| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| |
| #include "./aom_scale_rtcd.h" |
| #include "./aom_dsp_rtcd.h" |
| #include "./aom_config.h" |
| |
| #include "aom/aom_integer.h" |
| #include "aom_dsp/blend.h" |
| |
| #include "av1/common/blockd.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| #if CONFIG_MOTION_VAR |
| #include "av1/common/onyxc_int.h" |
| #endif // CONFIG_MOTION_VAR |
| |
| #if CONFIG_EXT_INTER |
| |
| #define NSMOOTHERS 1 |
| static int get_masked_weight(int m, int smoothness) { |
| #define SMOOTHER_LEN 32 |
| static const uint8_t smoothfn[NSMOOTHERS][2 * SMOOTHER_LEN + 1] = { { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 7, 13, 21, 32, 43, |
| 51, 57, 60, 62, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| } }; |
| if (m < -SMOOTHER_LEN) |
| return 0; |
| else if (m > SMOOTHER_LEN) |
| return (1 << WEDGE_WEIGHT_BITS); |
| else |
| return smoothfn[smoothness][m + SMOOTHER_LEN]; |
| } |
| |
| // [smoother][negative][direction] |
| DECLARE_ALIGNED(16, static uint8_t, |
| wedge_mask_obl[NSMOOTHERS][2][WEDGE_DIRECTIONS] |
| [MASK_MASTER_SIZE * MASK_MASTER_SIZE]); |
| |
| DECLARE_ALIGNED(16, static uint8_t, |
| wedge_signflip_lookup[BLOCK_SIZES][MAX_WEDGE_TYPES]); |
| |
| // 3 * MAX_WEDGE_SQUARE is an easy to compute and fairly tight upper bound |
| // on the sum of all mask sizes up to an including MAX_WEDGE_SQUARE. |
| DECLARE_ALIGNED(16, static uint8_t, |
| wedge_mask_buf[2 * MAX_WEDGE_TYPES * 3 * MAX_WEDGE_SQUARE]); |
| |
| static wedge_masks_type wedge_masks[BLOCK_SIZES][2]; |
| |
| // Some unused wedge codebooks left temporarily to facilitate experiments. |
| // To be removed when setteld. |
| static wedge_code_type wedge_codebook_8_hgtw[8] = { |
| { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, |
| { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, |
| { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, |
| { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, |
| }; |
| |
| static wedge_code_type wedge_codebook_8_hltw[8] = { |
| { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, |
| { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, |
| { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, |
| { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, |
| }; |
| |
| static wedge_code_type wedge_codebook_8_heqw[8] = { |
| { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, |
| { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, |
| { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 }, |
| { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 }, |
| }; |
| |
| #if !USE_LARGE_WEDGE_CODEBOOK |
| static const wedge_code_type wedge_codebook_16_hgtw[16] = { |
| { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, |
| { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, |
| { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 }, |
| { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 }, |
| { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, |
| { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, |
| { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, |
| { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, |
| }; |
| |
| static const wedge_code_type wedge_codebook_16_hltw[16] = { |
| { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, |
| { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, |
| { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 }, |
| { WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 }, |
| { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, |
| { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, |
| { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, |
| { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, |
| }; |
| |
| static const wedge_code_type wedge_codebook_16_heqw[16] = { |
| { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, |
| { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, |
| { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 }, |
| { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 }, |
| { WEDGE_OBLIQUE27, 4, 2 }, { WEDGE_OBLIQUE27, 4, 6 }, |
| { WEDGE_OBLIQUE153, 4, 2 }, { WEDGE_OBLIQUE153, 4, 6 }, |
| { WEDGE_OBLIQUE63, 2, 4 }, { WEDGE_OBLIQUE63, 6, 4 }, |
| { WEDGE_OBLIQUE117, 2, 4 }, { WEDGE_OBLIQUE117, 6, 4 }, |
| }; |
| |
| const wedge_params_type wedge_params_lookup[BLOCK_SIZES] = { |
| #if CONFIG_CB4X4 |
| { 0, NULL, NULL, 0, NULL }, |
| { 0, NULL, NULL, 0, NULL }, |
| { 0, NULL, NULL, 0, NULL }, |
| #endif |
| { 0, NULL, NULL, 0, NULL }, |
| { 0, NULL, NULL, 0, NULL }, |
| { 0, NULL, NULL, 0, NULL }, |
| { 4, wedge_codebook_16_heqw, wedge_signflip_lookup[3], 0, wedge_masks[3] }, |
| { 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[4], 0, wedge_masks[4] }, |
| { 4, wedge_codebook_16_hltw, wedge_signflip_lookup[5], 0, wedge_masks[5] }, |
| { 4, wedge_codebook_16_heqw, wedge_signflip_lookup[6], 0, wedge_masks[6] }, |
| { 4, wedge_codebook_16_hgtw, wedge_signflip_lookup[7], 0, wedge_masks[7] }, |
| { 4, wedge_codebook_16_hltw, wedge_signflip_lookup[8], 0, wedge_masks[8] }, |
| { 4, wedge_codebook_16_heqw, wedge_signflip_lookup[9], 0, wedge_masks[9] }, |
| { 0, wedge_codebook_8_hgtw, wedge_signflip_lookup[10], 0, wedge_masks[10] }, |
| { 0, wedge_codebook_8_hltw, wedge_signflip_lookup[11], 0, wedge_masks[11] }, |
| { 0, wedge_codebook_8_heqw, wedge_signflip_lookup[12], 0, wedge_masks[12] }, |
| #if CONFIG_EXT_PARTITION |
| { 0, NULL, NULL, 0, NULL }, |
| { 0, NULL, NULL, 0, NULL }, |
| { 0, NULL, NULL, 0, NULL }, |
| #endif // CONFIG_EXT_PARTITION |
| }; |
| |
| #else |
| |
| static const wedge_code_type wedge_codebook_32_hgtw[32] = { |
| { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, |
| { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, |
| { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 4 }, |
| { WEDGE_HORIZONTAL, 4, 6 }, { WEDGE_VERTICAL, 4, 4 }, |
| { WEDGE_OBLIQUE27, 4, 1 }, { WEDGE_OBLIQUE27, 4, 2 }, |
| { WEDGE_OBLIQUE27, 4, 3 }, { WEDGE_OBLIQUE27, 4, 5 }, |
| { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE27, 4, 7 }, |
| { WEDGE_OBLIQUE153, 4, 1 }, { WEDGE_OBLIQUE153, 4, 2 }, |
| { WEDGE_OBLIQUE153, 4, 3 }, { WEDGE_OBLIQUE153, 4, 5 }, |
| { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE153, 4, 7 }, |
| { WEDGE_OBLIQUE63, 1, 4 }, { WEDGE_OBLIQUE63, 2, 4 }, |
| { WEDGE_OBLIQUE63, 3, 4 }, { WEDGE_OBLIQUE63, 5, 4 }, |
| { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE63, 7, 4 }, |
| { WEDGE_OBLIQUE117, 1, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, |
| { WEDGE_OBLIQUE117, 3, 4 }, { WEDGE_OBLIQUE117, 5, 4 }, |
| { WEDGE_OBLIQUE117, 6, 4 }, { WEDGE_OBLIQUE117, 7, 4 }, |
| }; |
| |
| static const wedge_code_type wedge_codebook_32_hltw[32] = { |
| { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, |
| { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, |
| { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 4, 4 }, |
| { WEDGE_VERTICAL, 6, 4 }, { WEDGE_HORIZONTAL, 4, 4 }, |
| { WEDGE_OBLIQUE27, 4, 1 }, { WEDGE_OBLIQUE27, 4, 2 }, |
| { WEDGE_OBLIQUE27, 4, 3 }, { WEDGE_OBLIQUE27, 4, 5 }, |
| { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE27, 4, 7 }, |
| { WEDGE_OBLIQUE153, 4, 1 }, { WEDGE_OBLIQUE153, 4, 2 }, |
| { WEDGE_OBLIQUE153, 4, 3 }, { WEDGE_OBLIQUE153, 4, 5 }, |
| { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE153, 4, 7 }, |
| { WEDGE_OBLIQUE63, 1, 4 }, { WEDGE_OBLIQUE63, 2, 4 }, |
| { WEDGE_OBLIQUE63, 3, 4 }, { WEDGE_OBLIQUE63, 5, 4 }, |
| { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE63, 7, 4 }, |
| { WEDGE_OBLIQUE117, 1, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, |
| { WEDGE_OBLIQUE117, 3, 4 }, { WEDGE_OBLIQUE117, 5, 4 }, |
| { WEDGE_OBLIQUE117, 6, 4 }, { WEDGE_OBLIQUE117, 7, 4 }, |
| }; |
| |
| static const wedge_code_type wedge_codebook_32_heqw[32] = { |
| { WEDGE_OBLIQUE27, 4, 4 }, { WEDGE_OBLIQUE63, 4, 4 }, |
| { WEDGE_OBLIQUE117, 4, 4 }, { WEDGE_OBLIQUE153, 4, 4 }, |
| { WEDGE_HORIZONTAL, 4, 2 }, { WEDGE_HORIZONTAL, 4, 6 }, |
| { WEDGE_VERTICAL, 2, 4 }, { WEDGE_VERTICAL, 6, 4 }, |
| { WEDGE_OBLIQUE27, 4, 1 }, { WEDGE_OBLIQUE27, 4, 2 }, |
| { WEDGE_OBLIQUE27, 4, 3 }, { WEDGE_OBLIQUE27, 4, 5 }, |
| { WEDGE_OBLIQUE27, 4, 6 }, { WEDGE_OBLIQUE27, 4, 7 }, |
| { WEDGE_OBLIQUE153, 4, 1 }, { WEDGE_OBLIQUE153, 4, 2 }, |
| { WEDGE_OBLIQUE153, 4, 3 }, { WEDGE_OBLIQUE153, 4, 5 }, |
| { WEDGE_OBLIQUE153, 4, 6 }, { WEDGE_OBLIQUE153, 4, 7 }, |
| { WEDGE_OBLIQUE63, 1, 4 }, { WEDGE_OBLIQUE63, 2, 4 }, |
| { WEDGE_OBLIQUE63, 3, 4 }, { WEDGE_OBLIQUE63, 5, 4 }, |
| { WEDGE_OBLIQUE63, 6, 4 }, { WEDGE_OBLIQUE63, 7, 4 }, |
| { WEDGE_OBLIQUE117, 1, 4 }, { WEDGE_OBLIQUE117, 2, 4 }, |
| { WEDGE_OBLIQUE117, 3, 4 }, { WEDGE_OBLIQUE117, 5, 4 }, |
| { WEDGE_OBLIQUE117, 6, 4 }, { WEDGE_OBLIQUE117, 7, 4 }, |
| }; |
| |
| const wedge_params_type wedge_params_lookup[BLOCK_SIZES] = { |
| #if CONFIG_CB4X4 |
| { 0, NULL, NULL, 0, NULL }, |
| { 0, NULL, NULL, 0, NULL }, |
| { 0, NULL, NULL, 0, NULL }, |
| #endif |
| { 0, NULL, NULL, 0, NULL }, |
| { 0, NULL, NULL, 0, NULL }, |
| { 0, NULL, NULL, 0, NULL }, |
| { 5, wedge_codebook_32_heqw, wedge_signflip_lookup[3], 0, wedge_masks[3] }, |
| { 5, wedge_codebook_32_hgtw, wedge_signflip_lookup[4], 0, wedge_masks[4] }, |
| { 5, wedge_codebook_32_hltw, wedge_signflip_lookup[5], 0, wedge_masks[5] }, |
| { 5, wedge_codebook_32_heqw, wedge_signflip_lookup[6], 0, wedge_masks[6] }, |
| { 5, wedge_codebook_32_hgtw, wedge_signflip_lookup[7], 0, wedge_masks[7] }, |
| { 5, wedge_codebook_32_hltw, wedge_signflip_lookup[8], 0, wedge_masks[8] }, |
| { 5, wedge_codebook_32_heqw, wedge_signflip_lookup[9], 0, wedge_masks[9] }, |
| { 0, wedge_codebook_8_hgtw, wedge_signflip_lookup[10], 0, wedge_masks[10] }, |
| { 0, wedge_codebook_8_hltw, wedge_signflip_lookup[11], 0, wedge_masks[11] }, |
| { 0, wedge_codebook_8_heqw, wedge_signflip_lookup[12], 0, wedge_masks[12] }, |
| #if CONFIG_EXT_PARTITION |
| { 0, NULL, NULL, 0, NULL }, |
| { 0, NULL, NULL, 0, NULL }, |
| { 0, NULL, NULL, 0, NULL }, |
| #endif // CONFIG_EXT_PARTITION |
| }; |
| #endif // USE_LARGE_WEDGE_CODEBOOK |
| |
| static const uint8_t *get_wedge_mask_inplace(int wedge_index, int neg, |
| BLOCK_SIZE sb_type) { |
| const uint8_t *master; |
| const int bh = block_size_high[sb_type]; |
| const int bw = block_size_wide[sb_type]; |
| const wedge_code_type *a = |
| wedge_params_lookup[sb_type].codebook + wedge_index; |
| const int smoother = wedge_params_lookup[sb_type].smoother; |
| int woff, hoff; |
| const uint8_t wsignflip = wedge_params_lookup[sb_type].signflip[wedge_index]; |
| |
| assert(wedge_index >= 0 && |
| wedge_index < (1 << get_wedge_bits_lookup(sb_type))); |
| woff = (a->x_offset * bw) >> 3; |
| hoff = (a->y_offset * bh) >> 3; |
| master = wedge_mask_obl[smoother][neg ^ wsignflip][a->direction] + |
| MASK_MASTER_STRIDE * (MASK_MASTER_SIZE / 2 - hoff) + |
| MASK_MASTER_SIZE / 2 - woff; |
