blob: d11f63853194bd8330c554f67ffde72f51cdf10d [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include "./aom_scale_rtcd.h"
#include "./aom_dsp_rtcd.h"
#include "./aom_config.h"
#include "aom/aom_integer.h"
#include "aom_dsp/blend.h"
#include "av1/common/blockd.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#if CONFIG_MOTION_VAR
#include "av1/common/onyxc_int.h"
#endif // CONFIG_MOTION_VAR
#if CONFIG_EXT_INTER
#define NSMOOTHERS 1
static int get_masked_weight(int m, int smoothness) {
#define SMOOTHER_LEN 32
static const uint8_t smoothfn[NSMOOTHERS][2 * SMOOTHER_LEN + 1] = { {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 7, 13, 21, 32, 43,
51, 57, 60, 62, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
} };
if (m < -SMOOTHER_LEN)
return 0;
else if (m > SMOOTHER_LEN)
return (1 << WEDGE_WEIGHT_BITS);
else
return smoothfn[smoothness][m + SMOOTHER_LEN];
}
// [smoother][negative][direction]
DECLARE_ALIGNED(16, static uint8_t,
wedge_mask_obl[NSMOOTHERS][2][WEDGE_DIRECTIONS]
[MASK_MASTER_SIZE * MASK_MASTER_SIZE]);
DECLARE_ALIGNED(16, static uint8_t,
wedge_signflip_lookup[BLOCK_SIZES][MAX_WEDGE_TYPES]);
// 3 * MAX_WEDGE_SQUARE is an easy to compute and fairly tight upper bound
// on the sum of all mask sizes up to an including MAX_WEDGE_SQUARE.
DECLARE_ALIGNED(16, static uint8_t,
wedge_mask_buf[2 * MAX_WEDGE_TYPES * 3 * MAX_WEDGE_SQUARE]);
static wedge_masks_type wedge_masks[BLOCK_SIZES][2];
// Some unused wedge codebooks left temporarily to facilitate experiments.
// To be removed when setteld.
static wedge_code_type wedge_codebook_8_hgtw[8] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 },
{ WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
};
static wedge_code_type wedge_codebook_8_hltw[8] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 },
{ WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
};
static wedge_code_type wedge_codebook_8_heqw[8] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 },
{ WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 },
};
#if !USE_LARGE_WEDGE_CODEBOOK
static const wedge_code_type wedge_codebook_16_hgtw[16] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 },
{ WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 },
{ WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
{ WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 },
{ WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
};
static const wedge_code_type wedge_codebook_16_hltw[16] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 },
{ WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 },
{ WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 },
{ WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
{ WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 },
{ WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
};
static const wedge_code_type wedge_codebook_16_heqw[16] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 },
{ WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 },
{ WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 },
{ WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 },
{ WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 },
{ WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 },
};
const wedge_params_type wedge_params_lookup[BLOCK_SIZES] = {
#if CONFIG_CB4X4
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
#endif
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
{ 4, wedge_codebook_16_heqw, wedge_signflip_lookup[3], 0, wedge_masks[3] },
{ 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[4], 0, wedge_masks[4] },
{ 4, wedge_codebook_16_hltw, wedge_signflip_lookup[5], 0, wedge_masks[5] },
{ 4, wedge_codebook_16_heqw, wedge_signflip_lookup[6], 0, wedge_masks[6] },
{ 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[7], 0, wedge_masks[7] },
{ 4, wedge_codebook_16_hltw, wedge_signflip_lookup[8], 0, wedge_masks[8] },
{ 4, wedge_codebook_16_heqw, wedge_signflip_lookup[9], 0, wedge_masks[9] },
{ 0, wedge_codebook_8_hgtw, wedge_signflip_lookup[10], 0, wedge_masks[10] },
{ 0, wedge_codebook_8_hltw, wedge_signflip_lookup[11], 0, wedge_masks[11] },
{ 0, wedge_codebook_8_heqw, wedge_signflip_lookup[12], 0, wedge_masks[12] },
#if CONFIG_EXT_PARTITION
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
#endif // CONFIG_EXT_PARTITION
};
#else
static const wedge_code_type wedge_codebook_32_hgtw[32] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 },
{ WEDGE_OBLIQUE27, 4, 1 }, { WEDGE_OBLIQUE27, 4, 2 },
{ WEDGE_OBLIQUE27, 4, 3 }, { WEDGE_OBLIQUE27, 4, 5 },
{ WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE27, 4, 7 },
{ WEDGE_OBLIQUE153, 4, 1 }, { WEDGE_OBLIQUE153, 4, 2 },
{ WEDGE_OBLIQUE153, 4, 3 }, { WEDGE_OBLIQUE153, 4, 5 },
{ WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE153, 4, 7 },
{ WEDGE_OBLIQUE63, 1, 4 }, { WEDGE_OBLIQUE63, 2, 4 },
{ WEDGE_OBLIQUE63, 3, 4 }, { WEDGE_OBLIQUE63, 5, 4 },
{ WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE63, 7, 4 },
{ WEDGE_OBLIQUE117, 1, 4 }, { WEDGE_OBLIQUE117, 2, 4 },
{ WEDGE_OBLIQUE117, 3, 4 }, { WEDGE_OBLIQUE117, 5, 4 },
{ WEDGE_OBLIQUE117, 6, 4 }, { WEDGE_OBLIQUE117, 7, 4 },
};
static const wedge_code_type wedge_codebook_32_hltw[32] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 },
{ WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 },
{ WEDGE_OBLIQUE27, 4, 1 }, { WEDGE_OBLIQUE27, 4, 2 },
{ WEDGE_OBLIQUE27, 4, 3 }, { WEDGE_OBLIQUE27, 4, 5 },
{ WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE27, 4, 7 },
{ WEDGE_OBLIQUE153, 4, 1 }, { WEDGE_OBLIQUE153, 4, 2 },
{ WEDGE_OBLIQUE153, 4, 3 }, { WEDGE_OBLIQUE153, 4, 5 },
{ WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE153, 4, 7 },
{ WEDGE_OBLIQUE63, 1, 4 }, { WEDGE_OBLIQUE63, 2, 4 },
{ WEDGE_OBLIQUE63, 3, 4 }, { WEDGE_OBLIQUE63, 5, 4 },
{ WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE63, 7, 4 },
{ WEDGE_OBLIQUE117, 1, 4 }, { WEDGE_OBLIQUE117, 2, 4 },
{ WEDGE_OBLIQUE117, 3, 4 }, { WEDGE_OBLIQUE117, 5, 4 },
{ WEDGE_OBLIQUE117, 6, 4 }, { WEDGE_OBLIQUE117, 7, 4 },
};
static const wedge_code_type wedge_codebook_32_heqw[32] = {
{ WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 },
{ WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 },
{ WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 },
{ WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 },
{ WEDGE_OBLIQUE27, 4, 1 }, { WEDGE_OBLIQUE27, 4, 2 },
{ WEDGE_OBLIQUE27, 4, 3 }, { WEDGE_OBLIQUE27, 4, 5 },
{ WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE27, 4, 7 },
{ WEDGE_OBLIQUE153, 4, 1 }, { WEDGE_OBLIQUE153, 4, 2 },
{ WEDGE_OBLIQUE153, 4, 3 }, { WEDGE_OBLIQUE153, 4, 5 },
{ WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE153, 4, 7 },
{ WEDGE_OBLIQUE63, 1, 4 }, { WEDGE_OBLIQUE63, 2, 4 },
{ WEDGE_OBLIQUE63, 3, 4 }, { WEDGE_OBLIQUE63, 5, 4 },
{ WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE63, 7, 4 },
{ WEDGE_OBLIQUE117, 1, 4 }, { WEDGE_OBLIQUE117, 2, 4 },
{ WEDGE_OBLIQUE117, 3, 4 }, { WEDGE_OBLIQUE117, 5, 4 },
{ WEDGE_OBLIQUE117, 6, 4 }, { WEDGE_OBLIQUE117, 7, 4 },
};
const wedge_params_type wedge_params_lookup[BLOCK_SIZES] = {
#if CONFIG_CB4X4
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
#endif
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
{ 5, wedge_codebook_32_heqw, wedge_signflip_lookup[3], 0, wedge_masks[3] },
{ 5, wedge_codebook_32_hgtw, wedge_signflip_lookup[4], 0, wedge_masks[4] },
{ 5, wedge_codebook_32_hltw, wedge_signflip_lookup[5], 0, wedge_masks[5] },
{ 5, wedge_codebook_32_heqw, wedge_signflip_lookup[6], 0, wedge_masks[6] },
{ 5, wedge_codebook_32_hgtw, wedge_signflip_lookup[7], 0, wedge_masks[7] },
{ 5, wedge_codebook_32_hltw, wedge_signflip_lookup[8], 0, wedge_masks[8] },
{ 5, wedge_codebook_32_heqw, wedge_signflip_lookup[9], 0, wedge_masks[9] },
{ 0, wedge_codebook_8_hgtw, wedge_signflip_lookup[10], 0, wedge_masks[10] },
{ 0, wedge_codebook_8_hltw, wedge_signflip_lookup[11], 0, wedge_masks[11] },
{ 0, wedge_codebook_8_heqw, wedge_signflip_lookup[12], 0, wedge_masks[12] },
#if CONFIG_EXT_PARTITION
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
{ 0, NULL, NULL, 0, NULL },
#endif // CONFIG_EXT_PARTITION
};
#endif // USE_LARGE_WEDGE_CODEBOOK
static const uint8_t *get_wedge_mask_inplace(int wedge_index, int neg,
BLOCK_SIZE sb_type) {
const uint8_t *master;
const int bh = block_size_high[sb_type];
const int bw = block_size_wide[sb_type];
const wedge_code_type *a =
wedge_params_lookup[sb_type].codebook + wedge_index;
const int smoother = wedge_params_lookup[sb_type].smoother;
int woff, hoff;
const uint8_t wsignflip = wedge_params_lookup[sb_type].signflip[wedge_index];
assert(wedge_index >= 0 &&
wedge_index < (1 << get_wedge_bits_lookup(sb_type)));
woff = (a->x_offset * bw) >> 3;
hoff = (a->y_offset * bh) >> 3;
master = wedge_mask_obl[smoother][neg ^ wsignflip][a->direction] +
MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) +
MASK_MASTER_SIZE / 2 - woff;
return master;
}
const uint8_t *av1_get_soft_mask(int wedge_index, int wedge_sign,
BLOCK_SIZE sb_type, int offset_x,
int offset_y) {
const uint8_t *mask =
get_wedge_mask_inplace(wedge_index, wedge_sign, sb_type);
if (mask) mask -= (offset_x + offset_y * MASK_MASTER_STRIDE);
return mask;
}
#if CONFIG_COMPOUND_SEGMENT
static uint8_t *invert_mask(uint8_t *mask_inv_buffer, const uint8_t *const mask,
int h, int w, int stride) {
int i, j;
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
mask_inv_buffer[i * stride + j] =
AOM_BLEND_A64_MAX_ALPHA - mask[i * stride + j];
}
return mask_inv_buffer;
}
#endif // CONFIG_COMPOUND_SEGMENT
const uint8_t *av1_get_compound_type_mask_inverse(
const INTERINTER_COMPOUND_DATA *const comp_data,
#if CONFIG_COMPOUND_SEGMENT
uint8_t *mask_buffer, int h, int w, int stride,
#endif
BLOCK_SIZE sb_type) {
assert(is_masked_compound_type(comp_data->type));
switch (comp_data->type) {
case COMPOUND_WEDGE:
return av1_get_contiguous_soft_mask(comp_data->wedge_index,
!comp_data->wedge_sign, sb_type);
#if CONFIG_COMPOUND_SEGMENT
case COMPOUND_SEG:
return invert_mask(mask_buffer, comp_data->seg_mask, h, w, stride);
#endif // CONFIG_COMPOUND_SEGMENT
default: assert(0); return NULL;
}
}
const uint8_t *av1_get_compound_type_mask(
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type) {
assert(is_masked_compound_type(comp_data->type));
switch (comp_data->type) {
case COMPOUND_WEDGE:
return av1_get_contiguous_soft_mask(comp_data->wedge_index,
comp_data->wedge_sign, sb_type);
#if CONFIG_COMPOUND_SEGMENT
case COMPOUND_SEG: return comp_data->seg_mask;
#endif // CONFIG_COMPOUND_SEGMENT
default: assert(0); return NULL;
}
}
#if CONFIG_COMPOUND_SEGMENT
#if COMPOUND_SEGMENT_TYPE == 0
static void uniform_mask(uint8_t *mask, int which_inverse, BLOCK_SIZE sb_type,
int h, int w, int mask_val) {
int i, j;
int block_stride = block_size_wide[sb_type];
