint8_t, dst[frame_size * frame_size]); \
int dst_stride = frame_size; \
int x_step_q4 = 16; \
int y_step_q4 = 16; \
int subpel_x_q4 = 8; \
int subpel_y_q4 = 6; \
int bd = 8; \
\
int w = block_size; \
int h = block_size; \
\
const int16_t *filter_x = \
av1_get_interp_filter_kernel(filter_params, subpel_x_q4); \
const int16_t *filter_y = \
av1_get_interp_filter_kernel(filter_params, subpel_y_q4); \
\
for (int i = 0; i < src_stride * src_stride; i++) { \
src[i] = rnd.Rand16() % (1 << bd); \
} \
\
int offset = filter_center * src_stride + filter_center; \
int row_offset = 0; \
int col_offset = 0; \
for (int i = 0; i < 100000; i++) { \
func(src + offset, src_stride, dst, dst_stride, filter_x, x_step_q4, \
filter_y, y_step_q4, w, h); \
if (offset + w + w < frame_size) { \
row_offset += w; \
} else { \
row_offset = 0; \
col_offset += h; \
} \
if (col_offset + h >= frame_size) { \
col_offset = 0; \
} \
} \
}
// This experiment shows that when frame size is 64x64
// aom_highbd_convolve8_sse2 and aom_convolve8_sse2's speed are similar.
// However when frame size becomes 1024x1024
// aom_highbd_convolve8_sse2 is around 50% slower than aom_convolve8_sse2
// we think the bottleneck is from memory IO
highbd_convolve_speed(aom_highbd_convolve8_sse2, 8, 64);
highbd_convolve_speed(aom_highbd_convolve8_sse2, 16, 64);
highbd_convolve_speed(aom_highbd_convolve8_sse2, 32, 64);
highbd_convolve_speed(aom_highbd_convolve8_sse2, 64, 64);
lowbd_convolve_speed(aom_convolve8_sse2, 8, 64);
lowbd_convolve_speed(aom_convolve8_sse2, 16, 64);
lowbd_convolve_speed(aom_convolve8_sse2, 32, 64);
lowbd_convolve_speed(aom_convolve8_sse2, 64, 64);
highbd_convolve_speed(aom_highbd_convolve8_sse2, 8, 1024);
highbd_convolve_speed(aom_highbd_convolve8_sse2, 16, 1024);
highbd_convolve_speed(aom_highbd_convolve8_sse2, 32, 1024);
highbd_convolve_speed(aom_highbd_convolve8_sse2, 64, 1024);
lowbd_convolve_speed(aom_convolve8_sse2, 8, 1024);
lowbd_convolve_speed(aom_convolve8_sse2, 16, 1024);
lowbd_convolve_speed(aom_convolve8_sse2, 32, 1024);
lowbd_convolve_speed(aom_convolve8_sse2, 64, 1024);
#endif // CONVOLVE_SPEED_TEST
} // namespace