| return master; |
| } |
| |
| const uint8_t *av1_get_soft_mask(int wedge_index, int wedge_sign, |
| BLOCK_SIZE sb_type, int offset_x, |
| int offset_y) { |
| const uint8_t *mask = |
| get_wedge_mask_inplace(wedge_index, wedge_sign, sb_type); |
| if (mask) mask -= (offset_x + offset_y * MASK_MASTER_STRIDE); |
| return mask; |
| } |
| |
| #if CONFIG_COMPOUND_SEGMENT |
| static uint8_t *invert_mask(uint8_t *mask_inv_buffer, const uint8_t *const mask, |
| int h, int w, int stride) { |
| int i, j; |
| |
| for (i = 0; i < h; ++i) |
| for (j = 0; j < w; ++j) { |
| mask_inv_buffer[i * stride + j] = |
| AOM_BLEND_A64_MAX_ALPHA - mask[i * stride + j]; |
| } |
| return mask_inv_buffer; |
| } |
| #endif // CONFIG_COMPOUND_SEGMENT |
| |
| const uint8_t *av1_get_compound_type_mask_inverse( |
| const INTERINTER_COMPOUND_DATA *const comp_data, |
| #if CONFIG_COMPOUND_SEGMENT |
| uint8_t *mask_buffer, int h, int w, int stride, |
| #endif |
| BLOCK_SIZE sb_type) { |
| assert(is_masked_compound_type(comp_data->type)); |
| switch (comp_data->type) { |
| case COMPOUND_WEDGE: |
| return av1_get_contiguous_soft_mask(comp_data->wedge_index, |
| !comp_data->wedge_sign, sb_type); |
| #if CONFIG_COMPOUND_SEGMENT |
| case COMPOUND_SEG: |
| return invert_mask(mask_buffer, comp_data->seg_mask, h, w, stride); |
| #endif // CONFIG_COMPOUND_SEGMENT |
| default: assert(0); return NULL; |
| } |
| } |
| |
| const uint8_t *av1_get_compound_type_mask( |
| const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type) { |
| assert(is_masked_compound_type(comp_data->type)); |
| switch (comp_data->type) { |
| case COMPOUND_WEDGE: |
| return av1_get_contiguous_soft_mask(comp_data->wedge_index, |
| comp_data->wedge_sign, sb_type); |
| #if CONFIG_COMPOUND_SEGMENT |
| case COMPOUND_SEG: return comp_data->seg_mask; |
| #endif // CONFIG_COMPOUND_SEGMENT |
| default: assert(0); return NULL; |
| } |
| } |
| |
| #if CONFIG_COMPOUND_SEGMENT |
| #if COMPOUND_SEGMENT_TYPE == 0 |
| static void uniform_mask(uint8_t *mask, int which_inverse, BLOCK_SIZE sb_type, |
| int h, int w, int mask_val) { |
| int i, j; |
| int block_stride = block_size_wide[sb_type]; |
| for (i = 0; i < h; ++i) |
| for (j = 0; j < w; ++j) { |
| mask[i * block_stride + j] = |
| which_inverse ? AOM_BLEND_A64_MAX_ALPHA - mask_val : mask_val; |
| } |
| } |
| |
| void build_compound_seg_mask(uint8_t *mask, SEG_MASK_TYPE mask_type, |
| const uint8_t *src0, int src0_stride, |
| const uint8_t *src1, int src1_stride, |
| BLOCK_SIZE sb_type, int h, int w) { |
| (void)src0; |
| (void)src1; |
| (void)src0_stride; |
| (void)src1_stride; |
| switch (mask_type) { |
| case UNIFORM_45: uniform_mask(mask, 0, sb_type, h, w, 45); break; |
| case UNIFORM_45_INV: uniform_mask(mask, 1, sb_type, h, w, 45); break; |
| default: assert(0); |
| } |
| } |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| void build_compound_seg_mask_highbd(uint8_t *mask, SEG_MASK_TYPE mask_type, |
| const uint8_t *src0, int src0_stride, |
| const uint8_t *src1, int src1_stride, |
| BLOCK_SIZE sb_type, int h, int w, int bd) { |
| (void)src0; |
| (void)src1; |
| (void)src0_stride; |
| (void)src1_stride; |
| (void)bd; |
| switch (mask_type) { |
| case UNIFORM_45: uniform_mask(mask, 0, sb_type, h, w, 45); break; |
| case UNIFORM_45_INV: uniform_mask(mask, 1, sb_type, h, w, 45); break; |
| default: assert(0); |
| } |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| #elif COMPOUND_SEGMENT_TYPE == 1 |
| #define DIFF_FACTOR 16 |
| static void diffwtd_mask(uint8_t *mask, int which_inverse, int mask_base, |
| const uint8_t *src0, int src0_stride, |
| const uint8_t *src1, int src1_stride, |
| BLOCK_SIZE sb_type, int h, int w) { |
| int i, j, m, diff; |
| int block_stride = block_size_wide[sb_type]; |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; ++j) { |
| diff = |
| abs((int)src0[i * src0_stride + j] - (int)src1[i * src1_stride + j]); |
| m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA); |
| mask[i * block_stride + j] = |
| which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m; |
| } |
| } |
| } |
| |
| void build_compound_seg_mask(uint8_t *mask, SEG_MASK_TYPE mask_type, |
| const uint8_t *src0, int src0_stride, |
| const uint8_t *src1, int src1_stride, |
| BLOCK_SIZE sb_type, int h, int w) { |
| switch (mask_type) { |
| case DIFFWTD_42: |
| diffwtd_mask(mask, 0, 42, src0, src0_stride, src1, src1_stride, sb_type, |
| h, w); |
| break; |
| case DIFFWTD_42_INV: |
| diffwtd_mask(mask, 1, 42, src0, src0_stride, src1, src1_stride, sb_type, |
| h, w); |
| break; |
| default: assert(0); |
| } |
| } |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| static void diffwtd_mask_highbd(uint8_t *mask, int which_inverse, int mask_base, |
| const uint16_t *src0, int src0_stride, |
| const uint16_t *src1, int src1_stride, |
| BLOCK_SIZE sb_type, int h, int w, int bd) { |
| int i, j, m, diff; |
| int block_stride = block_size_wide[sb_type]; |
| for (i = 0; i < h; ++i) { |
| for (j = 0; j < w; ++j) { |
| diff = abs((int)src0[i * src0_stride + j] - |
| (int)src1[i * src1_stride + j]) >> |
| (bd - 8); |
| m = clamp(mask_base + (diff / DIFF_FACTOR), 0, AOM_BLEND_A64_MAX_ALPHA); |
| mask[i * block_stride + j] = |
| which_inverse ? AOM_BLEND_A64_MAX_ALPHA - m : m; |
| } |
| } |
| } |
| |
| void build_compound_seg_mask_highbd(uint8_t *mask, SEG_MASK_TYPE mask_type, |
| const uint8_t *src0, int src0_stride, |
| const uint8_t *src1, int src1_stride, |
| BLOCK_SIZE sb_type, int h, int w, int bd) { |
| switch (mask_type) { |
| case DIFFWTD_42: |
| diffwtd_mask_highbd(mask, 0, 42, CONVERT_TO_SHORTPTR(src0), src0_stride, |
| CONVERT_TO_SHORTPTR(src1), src1_stride, sb_type, h, w, |
| bd); |
| break; |
| case DIFFWTD_42_INV: |
| diffwtd_mask_highbd(mask, 1, 42, CONVERT_TO_SHORTPTR(src0), src0_stride, |
| CONVERT_TO_SHORTPTR(src1), src1_stride, sb_type, h, w, |
| bd); |
| break; |
| default: assert(0); |
| } |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| #endif // COMPOUND_SEGMENT_TYPE |
| #endif // CONFIG_COMPOUND_SEGMENT |
| |
| static void init_wedge_master_masks() { |
| int i, j, s; |
| const int w = MASK_MASTER_SIZE; |
| const int h = MASK_MASTER_SIZE; |
| const int stride = MASK_MASTER_STRIDE; |
| const int a[2] = { 2, 1 }; |
| const double asqrt = sqrt(a[0] * a[0] + a[1] * a[1]); |
| for (s = 0; s < NSMOOTHERS; s++) { |
| for (i = 0; i < h; ++i) |
| for (j = 0; j < w; ++j) { |
| int x = (2 * j + 1 - w); |
| int y = (2 * i + 1 - h); |
| int m = (int)rint((a[0] * x + a[1] * y) / asqrt); |
| wedge_mask_obl[s][1][WEDGE_OBLIQUE63][i * stride + j] = |
| wedge_mask_obl[s][1][WEDGE_OBLIQUE27][j * stride + i] = |
| get_masked_weight(m, s); |
| wedge_mask_obl[s][1][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = |
| wedge_mask_obl[s][1][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = |
| (1 << WEDGE_WEIGHT_BITS) - get_masked_weight(m, s); |
| wedge_mask_obl[s][0][WEDGE_OBLIQUE63][i * stride + j] = |
| wedge_mask_obl[s][0][WEDGE_OBLIQUE27][j * stride + i] = |
| (1 << WEDGE_WEIGHT_BITS) - get_masked_weight(m, s); |
| wedge_mask_obl[s][0][WEDGE_OBLIQUE117][i * stride + w - 1 - j] = |
| wedge_mask_obl[s][0][WEDGE_OBLIQUE153][(w - 1 - j) * stride + i] = |
| get_masked_weight(m, s); |
| wedge_mask_obl[s][1][WEDGE_VERTICAL][i * stride + j] = |
| wedge_mask_obl[s][1][WEDGE_HORIZONTAL][j * stride + i] = |
| get_masked_weight(x, s); |
| wedge_mask_obl[s][0][WEDGE_VERTICAL][i * stride + j] = |
| wedge_mask_obl[s][0][WEDGE_HORIZONTAL][j * stride + i] = |
| (1 << WEDGE_WEIGHT_BITS) - get_masked_weight(x, s); |
| } |
| } |
| } |
| |
| // If the signs for the wedges for various blocksizes are |
| // inconsistent flip the sign flag. Do it only once for every |
| // wedge codebook. |
| static void init_wedge_signs() { |
| BLOCK_SIZE sb_type; |
| memset(wedge_signflip_lookup, 0, sizeof(wedge_signflip_lookup)); |
| for (sb_type = BLOCK_4X4; sb_type < BLOCK_SIZES; ++sb_type) { |
| const int bw = block_size_wide[sb_type]; |
| const int bh = block_size_high[sb_type]; |
| const wedge_params_type wedge_params = wedge_params_lookup[sb_type]; |
| const int wbits = wedge_params.bits; |
| const int wtypes = 1 << wbits; |
| int i, w; |
| if (wbits == 0) continue; |
| for (w = 0; w < wtypes; ++w) { |
| const uint8_t *mask = get_wedge_mask_inplace(w, 0, sb_type); |
| int sum = 0; |
| for (i = 0; i < bw; ++i) sum += mask[i]; |
| for (i = 0; i < bh; ++i) sum += mask[i * MASK_MASTER_STRIDE]; |
| sum = (sum + (bw + bh) / 2) / (bw + bh); |
| wedge_params.signflip[w] = (sum < 32); |
| } |
| } |
| } |
| |
| static void init_wedge_masks() { |
| uint8_t *dst = wedge_mask_buf; |
| BLOCK_SIZE bsize; |
| memset(wedge_masks, 0, sizeof(wedge_masks)); |
| for (bsize = BLOCK_4X4; bsize < BLOCK_SIZES; ++bsize) { |
| const uint8_t *mask; |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| const wedge_params_type *wedge_params = &wedge_params_lookup[bsize]; |
| const int wbits = wedge_params->bits; |
| const int wtypes = 1 << wbits; |
| int w; |
| if (wbits == 0) continue; |
| for (w = 0; w < wtypes; ++w) { |
| mask = get_wedge_mask_inplace(w, 0, bsize); |
| aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw, |
| bh); |
| wedge_params->masks[0][w] = dst; |
| dst += bw * bh; |
| |
| mask = get_wedge_mask_inplace(w, 1, bsize); |
| aom_convolve_copy(mask, MASK_MASTER_STRIDE, dst, bw, NULL, 0, NULL, 0, bw, |
| bh); |
| wedge_params->masks[1][w] = dst; |
| dst += bw * bh; |
| } |
| assert(sizeof(wedge_mask_buf) >= (size_t)(dst - wedge_mask_buf)); |
| } |
| } |
| |
| // Equation of line: f(x, y) = a[0]*(x - a[2]*w/8) + a[1]*(y - a[3]*h/8) = 0 |
| void av1_init_wedge_masks() { |
| init_wedge_master_masks(); |
| init_wedge_signs(); |
| init_wedge_masks(); |
| } |
| |
| #if CONFIG_SUPERTX |
| static void build_masked_compound_wedge_extend( |
| uint8_t *dst, int dst_stride, const uint8_t *src0, int src0_stride, |
| const uint8_t *src1, int src1_stride, |
| const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, |
| int wedge_offset_x, int wedge_offset_y, int h, int w) { |
| const int subh = (2 << b_height_log2_lookup[sb_type]) == h; |
| const int subw = (2 << b_width_log2_lookup[sb_type]) == w; |
| const uint8_t *mask; |
| size_t mask_stride; |
| switch (comp_data->type) { |
| case COMPOUND_WEDGE: |
| mask = av1_get_soft_mask(comp_data->wedge_index, comp_data->wedge_sign, |
| sb_type, wedge_offset_x, wedge_offset_y); |
| mask_stride = MASK_MASTER_STRIDE; |
| break; |
| #if CONFIG_COMPOUND_SEGMENT |
| case COMPOUND_SEG: |
| mask = comp_data->seg_mask; |
| mask_stride = block_size_wide[sb_type]; |
| break; |
| #endif |
| default: assert(0); return; |
| } |
| aom_blend_a64_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride, |
| mask, mask_stride, h, w, subh, subw); |
| } |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| static void build_masked_compound_wedge_extend_highbd( |
| uint8_t *dst_8, int dst_stride, const uint8_t *src0_8, int src0_stride, |