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
mask[i * block_stride + j] =
which_inverse ? AOM_BLEND_A64_MAX_ALPHA - mask_val : mask_val;
}
}
void build_compound_seg_mask(uint8_t *mask, SEG_MASK_TYPE mask_type,
const uint8_t *src0, int src0_stride,
const uint8_t *src1, int src1_stride,
BLOCK_SIZE sb_type, int h, int w) {
(void)src0;
(void)src1;
(void)src0_stride;
(void)src1_stride;
switch (mask_type) {
case UNIFORM_45: uniform_mask(mask, 0, sb_type, h, w, 45); break;
case UNIFORM_45_INV: uniform_mask(mask, 1, sb_type, h, w, 45); break;
default: assert(0);
}
}
#if CONFIG_AOM_HIGHBITDEPTH
void build_compound_seg_mask_highbd(uint8_t *mask, SEG_MASK_TYPE mask_type,
const uint8_t *src0, int src0_stride,
const uint8_t *src1, int src1_stride,
BLOCK_SIZE sb_type, int h, int w, int bd) {
(void)src0;
(void)src1;
(void)src0_stride;
(void)src1_stride;
(void)bd;
switch (mask_type) {
case UNIFORM_45: uniform_mask(mask, 0, sb_type, h, w, 45); break;
case UNIFORM_45_INV: uniform_mask(mask, 1, sb_type, h, w, 45); break;
default: assert(0);
}
}
#endif // CONFIG_AOM_HIGHBITDEPTH
#elif COMPOUND_SEGMENT_TYPE == 1
#define DIFF_FACTOR 16
static void diffwtd_mask(uint8_t *mask, int which_inverse, int mask_base,
const uint8_t *src0, int src0_stride,
const uint8_t *src1, int src1_stride,
BLOCK_SIZE sb_type, int h, int w) {
int i, j, m, diff;
int block_stride = block_size_wide[sb_type];
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
diff =
abs((int)src0[i * src0_stride + j] - (int)src1[i * src1_stride + j]);
m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA);
mask[i * block_stride + j] =
which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m;
}
}
}
void build_compound_seg_mask(uint8_t *mask, SEG_MASK_TYPE mask_type,
const uint8_t *src0, int src0_stride,
const uint8_t *src1, int src1_stride,
BLOCK_SIZE sb_type, int h, int w) {
switch (mask_type) {
case DIFFWTD_42:
diffwtd_mask(mask, 0, 42, src0, src0_stride, src1, src1_stride, sb_type,
h, w);
break;
case DIFFWTD_42_INV:
diffwtd_mask(mask, 1, 42, src0, src0_stride, src1, src1_stride, sb_type,
h, w);
break;
default: assert(0);
}
}
#if CONFIG_AOM_HIGHBITDEPTH
static void diffwtd_mask_highbd(uint8_t *mask, int which_inverse, int mask_base,
const uint16_t *src0, int src0_stride,
const uint16_t *src1, int src1_stride,
BLOCK_SIZE sb_type, int h, int w, int bd) {
int i, j, m, diff;
int block_stride = block_size_wide[sb_type];
for (i = 0; i < h; ++i) {
for (j = 0; j < w; ++j) {
diff = abs((int)src0[i * src0_stride + j] -
(int)src1[i * src1_stride + j]) >>
(bd - 8);
m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA);
mask[i * block_stride + j] =
which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m;
}
}
}
void build_compound_seg_mask_highbd(uint8_t *mask, SEG_MASK_TYPE mask_type,
const uint8_t *src0, int src0_stride,
const uint8_t *src1, int src1_stride,
BLOCK_SIZE sb_type, int h, int w, int bd) {
switch (mask_type) {
case DIFFWTD_42:
diffwtd_mask_highbd(mask, 0, 42, CONVERT_TO_SHORTPTR(src0), src0_stride,
CONVERT_TO_SHORTPTR(src1), src1_stride, sb_type, h, w,
bd);
break;
case DIFFWTD_42_INV:
diffwtd_mask_highbd(mask, 1, 42, CONVERT_TO_SHORTPTR(src0), src0_stride,
CONVERT_TO_SHORTPTR(src1), src1_stride, sb_type, h, w,
bd);
break;
default: assert(0);
}
}
#endif // CONFIG_AOM_HIGHBITDEPTH
#endif // COMPOUND_SEGMENT_TYPE
#endif // CONFIG_COMPOUND_SEGMENT
static void init_wedge_master_masks() {
int i, j, s;
const int w = MASK_MASTER_SIZE;
const int h = MASK_MASTER_SIZE;
const int stride = MASK_MASTER_STRIDE;
const int a[2] = { 2, 1 };
const double asqrt = sqrt(a[0] * a[0] + a[1] * a[1]);
for (s = 0; s < NSMOOTHERS; s++) {
for (i = 0; i < h; ++i)
for (j = 0; j < w; ++j) {
int x = (2 * j + 1 - w);
int y = (2 * i + 1 - h);
int m = (int)rint((a[0] * x + a[1] * y) / asqrt);
wedge_mask_obl[s][1][WEDGE_OBLIQUE63][i * stride + j] =
wedge_mask_obl[s][1][WEDGE_OBLIQUE27][j * stride + i] =
get_masked_weight(m, s);
wedge_mask_obl[s][1][WEDGE_OBLIQUE117][i * stride + w - 1 - j] =
wedge_mask_obl[s][1][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] =
(1 << WEDGE_WEIGHT_BITS) - get_masked_weight(m, s);
wedge_mask_obl[s][0][WEDGE_OBLIQUE63][i * stride + j] =
wedge_mask_obl[s][0][WEDGE_OBLIQUE27][j * stride + i] =
(1 << WEDGE_WEIGHT_BITS) - get_masked_weight(m, s);
wedge_mask_obl[s][0][WEDGE_OBLIQUE117][i * stride + w - 1 - j] =
wedge_mask_obl[s][0][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] =
get_masked_weight(m, s);
wedge_mask_obl[s][1][WEDGE_VERTICAL][i * stride + j] =
wedge_mask_obl[s][1][WEDGE_HORIZONTAL][j * stride + i] =
get_masked_weight(x, s);
wedge_mask_obl[s][0][WEDGE_VERTICAL][i * stride + j] =
wedge_mask_obl[s][0][WEDGE_HORIZONTAL][j * stride + i] =
(1 << WEDGE_WEIGHT_BITS) - get_masked_weight(x, s);
}
}
}
// If the signs for the wedges for various blocksizes are
// inconsistent flip the sign flag. Do it only once for every
// wedge codebook.
static void init_wedge_signs() {
BLOCK_SIZE sb_type;
memset(wedge_signflip_lookup, 0, sizeof(wedge_signflip_lookup));
for (sb_type = BLOCK_4X4; sb_type < BLOCK_SIZES; ++sb_type) {
const int bw = block_size_wide[sb_type];
const int bh = block_size_high[sb_type];
const wedge_params_type wedge_params = wedge_params_lookup[sb_type];
const int wbits = wedge_params.bits;
const int wtypes = 1 << wbits;
int i, w;
if (wbits == 0) continue;
for (w = 0; w < wtypes; ++w) {
const uint8_t *mask = get_wedge_mask_inplace(w, 0, sb_type);
int sum = 0;
for (i = 0; i < bw; ++i) sum += mask[i];
for (i = 0; i < bh; ++i) sum += mask[i * MASK_MASTER_STRIDE];
sum = (sum + (bw + bh) / 2) / (bw + bh);
wedge_params.signflip[w] = (sum < 32);
}
}
}
static void init_wedge_masks() {
uint8_t *dst = wedge_mask_buf;
BLOCK_SIZE bsize;
memset(wedge_masks, 0, sizeof(wedge_masks));
for (bsize = BLOCK_4X4; bsize < BLOCK_SIZES; ++bsize) {
const uint8_t *mask;
const int bw = block_size_wide[bsize];
const int bh = block_size_high[bsize];
const wedge_params_type *wedge_params = &wedge_params_lookup[bsize];
const int wbits = wedge_params->bits;
const int wtypes = 1 << wbits;
int w;
if (wbits == 0) continue;
for (w = 0; w < wtypes; ++w) {
mask = get_wedge_mask_inplace(w, 0, bsize);
aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw,
bh);
wedge_params->masks[0][w] = dst;
dst += bw * bh;
mask = get_wedge_mask_inplace(w, 1, bsize);
aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw,
bh);
wedge_params->masks[1][w] = dst;
dst += bw * bh;
}
assert(sizeof(wedge_mask_buf) >= (size_t)(dst - wedge_mask_buf));
}
}
// Equation of line: f(x, y) = a[0]*(x - a[2]*w/8) + a[1]*(y - a[3]*h/8) = 0
void av1_init_wedge_masks() {
init_wedge_master_masks();
init_wedge_signs();
init_wedge_masks();
}
#if CONFIG_SUPERTX
static void build_masked_compound_wedge_extend(
uint8_t *dst, int dst_stride, const uint8_t *src0, int src0_stride,
const uint8_t *src1, int src1_stride,
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type,
int wedge_offset_x, int wedge_offset_y, int h, int w) {
const int subh = (2 << b_height_log2_lookup[sb_type]) == h;
const int subw = (2 << b_width_log2_lookup[sb_type]) == w;
const uint8_t *mask;
size_t mask_stride;
switch (comp_data->type) {
case COMPOUND_WEDGE:
mask = av1_get_soft_mask(comp_data->wedge_index, comp_data->wedge_sign,
sb_type, wedge_offset_x, wedge_offset_y);
mask_stride = MASK_MASTER_STRIDE;
break;
#if CONFIG_COMPOUND_SEGMENT
case COMPOUND_SEG:
mask = comp_data->seg_mask;
mask_stride = block_size_wide[sb_type];
break;
#endif
default: assert(0); return;
}
aom_blend_a64_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride,
mask, mask_stride, h, w, subh, subw);
}
#if CONFIG_AOM_HIGHBITDEPTH
static void build_masked_compound_wedge_extend_highbd(
uint8_t *dst_8, int dst_stride, const uint8_t *src0_8, int src0_stride,
const uint8_t *src1_8, int src1_stride,
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type,
int wedge_offset_x, int wedge_offset_y, int h, int w, int bd) {
const int subh = (2 << b_height_log2_lookup[sb_type]) == h;
const int subw = (2 << b_width_log2_lookup[sb_type]) == w;
const uint8_t *mask;
size_t mask_stride;
switch (comp_data->type) {
case COMPOUND_WEDGE:
mask = av1_get_soft_mask(comp_data->wedge_index, comp_data->wedge_sign,
sb_type, wedge_offset_x, wedge_offset_y);
mask_stride = MASK_MASTER_STRIDE;
break;
#if CONFIG_COMPOUND_SEGMENT
case COMPOUND_SEG:
mask = comp_data->seg_mask;
mask_stride = block_size_wide[sb_type];
break;
#endif
default: assert(0); return;
}
aom_highbd_blend_a64_mask(dst_8, dst_stride, src0_8, src0_stride, src1_8,
src1_stride, mask, mask_stride, h, w, subh, subw,
bd);
}
#endif // CONFIG_AOM_HIGHBITDEPTH
#else
static void build_masked_compound(
uint8_t *dst, int dst_stride, const uint8_t *src0, int src0_stride,
const uint8_t *src1, int src1_stride,
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h,
int w) {
// Derive subsampling from h and w passed in. May be refactored to
// pass in subsampling factors directly.
const int subh = (2 << b_height_log2_lookup[sb_type]) == h;
const int subw = (2 << b_width_log2_lookup[sb_type]) == w;
const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type);
aom_blend_a64_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride,
mask, block_size_wide[sb_type], h, w, subh, subw);
}
#if CONFIG_AOM_HIGHBITDEPTH
static void build_masked_compound_highbd(
uint8_t *dst_8, int dst_stride, const uint8_t *src0_8, int src0_stride,
const uint8_t *src1_8, int src1_stride,
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h,
int w, int bd) {
// Derive subsampling from h and w passed in. May be refactored to
// pass in subsampling factors directly.
const int subh = (2 << b_height_log2_lookup[sb_type]) == h;
const int subw = (2 << b_width_log2_lookup[sb_type]) == w;
const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type);
// const uint8_t *mask =
// av1_get_contiguous_soft_mask(wedge_index, wedge_sign, sb_type);
aom_highbd_blend_a64_mask(dst_8, dst_stride, src0_8, src0_stride, src1_8,
src1_stride, mask, block_size_wide[sb_type], h, w,
subh, subw, bd);
}
#endif // CONFIG_AOM_HIGHBITDEPTH
#endif // CONFIG_SUPERTX
void av1_make_masked_inter_predictor(const uint8_t *pre, int pre_stride,
uint8_t *dst, int dst_stride,
const int subpel_x, const int subpel_y,
const struct scale_factors *sf, int w,
int h,
#if CONFIG_DUAL_FILTER
const InterpFilter *interp_filter,
#else
const InterpFilter interp_filter,
#endif
int xs, int ys,
#if CONFIG_SUPERTX
int wedge_offset_x, int wedge_offset_y,
#endif // CONFIG_SUPERTX
int plane,
#if CONFIG_GLOBAL_MOTION
int is_global, int p_col, int p_row,
int ref,
#endif // CONFIG_GLOBAL_MOTION
MACROBLOCKD *xd) {
MODE_INFO *mi = xd->mi[0];
INTERINTER_COMPOUND_DATA *comp_data = &mi->mbmi.interinter_compound_data;
// The prediction filter types used here should be those for
// the second reference block.