| const uint8_t *src1_8, int src1_stride, |
| const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, |
| int wedge_offset_x, int wedge_offset_y, int h, int w, int bd) { |
| const int subh = (2 << b_height_log2_lookup[sb_type]) == h; |
| const int subw = (2 << b_width_log2_lookup[sb_type]) == w; |
| const uint8_t *mask; |
| size_t mask_stride; |
| switch (comp_data->type) { |
| case COMPOUND_WEDGE: |
| mask = av1_get_soft_mask(comp_data->wedge_index, comp_data->wedge_sign, |
| sb_type, wedge_offset_x, wedge_offset_y); |
| mask_stride = MASK_MASTER_STRIDE; |
| break; |
| #if CONFIG_COMPOUND_SEGMENT |
| case COMPOUND_SEG: |
| mask = comp_data->seg_mask; |
| mask_stride = block_size_wide[sb_type]; |
| break; |
| #endif |
| default: assert(0); return; |
| } |
| aom_highbd_blend_a64_mask(dst_8, dst_stride, src0_8, src0_stride, src1_8, |
| src1_stride, mask, mask_stride, h, w, subh, subw, |
| bd); |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| #else |
| static void build_masked_compound( |
| uint8_t *dst, int dst_stride, const uint8_t *src0, int src0_stride, |
| const uint8_t *src1, int src1_stride, |
| const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, |
| int w) { |
| // Derive subsampling from h and w passed in. May be refactored to |
| // pass in subsampling factors directly. |
| const int subh = (2 << b_height_log2_lookup[sb_type]) == h; |
| const int subw = (2 << b_width_log2_lookup[sb_type]) == w; |
| const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); |
| aom_blend_a64_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride, |
| mask, block_size_wide[sb_type], h, w, subh, subw); |
| } |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| static void build_masked_compound_highbd( |
| uint8_t *dst_8, int dst_stride, const uint8_t *src0_8, int src0_stride, |
| const uint8_t *src1_8, int src1_stride, |
| const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, |
| int w, int bd) { |
| // Derive subsampling from h and w passed in. May be refactored to |
| // pass in subsampling factors directly. |
| const int subh = (2 << b_height_log2_lookup[sb_type]) == h; |
| const int subw = (2 << b_width_log2_lookup[sb_type]) == w; |
| const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); |
| // const uint8_t *mask = |
| // av1_get_contiguous_soft_mask(wedge_index, wedge_sign, sb_type); |
| aom_highbd_blend_a64_mask(dst_8, dst_stride, src0_8, src0_stride, src1_8, |
| src1_stride, mask, block_size_wide[sb_type], h, w, |
| subh, subw, bd); |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| #endif // CONFIG_SUPERTX |
| |
| void av1_make_masked_inter_predictor(const uint8_t *pre, int pre_stride, |
| uint8_t *dst, int dst_stride, |
| const int subpel_x, const int subpel_y, |
| const struct scale_factors *sf, int w, |
| int h, |
| #if CONFIG_DUAL_FILTER |
| const InterpFilter *interp_filter, |
| #else |
| const InterpFilter interp_filter, |
| #endif |
| int xs, int ys, |
| #if CONFIG_SUPERTX |
| int wedge_offset_x, int wedge_offset_y, |
| #endif // CONFIG_SUPERTX |
| int plane, |
| #if CONFIG_GLOBAL_MOTION |
| int is_global, int p_col, int p_row, |
| int ref, |
| #endif // CONFIG_GLOBAL_MOTION |
| MACROBLOCKD *xd) { |
| MODE_INFO *mi = xd->mi[0]; |
| INTERINTER_COMPOUND_DATA *comp_data = &mi->mbmi.interinter_compound_data; |
| // The prediction filter types used here should be those for |
| // the second reference block. |
| #if CONFIG_DUAL_FILTER |
| InterpFilter tmp_ipf[4] = { |
| interp_filter[2], interp_filter[3], interp_filter[2], interp_filter[3], |
| }; |
| #else |
| InterpFilter tmp_ipf = interp_filter; |
| #endif // CONFIG_DUAL_FILTER |
| ConvolveParams conv_params = get_conv_params(0, plane); |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| DECLARE_ALIGNED(16, uint8_t, tmp_dst_[2 * MAX_SB_SQUARE]); |
| uint8_t *tmp_dst = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| ? CONVERT_TO_BYTEPTR(tmp_dst_) |
| : tmp_dst_; |
| av1_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE, subpel_x, |
| subpel_y, sf, w, h, &conv_params, tmp_ipf, |
| #if CONFIG_GLOBAL_MOTION |
| is_global, p_col, p_row, plane, ref, |
| #endif // CONFIG_GLOBAL_MOTION |
| xs, ys, xd); |
| #if CONFIG_COMPOUND_SEGMENT |
| if (!plane && comp_data->type == COMPOUND_SEG) { |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| build_compound_seg_mask_highbd(comp_data->seg_mask, comp_data->mask_type, |
| dst, dst_stride, tmp_dst, MAX_SB_SIZE, |
| mi->mbmi.sb_type, h, w, xd->bd); |
| else |
| build_compound_seg_mask(comp_data->seg_mask, comp_data->mask_type, dst, |
| dst_stride, tmp_dst, MAX_SB_SIZE, |
| mi->mbmi.sb_type, h, w); |
| } |
| #endif // CONFIG_COMPOUND_SEGMENT |
| |
| #if CONFIG_SUPERTX |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| build_masked_compound_wedge_extend_highbd( |
| dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, comp_data, |
| mi->mbmi.sb_type, wedge_offset_x, wedge_offset_y, h, w, xd->bd); |
| else |
| build_masked_compound_wedge_extend( |
| dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, comp_data, |
| mi->mbmi.sb_type, wedge_offset_x, wedge_offset_y, h, w); |
| #else |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| build_masked_compound_highbd(dst, dst_stride, dst, dst_stride, tmp_dst, |
| MAX_SB_SIZE, comp_data, mi->mbmi.sb_type, h, w, |
| xd->bd); |
| else |
| build_masked_compound(dst, dst_stride, dst, dst_stride, tmp_dst, |
| MAX_SB_SIZE, comp_data, mi->mbmi.sb_type, h, w); |
| #endif // CONFIG_SUPERTX |
| |
| #else // CONFIG_AOM_HIGHBITDEPTH |
| DECLARE_ALIGNED(16, uint8_t, tmp_dst[MAX_SB_SQUARE]); |
| av1_make_inter_predictor(pre, pre_stride, tmp_dst, MAX_SB_SIZE, subpel_x, |
| subpel_y, sf, w, h, &conv_params, tmp_ipf, |
| #if CONFIG_GLOBAL_MOTION |
| is_global, p_col, p_row, plane, ref, |
| #endif // CONFIG_GLOBAL_MOTION |
| xs, ys, xd); |
| #if CONFIG_COMPOUND_SEGMENT |
| if (!plane && comp_data->type == COMPOUND_SEG) |
| build_compound_seg_mask(comp_data->seg_mask, comp_data->mask_type, dst, |
| dst_stride, tmp_dst, MAX_SB_SIZE, mi->mbmi.sb_type, |
| h, w); |
| #endif // CONFIG_COMPOUND_SEGMENT |
| #if CONFIG_SUPERTX |
| build_masked_compound_wedge_extend(dst, dst_stride, dst, dst_stride, tmp_dst, |
| MAX_SB_SIZE, comp_data, mi->mbmi.sb_type, |
| wedge_offset_x, wedge_offset_y, h, w); |
| #else |
| build_masked_compound(dst, dst_stride, dst, dst_stride, tmp_dst, MAX_SB_SIZE, |
| comp_data, mi->mbmi.sb_type, h, w); |
| #endif // CONFIG_SUPERTX |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| #if CONFIG_COMPOUND_SEGMENT |
| (void)plane; |
| #endif // CONFIG_COMPOUND_SEGMENT |
| } |
| #endif // CONFIG_EXT_INTER |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| void av1_highbd_build_inter_predictor( |
| const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, |
| const MV *src_mv, const struct scale_factors *sf, int w, int h, int ref, |
| #if CONFIG_DUAL_FILTER |
| const InterpFilter *interp_filter, |
| #else |
| const InterpFilter interp_filter, |
| #endif |
| enum mv_precision precision, int x, int y, int bd) { |
| const int is_q4 = precision == MV_PRECISION_Q4; |
| const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, |
| is_q4 ? src_mv->col : src_mv->col * 2 }; |
| MV32 mv = av1_scale_mv(&mv_q4, x, y, sf); |
| const int subpel_x = mv.col & SUBPEL_MASK; |
| const int subpel_y = mv.row & SUBPEL_MASK; |
| |
| src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS); |
| |
| highbd_inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, |
| sf, w, h, ref, interp_filter, sf->x_step_q4, |
| sf->y_step_q4, bd); |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| void av1_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst, |
| int dst_stride, const MV *src_mv, |
| const struct scale_factors *sf, int w, int h, |
| ConvolveParams *conv_params, |
| #if CONFIG_DUAL_FILTER |
| const InterpFilter *interp_filter, |
| #else |
| const InterpFilter interp_filter, |
| #endif |
| enum mv_precision precision, int x, int y) { |
| const int is_q4 = precision == MV_PRECISION_Q4; |
| const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2, |
| is_q4 ? src_mv->col : src_mv->col * 2 }; |
| MV32 mv = av1_scale_mv(&mv_q4, x, y, sf); |
| const int subpel_x = mv.col & SUBPEL_MASK; |
| const int subpel_y = mv.row & SUBPEL_MASK; |
| |
| src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS); |
| |
| inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y, sf, w, |
| h, conv_params, interp_filter, sf->x_step_q4, sf->y_step_q4); |
| } |
| |
| typedef struct SubpelParams { |
| int xs; |
| int ys; |
| int subpel_x; |
| int subpel_y; |
| } SubpelParams; |
| |
| void build_inter_predictors(MACROBLOCKD *xd, int plane, |
| #if CONFIG_MOTION_VAR |
| int mi_col_offset, int mi_row_offset, |
| #endif // CONFIG_MOTION_VAR |
| int block, int bw, int bh, int x, int y, int w, |
| int h, |
| #if CONFIG_SUPERTX && CONFIG_EXT_INTER |
| int wedge_offset_x, int wedge_offset_y, |
| #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER |
| int mi_x, int mi_y) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| #if CONFIG_MOTION_VAR |
| const MODE_INFO *mi = xd->mi[mi_col_offset + xd->mi_stride * mi_row_offset]; |
| #if !CONFIG_CB4X4 |
| const int build_for_obmc = !(mi_col_offset == 0 && mi_row_offset == 0); |
| #endif |
| #else |
| const MODE_INFO *mi = xd->mi[0]; |
| #endif // CONFIG_MOTION_VAR |
| const int is_compound = has_second_ref(&mi->mbmi); |
| int ref; |
| #if CONFIG_GLOBAL_MOTION |
| int is_global[2]; |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| WarpedMotionParams *const wm = &xd->global_motion[mi->mbmi.ref_frame[ref]]; |
| is_global[ref] = |
| (get_y_mode(mi, block) == ZEROMV && wm->wmtype > TRANSLATION); |
| } |
| #endif // CONFIG_GLOBAL_MOTION |
| |
| #if CONFIG_CB4X4 |
| (void)block; |
| #endif |
| |
| #if CONFIG_SUB8X8_MC |
| #if CONFIG_MOTION_VAR |
| if (mi->mbmi.sb_type < BLOCK_8X8 && plane > 0 && !build_for_obmc) { |
| #else |
| if (mi->mbmi.sb_type < BLOCK_8X8 && plane > 0) { |
| #endif // CONFIG_MOTION_VAR |
| // block size in log2 |
| const int b4_wl = b_width_log2_lookup[mi->mbmi.sb_type]; |
| const int b4_hl = b_height_log2_lookup[mi->mbmi.sb_type]; |
| const int b8_sl = b_width_log2_lookup[BLOCK_8X8]; |
| |
| // block size |
| const int b4_w = 1 << b4_wl; |
| const int b4_h = 1 << b4_hl; |
| const int b8_s = 1 << b8_sl; |
| int idx, idy; |
| |
| const int x_base = x; |
| const int y_base = y; |
| |
| // processing unit size |
| const int x_step = w >> (b8_sl - b4_wl); |
| const int y_step = h >> (b8_sl - b4_hl); |
| |
| for (idy = 0; idy < b8_s; idy += b4_h) { |
| for (idx = 0; idx < b8_s; idx += b4_w) { |
| const int chr_idx = (idy * 2) + idx; |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| const struct scale_factors *const sf = &xd->block_refs[ref]->sf; |
| struct buf_2d *const pre_buf = &pd->pre[ref]; |