#if CONFIG_DUAL_FILTER
InterpFilter tmp_ipf[4] = {
interp_filter[2], interp_filter[3], interp_filter[2], interp_filter[3],
};
#else
InterpFilter tmp_ipf = interp_filter;
#endif // CONFIG_DUAL_FILTER
ConvolveParams conv_params = get_conv_params(0, plane);
#if CONFIG_AOM_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint8_t, tmp_dst_[2 * MAX_SB_SQUARE]);
uint8_t *tmp_dst = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
? CONVERT_TO_BYTEPTR(tmp_dst_)
: tmp_dst_;
av1_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE, subpel_x,
subpel_y, sf, w, h, &conv_params, tmp_ipf,
#if CONFIG_GLOBAL_MOTION
is_global, p_col, p_row, plane, ref,
#endif // CONFIG_GLOBAL_MOTION
xs, ys, xd);
#if CONFIG_COMPOUND_SEGMENT
if (!plane && comp_data->type == COMPOUND_SEG) {
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
build_compound_seg_mask_highbd(comp_data->seg_mask, comp_data->mask_type,
dst, dst_stride, tmp_dst, MAX_SB_SIZE,
mi->mbmi.sb_type, h, w, xd->bd);
else
build_compound_seg_mask(comp_data->seg_mask, comp_data->mask_type, dst,
dst_stride, tmp_dst, MAX_SB_SIZE,
mi->mbmi.sb_type, h, w);
}
#endif // CONFIG_COMPOUND_SEGMENT
#if CONFIG_SUPERTX
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
build_masked_compound_wedge_extend_highbd(
dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, comp_data,
mi->mbmi.sb_type, wedge_offset_x, wedge_offset_y, h, w, xd->bd);
else
build_masked_compound_wedge_extend(
dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, comp_data,
mi->mbmi.sb_type, wedge_offset_x, wedge_offset_y, h, w);
#else
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
build_masked_compound_highbd(dst, dst_stride, dst, dst_stride, tmp_dst,
MAX_SB_SIZE, comp_data, mi->mbmi.sb_type, h, w,
xd->bd);
else
build_masked_compound(dst, dst_stride, dst, dst_stride, tmp_dst,
MAX_SB_SIZE, comp_data, mi->mbmi.sb_type, h, w);
#endif // CONFIG_SUPERTX
#else // CONFIG_AOM_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint8_t, tmp_dst[MAX_SB_SQUARE]);
av1_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE, subpel_x,
subpel_y, sf, w, h, &conv_params, tmp_ipf,
#if CONFIG_GLOBAL_MOTION
is_global, p_col, p_row, plane, ref,
#endif // CONFIG_GLOBAL_MOTION
xs, ys, xd);
#if CONFIG_COMPOUND_SEGMENT
if (!plane && comp_data->type == COMPOUND_SEG)
build_compound_seg_mask(comp_data->seg_mask, comp_data->mask_type, dst,
dst_stride, tmp_dst, MAX_SB_SIZE, mi->mbmi.sb_type,
h, w);
#endif // CONFIG_COMPOUND_SEGMENT
#if CONFIG_SUPERTX
build_masked_compound_wedge_extend(dst, dst_stride, dst, dst_stride, tmp_dst,
MAX_SB_SIZE, comp_data, mi->mbmi.sb_type,
wedge_offset_x, wedge_offset_y, h, w);
#else
build_masked_compound(dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE,
comp_data, mi->mbmi.sb_type, h, w);
#endif // CONFIG_SUPERTX
#endif // CONFIG_AOM_HIGHBITDEPTH
#if CONFIG_COMPOUND_SEGMENT
(void)plane;
#endif // CONFIG_COMPOUND_SEGMENT
}
#endif // CONFIG_EXT_INTER
#if CONFIG_AOM_HIGHBITDEPTH
void av1_highbd_build_inter_predictor(
const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride,
const MV *src_mv, const struct scale_factors *sf, int w, int h, int ref,
#if CONFIG_DUAL_FILTER
const InterpFilter *interp_filter,
#else
const InterpFilter interp_filter,
#endif
enum mv_precision precision, int x, int y, int bd) {
const int is_q4 = precision == MV_PRECISION_Q4;
const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2,
is_q4 ? src_mv->col : src_mv->col * 2 };
MV32 mv = av1_scale_mv(&mv_q4, x, y, sf);
const int subpel_x = mv.col & SUBPEL_MASK;
const int subpel_y = mv.row & SUBPEL_MASK;
src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS);
highbd_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y,
sf, w, h, ref, interp_filter, sf->x_step_q4,
sf->y_step_q4, bd);
}
#endif // CONFIG_AOM_HIGHBITDEPTH
void av1_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, const MV *src_mv,
const struct scale_factors *sf, int w, int h,
ConvolveParams *conv_params,
#if CONFIG_DUAL_FILTER
const InterpFilter *interp_filter,
#else
const InterpFilter interp_filter,
#endif
enum mv_precision precision, int x, int y) {
const int is_q4 = precision == MV_PRECISION_Q4;
const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2,
is_q4 ? src_mv->col : src_mv->col * 2 };
MV32 mv = av1_scale_mv(&mv_q4, x, y, sf);
const int subpel_x = mv.col & SUBPEL_MASK;
const int subpel_y = mv.row & SUBPEL_MASK;
src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS);
inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w,
h, conv_params, interp_filter, sf->x_step_q4, sf->y_step_q4);
}
typedef struct SubpelParams {
int xs;
int ys;
int subpel_x;
int subpel_y;
} SubpelParams;
void build_inter_predictors(MACROBLOCKD *xd, int plane,
#if CONFIG_MOTION_VAR
int mi_col_offset, int mi_row_offset,
#endif // CONFIG_MOTION_VAR
int block, int bw, int bh, int x, int y, int w,
int h,
#if CONFIG_SUPERTX && CONFIG_EXT_INTER
int wedge_offset_x, int wedge_offset_y,
#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
int mi_x, int mi_y) {
struct macroblockd_plane *const pd = &xd->plane[plane];
#if CONFIG_MOTION_VAR
const MODE_INFO *mi = xd->mi[mi_col_offset + xd->mi_stride * mi_row_offset];
#if !CONFIG_CB4X4
const int build_for_obmc = !(mi_col_offset == 0 && mi_row_offset == 0);
#endif
#else
const MODE_INFO *mi = xd->mi[0];
#endif // CONFIG_MOTION_VAR
const int is_compound = has_second_ref(&mi->mbmi);
int ref;
#if CONFIG_GLOBAL_MOTION
int is_global[2];
for (ref = 0; ref < 1 + is_compound; ++ref) {
WarpedMotionParams *const wm = &xd->global_motion[mi->mbmi.ref_frame[ref]];
is_global[ref] =
(get_y_mode(mi, block) == ZEROMV && wm->wmtype > TRANSLATION);
}
#endif // CONFIG_GLOBAL_MOTION
#if CONFIG_CB4X4
(void)block;
#endif
#if CONFIG_SUB8X8_MC
#if CONFIG_MOTION_VAR
if (mi->mbmi.sb_type < BLOCK_8X8 && plane > 0 && !build_for_obmc) {
#else
if (mi->mbmi.sb_type < BLOCK_8X8 && plane > 0) {
#endif // CONFIG_MOTION_VAR
// block size in log2
const int b4_wl = b_width_log2_lookup[mi->mbmi.sb_type];
const int b4_hl = b_height_log2_lookup[mi->mbmi.sb_type];
const int b8_sl = b_width_log2_lookup[BLOCK_8X8];
// block size
const int b4_w = 1 << b4_wl;
const int b4_h = 1 << b4_hl;
const int b8_s = 1 << b8_sl;
int idx, idy;
const int x_base = x;
const int y_base = y;
// processing unit size
const int x_step = w >> (b8_sl - b4_wl);
const int y_step = h >> (b8_sl - b4_hl);
for (idy = 0; idy < b8_s; idy += b4_h) {
for (idx = 0; idx < b8_s; idx += b4_w) {
const int chr_idx = (idy * 2) + idx;
for (ref = 0; ref < 1 + is_compound; ++ref) {
const struct scale_factors *const sf = &xd->block_refs[ref]->sf;
struct buf_2d *const pre_buf = &pd->pre[ref];
struct buf_2d *const dst_buf = &pd->dst;
uint8_t *dst = dst_buf->buf;
const MV mv = mi->bmi[chr_idx].as_mv[ref].as_mv;
const MV mv_q4 = clamp_mv_to_umv_border_sb(
xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y);
uint8_t *pre;
MV32 scaled_mv;
int xs, ys, subpel_x, subpel_y;
const int is_scaled = av1_is_scaled(sf);
ConvolveParams conv_params = get_conv_params(ref, plane);
x = x_base + idx * x_step;
y = y_base + idy * y_step;
dst += dst_buf->stride * y + x;
if (is_scaled) {
pre =
pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf);
scaled_mv = av1_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf);
xs = sf->x_step_q4;
ys = sf->y_step_q4;
} else {
pre = pre_buf->buf + y * pre_buf->stride + x;
scaled_mv.row = mv_q4.row;
scaled_mv.col = mv_q4.col;
xs = ys = 16;
}
subpel_x = scaled_mv.col & SUBPEL_MASK;
subpel_y = scaled_mv.row & SUBPEL_MASK;
pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride +
(scaled_mv.col >> SUBPEL_BITS);
#if CONFIG_EXT_INTER
if (ref &&
is_masked_compound_type(mi->mbmi.interinter_compound_data.type))
av1_make_masked_inter_predictor(
pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y,
sf, w, h, mi->mbmi.interp_filter, xs, ys,
#if CONFIG_SUPERTX
wedge_offset_x, wedge_offset_y,
#endif // CONFIG_SUPERTX
plane,
#if CONFIG_GLOBAL_MOTION
is_global[ref], (mi_x >> pd->subsampling_x) + x,
(mi_y >> pd->subsampling_y) + y, ref
#endif // CONFIG_GLOBAL_MOTION
xd);
else
#endif // CONFIG_EXT_INTER
av1_make_inter_predictor(
pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y,
sf, x_step, y_step, &conv_params, mi->mbmi.interp_filter,
#if CONFIG_GLOBAL_MOTION
is_global[ref], (mi_x >> pd->subsampling_x) + x,
(mi_y >> pd->subsampling_y) + y, plane, ref,
#endif // CONFIG_GLOBAL_MOTION
xs, ys, xd);
}
}
}
return;
}
#endif
{
struct buf_2d *const dst_buf = &pd->dst;
uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
uint8_t *pre[2];
MV32 scaled_mv[2];
SubpelParams subpel_params[2];
#if CONFIG_CONVOLVE_ROUND
DECLARE_ALIGNED(16, int32_t, tmp_dst[MAX_SB_SIZE * MAX_SB_SIZE]);
av1_zero(tmp_dst);
#endif // CONFIG_CONVOLVE_ROUND
for (ref = 0; ref < 1 + is_compound; ++ref) {
const struct scale_factors *const sf = &xd->block_refs[ref]->sf;
struct buf_2d *const pre_buf = &pd->pre[ref];
#if CONFIG_CB4X4
const MV mv = mi->mbmi.mv[ref].as_mv;
#else
const MV mv =
mi->mbmi.sb_type < BLOCK_8X8
#if CONFIG_MOTION_VAR
? (build_for_obmc ? mi->bmi[block].as_mv[ref].as_mv
: average_split_mvs(pd, mi, ref, block))
#else
? average_split_mvs(pd, mi, ref, block)
#endif // CONFIG_MOTION_VAR
: mi->mbmi.mv[ref].as_mv;
#endif
// TODO(jkoleszar): This clamping is done in the incorrect place for the
// scaling case. It needs to be done on the scaled MV, not the pre-scaling
// MV. Note however that it performs the subsampling aware scaling so
// that the result is always q4.
// mv_precision precision is MV_PRECISION_Q4.
const MV mv_q4 = clamp_mv_to_umv_border_sb(
xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y);
const int is_scaled = av1_is_scaled(sf);
if (is_scaled) {
pre[ref] =
pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf);
scaled_mv[ref] = av1_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf);
subpel_params[ref].xs = sf->x_step_q4;
subpel_params[ref].ys = sf->y_step_q4;
} else {
pre[ref] = pre_buf->buf + (y * pre_buf->stride + x);
scaled_mv[ref].row = mv_q4.row;
scaled_mv[ref].col = mv_q4.col;
subpel_params[ref].xs = 16;
subpel_params[ref].ys = 16;
}
subpel_params[ref].subpel_x = scaled_mv[ref].col & SUBPEL_MASK;
subpel_params[ref].subpel_y = scaled_mv[ref].row & SUBPEL_MASK;
pre[ref] += (scaled_mv[ref].row >> SUBPEL_BITS) * pre_buf->stride +
(scaled_mv[ref].col >> SUBPEL_BITS);
}
#if CONFIG_CONVOLVE_ROUND
ConvolveParams conv_params =
get_conv_params_no_round(ref, plane, tmp_dst, MAX_SB_SIZE);
#else
ConvolveParams conv_params = get_conv_params(ref, plane);
#endif // CONFIG_CONVOLVE_ROUND
for (ref = 0; ref < 1 + is_compound; ++ref) {
const struct scale_factors *const sf = &xd->block_refs[ref]->sf;
struct buf_2d *const pre_buf = &pd->pre[ref];
conv_params.ref = ref;
#if CONFIG_EXT_INTER
if (ref &&
is_masked_compound_type(mi->mbmi.interinter_compound_data.type))
av1_make_masked_inter_predictor(
pre[ref], pre_buf->stride, dst, dst_buf->stride,
subpel_params[ref].subpel_x, subpel_params[ref].subpel_y, sf, w, h,
mi->mbmi.interp_filter, subpel_params[ref].xs,
subpel_params[ref].ys,
#if CONFIG_SUPERTX
wedge_offset_x, wedge_offset_y,
#endif // CONFIG_SUPERTX
plane,
#if CONFIG_GLOBAL_MOTION
is_global[ref], (mi_x >> pd->subsampling_x) + x,
(mi_y >> pd->subsampling_y) + y, ref,
#endif // CONFIG_GLOBAL_MOTION
xd);
else
#endif // CONFIG_EXT_INTER
av1_make_inter_predictor(
pre[ref], pre_buf->stride, dst, dst_buf->stride,
subpel_params[ref].subpel_x, subpel_params[ref].subpel_y, sf, w, h,
&conv_params, mi->mbmi.interp_filter,
#if CONFIG_GLOBAL_MOTION
is_global[ref], (mi_x >> pd->subsampling_x) + x,
(mi_y >> pd->subsampling_y) + y, plane, ref,
#endif // CONFIG_GLOBAL_MOTION
subpel_params[ref].xs, subpel_params[ref].ys, xd);
}
#if CONFIG_CONVOLVE_ROUND
// TODO(angiebird): This part needs optimization
#if CONFIG_AOM_HIGHBITDEPTH
if (!(xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH))
#endif // CONFIG_AOM_HIGHBITDEPTH
av1_convolve_rounding(tmp_dst, MAX_SB_SIZE, dst, dst_buf->stride, w, h,
FILTER_BITS * 2 + is_compound -
conv_params.round_0 - conv_params.round_1);
#endif // CONFIG_CONVOLVE_ROUND
}
}
void av1_build_inter_predictor_sub8x8(MACROBLOCKD *xd, int plane, int i, int ir,
int ic, int mi_row, int mi_col) {
struct macroblockd_plane *const pd = &xd->plane[plane];
MODE_INFO *const mi = xd->mi[0];
const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->mbmi.sb_type, pd);
const int width = block_size_wide[plane_bsize];
const int height = block_size_high[plane_bsize];
uint8_t *const dst = &pd->dst.buf[(ir * pd->dst.stride + ic) << 2];
int ref;
const int is_compound = has_second_ref(&mi->mbmi);
for (ref = 0; ref < 1 + is_compound; ++ref) {
ConvolveParams conv_params = get_conv_params(ref, plane);
const uint8_t *pre =
&pd->pre[ref].buf[(ir * pd->pre[ref].stride + ic) << 2];
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
av1_highbd_build_inter_predictor(
pre, pd->pre[ref].stride, dst, pd->dst.stride,
&mi->bmi[i].as_mv[ref].as_mv, &xd->block_refs[ref]->sf, width, height,
ref, mi->mbmi.interp_filter, MV_PRECISION_Q3,
mi_col * MI_SIZE + 4 * ic, mi_row * MI_SIZE + 4 * ir, xd->bd);
else
#endif // CONFIG_AOM_HIGHBITDEPTH
av1_build_inter_predictor(
pre, pd->pre[ref].stride, dst, pd->dst.stride,
&mi->bmi[i].as_mv[ref].as_mv, &xd->block_refs[ref]->sf, width, height,
&conv_params, mi->mbmi.interp_filter, MV_PRECISION_Q3,
mi_col * MI_SIZE + 4 * ic, mi_row * MI_SIZE + 4 * ir);
}
}
static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize,
int mi_row, int mi_col,
int plane_from, int plane_to) {
int plane;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
#if CONFIG_CB4X4
const int unify_bsize = 1;
#else
const int unify_bsize = 0;
#endif
for (plane = plane_from; plane <= plane_to; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
const int bw = block_size_wide[bsize] >> pd->subsampling_x;
const int bh = block_size_high[bsize] >> pd->subsampling_y;
if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8 && !unify_bsize) {
const PARTITION_TYPE bp = bsize - xd->mi[0]->mbmi.sb_type;
const int have_vsplit = bp != PARTITION_HORZ;
const int have_hsplit = bp != PARTITION_VERT;
const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x);
const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y);
const int pw = 8 >> (have_vsplit | pd->subsampling_x);
const int ph = 8 >> (have_hsplit | pd->subsampling_y);
int x, y;
assert(bp != PARTITION_NONE && bp < PARTITION_TYPES);
assert(bsize == BLOCK_8X8);
assert(pw * num_4x4_w == bw && ph * num_4x4_h == bh);
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x)
build_inter_predictors(xd, plane,
#if CONFIG_MOTION_VAR
0, 0,
#endif // CONFIG_MOTION_VAR
y * 2 + x, bw, bh, 4 * x, 4 * y, pw, ph,
#if CONFIG_SUPERTX && CONFIG_EXT_INTER
0, 0,
#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
mi_x, mi_y);
} else {
build_inter_predictors(xd, plane,
#if CONFIG_MOTION_VAR
0, 0,
#endif // CONFIG_MOTION_VAR
0, bw, bh, 0, 0, bw, bh,
#if CONFIG_SUPERTX && CONFIG_EXT_INTER
0, 0,
#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
mi_x, mi_y);
}
}
}
void av1_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col,
BUFFER_SET *ctx, BLOCK_SIZE bsize) {
build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0);
#if CONFIG_EXT_INTER
if (is_interintra_pred(&xd->mi[0]->mbmi)) {
BUFFER_SET default_ctx = { { xd->plane[0].dst.buf, NULL, NULL },
{ xd->plane[0].dst.stride, 0, 0 } };
if (!ctx) ctx = &default_ctx;
av1_build_interintra_predictors_sby(xd, xd->plane[0].dst.buf,
xd->plane[0].dst.stride, ctx, bsize);
}
#else
(void)ctx;
#endif // CONFIG_EXT_INTER
}
void av1_build_inter_predictors_sbp(MACROBLOCKD *xd, int mi_row, int mi_col,
BUFFER_SET *ctx, BLOCK_SIZE bsize,
int plane) {
build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, plane, plane);
#if CONFIG_EXT_INTER
if (is_interintra_pred(&xd->mi[0]->mbmi)) {
BUFFER_SET default_ctx = {
{ xd->plane[0].dst.buf, xd->plane[1].dst.buf, xd->plane[2].dst.buf },
{ xd->plane[0].dst.stride, xd->plane[1].dst.stride,
xd->plane[2].dst.stride }
};
if (!ctx) ctx = &default_ctx;
if (plane == 0) {
av1_build_interintra_predictors_sby(xd, xd->plane[0].dst.buf,
xd->plane[0].dst.stride, ctx, bsize);
} else {
av1_build_interintra_predictors_sbc(xd, xd->plane[plane].dst.buf,
xd->plane[plane].dst.stride, ctx,
plane, bsize);
}
}
#else
(void)ctx;
#endif // CONFIG_EXT_INTER
}
void av1_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col,
BUFFER_SET *ctx, BLOCK_SIZE bsize) {
build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1,
MAX_MB_PLANE - 1);
#if CONFIG_EXT_INTER
if (is_interintra_pred(&xd->mi[0]->mbmi)) {
BUFFER_SET default_ctx = {
{ NULL, xd->plane[1].dst.buf, xd->plane[2].dst.buf },
{ 0, xd->plane[1].dst.stride, xd->plane[2].dst.stride }
};
if (!ctx) ctx = &default_ctx;
av1_build_interintra_predictors_sbuv(
xd, xd->plane[1].dst.buf, xd->plane[2].dst.buf, xd->plane[1].dst.stride,
xd->plane[2].dst.stride, ctx, bsize);
}
#else
(void)ctx;
#endif // CONFIG_EXT_INTER
}
void av1_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col,
BUFFER_SET *ctx, BLOCK_SIZE bsize) {
build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0,
MAX_MB_PLANE - 1);
#if CONFIG_EXT_INTER
if (is_interintra_pred(&xd->mi[0]->mbmi)) {
BUFFER_SET default_ctx = {
{ xd->plane[0].dst.buf, xd->plane[1].dst.buf, xd->plane[2].dst.buf },
{ xd->plane[0].dst.stride, xd->plane[1].dst.stride,
xd->plane[2].dst.stride }
};
if (!ctx) ctx = &default_ctx;
av1_build_interintra_predictors(
xd, xd->plane[0].dst.buf, xd->plane[1].dst.buf, xd->plane[2].dst.buf,
xd->plane[0].dst.stride, xd->plane[1].dst.stride,
xd->plane[2].dst.stride, ctx, bsize);
}
#else
(void)ctx;
#endif // CONFIG_EXT_INTER
}
void av1_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE],
const YV12_BUFFER_CONFIG *src, int mi_row,
int mi_col) {
uint8_t *const buffers[MAX_MB_PLANE] = { src->y_buffer, src->u_buffer,
src->v_buffer };
const int widths[MAX_MB_PLANE] = { src->y_crop_width, src->uv_crop_width,
src->uv_crop_width };
const int heights[MAX_MB_PLANE] = { src->y_crop_height, src->uv_crop_height,
src->uv_crop_height };
const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride,
src->uv_stride };
int i;
for (i = 0; i < MAX_MB_PLANE; ++i) {
struct macroblockd_plane *const pd = &planes[i];
setup_pred_plane(&pd->dst, buffers[i], widths[i], heights[i], strides[i],
mi_row, mi_col, NULL, pd->subsampling_x,
pd->subsampling_y);
}
}
void av1_setup_pre_planes(MACROBLOCKD *xd, int idx,
const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
const struct scale_factors *sf) {
if (src != NULL) {
int i;
uint8_t *const buffers[MAX_MB_PLANE] = { src->y_buffer, src->u_buffer,
src->v_buffer };
const int widths[MAX_MB_PLANE] = { src->y_crop_width, src->uv_crop_width,
src->uv_crop_width };
const int heights[MAX_MB_PLANE] = { src->y_crop_height, src->uv_crop_height,
src->uv_crop_height };
const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride,
src->uv_stride };
for (i = 0; i < MAX_MB_PLANE; ++i) {
struct macroblockd_plane *const pd = &xd->plane[i];
setup_pred_plane(&pd->pre[idx], buffers[i], widths[i], heights[i],
strides[i], mi_row, mi_col, sf, pd->subsampling_x,
pd->subsampling_y);
}
}
}
#if CONFIG_SUPERTX
#if CONFIG_CB4X4
static const uint8_t mask_4[4] = { 64, 52, 12, 0 };
static const uint8_t mask_4_uv[4] = { 64, 52, 12, 0 };
#endif // CONFIG_CB4X4
static const uint8_t mask_8[8] = { 64, 64, 62, 52, 12, 2, 0, 0 };
static const uint8_t mask_16[16] = { 63, 62, 60, 58, 55, 50, 43, 36,
28, 21, 14, 9, 6, 4, 2, 1 };
static const uint8_t mask_32[32] = { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 63,
61, 57, 52, 45, 36, 28, 19, 12, 7, 3, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
static const uint8_t mask_8_uv[8] = { 64, 64, 62, 52, 12, 2, 0, 0 };
static const uint8_t mask_16_uv[16] = { 64, 64, 64, 64, 61, 53, 45, 36,
28, 19, 11, 3, 0, 0, 0, 0 };
static const uint8_t mask_32_uv[32] = { 64, 64, 64, 64, 64, 64, 64, 64,
64, 64, 64, 64, 60, 54, 46, 36,
28, 18, 10, 4, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0 };
static const uint8_t *get_supertx_mask(int length, int plane) {
switch (length) {
#if CONFIG_CB4X4
case 4: return plane ? mask_4_uv : mask_4;
#endif // CONFIG_CB4X4
case 8: return plane ? mask_8_uv : mask_8;
case 16: return plane ? mask_16_uv : mask_16;
case 32: return plane ? mask_32_uv : mask_32;
default: assert(0);
}
return NULL;
}
void av1_build_masked_inter_predictor_complex(
MACROBLOCKD *xd, uint8_t *dst, int dst_stride, const uint8_t *pre,
int pre_stride, int mi_row, int mi_col, int mi_row_ori, int mi_col_ori,
BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, PARTITION_TYPE partition,
int plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
const int ssx = pd->subsampling_x;
const int ssy = pd->subsampling_y;
const int top_w = block_size_wide[top_bsize] >> ssx;
const int top_h = block_size_high[top_bsize] >> ssy;
const int w = block_size_wide[bsize] >> ssx;
const int h = block_size_high[bsize] >> ssy;
const int w_offset = ((mi_col - mi_col_ori) * MI_SIZE) >> ssx;
const int h_offset = ((mi_row - mi_row_ori) * MI_SIZE) >> ssy;
int w_remain, h_remain;
#if CONFIG_AOM_HIGHBITDEPTH
const int is_hdb = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
#endif // CONFIG_AOM_HIGHBITDEPTH
assert(bsize <= BLOCK_32X32);
assert(IMPLIES(plane == 0, ssx == 0));
assert(IMPLIES(plane == 0, ssy == 0));
switch (partition) {
case PARTITION_HORZ: {
const uint8_t *const mask = get_supertx_mask(h, ssy);
w_remain = top_w;
h_remain = top_h - h_offset - h;
dst += h_offset * dst_stride;
pre += h_offset * pre_stride;
#if CONFIG_AOM_HIGHBITDEPTH
if (is_hdb)
aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, pre,
pre_stride, mask, h, top_w, xd->bd);
else
#endif // CONFIG_AOM_HIGHBITDEPTH
aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, pre, pre_stride,
mask, h, top_w);
dst += h * dst_stride;
pre += h * pre_stride;
break;
}
case PARTITION_VERT: {
const uint8_t *const mask = get_supertx_mask(w, ssx);
w_remain = top_w - w_offset - w;
h_remain = top_h;
dst += w_offset;
pre += w_offset;
#if CONFIG_AOM_HIGHBITDEPTH
if (is_hdb)
aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, pre,
pre_stride, mask, top_h, w, xd->bd);
else
#endif // CONFIG_AOM_HIGHBITDEPTH
aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, pre, pre_stride,
mask, top_h, w);
dst += w;
pre += w;
break;
}
default: {
assert(0);
return;
}
}
if (w_remain == 0 || h_remain == 0) {
return;
}
#if CONFIG_AOM_HIGHBITDEPTH
if (is_hdb) {
dst = (uint8_t *)CONVERT_TO_SHORTPTR(dst);
pre = (const uint8_t *)CONVERT_TO_SHORTPTR(pre);
dst_stride *= 2;
pre_stride *= 2;
w_remain *= 2;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
do {
memcpy(dst, pre, w_remain * sizeof(uint8_t));
dst += dst_stride;
pre += pre_stride;
} while (--h_remain);
}
void av1_build_inter_predictors_sb_sub8x8_extend(MACROBLOCKD *xd,
#if CONFIG_EXT_INTER
int mi_row_ori, int mi_col_ori,
#endif // CONFIG_EXT_INTER
int mi_row, int mi_col,
BLOCK_SIZE bsize, int block) {
// Prediction function used in supertx:
// Use the mv at current block (which is less than 8x8)
// to get prediction of a block located at (mi_row, mi_col) at size of bsize
// bsize can be larger than 8x8.