| struct buf_2d *const dst_buf = &pd->dst; |
| uint8_t *dst = dst_buf->buf; |
| const MV mv = mi->bmi[chr_idx].as_mv[ref].as_mv; |
| const MV mv_q4 = clamp_mv_to_umv_border_sb( |
| xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); |
| uint8_t *pre; |
| MV32 scaled_mv; |
| int xs, ys, subpel_x, subpel_y; |
| const int is_scaled = av1_is_scaled(sf); |
| ConvolveParams conv_params = get_conv_params(ref, plane); |
| |
| x = x_base + idx * x_step; |
| y = y_base + idy * y_step; |
| |
| dst += dst_buf->stride * y + x; |
| |
| if (is_scaled) { |
| pre = |
| pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf); |
| scaled_mv = av1_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf); |
| xs = sf->x_step_q4; |
| ys = sf->y_step_q4; |
| } else { |
| pre = pre_buf->buf + y * pre_buf->stride + x; |
| scaled_mv.row = mv_q4.row; |
| scaled_mv.col = mv_q4.col; |
| xs = ys = 16; |
| } |
| |
| subpel_x = scaled_mv.col & SUBPEL_MASK; |
| subpel_y = scaled_mv.row & SUBPEL_MASK; |
| pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride + |
| (scaled_mv.col >> SUBPEL_BITS); |
| |
| #if CONFIG_EXT_INTER |
| if (ref && |
| is_masked_compound_type(mi->mbmi.interinter_compound_data.type)) |
| av1_make_masked_inter_predictor( |
| pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y, |
| sf, w, h, mi->mbmi.interp_filter, xs, ys, |
| #if CONFIG_SUPERTX |
| wedge_offset_x, wedge_offset_y, |
| #endif // CONFIG_SUPERTX |
| plane, |
| #if CONFIG_GLOBAL_MOTION |
| is_global[ref], (mi_x >> pd->subsampling_x) + x, |
| (mi_y >> pd->subsampling_y) + y, ref |
| #endif // CONFIG_GLOBAL_MOTION |
| xd); |
| else |
| #endif // CONFIG_EXT_INTER |
| av1_make_inter_predictor( |
| pre, pre_buf->stride, dst, dst_buf->stride, subpel_x, subpel_y, |
| sf, x_step, y_step, &conv_params, mi->mbmi.interp_filter, |
| #if CONFIG_GLOBAL_MOTION |
| is_global[ref], (mi_x >> pd->subsampling_x) + x, |
| (mi_y >> pd->subsampling_y) + y, plane, ref, |
| #endif // CONFIG_GLOBAL_MOTION |
| xs, ys, xd); |
| } |
| } |
| } |
| return; |
| } |
| #endif |
| |
| { |
| struct buf_2d *const dst_buf = &pd->dst; |
| uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; |
| uint8_t *pre[2]; |
| MV32 scaled_mv[2]; |
| SubpelParams subpel_params[2]; |
| #if CONFIG_CONVOLVE_ROUND |
| DECLARE_ALIGNED(16, int32_t, tmp_dst[MAX_SB_SIZE * MAX_SB_SIZE]); |
| av1_zero(tmp_dst); |
| #endif // CONFIG_CONVOLVE_ROUND |
| |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| const struct scale_factors *const sf = &xd->block_refs[ref]->sf; |
| struct buf_2d *const pre_buf = &pd->pre[ref]; |
| #if CONFIG_CB4X4 |
| const MV mv = mi->mbmi.mv[ref].as_mv; |
| #else |
| const MV mv = |
| mi->mbmi.sb_type < BLOCK_8X8 |
| #if CONFIG_MOTION_VAR |
| ? (build_for_obmc ? mi->bmi[block].as_mv[ref].as_mv |
| : average_split_mvs(pd, mi, ref, block)) |
| #else |
| ? average_split_mvs(pd, mi, ref, block) |
| #endif // CONFIG_MOTION_VAR |
| : mi->mbmi.mv[ref].as_mv; |
| #endif |
| |
| // TODO(jkoleszar): This clamping is done in the incorrect place for the |
| // scaling case. It needs to be done on the scaled MV, not the pre-scaling |
| // MV. Note however that it performs the subsampling aware scaling so |
| // that the result is always q4. |
| // mv_precision precision is MV_PRECISION_Q4. |
| const MV mv_q4 = clamp_mv_to_umv_border_sb( |
| xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); |
| |
| const int is_scaled = av1_is_scaled(sf); |
| |
| if (is_scaled) { |
| pre[ref] = |
| pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf); |
| scaled_mv[ref] = av1_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf); |
| subpel_params[ref].xs = sf->x_step_q4; |
| subpel_params[ref].ys = sf->y_step_q4; |
| } else { |
| pre[ref] = pre_buf->buf + (y * pre_buf->stride + x); |
| scaled_mv[ref].row = mv_q4.row; |
| scaled_mv[ref].col = mv_q4.col; |
| subpel_params[ref].xs = 16; |
| subpel_params[ref].ys = 16; |
| } |
| |
| subpel_params[ref].subpel_x = scaled_mv[ref].col & SUBPEL_MASK; |
| subpel_params[ref].subpel_y = scaled_mv[ref].row & SUBPEL_MASK; |
| pre[ref] += (scaled_mv[ref].row >> SUBPEL_BITS) * pre_buf->stride + |
| (scaled_mv[ref].col >> SUBPEL_BITS); |
| } |
| |
| #if CONFIG_CONVOLVE_ROUND |
| ConvolveParams conv_params = |
| get_conv_params_no_round(ref, plane, tmp_dst, MAX_SB_SIZE); |
| #else |
| ConvolveParams conv_params = get_conv_params(ref, plane); |
| #endif // CONFIG_CONVOLVE_ROUND |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| const struct scale_factors *const sf = &xd->block_refs[ref]->sf; |
| struct buf_2d *const pre_buf = &pd->pre[ref]; |
| conv_params.ref = ref; |
| #if CONFIG_EXT_INTER |
| if (ref && |
| is_masked_compound_type(mi->mbmi.interinter_compound_data.type)) |
| av1_make_masked_inter_predictor( |
| pre[ref], pre_buf->stride, dst, dst_buf->stride, |
| subpel_params[ref].subpel_x, subpel_params[ref].subpel_y, sf, w, h, |
| mi->mbmi.interp_filter, subpel_params[ref].xs, |
| subpel_params[ref].ys, |
| #if CONFIG_SUPERTX |
| wedge_offset_x, wedge_offset_y, |
| #endif // CONFIG_SUPERTX |
| plane, |
| #if CONFIG_GLOBAL_MOTION |
| is_global[ref], (mi_x >> pd->subsampling_x) + x, |
| (mi_y >> pd->subsampling_y) + y, ref, |
| #endif // CONFIG_GLOBAL_MOTION |
| xd); |
| else |
| #endif // CONFIG_EXT_INTER |
| av1_make_inter_predictor( |
| pre[ref], pre_buf->stride, dst, dst_buf->stride, |
| subpel_params[ref].subpel_x, subpel_params[ref].subpel_y, sf, w, h, |
| &conv_params, mi->mbmi.interp_filter, |
| #if CONFIG_GLOBAL_MOTION |
| is_global[ref], (mi_x >> pd->subsampling_x) + x, |
| (mi_y >> pd->subsampling_y) + y, plane, ref, |
| #endif // CONFIG_GLOBAL_MOTION |
| subpel_params[ref].xs, subpel_params[ref].ys, xd); |
| } |
| |
| #if CONFIG_CONVOLVE_ROUND |
| // TODO(angiebird): This part needs optimization |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (!(xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)) |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| av1_convolve_rounding(tmp_dst, MAX_SB_SIZE, dst, dst_buf->stride, w, h, |
| FILTER_BITS * 2 + is_compound - |
| conv_params.round_0 - conv_params.round_1); |
| #endif // CONFIG_CONVOLVE_ROUND |
| } |
| } |
| |
| void av1_build_inter_predictor_sub8x8(MACROBLOCKD *xd, int plane, int i, int ir, |
| int ic, int mi_row, int mi_col) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| MODE_INFO *const mi = xd->mi[0]; |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->mbmi.sb_type, pd); |
| const int width = block_size_wide[plane_bsize]; |
| const int height = block_size_high[plane_bsize]; |
| uint8_t *const dst = &pd->dst.buf[(ir * pd->dst.stride + ic) << 2]; |
| int ref; |
| const int is_compound = has_second_ref(&mi->mbmi); |
| |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| ConvolveParams conv_params = get_conv_params(ref, plane); |
| const uint8_t *pre = |
| &pd->pre[ref].buf[(ir * pd->pre[ref].stride + ic) << 2]; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| av1_highbd_build_inter_predictor( |
| pre, pd->pre[ref].stride, dst, pd->dst.stride, |
| &mi->bmi[i].as_mv[ref].as_mv, &xd->block_refs[ref]->sf, width, height, |
| ref, mi->mbmi.interp_filter, MV_PRECISION_Q3, |
| mi_col * MI_SIZE + 4 * ic, mi_row * MI_SIZE + 4 * ir, xd->bd); |
| else |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| av1_build_inter_predictor( |
| pre, pd->pre[ref].stride, dst, pd->dst.stride, |
| &mi->bmi[i].as_mv[ref].as_mv, &xd->block_refs[ref]->sf, width, height, |
| &conv_params, mi->mbmi.interp_filter, MV_PRECISION_Q3, |
| mi_col * MI_SIZE + 4 * ic, mi_row * MI_SIZE + 4 * ir); |
| } |
| } |
| |
| static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize, |
| int mi_row, int mi_col, |
| int plane_from, int plane_to) { |
| int plane; |
| const int mi_x = mi_col * MI_SIZE; |
| const int mi_y = mi_row * MI_SIZE; |
| #if CONFIG_CB4X4 |
| const int unify_bsize = 1; |
| #else |
| const int unify_bsize = 0; |
| #endif |
| for (plane = plane_from; plane <= plane_to; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| const int bw = block_size_wide[bsize] >> pd->subsampling_x; |
| const int bh = block_size_high[bsize] >> pd->subsampling_y; |
| |
| if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8 && !unify_bsize) { |
| const PARTITION_TYPE bp = bsize - xd->mi[0]->mbmi.sb_type; |
| const int have_vsplit = bp != PARTITION_HORZ; |
| const int have_hsplit = bp != PARTITION_VERT; |
| const int num_4x4_w = 2 >> ((!have_vsplit) | pd->subsampling_x); |
| const int num_4x4_h = 2 >> ((!have_hsplit) | pd->subsampling_y); |
| const int pw = 8 >> (have_vsplit | pd->subsampling_x); |
| const int ph = 8 >> (have_hsplit | pd->subsampling_y); |
| int x, y; |
| assert(bp != PARTITION_NONE && bp < PARTITION_TYPES); |
| assert(bsize == BLOCK_8X8); |
| assert(pw * num_4x4_w == bw && ph * num_4x4_h == bh); |
| for (y = 0; y < num_4x4_h; ++y) |
| for (x = 0; x < num_4x4_w; ++x) |
| build_inter_predictors(xd, plane, |
| #if CONFIG_MOTION_VAR |
| 0, 0, |
| #endif // CONFIG_MOTION_VAR |
| y * 2 + x, bw, bh, 4 * x, 4 * y, pw, ph, |
| #if CONFIG_SUPERTX && CONFIG_EXT_INTER |
| 0, 0, |
| #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER |
| mi_x, mi_y); |
| } else { |
| build_inter_predictors(xd, plane, |
| #if CONFIG_MOTION_VAR |
| 0, 0, |
| #endif // CONFIG_MOTION_VAR |
| 0, bw, bh, 0, 0, bw, bh, |
| #if CONFIG_SUPERTX && CONFIG_EXT_INTER |
| 0, 0, |
| #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER |
| mi_x, mi_y); |
| } |
| } |
| } |
| |
| void av1_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col, |
| BUFFER_SET *ctx, BLOCK_SIZE bsize) { |
| build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0); |
| #if CONFIG_EXT_INTER |
| if (is_interintra_pred(&xd->mi[0]->mbmi)) { |
| BUFFER_SET default_ctx = { { xd->plane[0].dst.buf, NULL, NULL }, |
| { xd->plane[0].dst.stride, 0, 0 } }; |
| if (!ctx) ctx = &default_ctx; |
| av1_build_interintra_predictors_sby(xd, xd->plane[0].dst.buf, |
| xd->plane[0].dst.stride, ctx, bsize); |
| } |
| #else |
| (void)ctx; |
| #endif // CONFIG_EXT_INTER |
| } |
| |
| void av1_build_inter_predictors_sbp(MACROBLOCKD *xd, int mi_row, int mi_col, |
| BUFFER_SET *ctx, BLOCK_SIZE bsize, |
| int plane) { |
| build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, plane, plane); |
| #if CONFIG_EXT_INTER |
| if (is_interintra_pred(&xd->mi[0]->mbmi)) { |
| BUFFER_SET default_ctx = { |
| { xd->plane[0].dst.buf, xd->plane[1].dst.buf, xd->plane[2].dst.buf }, |
| { xd->plane[0].dst.stride, xd->plane[1].dst.stride, |
| xd->plane[2].dst.stride } |
| }; |
| if (!ctx) ctx = &default_ctx; |
| if (plane == 0) { |
| av1_build_interintra_predictors_sby(xd, xd->plane[0].dst.buf, |
| xd->plane[0].dst.stride, ctx, bsize); |
| } else { |
| av1_build_interintra_predictors_sbc(xd, xd->plane[plane].dst.buf, |
| xd->plane[plane].dst.stride, ctx, |
| plane, bsize); |
| } |
| } |
| #else |
| (void)ctx; |
| #endif // CONFIG_EXT_INTER |
| } |
| |