// block (0-3): the sub8x8 location of current block
int plane;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
#if CONFIG_EXT_INTER
const int wedge_offset_x = (mi_col_ori - mi_col) * MI_SIZE;
const int wedge_offset_y = (mi_row_ori - mi_row) * MI_SIZE;
#endif // CONFIG_EXT_INTER
// For sub8x8 uv:
// Skip uv prediction in supertx except the first block (block = 0)
int max_plane = block ? 1 : MAX_MB_PLANE;
for (plane = 0; plane < max_plane; plane++) {
const BLOCK_SIZE plane_bsize =
get_plane_block_size(bsize, &xd->plane[plane]);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const int bw = 4 * num_4x4_w;
const int bh = 4 * num_4x4_h;
build_inter_predictors(xd, plane,
#if CONFIG_MOTION_VAR
0, 0,
#endif // CONFIG_MOTION_VAR
block, bw, bh, 0, 0, bw, bh,
#if CONFIG_EXT_INTER
wedge_offset_x, wedge_offset_y,
#endif // CONFIG_EXT_INTER
mi_x, mi_y);
}
#if CONFIG_EXT_INTER
if (is_interintra_pred(&xd->mi[0]->mbmi)) {
BUFFER_SET ctx = { { xd->plane[0].dst.buf, xd->plane[1].dst.buf,
xd->plane[2].dst.buf },
{ xd->plane[0].dst.stride, xd->plane[1].dst.stride,
xd->plane[2].dst.stride } };
av1_build_interintra_predictors(
xd, xd->plane[0].dst.buf, xd->plane[1].dst.buf, xd->plane[2].dst.buf,
xd->plane[0].dst.stride, xd->plane[1].dst.stride,
xd->plane[2].dst.stride, &ctx, bsize);
}
#endif // CONFIG_EXT_INTER
}
void av1_build_inter_predictors_sb_extend(MACROBLOCKD *xd,
#if CONFIG_EXT_INTER
int mi_row_ori, int mi_col_ori,
#endif // CONFIG_EXT_INTER
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
int plane;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
#if CONFIG_EXT_INTER
const int wedge_offset_x = (mi_col_ori - mi_col) * MI_SIZE;
const int wedge_offset_y = (mi_row_ori - mi_row) * MI_SIZE;
#endif // CONFIG_EXT_INTER
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const BLOCK_SIZE plane_bsize =
get_plane_block_size(bsize, &xd->plane[plane]);
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
build_inter_predictors(xd, plane,
#if CONFIG_MOTION_VAR
0, 0,
#endif // CONFIG_MOTION_VAR
0, bw, bh, 0, 0, bw, bh,
#if CONFIG_EXT_INTER
wedge_offset_x, wedge_offset_y,
#endif // CONFIG_EXT_INTER
mi_x, mi_y);
}
}
#endif // CONFIG_SUPERTX
#if CONFIG_MOTION_VAR
// obmc_mask_N[overlap_position]
static const uint8_t obmc_mask_1[1] = { 55 };
static const uint8_t obmc_mask_2[2] = { 45, 62 };
static const uint8_t obmc_mask_4[4] = { 39, 50, 59, 64 };
static const uint8_t obmc_mask_8[8] = { 36, 42, 48, 53, 57, 61, 63, 64 };
static const uint8_t obmc_mask_16[16] = { 34, 37, 40, 43, 46, 49, 52, 54,
56, 58, 60, 61, 63, 64, 64, 64 };
static const uint8_t obmc_mask_32[32] = { 33, 35, 36, 38, 40, 41, 43, 44,
45, 47, 48, 50, 51, 52, 53, 55,
56, 57, 58, 59, 60, 60, 61, 62,
62, 63, 63, 64, 64, 64, 64, 64 };
#if CONFIG_EXT_PARTITION
static const uint8_t obmc_mask_64[64] = {
33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 44,
45, 46, 47, 47, 48, 49, 50, 51, 51, 51, 52, 52, 53, 54, 55, 56,
56, 56, 57, 57, 58, 58, 59, 60, 60, 60, 60, 60, 61, 62, 62, 62,
62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
};
#endif // CONFIG_EXT_PARTITION
const uint8_t *av1_get_obmc_mask(int length) {
switch (length) {
case 1: return obmc_mask_1;
case 2: return obmc_mask_2;
case 4: return obmc_mask_4;
case 8: return obmc_mask_8;
case 16: return obmc_mask_16;
case 32: return obmc_mask_32;
#if CONFIG_EXT_PARTITION
case 64: return obmc_mask_64;
#endif // CONFIG_EXT_PARTITION
default: assert(0); return NULL;
}
}
#if CONFIG_NCOBMC
// obmc_mask_flipN[overlap_position]
static const uint8_t obmc_mask_flip1[1] = { 55 };
static const uint8_t obmc_mask_flip2[2] = { 62, 45 };
static const uint8_t obmc_mask_flip4[4] = { 64, 59, 50, 39 };
static const uint8_t obmc_mask_flip8[8] = { 64, 63, 61, 57, 53, 48, 42, 36 };
static const uint8_t obmc_mask_flip16[16] = { 64, 64, 64, 63, 61, 60, 58, 56,
54, 52, 49, 46, 43, 40, 37, 34 };
static const uint8_t obmc_mask_flip32[32] = { 64, 64, 64, 64, 64, 63, 63, 62,
62, 61, 60, 60, 59, 58, 57, 56,
55, 53, 52, 51, 50, 48, 47, 45,
44, 43, 41, 40, 38, 36, 35, 33 };
#if CONFIG_EXT_PARTITION
static const uint8_t obmc_mask_flip64[64] = {
64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 63, 63, 63, 63, 62, 62,
62, 62, 62, 61, 60, 60, 60, 60, 60, 59, 58, 58, 57, 57, 56, 56,
56, 55, 54, 53, 52, 52, 51, 51, 51, 50, 49, 48, 47, 47, 46, 45,
44, 44, 44, 43, 42, 41, 40, 40, 39, 38, 37, 36, 35, 35, 34, 33,
};
#endif // CONFIG_EXT_PARTITION
const uint8_t *av1_get_obmc_mask_flipped(int length) {
switch (length) {
case 1: return obmc_mask_flip1;
case 2: return obmc_mask_flip2;
case 4: return obmc_mask_flip4;
case 8: return obmc_mask_flip8;
case 16: return obmc_mask_flip16;
case 32: return obmc_mask_flip32;
#if CONFIG_EXT_PARTITION
case 64: return obmc_mask_flip64;
#endif // CONFIG_EXT_PARTITION
default: assert(0); return NULL;
}
}
#endif // CONFIG_NCOBMC
// This function combines motion compensated predictions that is generated by
// top/left neighboring blocks' inter predictors with the regular inter
// prediction. We assume the original prediction (bmc) is stored in
// xd->plane[].dst.buf
void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col,
uint8_t *above[MAX_MB_PLANE],
int above_stride[MAX_MB_PLANE],
uint8_t *left[MAX_MB_PLANE],
int left_stride[MAX_MB_PLANE]) {
const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
int plane, i;
#if CONFIG_AOM_HIGHBITDEPTH
const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
#endif // CONFIG_AOM_HIGHBITDEPTH
// handle above row
if (xd->up_available) {
const int overlap = num_4x4_blocks_high_lookup[bsize] * 2;
const int miw = AOMMIN(xd->n8_w, cm->mi_cols - mi_col);
const int mi_row_offset = -1;
assert(miw > 0);
i = 0;
do { // for each mi in the above row
const int mi_col_offset = i;
const MB_MODE_INFO *const above_mbmi =
&xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi;
const int mi_step = AOMMIN(xd->n8_w, mi_size_wide[above_mbmi->sb_type]);
if (is_neighbor_overlappable(above_mbmi)) {
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
const int bw = (mi_step * MI_SIZE) >> pd->subsampling_x;
const int bh = overlap >> pd->subsampling_y;
const int dst_stride = pd->dst.stride;
uint8_t *const dst = &pd->dst.buf[(i * MI_SIZE) >> pd->subsampling_x];
const int tmp_stride = above_stride[plane];
const uint8_t *const tmp =
&above[plane][(i * MI_SIZE) >> pd->subsampling_x];
const uint8_t *const mask = av1_get_obmc_mask(bh);
#if CONFIG_AOM_HIGHBITDEPTH
if (is_hbd)
aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp,
tmp_stride, mask, bh, bw, xd->bd);
else
#endif // CONFIG_AOM_HIGHBITDEPTH
aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp,
tmp_stride, mask, bh, bw);
}
}
i += mi_step;
} while (i < miw);
}
// handle left column
if (xd->left_available) {
const int overlap = num_4x4_blocks_wide_lookup[bsize] * 2;
const int mih = AOMMIN(xd->n8_h, cm->mi_rows - mi_row);
const int mi_col_offset = -1;
assert(mih > 0);
i = 0;
do { // for each mi in the left column
const int mi_row_offset = i;
const MB_MODE_INFO *const left_mbmi =
&xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi;
const int mi_step = AOMMIN(xd->n8_h, mi_size_high[left_mbmi->sb_type]);
if (is_neighbor_overlappable(left_mbmi)) {
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
const int bw = overlap >> pd->subsampling_x;
const int bh = (mi_step * MI_SIZE) >> pd->subsampling_y;
const int dst_stride = pd->dst.stride;
uint8_t *const dst =
&pd->dst.buf[(i * MI_SIZE * dst_stride) >> pd->subsampling_y];
const int tmp_stride = left_stride[plane];
const uint8_t *const tmp =
&left[plane][(i * MI_SIZE * tmp_stride) >> pd->subsampling_y];
const uint8_t *const mask = av1_get_obmc_mask(bw);
#if CONFIG_AOM_HIGHBITDEPTH
if (is_hbd)
aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp,
tmp_stride, mask, bh, bw, xd->bd);
else
#endif // CONFIG_AOM_HIGHBITDEPTH
aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp,
tmp_stride, mask, bh, bw);
}
}
i += mi_step;
} while (i < mih);
}
}
#if CONFIG_EXT_INTER
void modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi) {
if (is_interintra_pred(mbmi)) {
mbmi->ref_frame[1] = NONE_FRAME;
} else if (has_second_ref(mbmi) &&
is_masked_compound_type(mbmi->interinter_compound_data.type)) {
mbmi->interinter_compound_data.type = COMPOUND_AVERAGE;
mbmi->ref_frame[1] = NONE_FRAME;
}
return;
}
#endif // CONFIG_EXT_INTER
void av1_build_prediction_by_above_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col,
uint8_t *tmp_buf[MAX_MB_PLANE],
int tmp_width[MAX_MB_PLANE],
int tmp_height[MAX_MB_PLANE],
int tmp_stride[MAX_MB_PLANE]) {
const TileInfo *const tile = &xd->tile;
BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
int i, j, mi_step, ref;
int mb_to_right_edge_base = xd->mb_to_right_edge;
if (mi_row <= tile->mi_row_start) return;
xd->mb_to_bottom_edge += xd->n8_h * 32;
for (i = 0; i < AOMMIN(xd->n8_w, cm->mi_cols - mi_col); i += mi_step) {
int mi_row_offset = -1;
int mi_col_offset = i;
int mi_x, mi_y, bw, bh;
MODE_INFO *above_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
MB_MODE_INFO *above_mbmi = &above_mi->mbmi;
#if CONFIG_EXT_INTER
MB_MODE_INFO backup_mbmi;
#endif // CONFIG_EXT_INTER
mi_step = AOMMIN(xd->n8_w, mi_size_wide[above_mbmi->sb_type]);
if (!is_neighbor_overlappable(above_mbmi)) continue;
#if CONFIG_EXT_INTER
backup_mbmi = *above_mbmi;
modify_neighbor_predictor_for_obmc(above_mbmi);
#endif // CONFIG_EXT_INTER
for (j = 0; j < MAX_MB_PLANE; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
setup_pred_plane(&pd->dst, tmp_buf[j], tmp_width[j], tmp_height[j],
tmp_stride[j], 0, i, NULL, pd->subsampling_x,
pd->subsampling_y);
}
for (ref = 0; ref < 1 + has_second_ref(above_mbmi); ++ref) {
const MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref];
const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME];
xd->block_refs[ref] = ref_buf;
if ((!av1_is_valid_scale(&ref_buf->sf)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col + i,
&ref_buf->sf);
}
xd->mb_to_left_edge = -(((mi_col + i) * MI_SIZE) * 8);
xd->mb_to_right_edge =
mb_to_right_edge_base + (xd->n8_w - i - mi_step) * 64;
mi_x = (mi_col + i) << MI_SIZE_LOG2;
mi_y = mi_row << MI_SIZE_LOG2;
for (j = 0; j < MAX_MB_PLANE; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
bw = (mi_step * MI_SIZE) >> pd->subsampling_x;
bh = AOMMAX((num_4x4_blocks_high_lookup[bsize] * 2) >> pd->subsampling_y,
4);
if (above_mbmi->sb_type < BLOCK_8X8 && !CONFIG_CB4X4) {
const PARTITION_TYPE bp = BLOCK_8X8 - above_mbmi->sb_type;
const int have_vsplit = bp != PARTITION_HORZ;
const int have_hsplit = bp != PARTITION_VERT;
const int num_4x4_w = 2 >> !have_vsplit;
const int num_4x4_h = 2 >> !have_hsplit;
const int pw = 8 >> (have_vsplit + pd->subsampling_x);
int x, y;
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x) {
if ((bp == PARTITION_HORZ || bp == PARTITION_SPLIT) && y == 0)
continue;
build_inter_predictors(xd, j, mi_col_offset, mi_row_offset,
y * 2 + x, bw, bh,
(4 * x) >> pd->subsampling_x, 0, pw, bh,
#if CONFIG_SUPERTX && CONFIG_EXT_INTER
0, 0,
#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
mi_x, mi_y);
}
} else {
#if CONFIG_WARPED_MOTION
if (above_mbmi->motion_mode == WARPED_CAUSAL) {
av1_warp_plane(&above_mbmi->wm_params[0],
#if CONFIG_AOM_HIGHBITDEPTH
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd,
#endif // CONFIG_AOM_HIGHBITDEPTH
pd->pre[0].buf0, pd->pre[0].width, pd->pre[0].height,
pd->pre[0].stride, pd->dst.buf,
(((mi_col + i) * MI_SIZE) >> pd->subsampling_x),
((mi_row * MI_SIZE) >> pd->subsampling_y), bw, bh,
pd->dst.stride, pd->subsampling_x, pd->subsampling_y,
16, 16, 0);
} else {
#endif // CONFIG_WARPED_MOTION
build_inter_predictors(xd, j, mi_col_offset, mi_row_offset, 0, bw, bh,
0, 0, bw, bh,
#if CONFIG_SUPERTX && CONFIG_EXT_INTER
0, 0,
#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
mi_x, mi_y);
#if CONFIG_WARPED_MOTION
}
#endif // CONFIG_WARPED_MOTION
}
}
#if CONFIG_EXT_INTER
*above_mbmi = backup_mbmi;
#endif // CONFIG_EXT_INTER
}
xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
xd->mb_to_right_edge = mb_to_right_edge_base;
xd->mb_to_bottom_edge -= xd->n8_h * 32;
}
void av1_build_prediction_by_left_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col,
uint8_t *tmp_buf[MAX_MB_PLANE],
int tmp_width[MAX_MB_PLANE],
int tmp_height[MAX_MB_PLANE],
int tmp_stride[MAX_MB_PLANE]) {
const TileInfo *const tile = &xd->tile;
BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
int i, j, mi_step, ref;
int mb_to_bottom_edge_base = xd->mb_to_bottom_edge;
if (mi_col == 0 || (mi_col - 1 < tile->mi_col_start)) return;
xd->mb_to_right_edge += xd->n8_w * 32;
for (i = 0; i < AOMMIN(xd->n8_h, cm->mi_rows - mi_row); i += mi_step) {
int mi_row_offset = i;
int mi_col_offset = -1;
int mi_x, mi_y, bw, bh;
MODE_INFO *left_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
MB_MODE_INFO *left_mbmi = &left_mi->mbmi;
#if CONFIG_EXT_INTER
MB_MODE_INFO backup_mbmi;
#endif // CONFIG_EXT_INTER
mi_step = AOMMIN(xd->n8_h, mi_size_high[left_mbmi->sb_type]);
if (!is_neighbor_overlappable(left_mbmi)) continue;
#if CONFIG_EXT_INTER
backup_mbmi = *left_mbmi;
modify_neighbor_predictor_for_obmc(left_mbmi);
#endif // CONFIG_EXT_INTER
for (j = 0; j < MAX_MB_PLANE; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
setup_pred_plane(&pd->dst, tmp_buf[j], tmp_width[j], tmp_height[j],
tmp_stride[j], i, 0, NULL, pd->subsampling_x,
pd->subsampling_y);
}
for (ref = 0; ref < 1 + has_second_ref(left_mbmi); ++ref) {
const MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref];
const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME];
xd->block_refs[ref] = ref_buf;
if ((!av1_is_valid_scale(&ref_buf->sf)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + i, mi_col,
&ref_buf->sf);
}
xd->mb_to_top_edge = -(((mi_row + i) * MI_SIZE) * 8);
xd->mb_to_bottom_edge =
mb_to_bottom_edge_base + (xd->n8_h - i - mi_step) * 64;
mi_x = mi_col << MI_SIZE_LOG2;
mi_y = (mi_row + i) << MI_SIZE_LOG2;
for (j = 0; j < MAX_MB_PLANE; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
bw = AOMMAX((num_4x4_blocks_wide_lookup[bsize] * 2) >> pd->subsampling_x,
4);
bh = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y;
if (left_mbmi->sb_type < BLOCK_8X8 && !CONFIG_CB4X4) {
const PARTITION_TYPE bp = BLOCK_8X8 - left_mbmi->sb_type;
const int have_vsplit = bp != PARTITION_HORZ;
const int have_hsplit = bp != PARTITION_VERT;
const int num_4x4_w = 2 >> !have_vsplit;
const int num_4x4_h = 2 >> !have_hsplit;
const int ph = 8 >> (have_hsplit + pd->subsampling_y);
int x, y;
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x) {
if ((bp == PARTITION_VERT || bp == PARTITION_SPLIT) && x == 0)
continue;
build_inter_predictors(xd, j, mi_col_offset, mi_row_offset,
y * 2 + x, bw, bh, 0,
(4 * y) >> pd->subsampling_y, bw, ph,
#if CONFIG_SUPERTX && CONFIG_EXT_INTER
0, 0,
#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
mi_x, mi_y);
}
} else {
#if CONFIG_WARPED_MOTION
if (left_mbmi->motion_mode == WARPED_CAUSAL) {
av1_warp_plane(&left_mbmi->wm_params[0],
#if CONFIG_AOM_HIGHBITDEPTH
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd,
#endif // CONFIG_AOM_HIGHBITDEPTH
pd->pre[0].buf0, pd->pre[0].width, pd->pre[0].height,
pd->pre[0].stride, pd->dst.buf,
((mi_col * MI_SIZE) >> pd->subsampling_x),
(((mi_row + i) * MI_SIZE) >> pd->subsampling_y), bw,
bh, pd->dst.stride, pd->subsampling_x,
pd->subsampling_y, 16, 16, 0);
} else {
#endif // CONFIG_WARPED_MOTION
build_inter_predictors(xd, j, mi_col_offset, mi_row_offset, 0, bw, bh,
0, 0, bw, bh,
#if CONFIG_SUPERTX && CONFIG_EXT_INTER
0, 0,
#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
mi_x, mi_y);
#if CONFIG_WARPED_MOTION
}
#endif // CONFIG_WARPED_MOTION
}
}
#if CONFIG_EXT_INTER
*left_mbmi = backup_mbmi;
#endif // CONFIG_EXT_INTER
}
xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
xd->mb_to_bottom_edge = mb_to_bottom_edge_base;
xd->mb_to_right_edge -= xd->n8_w * 32;
}
void av1_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col) {
#if CONFIG_AOM_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint8_t, tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
#else
DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_SB_SQUARE]);
#endif // CONFIG_AOM_HIGHBITDEPTH
uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE];
int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
int len = sizeof(uint16_t);
dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1);
dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len);
dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * 2 * len);
dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2);
dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len);
dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * 2 * len);
} else {
#endif // CONFIG_AOM_HIGHBITDEPTH
dst_buf1[0] = tmp_buf1;
dst_buf1[1] = tmp_buf1 + MAX_SB_SQUARE;
dst_buf1[2] = tmp_buf1 + MAX_SB_SQUARE * 2;
dst_buf2[0] = tmp_buf2;
dst_buf2[1] = tmp_buf2 + MAX_SB_SQUARE;
dst_buf2[2] = tmp_buf2 + MAX_SB_SQUARE * 2;
#if CONFIG_AOM_HIGHBITDEPTH
}
#endif // CONFIG_AOM_HIGHBITDEPTH
av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, dst_buf1,
dst_width1, dst_height1, dst_stride1);
av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, dst_buf2,
dst_width2, dst_height2, dst_stride2);
av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
av1_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, dst_buf1, dst_stride1,
dst_buf2, dst_stride2);
}
#if CONFIG_NCOBMC
void av1_build_prediction_by_bottom_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col,
uint8_t *tmp_buf[MAX_MB_PLANE],
int tmp_width[MAX_MB_PLANE],
int tmp_height[MAX_MB_PLANE],
int tmp_stride[MAX_MB_PLANE]) {
const TileInfo *const tile = &xd->tile;
BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
int i, j, mi_step, ref;
int mb_to_right_edge_base = xd->mb_to_right_edge;
if (mi_row + xd->n8_h >= tile->mi_row_end ||
(mi_row + xd->n8_h) % MI_SIZE == 0 || (mi_row + xd->n8_h) >= cm->mi_rows)
return;
assert(bsize >= BLOCK_8X8);
xd->mb_to_top_edge -= xd->n8_h * 32;
for (i = 0; i < AOMMIN(xd->n8_w, cm->mi_cols - mi_col); i += mi_step) {
int mi_row_offset = xd->n8_h;
int mi_col_offset = i;
int mi_x, mi_y, bw, bh;
MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
MB_MODE_INFO *mbmi = &mi->mbmi;
#if CONFIG_EXT_INTER
MB_MODE_INFO backup_mbmi;
#endif // CONFIG_EXT_INTER
mi_step = AOMMIN(xd->n8_w, mi_size_wide[mbmi->sb_type]);
if (!is_neighbor_overlappable(mbmi)) continue;
#if CONFIG_EXT_INTER
backup_mbmi = *mbmi;
modify_neighbor_predictor_for_obmc(mbmi);
#endif // CONFIG_EXT_INTER
for (j = 0; j < MAX_MB_PLANE; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
setup_pred_plane(&pd->dst, tmp_buf[j], tmp_width[j], tmp_height[j],
tmp_stride[j], (xd->n8_h >> 1), i, NULL,
pd->subsampling_x, pd->subsampling_y);
}
for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME];
xd->block_refs[ref] = ref_buf;
if ((!av1_is_valid_scale(&ref_buf->sf)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + (xd->n8_h >> 1),
mi_col + i, &ref_buf->sf);
}
xd->mb_to_left_edge = -(((mi_col + i) * MI_SIZE) * 8);
xd->mb_to_right_edge =
mb_to_right_edge_base + (xd->n8_w - i - mi_step) * 64;
mi_x = (mi_col + i) << MI_SIZE_LOG2;
mi_y = (mi_row << MI_SIZE_LOG2) + xd->n8_h * 4;
for (j = 0; j < MAX_MB_PLANE; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
bw = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_x;
bh = (num_4x4_blocks_high_lookup[bsize] << 1) >> pd->subsampling_y;
if (mbmi->sb_type < BLOCK_8X8 && !CONFIG_CB4X4) {
const PARTITION_TYPE bp = BLOCK_8X8 - mbmi->sb_type;
const int have_vsplit = bp != PARTITION_HORZ;
const int have_hsplit = bp != PARTITION_VERT;
const int num_4x4_w = 2 >> (!have_vsplit);
const int num_4x4_h = 2 >> (!have_hsplit);
const int pw = 8 >> (have_vsplit + pd->subsampling_x);
int x, y;
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x) {
if ((bp == PARTITION_HORZ || bp == PARTITION_SPLIT) && y != 0)
continue;
build_inter_predictors(
xd, j, mi_col_offset, mi_row_offset, y * 2 + x, bw, bh,
(4 * x) >> pd->subsampling_x,
xd->n8_h == 1 ? (4 >> pd->subsampling_y) : 0, pw, bh,
#if CONFIG_SUPERTX && CONFIG_EXT_INTER
0, 0,
#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
mi_x, mi_y);
}
} else {
#if CONFIG_WARPED_MOTION
if (mbmi->motion_mode == WARPED_CAUSAL) {
av1_warp_plane(&mbmi->wm_params[0],
#if CONFIG_AOM_HIGHBITDEPTH
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd,
#endif // CONFIG_AOM_HIGHBITDEPTH
pd->pre[0].buf0, pd->pre[0].width, pd->pre[0].height,
pd->pre[0].stride, pd->dst.buf,
(((mi_col + i) * MI_SIZE) >> pd->subsampling_x),
((mi_row * MI_SIZE) >> pd->subsampling_y), bw, bh,
pd->dst.stride, pd->subsampling_x, pd->subsampling_y,
16, 16, 0);
} else {
#endif // CONFIG_WARPED_MOTION
build_inter_predictors(
xd, j, mi_col_offset, mi_row_offset, 0, bw, bh, 0,
xd->n8_h == 1 ? (4 >> pd->subsampling_y) : 0, bw, bh,
#if CONFIG_SUPERTX && CONFIG_EXT_INTER
0, 0,
#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
mi_x, mi_y);
#if CONFIG_WARPED_MOTION
}
#endif // CONFIG_WARPED_MOTION
}
}
#if CONFIG_EXT_INTER
*mbmi = backup_mbmi;
#endif // CONFIG_EXT_INTER
}
xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
xd->mb_to_right_edge = mb_to_right_edge_base;
xd->mb_to_top_edge += xd->n8_h * 32;
}
void av1_build_prediction_by_right_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col,
uint8_t *tmp_buf[MAX_MB_PLANE],
int tmp_width[MAX_MB_PLANE],
int tmp_height[MAX_MB_PLANE],
const int tmp_stride[MAX_MB_PLANE]) {
const TileInfo *const tile = &xd->tile;
BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
int i, j, mi_step, ref;
int mb_to_bottom_edge_base = xd->mb_to_bottom_edge;
if (mi_col + xd->n8_w >= tile->mi_col_end ||
(mi_col + xd->n8_w) % MI_SIZE == 0 || (mi_col + xd->n8_w) >= cm->mi_cols)
return;
xd->mb_to_left_edge -= xd->n8_w * 32;
for (i = 0; i < AOMMIN(xd->n8_h, cm->mi_rows - mi_row); i += mi_step) {
int mi_row_offset = i;
int mi_col_offset = xd->n8_w;
int mi_x, mi_y, bw, bh;
MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
MB_MODE_INFO *mbmi = &mi->mbmi;
#if CONFIG_EXT_INTER
MB_MODE_INFO backup_mbmi;
#endif // CONFIG_EXT_INTER
mi_step = AOMMIN(xd->n8_h, mi_size_high[mbmi->sb_type]);
if (!is_neighbor_overlappable(mbmi)) continue;
#if CONFIG_EXT_INTER
backup_mbmi = *mbmi;
modify_neighbor_predictor_for_obmc(mbmi);
#endif // CONFIG_EXT_INTER
for (j = 0; j < MAX_MB_PLANE; ++j) {
struct macroblockd_plane *const pd = &xd->plane[j];
setup_pred_plane(&pd->dst, tmp_buf[j], tmp_width[j], tmp_height[j],
tmp_stride[j], i, xd->n8_w >> 1, NULL, pd->subsampling_x,
pd->subsampling_y);
}
for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME];
xd->block_refs[ref] = ref_buf;
if ((!av1_is_valid_scale(&ref_buf->sf)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + i,
mi_col + (xd->n8_w >> 1), &ref_buf->sf);
}
xd->mb_to_top_edge = -(((mi_row + i) * MI_SIZE) * 8);
xd->mb_to_bottom_edge =
mb_to_bottom_edge_base + (xd->n8_h - i - mi_step) * 64;
mi_x = (mi_col << MI_SIZE_LOG2) + xd->n8_w * 4;
mi_y = (mi_row + i) << MI_SIZE_LOG2;
for (j = 0; j < MAX_MB_PLANE; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
bw = (num_4x4_blocks_wide_lookup[bsize] << 1) >> pd->subsampling_x;
bh = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y;
if (mbmi->sb_type < BLOCK_8X8 && !CONFIG_CB4X4) {
const PARTITION_TYPE bp = BLOCK_8X8 - mbmi->sb_type;
const int have_vsplit = bp != PARTITION_HORZ;
const int have_hsplit = bp != PARTITION_VERT;
const int num_4x4_w = 2 >> (!have_vsplit);
const int num_4x4_h = 2 >> (!have_hsplit);
const int ph = 8 >> (have_hsplit + pd->subsampling_y);
int x, y;
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x) {
if ((bp == PARTITION_VERT || bp == PARTITION_SPLIT) && x != 0)
continue;
build_inter_predictors(xd, j, mi_col_offset, mi_row_offset,
y * 2 + x, bw, bh,
xd->n8_w == 1 ? 4 >> pd->subsampling_x : 0,
(4 * y) >> pd->subsampling_y, bw, ph,
#if CONFIG_SUPERTX && CONFIG_EXT_INTER
0, 0,
#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
mi_x, mi_y);
}
} else {
#if CONFIG_WARPED_MOTION
if (mbmi->motion_mode == WARPED_CAUSAL) {
av1_warp_plane(&mbmi->wm_params[0],
#if CONFIG_AOM_HIGHBITDEPTH
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd,
#endif // CONFIG_AOM_HIGHBITDEPTH
pd->pre[0].buf0, pd->pre[0].width, pd->pre[0].height,
pd->pre[0].stride, pd->dst.buf,
((mi_col * MI_SIZE) >> pd->subsampling_x),
(((mi_row + i) * MI_SIZE) >> pd->subsampling_y), bw,
bh, pd->dst.stride, pd->subsampling_x,
pd->subsampling_y, 16, 16, 0);
} else {
#endif // CONFIG_WARPED_MOTION
build_inter_predictors(xd, j, mi_col_offset, mi_row_offset, 0, bw, bh,
xd->n8_w == 1 ? 4 >> pd->subsampling_x : 0, 0,
bw, bh,
#if CONFIG_SUPERTX && CONFIG_EXT_INTER
0, 0,
#endif // CONFIG_SUPERTX && CONFIG_EXT_INTER
mi_x, mi_y);
#if CONFIG_WARPED_MOTION
}
#endif // CONFIG_WARPED_MOTION
}
}
#if CONFIG_EXT_INTER
*mbmi = backup_mbmi;
#endif // CONFIG_EXT_INTER
}
xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
xd->mb_to_bottom_edge = mb_to_bottom_edge_base;
xd->mb_to_left_edge += xd->n8_w * 32;
}
// This function combines motion compensated predictions that is generated by
// bottom/right neighboring blocks' inter predictors with prediction in dst
// buffer.