| void av1_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col, |
| BUFFER_SET *ctx, BLOCK_SIZE bsize) { |
| build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1, |
| MAX_MB_PLANE - 1); |
| #if CONFIG_EXT_INTER |
| if (is_interintra_pred(&xd->mi[0]->mbmi)) { |
| BUFFER_SET default_ctx = { |
| { NULL, xd->plane[1].dst.buf, xd->plane[2].dst.buf }, |
| { 0, xd->plane[1].dst.stride, xd->plane[2].dst.stride } |
| }; |
| if (!ctx) ctx = &default_ctx; |
| av1_build_interintra_predictors_sbuv( |
| xd, xd->plane[1].dst.buf, xd->plane[2].dst.buf, xd->plane[1].dst.stride, |
| xd->plane[2].dst.stride, ctx, bsize); |
| } |
| #else |
| (void)ctx; |
| #endif // CONFIG_EXT_INTER |
| } |
| |
| void av1_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col, |
| BUFFER_SET *ctx, BLOCK_SIZE bsize) { |
| build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, |
| MAX_MB_PLANE - 1); |
| #if CONFIG_EXT_INTER |
| if (is_interintra_pred(&xd->mi[0]->mbmi)) { |
| BUFFER_SET default_ctx = { |
| { xd->plane[0].dst.buf, xd->plane[1].dst.buf, xd->plane[2].dst.buf }, |
| { xd->plane[0].dst.stride, xd->plane[1].dst.stride, |
| xd->plane[2].dst.stride } |
| }; |
| if (!ctx) ctx = &default_ctx; |
| av1_build_interintra_predictors( |
| xd, xd->plane[0].dst.buf, xd->plane[1].dst.buf, xd->plane[2].dst.buf, |
| xd->plane[0].dst.stride, xd->plane[1].dst.stride, |
| xd->plane[2].dst.stride, ctx, bsize); |
| } |
| #else |
| (void)ctx; |
| #endif // CONFIG_EXT_INTER |
| } |
| |
| void av1_setup_dst_planes(struct macroblockd_plane planes[MAX_MB_PLANE], |
| const YV12_BUFFER_CONFIG *src, int mi_row, |
| int mi_col) { |
| uint8_t *const buffers[MAX_MB_PLANE] = { src->y_buffer, src->u_buffer, |
| src->v_buffer }; |
| const int widths[MAX_MB_PLANE] = { src->y_crop_width, src->uv_crop_width, |
| src->uv_crop_width }; |
| const int heights[MAX_MB_PLANE] = { src->y_crop_height, src->uv_crop_height, |
| src->uv_crop_height }; |
| const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride, |
| src->uv_stride }; |
| int i; |
| |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| struct macroblockd_plane *const pd = &planes[i]; |
| setup_pred_plane(&pd->dst, buffers[i], widths[i], heights[i], strides[i], |
| mi_row, mi_col, NULL, pd->subsampling_x, |
| pd->subsampling_y); |
| } |
| } |
| |
| void av1_setup_pre_planes(MACROBLOCKD *xd, int idx, |
| const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, |
| const struct scale_factors *sf) { |
| if (src != NULL) { |
| int i; |
| uint8_t *const buffers[MAX_MB_PLANE] = { src->y_buffer, src->u_buffer, |
| src->v_buffer }; |
| const int widths[MAX_MB_PLANE] = { src->y_crop_width, src->uv_crop_width, |
| src->uv_crop_width }; |
| const int heights[MAX_MB_PLANE] = { src->y_crop_height, src->uv_crop_height, |
| src->uv_crop_height }; |
| const int strides[MAX_MB_PLANE] = { src->y_stride, src->uv_stride, |
| src->uv_stride }; |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| struct macroblockd_plane *const pd = &xd->plane[i]; |
| setup_pred_plane(&pd->pre[idx], buffers[i], widths[i], heights[i], |
| strides[i], mi_row, mi_col, sf, pd->subsampling_x, |
| pd->subsampling_y); |
| } |
| } |
| } |
| |
| #if CONFIG_SUPERTX |
| #if CONFIG_CB4X4 |
| static const uint8_t mask_4[4] = { 64, 52, 12, 0 }; |
| static const uint8_t mask_4_uv[4] = { 64, 52, 12, 0 }; |
| #endif // CONFIG_CB4X4 |
| static const uint8_t mask_8[8] = { 64, 64, 62, 52, 12, 2, 0, 0 }; |
| |
| static const uint8_t mask_16[16] = { 63, 62, 60, 58, 55, 50, 43, 36, |
| 28, 21, 14, 9, 6, 4, 2, 1 }; |
| |
| static const uint8_t mask_32[32] = { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 63, |
| 61, 57, 52, 45, 36, 28, 19, 12, 7, 3, 1, |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; |
| |
| static const uint8_t mask_8_uv[8] = { 64, 64, 62, 52, 12, 2, 0, 0 }; |
| |
| static const uint8_t mask_16_uv[16] = { 64, 64, 64, 64, 61, 53, 45, 36, |
| 28, 19, 11, 3, 0, 0, 0, 0 }; |
| |
| static const uint8_t mask_32_uv[32] = { 64, 64, 64, 64, 64, 64, 64, 64, |
| 64, 64, 64, 64, 60, 54, 46, 36, |
| 28, 18, 10, 4, 0, 0, 0, 0, |
| 0, 0, 0, 0, 0, 0, 0, 0 }; |
| |
| static const uint8_t *get_supertx_mask(int length, int plane) { |
| switch (length) { |
| #if CONFIG_CB4X4 |
| case 4: return plane ? mask_4_uv : mask_4; |
| #endif // CONFIG_CB4X4 |
| case 8: return plane ? mask_8_uv : mask_8; |
| case 16: return plane ? mask_16_uv : mask_16; |
| case 32: return plane ? mask_32_uv : mask_32; |
| default: assert(0); |
| } |
| return NULL; |
| } |
| |
| void av1_build_masked_inter_predictor_complex( |
| MACROBLOCKD *xd, uint8_t *dst, int dst_stride, const uint8_t *pre, |
| int pre_stride, int mi_row, int mi_col, int mi_row_ori, int mi_col_ori, |
| BLOCK_SIZE bsize, BLOCK_SIZE top_bsize, PARTITION_TYPE partition, |
| int plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| const int ssx = pd->subsampling_x; |
| const int ssy = pd->subsampling_y; |
| const int top_w = block_size_wide[top_bsize] >> ssx; |
| const int top_h = block_size_high[top_bsize] >> ssy; |
| const int w = block_size_wide[bsize] >> ssx; |
| const int h = block_size_high[bsize] >> ssy; |
| const int w_offset = ((mi_col - mi_col_ori) * MI_SIZE) >> ssx; |
| const int h_offset = ((mi_row - mi_row_ori) * MI_SIZE) >> ssy; |
| |
| int w_remain, h_remain; |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| const int is_hdb = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| assert(bsize <= BLOCK_32X32); |
| assert(IMPLIES(plane == 0, ssx == 0)); |
| assert(IMPLIES(plane == 0, ssy == 0)); |
| |
| switch (partition) { |
| case PARTITION_HORZ: { |
| const uint8_t *const mask = get_supertx_mask(h, ssy); |
| |
| w_remain = top_w; |
| h_remain = top_h - h_offset - h; |
| dst += h_offset * dst_stride; |
| pre += h_offset * pre_stride; |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (is_hdb) |
| aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, pre, |
| pre_stride, mask, h, top_w, xd->bd); |
| else |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, pre, pre_stride, |
| mask, h, top_w); |
| |
| dst += h * dst_stride; |
| pre += h * pre_stride; |
| break; |
| } |
| case PARTITION_VERT: { |
| const uint8_t *const mask = get_supertx_mask(w, ssx); |
| |
| w_remain = top_w - w_offset - w; |
| h_remain = top_h; |
| dst += w_offset; |
| pre += w_offset; |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (is_hdb) |
| aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, pre, |
| pre_stride, mask, top_h, w, xd->bd); |
| else |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, pre, pre_stride, |
| mask, top_h, w); |
| |
| dst += w; |
| pre += w; |
| break; |
| } |
| default: { |
| assert(0); |
| return; |
| } |
| } |
| |
| if (w_remain == 0 || h_remain == 0) { |
| return; |
| } |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (is_hdb) { |
| dst = (uint8_t *)CONVERT_TO_SHORTPTR(dst); |
| pre = (const uint8_t *)CONVERT_TO_SHORTPTR(pre); |
| dst_stride *= 2; |
| pre_stride *= 2; |
| w_remain *= 2; |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| do { |
| memcpy(dst, pre, w_remain * sizeof(uint8_t)); |
| dst += dst_stride; |
| pre += pre_stride; |
| } while (--h_remain); |
| } |
| |
| void av1_build_inter_predictors_sb_sub8x8_extend(MACROBLOCKD *xd, |
| #if CONFIG_EXT_INTER |
| int mi_row_ori, int mi_col_ori, |
| #endif // CONFIG_EXT_INTER |
| int mi_row, int mi_col, |
| BLOCK_SIZE bsize, int block) { |
| // Prediction function used in supertx: |
| // Use the mv at current block (which is less than 8x8) |
| // to get prediction of a block located at (mi_row, mi_col) at size of bsize |
| // bsize can be larger than 8x8. |
| // block (0-3): the sub8x8 location of current block |
| int plane; |
| const int mi_x = mi_col * MI_SIZE; |
| const int mi_y = mi_row * MI_SIZE; |
| #if CONFIG_EXT_INTER |
| const int wedge_offset_x = (mi_col_ori - mi_col) * MI_SIZE; |
| const int wedge_offset_y = (mi_row_ori - mi_row) * MI_SIZE; |
| #endif // CONFIG_EXT_INTER |
| |
| // For sub8x8 uv: |
| // Skip uv prediction in supertx except the first block (block = 0) |
| int max_plane = block ? 1 : MAX_MB_PLANE; |
| |
| for (plane = 0; plane < max_plane; plane++) { |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(bsize, &xd->plane[plane]); |
| const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; |
| const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; |
| const int bw = 4 * num_4x4_w; |
| const int bh = 4 * num_4x4_h; |
| |
| build_inter_predictors(xd, plane, |
| #if CONFIG_MOTION_VAR |
| 0, 0, |
| #endif // CONFIG_MOTION_VAR |
| block, bw, bh, 0, 0, bw, bh, |
| #if CONFIG_EXT_INTER |
| wedge_offset_x, wedge_offset_y, |
| #endif // CONFIG_EXT_INTER |
| mi_x, mi_y); |
| } |
| #if CONFIG_EXT_INTER |
| if (is_interintra_pred(&xd->mi[0]->mbmi)) { |
| BUFFER_SET ctx = { { xd->plane[0].dst.buf, xd->plane[1].dst.buf, |
| xd->plane[2].dst.buf }, |
| { xd->plane[0].dst.stride, xd->plane[1].dst.stride, |
| xd->plane[2].dst.stride } }; |
| av1_build_interintra_predictors( |
| xd, xd->plane[0].dst.buf, xd->plane[1].dst.buf, xd->plane[2].dst.buf, |
| xd->plane[0].dst.stride, xd->plane[1].dst.stride, |
| xd->plane[2].dst.stride, &ctx, bsize); |
| } |
| #endif // CONFIG_EXT_INTER |
| } |
| |
| void av1_build_inter_predictors_sb_extend(MACROBLOCKD *xd, |
| #if CONFIG_EXT_INTER |
| int mi_row_ori, int mi_col_ori, |
| #endif // CONFIG_EXT_INTER |
| int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| int plane; |
| const int mi_x = mi_col * MI_SIZE; |
| const int mi_y = mi_row * MI_SIZE; |
| #if CONFIG_EXT_INTER |
| const int wedge_offset_x = (mi_col_ori - mi_col) * MI_SIZE; |
| const int wedge_offset_y = (mi_row_ori - mi_row) * MI_SIZE; |
| #endif // CONFIG_EXT_INTER |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(bsize, &xd->plane[plane]); |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| |
| build_inter_predictors(xd, plane, |
| #if CONFIG_MOTION_VAR |
| 0, 0, |
| #endif // CONFIG_MOTION_VAR |
| 0, bw, bh, 0, 0, bw, bh, |
| #if CONFIG_EXT_INTER |
| wedge_offset_x, wedge_offset_y, |
| #endif // CONFIG_EXT_INTER |
| mi_x, mi_y); |
| } |
| } |
| #endif // CONFIG_SUPERTX |
| |
| #if CONFIG_MOTION_VAR |
| // obmc_mask_N[overlap_position] |
| static const uint8_t obmc_mask_1[1] = { 55 }; |
| |
| static const uint8_t obmc_mask_2[2] = { 45, 62 }; |
| |
| static const uint8_t obmc_mask_4[4] = { 39, 50, 59, 64 }; |
| |
| static const uint8_t obmc_mask_8[8] = { 36, 42, 48, 53, 57, 61, 63, 64 }; |
| |
| static const uint8_t obmc_mask_16[16] = { 34, 37, 40, 43, 46, 49, 52, 54, |
| 56, 58, 60, 61, 63, 64, 64, 64 }; |
| |
| static const uint8_t obmc_mask_32[32] = { 33, 35, 36, 38, 40, 41, 43, 44, |
| 45, 47, 48, 50, 51, 52, 53, 55, |
| 56, 57, 58, 59, 60, 60, 61, 62, |
| 62, 63, 63, 64, 64, 64, 64, 64 }; |
| |
| #if CONFIG_EXT_PARTITION |
| static const uint8_t obmc_mask_64[64] = { |
| 33, 34, 35, 35, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 44, |
| 45, 46, 47, 47, 48, 49, 50, 51, 51, 51, 52, 52, 53, 54, 55, 56, |
| 56, 56, 57, 57, 58, 58, 59, 60, 60, 60, 60, 60, 61, 62, 62, 62, |
| 62, 62, 63, 63, 63, 63, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, |
| }; |
| #endif // CONFIG_EXT_PARTITION |
| |
| const uint8_t *av1_get_obmc_mask(int length) { |
| switch (length) { |
| case 1: return obmc_mask_1; |
| case 2: return obmc_mask_2; |
| case 4: return obmc_mask_4; |
| case 8: return obmc_mask_8; |
| case 16: return obmc_mask_16; |
| case 32: return obmc_mask_32; |
| #if CONFIG_EXT_PARTITION |
| case 64: return obmc_mask_64; |
| #endif // CONFIG_EXT_PARTITION |
| default: assert(0); return NULL; |
| } |
| } |
| |
| #if CONFIG_NCOBMC |
| // obmc_mask_flipN[overlap_position] |
| static const uint8_t obmc_mask_flip1[1] = { 55 }; |
| |
| static const uint8_t obmc_mask_flip2[2] = { 62, 45 }; |
| |
| static const uint8_t obmc_mask_flip4[4] = { 64, 59, 50, 39 }; |
| |
| static const uint8_t obmc_mask_flip8[8] = { 64, 63, 61, 57, 53, 48, 42, 36 }; |
| |
| static const uint8_t obmc_mask_flip16[16] = { 64, 64, 64, 63, 61, 60, 58, 56, |
| 54, 52, 49, 46, 43, 40, 37, 34 }; |
| |
| static const uint8_t obmc_mask_flip32[32] = { 64, 64, 64, 64, 64, 63, 63, 62, |
| 62, 61, 60, 60, 59, 58, 57, 56, |
| 55, 53, 52, 51, 50, 48, 47, 45, |
| 44, 43, 41, 40, 38, 36, 35, 33 }; |
| |
| #if CONFIG_EXT_PARTITION |
| static const uint8_t obmc_mask_flip64[64] = { |
| 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 63, 63, 63, 63, 62, 62, |
| 62, 62, 62, 61, 60, 60, 60, 60, 60, 59, 58, 58, 57, 57, 56, 56, |
| 56, 55, 54, 53, 52, 52, 51, 51, 51, 50, 49, 48, 47, 47, 46, 45, |
| 44, 44, 44, 43, 42, 41, 40, 40, 39, 38, 37, 36, 35, 35, 34, 33, |
| }; |
| #endif // CONFIG_EXT_PARTITION |
| |
| const uint8_t *av1_get_obmc_mask_flipped(int length) { |
| switch (length) { |
| case 1: return obmc_mask_flip1; |
| case 2: return obmc_mask_flip2; |
| case 4: return obmc_mask_flip4; |
| case 8: return obmc_mask_flip8; |
| case 16: return obmc_mask_flip16; |
| case 32: return obmc_mask_flip32; |
| #if CONFIG_EXT_PARTITION |
| case 64: return obmc_mask_flip64; |
| #endif // CONFIG_EXT_PARTITION |
| default: assert(0); return NULL; |
| } |
| } |
| #endif // CONFIG_NCOBMC |
| |
| // This function combines motion compensated predictions that is generated by |
| // top/left neighboring blocks' inter predictors with the regular inter |
| // prediction. We assume the original prediction (bmc) is stored in |
| // xd->plane[].dst.buf |
| void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, |
| uint8_t *above[MAX_MB_PLANE], |
| int above_stride[MAX_MB_PLANE], |
| uint8_t *left[MAX_MB_PLANE], |
| int left_stride[MAX_MB_PLANE]) { |
| const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; |
| int plane, i; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| // handle above row |
| if (xd->up_available) { |
| const int overlap = num_4x4_blocks_high_lookup[bsize] * 2; |
| const int miw = AOMMIN(xd->n8_w, cm->mi_cols - mi_col); |
| const int mi_row_offset = -1; |
| |
| assert(miw > 0); |
| |
| i = 0; |
| do { // for each mi in the above row |
| const int mi_col_offset = i; |
| const MB_MODE_INFO *const above_mbmi = |
| &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi; |
| const int mi_step = AOMMIN(xd->n8_w, mi_size_wide[above_mbmi->sb_type]); |
| |
| if (is_neighbor_overlappable(above_mbmi)) { |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| const int bw = (mi_step * MI_SIZE) >> pd->subsampling_x; |
| const int bh = overlap >> pd->subsampling_y; |
| const int dst_stride = pd->dst.stride; |
| uint8_t *const dst = &pd->dst.buf[(i * MI_SIZE) >> pd->subsampling_x]; |
| const int tmp_stride = above_stride[plane]; |
| const uint8_t *const tmp = |
| &above[plane][(i * MI_SIZE) >> pd->subsampling_x]; |
| const uint8_t *const mask = av1_get_obmc_mask(bh); |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (is_hbd) |
| aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, |
| tmp_stride, mask, bh, bw, xd->bd); |
| else |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, |
| tmp_stride, mask, bh, bw); |
| } |
| } |
| i += mi_step; |
| } while (i < miw); |
| } |
| |
| // handle left column |
| if (xd->left_available) { |
| const int overlap = num_4x4_blocks_wide_lookup[bsize] * 2; |
| const int mih = AOMMIN(xd->n8_h, cm->mi_rows - mi_row); |
| const int mi_col_offset = -1; |
| |
| assert(mih > 0); |
| |
| i = 0; |
| do { // for each mi in the left column |
| const int mi_row_offset = i; |
| const MB_MODE_INFO *const left_mbmi = |
| &xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi; |
| const int mi_step = AOMMIN(xd->n8_h, mi_size_high[left_mbmi->sb_type]); |
| |
| if (is_neighbor_overlappable(left_mbmi)) { |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| const int bw = overlap >> pd->subsampling_x; |
| const int bh = (mi_step * MI_SIZE) >> pd->subsampling_y; |
| const int dst_stride = pd->dst.stride; |
| uint8_t *const dst = |
| &pd->dst.buf[(i * MI_SIZE * dst_stride) >> pd->subsampling_y]; |
| const int tmp_stride = left_stride[plane]; |
| const uint8_t *const tmp = |
| &left[plane][(i * MI_SIZE * tmp_stride) >> pd->subsampling_y]; |
| const uint8_t *const mask = av1_get_obmc_mask(bw); |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (is_hbd) |
| aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, |
| tmp_stride, mask, bh, bw, xd->bd); |
| else |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, |
| tmp_stride, mask, bh, bw); |
| } |
| } |
| i += mi_step; |
| } while (i < mih); |
| } |
| } |
| |
| #if CONFIG_EXT_INTER |
| void modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi) { |
| if (is_interintra_pred(mbmi)) { |
| mbmi->ref_frame[1] = NONE_FRAME; |
| } else if (has_second_ref(mbmi) && |
| is_masked_compound_type(mbmi->interinter_compound_data.type)) { |
| mbmi->interinter_compound_data.type = COMPOUND_AVERAGE; |
| mbmi->ref_frame[1] = NONE_FRAME; |
| } |
| return; |
| } |
| #endif // CONFIG_EXT_INTER |
| |
| void av1_build_prediction_by_above_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, |
| uint8_t *tmp_buf[MAX_MB_PLANE], |
| int tmp_width[MAX_MB_PLANE], |
| int tmp_height[MAX_MB_PLANE], |
| int tmp_stride[MAX_MB_PLANE]) { |
| const TileInfo *const tile = &xd->tile; |
| BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; |
| int i, j, mi_step, ref; |
| int mb_to_right_edge_base = xd->mb_to_right_edge; |
| |
| if (mi_row <= tile->mi_row_start) return; |
| |
| xd->mb_to_bottom_edge += xd->n8_h * 32; |
| for (i = 0; i < AOMMIN(xd->n8_w, cm->mi_cols - mi_col); i += mi_step) { |
| int mi_row_offset = -1; |
| int mi_col_offset = i; |
| int mi_x, mi_y, bw, bh; |
| MODE_INFO *above_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; |
| MB_MODE_INFO *above_mbmi = &above_mi->mbmi; |
| #if CONFIG_EXT_INTER |
| MB_MODE_INFO backup_mbmi; |
| #endif // CONFIG_EXT_INTER |
| |
| mi_step = AOMMIN(xd->n8_w, mi_size_wide[above_mbmi->sb_type]); |
| |
| if (!is_neighbor_overlappable(above_mbmi)) continue; |
| |
| #if CONFIG_EXT_INTER |
| backup_mbmi = *above_mbmi; |
| modify_neighbor_predictor_for_obmc(above_mbmi); |
| #endif // CONFIG_EXT_INTER |
| |
| for (j = 0; j < MAX_MB_PLANE; ++j) { |
| struct macroblockd_plane *const pd = &xd->plane[j]; |
| setup_pred_plane(&pd->dst, tmp_buf[j], tmp_width[j], tmp_height[j], |
| tmp_stride[j], 0, i, NULL, pd->subsampling_x, |
| pd->subsampling_y); |
| } |
| for (ref = 0; ref < 1 + has_second_ref(above_mbmi); ++ref) { |
| const MV_REFERENCE_FRAME frame = above_mbmi->ref_frame[ref]; |
| const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME]; |
| |
| xd->block_refs[ref] = ref_buf; |
| if ((!av1_is_valid_scale(&ref_buf->sf))) |
| aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, |
| "Reference frame has invalid dimensions"); |
| av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col + i, |
| &ref_buf->sf); |
| } |
| |
| xd->mb_to_left_edge = -(((mi_col + i) * MI_SIZE) * 8); |
| xd->mb_to_right_edge = |
| mb_to_right_edge_base + (xd->n8_w - i - mi_step) * 64; |
| mi_x = (mi_col + i) << MI_SIZE_LOG2; |
| mi_y = mi_row << MI_SIZE_LOG2; |
| |
| for (j = 0; j < MAX_MB_PLANE; ++j) { |
| const struct macroblockd_plane *pd = &xd->plane[j]; |
| bw = (mi_step * MI_SIZE) >> pd->subsampling_x; |
| bh = AOMMAX((num_4x4_blocks_high_lookup[bsize] * 2) >> pd->subsampling_y, |
| 4); |
| |
| if (above_mbmi->sb_type < BLOCK_8X8 && !CONFIG_CB4X4) { |
| const PARTITION_TYPE bp = BLOCK_8X8 - above_mbmi->sb_type; |
| const int have_vsplit = bp != PARTITION_HORZ; |
| const int have_hsplit = bp != PARTITION_VERT; |
| const int num_4x4_w = 2 >> !have_vsplit; |
| const int num_4x4_h = 2 >> !have_hsplit; |
| const int pw = 8 >> (have_vsplit + pd->subsampling_x); |
| int x, y; |
| |
| for (y = 0; y < num_4x4_h; ++y) |
| for (x = 0; x < num_4x4_w; ++x) { |
| if ((bp == PARTITION_HORZ || bp == PARTITION_SPLIT) && y == 0) |
| continue; |
| |
| build_inter_predictors(xd, j, mi_col_offset, mi_row_offset, |
| y * 2 + x, bw, bh, |
| (4 * x) >> pd->subsampling_x, 0, pw, bh, |
| #if CONFIG_SUPERTX && CONFIG_EXT_INTER |
| 0, 0, |
| #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER |
| mi_x, mi_y); |
| } |
| } else { |
| #if CONFIG_WARPED_MOTION |
| if (above_mbmi->motion_mode == WARPED_CAUSAL) { |
| av1_warp_plane(&above_mbmi->wm_params[0], |
| #if CONFIG_AOM_HIGHBITDEPTH |
| xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| pd->pre[0].buf0, pd->pre[0].width, pd->pre[0].height, |
| pd->pre[0].stride, pd->dst.buf, |
| (((mi_col + i) * MI_SIZE) >> pd->subsampling_x), |
| ((mi_row * MI_SIZE) >> pd->subsampling_y), bw, bh, |
| pd->dst.stride, pd->subsampling_x, pd->subsampling_y, |
| 16, 16, 0); |
| |
| } else { |
| #endif // CONFIG_WARPED_MOTION |
| build_inter_predictors(xd, j, mi_col_offset, mi_row_offset, 0, bw, bh, |
| 0, 0, bw, bh, |
| #if CONFIG_SUPERTX && CONFIG_EXT_INTER |
| 0, 0, |
| #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER |
| mi_x, mi_y); |
| #if CONFIG_WARPED_MOTION |
| } |
| #endif // CONFIG_WARPED_MOTION |
| } |
| } |
| #if CONFIG_EXT_INTER |
| *above_mbmi = backup_mbmi; |
| #endif // CONFIG_EXT_INTER |
| } |
| xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); |
| xd->mb_to_right_edge = mb_to_right_edge_base; |
| xd->mb_to_bottom_edge -= xd->n8_h * 32; |
| } |
| |
| void av1_build_prediction_by_left_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, |
| uint8_t *tmp_buf[MAX_MB_PLANE], |
| int tmp_width[MAX_MB_PLANE], |
| int tmp_height[MAX_MB_PLANE], |
| int tmp_stride[MAX_MB_PLANE]) { |
| const TileInfo *const tile = &xd->tile; |
| BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; |
| int i, j, mi_step, ref; |
| int mb_to_bottom_edge_base = xd->mb_to_bottom_edge; |
| |
| if (mi_col == 0 || (mi_col - 1 < tile->mi_col_start)) return; |
| |
| xd->mb_to_right_edge += xd->n8_w * 32; |