void av1_merge_dst_bottom_right_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col,
uint8_t *bottom[MAX_MB_PLANE],
const int bottom_stride[MAX_MB_PLANE],
uint8_t *right[MAX_MB_PLANE],
const int right_stride[MAX_MB_PLANE]) {
const TileInfo *const tile = &xd->tile;
BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
int plane, i, mi_step;
const int bottom_available = mi_row + xd->n8_h < tile->mi_row_end &&
(mi_row + xd->n8_h) % MI_SIZE != 0 &&
(mi_row + xd->n8_h) < cm->mi_rows;
#if CONFIG_AOM_HIGHBITDEPTH
int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
#endif // CONFIG_AOM_HIGHBITDEPTH
// handle bottom row
for (i = 0; bottom_available && i < AOMMIN(xd->n8_w, cm->mi_cols - mi_col);
i += mi_step) {
int mi_row_offset = xd->n8_h;
int mi_col_offset = i;
MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
MB_MODE_INFO *mbmi = &mi->mbmi;
int overlap;
mi_step = AOMMIN(xd->n8_w, mi_size_wide[mbmi->sb_type]);
if (!is_neighbor_overlappable(mbmi)) continue;
overlap = num_4x4_blocks_high_lookup[bsize] << 1;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
const int bw = (mi_step * MI_SIZE) >> pd->subsampling_x;
const int bh = overlap >> pd->subsampling_y;
const int dst_stride = pd->dst.stride;
uint8_t *dst =
&pd->dst.buf[((i * MI_SIZE) >> pd->subsampling_x) +
(((xd->n8_h * MI_SIZE - overlap) * dst_stride) >>
pd->subsampling_y)];
const int tmp_stride = bottom_stride[plane];
const uint8_t *const tmp =
&bottom[plane][((i * MI_SIZE) >> pd->subsampling_x) +
(((xd->n8_h * MI_SIZE - overlap) * tmp_stride) >>
pd->subsampling_y)];
const uint8_t *const mask = av1_get_obmc_mask_flipped(bh);
#if CONFIG_AOM_HIGHBITDEPTH
if (is_hbd)
aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp,
tmp_stride, mask, bh, bw, xd->bd);
else
#endif // CONFIG_AOM_HIGHBITDEPTH
aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride,
mask, bh, bw);
}
} // each mi in the bottom row
// handle right column
if (mi_col + xd->n8_w >= tile->mi_col_end ||
(mi_col + xd->n8_w) % MI_SIZE == 0 || (mi_col + xd->n8_w) >= cm->mi_cols)
return;
for (i = 0; i < AOMMIN(xd->n8_h, cm->mi_rows - mi_row); i += mi_step) {
int mi_row_offset = i;
int mi_col_offset = xd->n8_w;
int overlap;
MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride];
MB_MODE_INFO *mbmi = &mi->mbmi;
mi_step = AOMMIN(xd->n8_h, mi_size_high[mbmi->sb_type]);
if (!is_neighbor_overlappable(mbmi)) continue;
overlap = num_4x4_blocks_wide_lookup[bsize] << 1;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
const int bw = overlap >> pd->subsampling_x;
const int bh = (mi_step * MI_SIZE) >> pd->subsampling_y;
const int dst_stride = pd->dst.stride;
uint8_t *dst =
&pd->dst.buf[((i * MI_SIZE * dst_stride) >> pd->subsampling_y) +
((xd->n8_w * MI_SIZE - overlap) >> pd->subsampling_x)];
const int tmp_stride = right_stride[plane];
const uint8_t *const tmp =
&right[plane][((i * MI_SIZE * tmp_stride) >> pd->subsampling_y) +
((xd->n8_w * MI_SIZE - overlap) >> pd->subsampling_x)];
const uint8_t *const mask = av1_get_obmc_mask_flipped(bw);
#if CONFIG_AOM_HIGHBITDEPTH
if (is_hbd)
aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp,
tmp_stride, mask, bh, bw, xd->bd);
else
#endif // CONFIG_AOM_HIGHBITDEPTH
aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride,
mask, bh, bw);
}
} // each mi in the right column
}
// This function generates 4 sided obmc. (1) Prediction blocks generated by
// bottom and right motion vectors are calculated. (2) Combine them with the
// original prediction block (which should be pre-stored in xd->plane[].dst.buf
// before calling this function). The results is updated in xd->plane[].dst.buf
// (3) Call causal obmc prediction function, which will generate left and above
// preds, and then merge them and xd->plane[].dst.buf.
void av1_build_ncobmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col) {
#if CONFIG_AOM_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint8_t, tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
#else
DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_SB_SQUARE]);
DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_SB_SQUARE]);
#endif // CONFIG_AOM_HIGHBITDEPTH
uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE];
int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
int len = sizeof(uint16_t);
dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1);
dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len);
dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * 2 * len);
dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2);
dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len);
dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * 2 * len);
} else {
#endif // CONFIG_AOM_HIGHBITDEPTH
dst_buf1[0] = tmp_buf1;
dst_buf1[1] = tmp_buf1 + MAX_SB_SQUARE;
dst_buf1[2] = tmp_buf1 + MAX_SB_SQUARE * 2;
dst_buf2[0] = tmp_buf2;
dst_buf2[1] = tmp_buf2 + MAX_SB_SQUARE;
dst_buf2[2] = tmp_buf2 + MAX_SB_SQUARE * 2;
#if CONFIG_AOM_HIGHBITDEPTH
}
#endif // CONFIG_AOM_HIGHBITDEPTH
av1_build_prediction_by_bottom_preds(cm, xd, mi_row, mi_col, dst_buf1,
dst_width1, dst_height1, dst_stride1);
av1_build_prediction_by_right_preds(cm, xd, mi_row, mi_col, dst_buf2,
dst_width2, dst_height2, dst_stride2);
av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
av1_merge_dst_bottom_right_preds(cm, xd, mi_row, mi_col, dst_buf1,
dst_stride1, dst_buf2, dst_stride2);
av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col);
av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
}
#endif // CONFIG_NCOBMC
#endif // CONFIG_MOTION_VAR
#if CONFIG_EXT_INTER
/* clang-format off */
#if CONFIG_EXT_PARTITION
static const int ii_weights1d[MAX_SB_SIZE] = {
102, 100, 97, 95, 92, 90, 88, 86, 84, 82, 80, 78, 76, 74, 73, 71, 69, 68, 67,
65, 64, 62, 61, 60, 59, 58, 57, 55, 54, 53, 52, 52, 51, 50, 49, 48, 47, 47,
46, 45, 45, 44, 43, 43, 42, 41, 41, 40, 40, 39, 39, 38, 38, 38, 37, 37, 36,
36, 36, 35, 35, 35, 34, 34, 34, 33, 33, 33, 33, 32, 32, 32, 32, 32, 31, 31,
31, 31, 31, 30, 30, 30, 30, 30, 30, 30, 29, 29, 29, 29, 29, 29, 29, 29, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27,
};
static int ii_size_scales[BLOCK_SIZES] = {
#if CONFIG_CB4X4
32, 32, 32,
#endif
32, 16, 16, 16, 8, 8, 8, 4,
4, 4, 2, 2, 2, 1, 1, 1,
};
#else
static const int ii_weights1d[MAX_SB_SIZE] = {
102, 100, 97, 95, 92, 90, 88, 86, 84, 82, 80, 78, 76, 74, 73, 71,
69, 68, 67, 65, 64, 62, 61, 60, 59, 58, 57, 55, 54, 53, 52, 52,
51, 50, 49, 48, 47, 47, 46, 45, 45, 44, 43, 43, 42, 41, 41, 40,
40, 39, 39, 38, 38, 38, 37, 37, 36, 36, 36, 35, 35, 35, 34, 34,
};
static int ii_size_scales[BLOCK_SIZES] = {
#if CONFIG_CB4X4
16, 16, 16,
#endif
16, 8, 8, 8, 4, 4, 4,
2, 2, 2, 1, 1, 1,
};
/* clang-format on */
#endif // CONFIG_EXT_PARTITION
static void combine_interintra(INTERINTRA_MODE mode, int use_wedge_interintra,
int wedge_index, int wedge_sign,
BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize,
uint8_t *comppred, int compstride,
const uint8_t *interpred, int interstride,
const uint8_t *intrapred, int intrastride) {
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
const int size_scale = ii_size_scales[plane_bsize];
int i, j;
if (use_wedge_interintra) {
if (is_interintra_wedge_used(bsize)) {
const uint8_t *mask =
av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
const int subw = 2 * num_4x4_blocks_wide_lookup[bsize] == bw;
const int subh = 2 * num_4x4_blocks_high_lookup[bsize] == bh;
aom_blend_a64_mask(comppred, compstride, intrapred, intrastride,
interpred, interstride, mask, block_size_wide[bsize],
bh, bw, subh, subw);
}
return;
}
switch (mode) {
case II_V_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = ii_weights1d[i * size_scale];
comppred[i * compstride + j] =
AOM_BLEND_A256(scale, intrapred[i * intrastride + j],
interpred[i * interstride + j]);
}
}
break;
case II_H_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = ii_weights1d[j * size_scale];
comppred[i * compstride + j] =
AOM_BLEND_A256(scale, intrapred[i * intrastride + j],
interpred[i * interstride + j]);
}
}
break;
case II_D63_PRED:
case II_D117_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = (ii_weights1d[i * size_scale] * 3 +
ii_weights1d[j * size_scale]) >>
2;
comppred[i * compstride + j] =
AOM_BLEND_A256(scale, intrapred[i * intrastride + j],
interpred[i * interstride + j]);
}
}
break;
case II_D207_PRED:
case II_D153_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = (ii_weights1d[j * size_scale] * 3 +
ii_weights1d[i * size_scale]) >>
2;
comppred[i * compstride + j] =
AOM_BLEND_A256(scale, intrapred[i * intrastride + j],
interpred[i * interstride + j]);
}
}
break;
case II_D135_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = ii_weights1d[(i < j ? i : j) * size_scale];
comppred[i * compstride + j] =
AOM_BLEND_A256(scale, intrapred[i * intrastride + j],
interpred[i * interstride + j]);
}
}
break;
case II_D45_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale =
(ii_weights1d[i * size_scale] + ii_weights1d[j * size_scale]) >>
1;
comppred[i * compstride + j] =
AOM_BLEND_A256(scale, intrapred[i * intrastride + j],
interpred[i * interstride + j]);
}
}
break;
case II_TM_PRED:
case II_DC_PRED:
default:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
comppred[i * compstride + j] = AOM_BLEND_AVG(
intrapred[i * intrastride + j], interpred[i * interstride + j]);
}
}
break;
}
}
#if CONFIG_AOM_HIGHBITDEPTH
static void combine_interintra_highbd(
INTERINTRA_MODE mode, int use_wedge_interintra, int wedge_index,
int wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize,
uint8_t *comppred8, int compstride, const uint8_t *interpred8,
int interstride, const uint8_t *intrapred8, int intrastride, int bd) {
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
const int size_scale = ii_size_scales[plane_bsize];
int i, j;
uint16_t *comppred = CONVERT_TO_SHORTPTR(comppred8);
const uint16_t *interpred = CONVERT_TO_SHORTPTR(interpred8);
const uint16_t *intrapred = CONVERT_TO_SHORTPTR(intrapred8);
if (use_wedge_interintra) {
if (is_interintra_wedge_used(bsize)) {
const uint8_t *mask =
av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
const int subh = 2 * num_4x4_blocks_high_lookup[bsize] == bh;
const int subw = 2 * num_4x4_blocks_wide_lookup[bsize] == bw;
aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride,
interpred8, interstride, mask, bw, bh, bw, subh,
subw, bd);
}
return;
}
switch (mode) {
case II_V_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = ii_weights1d[i * size_scale];
comppred[i * compstride + j] =
AOM_BLEND_A256(scale, intrapred[i * intrastride + j],
interpred[i * interstride + j]);
}
}
break;
case II_H_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = ii_weights1d[j * size_scale];
comppred[i * compstride + j] =
AOM_BLEND_A256(scale, intrapred[i * intrastride + j],
interpred[i * interstride + j]);
}
}
break;
case II_D63_PRED:
case II_D117_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = (ii_weights1d[i * size_scale] * 3 +
ii_weights1d[j * size_scale]) >>
2;
comppred[i * compstride + j] =
AOM_BLEND_A256(scale, intrapred[i * intrastride + j],
interpred[i * interstride + j]);
}
}
break;
case II_D207_PRED:
case II_D153_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = (ii_weights1d[j * size_scale] * 3 +
ii_weights1d[i * size_scale]) >>
2;
comppred[i * compstride + j] =
AOM_BLEND_A256(scale, intrapred[i * intrastride + j],
interpred[i * interstride + j]);
}
}
break;
case II_D135_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale = ii_weights1d[(i < j ? i : j) * size_scale];
comppred[i * compstride + j] =
AOM_BLEND_A256(scale, intrapred[i * intrastride + j],
interpred[i * interstride + j]);
}
}
break;
case II_D45_PRED:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
int scale =
(ii_weights1d[i * size_scale] + ii_weights1d[j * size_scale]) >>
1;
comppred[i * compstride + j] =
AOM_BLEND_A256(scale, intrapred[i * intrastride + j],
interpred[i * interstride + j]);
}
}
break;
case II_TM_PRED:
case II_DC_PRED:
default:
for (i = 0; i < bh; ++i) {
for (j = 0; j < bw; ++j) {
comppred[i * compstride + j] = AOM_BLEND_AVG(
interpred[i * interstride + j], intrapred[i * intrastride + j]);
}
}
break;
}
}
#endif // CONFIG_AOM_HIGHBITDEPTH
void av1_build_intra_predictors_for_interintra(MACROBLOCKD *xd,
BLOCK_SIZE bsize, int plane,
BUFFER_SET *ctx, uint8_t *dst,
int dst_stride) {
struct macroblockd_plane *const pd = &xd->plane[plane];
BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]);
PREDICTION_MODE mode =
interintra_to_intra_mode[xd->mi[0]->mbmi.interintra_mode];
av1_predict_intra_block(xd, pd->width, pd->height, plane_bsize, mode,
ctx->plane[plane], ctx->stride[plane], dst,
dst_stride, 0, 0, plane);
}
void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane,
const uint8_t *inter_pred, int inter_stride,
const uint8_t *intra_pred, int intra_stride) {
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]);
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
combine_interintra_highbd(
xd->mi[0]->mbmi.interintra_mode, xd->mi[0]->mbmi.use_wedge_interintra,
xd->mi[0]->mbmi.interintra_wedge_index,
xd->mi[0]->mbmi.interintra_wedge_sign, bsize, plane_bsize,
xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, inter_pred,
inter_stride, intra_pred, intra_stride, xd->bd);
return;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
combine_interintra(xd->mi[0]->mbmi.interintra_mode,
xd->mi[0]->mbmi.use_wedge_interintra,
xd->mi[0]->mbmi.interintra_wedge_index,
xd->mi[0]->mbmi.interintra_wedge_sign, bsize, plane_bsize,
xd->plane[plane].dst.buf, xd->plane[plane].dst.stride,
inter_pred, inter_stride, intra_pred, intra_stride);
}
void av1_build_interintra_predictors_sby(MACROBLOCKD *xd, uint8_t *ypred,
int ystride, BUFFER_SET *ctx,
BLOCK_SIZE bsize) {
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
DECLARE_ALIGNED(16, uint16_t, intrapredictor[MAX_SB_SQUARE]);
av1_build_intra_predictors_for_interintra(
xd, bsize, 0, ctx, CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE);
av1_combine_interintra(xd, bsize, 0, ypred, ystride,
CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE);
return;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
{
DECLARE_ALIGNED(16, uint8_t, intrapredictor[MAX_SB_SQUARE]);
av1_build_intra_predictors_for_interintra(xd, bsize, 0, ctx, intrapredictor,
MAX_SB_SIZE);
av1_combine_interintra(xd, bsize, 0, ypred, ystride, intrapredictor,
MAX_SB_SIZE);
}
}
void av1_build_interintra_predictors_sbc(MACROBLOCKD *xd, uint8_t *upred,
int ustride, BUFFER_SET *ctx,
int plane, BLOCK_SIZE bsize) {
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
DECLARE_ALIGNED(16, uint16_t, uintrapredictor[MAX_SB_SQUARE]);
av1_build_intra_predictors_for_interintra(
xd, bsize, plane, ctx, CONVERT_TO_BYTEPTR(uintrapredictor),
MAX_SB_SIZE);
av1_combine_interintra(xd, bsize, plane, upred, ustride,
CONVERT_TO_BYTEPTR(uintrapredictor), MAX_SB_SIZE);
return;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
{
DECLARE_ALIGNED(16, uint8_t, uintrapredictor[MAX_SB_SQUARE]);
av1_build_intra_predictors_for_interintra(xd, bsize, plane, ctx,
uintrapredictor, MAX_SB_SIZE);
av1_combine_interintra(xd, bsize, plane, upred, ustride, uintrapredictor,
MAX_SB_SIZE);
}
}
void av1_build_interintra_predictors_sbuv(MACROBLOCKD *xd, uint8_t *upred,
uint8_t *vpred, int ustride,
int vstride, BUFFER_SET *ctx,
BLOCK_SIZE bsize) {
av1_build_interintra_predictors_sbc(xd, upred, ustride, ctx, 1, bsize);
av1_build_interintra_predictors_sbc(xd, vpred, vstride, ctx, 2, bsize);
}
void av1_build_interintra_predictors(MACROBLOCKD *xd, uint8_t *ypred,
uint8_t *upred, uint8_t *vpred,
int ystride, int ustride, int vstride,
BUFFER_SET *ctx, BLOCK_SIZE bsize) {
av1_build_interintra_predictors_sby(xd, ypred, ystride, ctx, bsize);
av1_build_interintra_predictors_sbuv(xd, upred, vpred, ustride, vstride, ctx,
bsize);
}
// Builds the inter-predictor for the single ref case
// for use in the encoder to search the wedges efficiently.
static void build_inter_predictors_single_buf(MACROBLOCKD *xd, int plane,
int block, int bw, int bh, int x,
int y, int w, int h, int mi_x,
int mi_y, int ref,
uint8_t *const ext_dst,
int ext_dst_stride) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const MODE_INFO *mi = xd->mi[0];
const struct scale_factors *const sf = &xd->block_refs[ref]->sf;
struct buf_2d *const pre_buf = &pd->pre[ref];
#if CONFIG_AOM_HIGHBITDEPTH
uint8_t *const dst =
(xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? CONVERT_TO_BYTEPTR(ext_dst)
: ext_dst) +
ext_dst_stride * y + x;
#else
uint8_t *const dst = ext_dst + ext_dst_stride * y + x;
#endif
const MV mv = mi->mbmi.sb_type < BLOCK_8X8
? average_split_mvs(pd, mi, ref, block)
: mi->mbmi.mv[ref].as_mv;
// TODO(jkoleszar): This clamping is done in the incorrect place for the
// scaling case. It needs to be done on the scaled MV, not the pre-scaling
// MV. Note however that it performs the subsampling aware scaling so
// that the result is always q4.
// mv_precision precision is MV_PRECISION_Q4.
const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh, pd->subsampling_x,
pd->subsampling_y);
uint8_t *pre;
MV32 scaled_mv;
int xs, ys, subpel_x, subpel_y;
const int is_scaled = av1_is_scaled(sf);
ConvolveParams conv_params = get_conv_params(0, plane);
#if CONFIG_GLOBAL_MOTION
WarpedMotionParams *const wm = &xd->global_motion[mi->mbmi.ref_frame[ref]];
const int is_global =
(get_y_mode(mi, block) == ZEROMV && wm->wmtype > TRANSLATION);
#endif // CONFIG_GLOBAL_MOTION
if (is_scaled) {
pre = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf);
scaled_mv = av1_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf);
xs = sf->x_step_q4;
ys = sf->y_step_q4;
} else {
pre = pre_buf->buf + (y * pre_buf->stride + x);
scaled_mv.row = mv_q4.row;
scaled_mv.col = mv_q4.col;
xs = ys = 16;
}
subpel_x = scaled_mv.col & SUBPEL_MASK;
subpel_y = scaled_mv.row & SUBPEL_MASK;
pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride +
(scaled_mv.col >> SUBPEL_BITS);
av1_make_inter_predictor(pre, pre_buf->stride, dst, ext_dst_stride, subpel_x,
subpel_y, sf, w, h, &conv_params,
mi->mbmi.interp_filter,
#if CONFIG_GLOBAL_MOTION
is_global, (mi_x >> pd->subsampling_x) + x,
(mi_y >> pd->subsampling_y) + y, plane, ref,
#endif // CONFIG_GLOBAL_MOTION
xs, ys, xd);
}
void av1_build_inter_predictors_for_planes_single_buf(
MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, int mi_row,
int mi_col, int ref, uint8_t *ext_dst[3], int ext_dst_stride[3]) {
int plane;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
for (plane = plane_from; plane <= plane_to; ++plane) {
const BLOCK_SIZE plane_bsize =
get_plane_block_size(bsize, &xd->plane[plane]);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8 && !CONFIG_CB4X4) {
int x, y;
assert(bsize == BLOCK_8X8);
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x)
build_inter_predictors_single_buf(
xd, plane, y * 2 + x, bw, bh, 4 * x, 4 * y, 4, 4, mi_x, mi_y, ref,
ext_dst[plane], ext_dst_stride[plane]);
} else {
build_inter_predictors_single_buf(xd, plane, 0, bw, bh, 0, 0, bw, bh,
mi_x, mi_y, ref, ext_dst[plane],
ext_dst_stride[plane]);
}
}
}
static void build_wedge_inter_predictor_from_buf(
MACROBLOCKD *xd, int plane, int x, int y, int w, int h,
#if CONFIG_SUPERTX
int wedge_offset_x, int wedge_offset_y,
#endif // CONFIG_SUPERTX
uint8_t *ext_dst0, int ext_dst_stride0, uint8_t *ext_dst1,
int ext_dst_stride1) {
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const int is_compound = has_second_ref(mbmi);
MACROBLOCKD_PLANE *const pd = &xd->plane[plane];
struct buf_2d *const dst_buf = &pd->dst;
uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
INTERINTER_COMPOUND_DATA *comp_data = &mbmi->interinter_compound_data;
if (is_compound &&
is_masked_compound_type(mbmi->interinter_compound_data.type)) {
#if CONFIG_COMPOUND_SEGMENT
#if CONFIG_AOM_HIGHBITDEPTH
if (!plane && comp_data->type == COMPOUND_SEG) {
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
build_compound_seg_mask_highbd(
comp_data->seg_mask, comp_data->mask_type,
CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0,
CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, mbmi->sb_type, h, w,
xd->bd);
else
build_compound_seg_mask(comp_data->seg_mask, comp_data->mask_type,
ext_dst0, ext_dst_stride0, ext_dst1,
ext_dst_stride1, mbmi->sb_type, h, w);
}
#else
if (!plane && comp_data->type == COMPOUND_SEG)
build_compound_seg_mask(comp_data->seg_mask, comp_data->mask_type,
ext_dst0, ext_dst_stride0, ext_dst1,
ext_dst_stride1, mbmi->sb_type, h, w);
#endif // CONFIG_AOM_HIGHBITDEPTH
#endif // CONFIG_COMPOUND_SEGMENT
#if CONFIG_SUPERTX
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
build_masked_compound_wedge_extend_highbd(
dst, dst_buf->stride, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0,
CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, comp_data,
mbmi->sb_type, wedge_offset_x, wedge_offset_y, h, w, xd->bd);
else
#endif // CONFIG_AOM_HIGHBITDEPTH
build_masked_compound_wedge_extend(
dst, dst_buf->stride, ext_dst0, ext_dst_stride0, ext_dst1,
ext_dst_stride1, comp_data, mbmi->sb_type, wedge_offset_x,
wedge_offset_y, h, w);
#else
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
build_masked_compound_highbd(
dst, dst_buf->stride, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0,
CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, comp_data,
mbmi->sb_type, h, w, xd->bd);
else
#endif // CONFIG_AOM_HIGHBITDEPTH
build_masked_compound(dst, dst_buf->stride, ext_dst0, ext_dst_stride0,
ext_dst1, ext_dst_stride1, comp_data, mbmi->sb_type,
h, w);
#endif // CONFIG_SUPERTX
} else {
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
aom_highbd_convolve_copy(CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0,
dst, dst_buf->stride, NULL, 0, NULL, 0, w, h,
xd->bd);
else
#endif // CONFIG_AOM_HIGHBITDEPTH
aom_convolve_copy(ext_dst0, ext_dst_stride0, dst, dst_buf->stride, NULL,
0, NULL, 0, w, h);
}
}
void av1_build_wedge_inter_predictor_from_buf(
MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to,
#if CONFIG_SUPERTX
int wedge_offset_x, int wedge_offset_y,
#endif // CONFIG_SUPERTX
uint8_t *ext_dst0[3], int ext_dst_stride0[3], uint8_t *ext_dst1[3],
int ext_dst_stride1[3]) {
int plane;
for (plane = plane_from; plane <= plane_to; ++plane) {
const BLOCK_SIZE plane_bsize =
get_plane_block_size(bsize, &xd->plane[plane]);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8 && !CONFIG_CB4X4) {
int x, y;
assert(bsize == BLOCK_8X8);
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x)
build_wedge_inter_predictor_from_buf(
xd, plane, 4 * x, 4 * y, 4, 4,
#if CONFIG_SUPERTX
wedge_offset_x, wedge_offset_y,
#endif // CONFIG_SUPERTX
ext_dst0[plane], ext_dst_stride0[plane], ext_dst1[plane],
ext_dst_stride1[plane]);
} else {
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
build_wedge_inter_predictor_from_buf(
xd, plane, 0, 0, bw, bh,
#if CONFIG_SUPERTX
wedge_offset_x, wedge_offset_y,
#endif // CONFIG_SUPERTX
ext_dst0[plane], ext_dst_stride0[plane], ext_dst1[plane],
ext_dst_stride1[plane]);
}
}
}
#endif // CONFIG_EXT_INTER