| for (i = 0; i < AOMMIN(xd->n8_h, cm->mi_rows - mi_row); i += mi_step) { |
| int mi_row_offset = i; |
| int mi_col_offset = -1; |
| int mi_x, mi_y, bw, bh; |
| MODE_INFO *left_mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; |
| MB_MODE_INFO *left_mbmi = &left_mi->mbmi; |
| #if CONFIG_EXT_INTER |
| MB_MODE_INFO backup_mbmi; |
| #endif // CONFIG_EXT_INTER |
| |
| mi_step = AOMMIN(xd->n8_h, mi_size_high[left_mbmi->sb_type]); |
| |
| if (!is_neighbor_overlappable(left_mbmi)) continue; |
| |
| #if CONFIG_EXT_INTER |
| backup_mbmi = *left_mbmi; |
| modify_neighbor_predictor_for_obmc(left_mbmi); |
| #endif // CONFIG_EXT_INTER |
| |
| for (j = 0; j < MAX_MB_PLANE; ++j) { |
| struct macroblockd_plane *const pd = &xd->plane[j]; |
| setup_pred_plane(&pd->dst, tmp_buf[j], tmp_width[j], tmp_height[j], |
| tmp_stride[j], i, 0, NULL, pd->subsampling_x, |
| pd->subsampling_y); |
| } |
| for (ref = 0; ref < 1 + has_second_ref(left_mbmi); ++ref) { |
| const MV_REFERENCE_FRAME frame = left_mbmi->ref_frame[ref]; |
| const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME]; |
| |
| xd->block_refs[ref] = ref_buf; |
| if ((!av1_is_valid_scale(&ref_buf->sf))) |
| aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, |
| "Reference frame has invalid dimensions"); |
| av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + i, mi_col, |
| &ref_buf->sf); |
| } |
| |
| xd->mb_to_top_edge = -(((mi_row + i) * MI_SIZE) * 8); |
| xd->mb_to_bottom_edge = |
| mb_to_bottom_edge_base + (xd->n8_h - i - mi_step) * 64; |
| mi_x = mi_col << MI_SIZE_LOG2; |
| mi_y = (mi_row + i) << MI_SIZE_LOG2; |
| |
| for (j = 0; j < MAX_MB_PLANE; ++j) { |
| const struct macroblockd_plane *pd = &xd->plane[j]; |
| bw = AOMMAX((num_4x4_blocks_wide_lookup[bsize] * 2) >> pd->subsampling_x, |
| 4); |
| bh = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y; |
| |
| if (left_mbmi->sb_type < BLOCK_8X8 && !CONFIG_CB4X4) { |
| const PARTITION_TYPE bp = BLOCK_8X8 - left_mbmi->sb_type; |
| const int have_vsplit = bp != PARTITION_HORZ; |
| const int have_hsplit = bp != PARTITION_VERT; |
| const int num_4x4_w = 2 >> !have_vsplit; |
| const int num_4x4_h = 2 >> !have_hsplit; |
| const int ph = 8 >> (have_hsplit + pd->subsampling_y); |
| int x, y; |
| |
| for (y = 0; y < num_4x4_h; ++y) |
| for (x = 0; x < num_4x4_w; ++x) { |
| if ((bp == PARTITION_VERT || bp == PARTITION_SPLIT) && x == 0) |
| continue; |
| |
| build_inter_predictors(xd, j, mi_col_offset, mi_row_offset, |
| y * 2 + x, bw, bh, 0, |
| (4 * y) >> pd->subsampling_y, bw, ph, |
| #if CONFIG_SUPERTX && CONFIG_EXT_INTER |
| 0, 0, |
| #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER |
| mi_x, mi_y); |
| } |
| } else { |
| #if CONFIG_WARPED_MOTION |
| if (left_mbmi->motion_mode == WARPED_CAUSAL) { |
| av1_warp_plane(&left_mbmi->wm_params[0], |
| #if CONFIG_AOM_HIGHBITDEPTH |
| xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| pd->pre[0].buf0, pd->pre[0].width, pd->pre[0].height, |
| pd->pre[0].stride, pd->dst.buf, |
| ((mi_col * MI_SIZE) >> pd->subsampling_x), |
| (((mi_row + i) * MI_SIZE) >> pd->subsampling_y), bw, |
| bh, pd->dst.stride, pd->subsampling_x, |
| pd->subsampling_y, 16, 16, 0); |
| |
| } else { |
| #endif // CONFIG_WARPED_MOTION |
| build_inter_predictors(xd, j, mi_col_offset, mi_row_offset, 0, bw, bh, |
| 0, 0, bw, bh, |
| #if CONFIG_SUPERTX && CONFIG_EXT_INTER |
| 0, 0, |
| #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER |
| mi_x, mi_y); |
| #if CONFIG_WARPED_MOTION |
| } |
| #endif // CONFIG_WARPED_MOTION |
| } |
| } |
| #if CONFIG_EXT_INTER |
| *left_mbmi = backup_mbmi; |
| #endif // CONFIG_EXT_INTER |
| } |
| xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); |
| xd->mb_to_bottom_edge = mb_to_bottom_edge_base; |
| xd->mb_to_right_edge -= xd->n8_w * 32; |
| } |
| |
| void av1_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col) { |
| #if CONFIG_AOM_HIGHBITDEPTH |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); |
| #else |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_SB_SQUARE]); |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE]; |
| int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| int len = sizeof(uint16_t); |
| dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1); |
| dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len); |
| dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * 2 * len); |
| dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2); |
| dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len); |
| dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * 2 * len); |
| } else { |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| dst_buf1[0] = tmp_buf1; |
| dst_buf1[1] = tmp_buf1 + MAX_SB_SQUARE; |
| dst_buf1[2] = tmp_buf1 + MAX_SB_SQUARE * 2; |
| dst_buf2[0] = tmp_buf2; |
| dst_buf2[1] = tmp_buf2 + MAX_SB_SQUARE; |
| dst_buf2[2] = tmp_buf2 + MAX_SB_SQUARE * 2; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, dst_buf1, |
| dst_width1, dst_height1, dst_stride1); |
| av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, dst_buf2, |
| dst_width2, dst_height2, dst_stride2); |
| av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); |
| av1_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, dst_buf1, dst_stride1, |
| dst_buf2, dst_stride2); |
| } |
| |
| #if CONFIG_NCOBMC |
| void av1_build_prediction_by_bottom_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, |
| uint8_t *tmp_buf[MAX_MB_PLANE], |
| int tmp_width[MAX_MB_PLANE], |
| int tmp_height[MAX_MB_PLANE], |
| int tmp_stride[MAX_MB_PLANE]) { |
| const TileInfo *const tile = &xd->tile; |
| BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; |
| int i, j, mi_step, ref; |
| int mb_to_right_edge_base = xd->mb_to_right_edge; |
| |
| if (mi_row + xd->n8_h >= tile->mi_row_end || |
| (mi_row + xd->n8_h) % MI_SIZE == 0 || (mi_row + xd->n8_h) >= cm->mi_rows) |
| return; |
| assert(bsize >= BLOCK_8X8); |
| |
| xd->mb_to_top_edge -= xd->n8_h * 32; |
| for (i = 0; i < AOMMIN(xd->n8_w, cm->mi_cols - mi_col); i += mi_step) { |
| int mi_row_offset = xd->n8_h; |
| int mi_col_offset = i; |
| int mi_x, mi_y, bw, bh; |
| MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; |
| MB_MODE_INFO *mbmi = &mi->mbmi; |
| #if CONFIG_EXT_INTER |
| MB_MODE_INFO backup_mbmi; |
| #endif // CONFIG_EXT_INTER |
| |
| mi_step = AOMMIN(xd->n8_w, mi_size_wide[mbmi->sb_type]); |
| |
| if (!is_neighbor_overlappable(mbmi)) continue; |
| |
| #if CONFIG_EXT_INTER |
| backup_mbmi = *mbmi; |
| modify_neighbor_predictor_for_obmc(mbmi); |
| #endif // CONFIG_EXT_INTER |
| |
| for (j = 0; j < MAX_MB_PLANE; ++j) { |
| struct macroblockd_plane *const pd = &xd->plane[j]; |
| setup_pred_plane(&pd->dst, tmp_buf[j], tmp_width[j], tmp_height[j], |
| tmp_stride[j], (xd->n8_h >> 1), i, NULL, |
| pd->subsampling_x, pd->subsampling_y); |
| } |
| for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { |
| const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; |
| const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME]; |
| |
| xd->block_refs[ref] = ref_buf; |
| if ((!av1_is_valid_scale(&ref_buf->sf))) |
| aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, |
| "Reference frame has invalid dimensions"); |
| av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + (xd->n8_h >> 1), |
| mi_col + i, &ref_buf->sf); |
| } |
| |
| xd->mb_to_left_edge = -(((mi_col + i) * MI_SIZE) * 8); |
| xd->mb_to_right_edge = |
| mb_to_right_edge_base + (xd->n8_w - i - mi_step) * 64; |
| mi_x = (mi_col + i) << MI_SIZE_LOG2; |
| mi_y = (mi_row << MI_SIZE_LOG2) + xd->n8_h * 4; |
| |
| for (j = 0; j < MAX_MB_PLANE; ++j) { |
| const struct macroblockd_plane *pd = &xd->plane[j]; |
| bw = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_x; |
| bh = (num_4x4_blocks_high_lookup[bsize] << 1) >> pd->subsampling_y; |
| |
| if (mbmi->sb_type < BLOCK_8X8 && !CONFIG_CB4X4) { |
| const PARTITION_TYPE bp = BLOCK_8X8 - mbmi->sb_type; |
| const int have_vsplit = bp != PARTITION_HORZ; |
| const int have_hsplit = bp != PARTITION_VERT; |
| const int num_4x4_w = 2 >> (!have_vsplit); |
| const int num_4x4_h = 2 >> (!have_hsplit); |
| const int pw = 8 >> (have_vsplit + pd->subsampling_x); |
| int x, y; |
| |
| for (y = 0; y < num_4x4_h; ++y) |
| for (x = 0; x < num_4x4_w; ++x) { |
| if ((bp == PARTITION_HORZ || bp == PARTITION_SPLIT) && y != 0) |
| continue; |
| |
| build_inter_predictors( |
| xd, j, mi_col_offset, mi_row_offset, y * 2 + x, bw, bh, |
| (4 * x) >> pd->subsampling_x, |
| xd->n8_h == 1 ? (4 >> pd->subsampling_y) : 0, pw, bh, |
| #if CONFIG_SUPERTX && CONFIG_EXT_INTER |
| 0, 0, |
| #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER |
| mi_x, mi_y); |
| } |
| } else { |
| #if CONFIG_WARPED_MOTION |
| if (mbmi->motion_mode == WARPED_CAUSAL) { |
| av1_warp_plane(&mbmi->wm_params[0], |
| #if CONFIG_AOM_HIGHBITDEPTH |
| xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| pd->pre[0].buf0, pd->pre[0].width, pd->pre[0].height, |
| pd->pre[0].stride, pd->dst.buf, |
| (((mi_col + i) * MI_SIZE) >> pd->subsampling_x), |
| ((mi_row * MI_SIZE) >> pd->subsampling_y), bw, bh, |
| pd->dst.stride, pd->subsampling_x, pd->subsampling_y, |
| 16, 16, 0); |
| |
| } else { |
| #endif // CONFIG_WARPED_MOTION |
| build_inter_predictors( |
| xd, j, mi_col_offset, mi_row_offset, 0, bw, bh, 0, |
| xd->n8_h == 1 ? (4 >> pd->subsampling_y) : 0, bw, bh, |
| #if CONFIG_SUPERTX && CONFIG_EXT_INTER |
| 0, 0, |
| #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER |
| mi_x, mi_y); |
| #if CONFIG_WARPED_MOTION |
| } |
| #endif // CONFIG_WARPED_MOTION |
| } |
| } |
| #if CONFIG_EXT_INTER |
| *mbmi = backup_mbmi; |
| #endif // CONFIG_EXT_INTER |
| } |
| xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8); |
| xd->mb_to_right_edge = mb_to_right_edge_base; |
| xd->mb_to_top_edge += xd->n8_h * 32; |
| } |
| |
| void av1_build_prediction_by_right_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, |
| uint8_t *tmp_buf[MAX_MB_PLANE], |
| int tmp_width[MAX_MB_PLANE], |
| int tmp_height[MAX_MB_PLANE], |
| const int tmp_stride[MAX_MB_PLANE]) { |
| const TileInfo *const tile = &xd->tile; |
| BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; |
| int i, j, mi_step, ref; |
| int mb_to_bottom_edge_base = xd->mb_to_bottom_edge; |
| |
| if (mi_col + xd->n8_w >= tile->mi_col_end || |
| (mi_col + xd->n8_w) % MI_SIZE == 0 || (mi_col + xd->n8_w) >= cm->mi_cols) |
| return; |
| |
| xd->mb_to_left_edge -= xd->n8_w * 32; |
| for (i = 0; i < AOMMIN(xd->n8_h, cm->mi_rows - mi_row); i += mi_step) { |
| int mi_row_offset = i; |
| int mi_col_offset = xd->n8_w; |
| int mi_x, mi_y, bw, bh; |
| MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; |
| MB_MODE_INFO *mbmi = &mi->mbmi; |
| #if CONFIG_EXT_INTER |
| MB_MODE_INFO backup_mbmi; |
| #endif // CONFIG_EXT_INTER |
| |
| mi_step = AOMMIN(xd->n8_h, mi_size_high[mbmi->sb_type]); |
| |
| if (!is_neighbor_overlappable(mbmi)) continue; |
| |
| #if CONFIG_EXT_INTER |
| backup_mbmi = *mbmi; |
| modify_neighbor_predictor_for_obmc(mbmi); |
| #endif // CONFIG_EXT_INTER |
| |
| for (j = 0; j < MAX_MB_PLANE; ++j) { |
| struct macroblockd_plane *const pd = &xd->plane[j]; |
| setup_pred_plane(&pd->dst, tmp_buf[j], tmp_width[j], tmp_height[j], |
| tmp_stride[j], i, xd->n8_w >> 1, NULL, pd->subsampling_x, |
| pd->subsampling_y); |
| } |
| for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { |
| const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref]; |
| const RefBuffer *const ref_buf = &cm->frame_refs[frame - LAST_FRAME]; |
| |
| xd->block_refs[ref] = ref_buf; |
| if ((!av1_is_valid_scale(&ref_buf->sf))) |
| aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, |
| "Reference frame has invalid dimensions"); |
| av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row + i, |
| mi_col + (xd->n8_w >> 1), &ref_buf->sf); |
| } |
| |
| xd->mb_to_top_edge = -(((mi_row + i) * MI_SIZE) * 8); |
| xd->mb_to_bottom_edge = |
| mb_to_bottom_edge_base + (xd->n8_h - i - mi_step) * 64; |
| mi_x = (mi_col << MI_SIZE_LOG2) + xd->n8_w * 4; |
| mi_y = (mi_row + i) << MI_SIZE_LOG2; |
| |
| for (j = 0; j < MAX_MB_PLANE; ++j) { |
| const struct macroblockd_plane *pd = &xd->plane[j]; |
| bw = (num_4x4_blocks_wide_lookup[bsize] << 1) >> pd->subsampling_x; |
| bh = (mi_step << MI_SIZE_LOG2) >> pd->subsampling_y; |
| |
| if (mbmi->sb_type < BLOCK_8X8 && !CONFIG_CB4X4) { |
| const PARTITION_TYPE bp = BLOCK_8X8 - mbmi->sb_type; |
| const int have_vsplit = bp != PARTITION_HORZ; |
| const int have_hsplit = bp != PARTITION_VERT; |
| const int num_4x4_w = 2 >> (!have_vsplit); |
| const int num_4x4_h = 2 >> (!have_hsplit); |
| const int ph = 8 >> (have_hsplit + pd->subsampling_y); |
| int x, y; |
| |
| for (y = 0; y < num_4x4_h; ++y) |
| for (x = 0; x < num_4x4_w; ++x) { |
| if ((bp == PARTITION_VERT || bp == PARTITION_SPLIT) && x != 0) |
| continue; |
| |
| build_inter_predictors(xd, j, mi_col_offset, mi_row_offset, |
| y * 2 + x, bw, bh, |
| xd->n8_w == 1 ? 4 >> pd->subsampling_x : 0, |
| (4 * y) >> pd->subsampling_y, bw, ph, |
| #if CONFIG_SUPERTX && CONFIG_EXT_INTER |
| 0, 0, |
| #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER |
| mi_x, mi_y); |
| } |
| } else { |
| #if CONFIG_WARPED_MOTION |
| if (mbmi->motion_mode == WARPED_CAUSAL) { |
| av1_warp_plane(&mbmi->wm_params[0], |
| #if CONFIG_AOM_HIGHBITDEPTH |
| xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| pd->pre[0].buf0, pd->pre[0].width, pd->pre[0].height, |
| pd->pre[0].stride, pd->dst.buf, |
| ((mi_col * MI_SIZE) >> pd->subsampling_x), |
| (((mi_row + i) * MI_SIZE) >> pd->subsampling_y), bw, |
| bh, pd->dst.stride, pd->subsampling_x, |
| pd->subsampling_y, 16, 16, 0); |
| |
| } else { |
| #endif // CONFIG_WARPED_MOTION |
| build_inter_predictors(xd, j, mi_col_offset, mi_row_offset, 0, bw, bh, |
| xd->n8_w == 1 ? 4 >> pd->subsampling_x : 0, 0, |
| bw, bh, |
| #if CONFIG_SUPERTX && CONFIG_EXT_INTER |
| 0, 0, |
| #endif // CONFIG_SUPERTX && CONFIG_EXT_INTER |
| mi_x, mi_y); |
| #if CONFIG_WARPED_MOTION |
| } |
| #endif // CONFIG_WARPED_MOTION |
| } |
| } |
| #if CONFIG_EXT_INTER |
| *mbmi = backup_mbmi; |
| #endif // CONFIG_EXT_INTER |
| } |
| xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8); |
| xd->mb_to_bottom_edge = mb_to_bottom_edge_base; |
| xd->mb_to_left_edge += xd->n8_w * 32; |
| } |
| |
| // This function combines motion compensated predictions that is generated by |
| // bottom/right neighboring blocks' inter predictors with prediction in dst |
| // buffer. |
| void av1_merge_dst_bottom_right_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col, |
| uint8_t *bottom[MAX_MB_PLANE], |
| const int bottom_stride[MAX_MB_PLANE], |
| uint8_t *right[MAX_MB_PLANE], |
| const int right_stride[MAX_MB_PLANE]) { |
| const TileInfo *const tile = &xd->tile; |
| BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; |
| int plane, i, mi_step; |
| const int bottom_available = mi_row + xd->n8_h < tile->mi_row_end && |
| (mi_row + xd->n8_h) % MI_SIZE != 0 && |
| (mi_row + xd->n8_h) < cm->mi_rows; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| // handle bottom row |
| for (i = 0; bottom_available && i < AOMMIN(xd->n8_w, cm->mi_cols - mi_col); |
| i += mi_step) { |
| int mi_row_offset = xd->n8_h; |
| int mi_col_offset = i; |
| MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; |
| MB_MODE_INFO *mbmi = &mi->mbmi; |
| int overlap; |
| |
| mi_step = AOMMIN(xd->n8_w, mi_size_wide[mbmi->sb_type]); |
| |
| if (!is_neighbor_overlappable(mbmi)) continue; |
| |
| overlap = num_4x4_blocks_high_lookup[bsize] << 1; |
| |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| const int bw = (mi_step * MI_SIZE) >> pd->subsampling_x; |
| const int bh = overlap >> pd->subsampling_y; |
| const int dst_stride = pd->dst.stride; |
| uint8_t *dst = |
| &pd->dst.buf[((i * MI_SIZE) >> pd->subsampling_x) + |
| (((xd->n8_h * MI_SIZE - overlap) * dst_stride) >> |
| pd->subsampling_y)]; |
| const int tmp_stride = bottom_stride[plane]; |
| const uint8_t *const tmp = |
| &bottom[plane][((i * MI_SIZE) >> pd->subsampling_x) + |
| (((xd->n8_h * MI_SIZE - overlap) * tmp_stride) >> |
| pd->subsampling_y)]; |
| const uint8_t *const mask = av1_get_obmc_mask_flipped(bh); |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (is_hbd) |
| aom_highbd_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, |
| tmp_stride, mask, bh, bw, xd->bd); |
| else |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| aom_blend_a64_vmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, |
| mask, bh, bw); |
| } |
| } // each mi in the bottom row |
| |
| // handle right column |
| if (mi_col + xd->n8_w >= tile->mi_col_end || |
| (mi_col + xd->n8_w) % MI_SIZE == 0 || (mi_col + xd->n8_w) >= cm->mi_cols) |
| return; |
| |
| for (i = 0; i < AOMMIN(xd->n8_h, cm->mi_rows - mi_row); i += mi_step) { |
| int mi_row_offset = i; |
| int mi_col_offset = xd->n8_w; |
| int overlap; |
| MODE_INFO *mi = xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]; |
| MB_MODE_INFO *mbmi = &mi->mbmi; |
| |
| mi_step = AOMMIN(xd->n8_h, mi_size_high[mbmi->sb_type]); |
| |
| if (!is_neighbor_overlappable(mbmi)) continue; |
| |
| overlap = num_4x4_blocks_wide_lookup[bsize] << 1; |
| |
| for (plane = 0; plane < MAX_MB_PLANE; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| const int bw = overlap >> pd->subsampling_x; |
| const int bh = (mi_step * MI_SIZE) >> pd->subsampling_y; |
| const int dst_stride = pd->dst.stride; |
| uint8_t *dst = |
| &pd->dst.buf[((i * MI_SIZE * dst_stride) >> pd->subsampling_y) + |
| ((xd->n8_w * MI_SIZE - overlap) >> pd->subsampling_x)]; |
| const int tmp_stride = right_stride[plane]; |
| const uint8_t *const tmp = |
| &right[plane][((i * MI_SIZE * tmp_stride) >> pd->subsampling_y) + |
| ((xd->n8_w * MI_SIZE - overlap) >> pd->subsampling_x)]; |
| const uint8_t *const mask = av1_get_obmc_mask_flipped(bw); |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (is_hbd) |
| aom_highbd_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, |
| tmp_stride, mask, bh, bw, xd->bd); |
| else |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| aom_blend_a64_hmask(dst, dst_stride, dst, dst_stride, tmp, tmp_stride, |
| mask, bh, bw); |
| } |
| } // each mi in the right column |
| } |
| |
| // This function generates 4 sided obmc. (1) Prediction blocks generated by |
| // bottom and right motion vectors are calculated. (2) Combine them with the |
| // original prediction block (which should be pre-stored in xd->plane[].dst.buf |
| // before calling this function). The results is updated in xd->plane[].dst.buf |
| // (3) Call causal obmc prediction function, which will generate left and above |
| // preds, and then merge them and xd->plane[].dst.buf. |
| void av1_build_ncobmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col) { |
| #if CONFIG_AOM_HIGHBITDEPTH |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); |
| #else |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_SB_SQUARE]); |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE]; |
| int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| int len = sizeof(uint16_t); |
| dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1); |
| dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len); |
| dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * 2 * len); |
| dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2); |
| dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len); |
| dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * 2 * len); |
| } else { |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| dst_buf1[0] = tmp_buf1; |
| dst_buf1[1] = tmp_buf1 + MAX_SB_SQUARE; |
| dst_buf1[2] = tmp_buf1 + MAX_SB_SQUARE * 2; |
| dst_buf2[0] = tmp_buf2; |
| dst_buf2[1] = tmp_buf2 + MAX_SB_SQUARE; |
| dst_buf2[2] = tmp_buf2 + MAX_SB_SQUARE * 2; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| av1_build_prediction_by_bottom_preds(cm, xd, mi_row, mi_col, dst_buf1, |
| dst_width1, dst_height1, dst_stride1); |
| av1_build_prediction_by_right_preds(cm, xd, mi_row, mi_col, dst_buf2, |
| dst_width2, dst_height2, dst_stride2); |
| av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); |
| av1_merge_dst_bottom_right_preds(cm, xd, mi_row, mi_col, dst_buf1, |
| dst_stride1, dst_buf2, dst_stride2); |
| av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); |
| av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col); |
| av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col); |
| } |
| #endif // CONFIG_NCOBMC |
| #endif // CONFIG_MOTION_VAR |
| |
| #if CONFIG_EXT_INTER |
| /* clang-format off */ |
| #if CONFIG_EXT_PARTITION |
| static const int ii_weights1d[MAX_SB_SIZE] = { |
| 102, 100, 97, 95, 92, 90, 88, 86, 84, 82, 80, 78, 76, 74, 73, 71, 69, 68, 67, |
| 65, 64, 62, 61, 60, 59, 58, 57, 55, 54, 53, 52, 52, 51, 50, 49, 48, 47, 47, |
| 46, 45, 45, 44, 43, 43, 42, 41, 41, 40, 40, 39, 39, 38, 38, 38, 37, 37, 36, |
| 36, 36, 35, 35, 35, 34, 34, 34, 33, 33, 33, 33, 32, 32, 32, 32, 32, 31, 31, |
| 31, 31, 31, 30, 30, 30, 30, 30, 30, 30, 29, 29, 29, 29, 29, 29, 29, 29, 28, |
| 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 27, 27, 27, 27, 27, 27, 27, 27, |
| 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, |
| }; |
| static int ii_size_scales[BLOCK_SIZES] = { |
| #if CONFIG_CB4X4 |
| 32, 32, 32, |
| #endif |
| 32, 16, 16, 16, 8, 8, 8, 4, |
| 4, 4, 2, 2, 2, 1, 1, 1, |
| }; |
| #else |
| static const int ii_weights1d[MAX_SB_SIZE] = { |
| 102, 100, 97, 95, 92, 90, 88, 86, 84, 82, 80, 78, 76, 74, 73, 71, |
| 69, 68, 67, 65, 64, 62, 61, 60, 59, 58, 57, 55, 54, 53, 52, 52, |
| 51, 50, 49, 48, 47, 47, 46, 45, 45, 44, 43, 43, 42, 41, 41, 40, |
| 40, 39, 39, 38, 38, 38, 37, 37, 36, 36, 36, 35, 35, 35, 34, 34, |
| }; |
| static int ii_size_scales[BLOCK_SIZES] = { |
| #if CONFIG_CB4X4 |
| 16, 16, 16, |
| #endif |
| 16, 8, 8, 8, 4, 4, 4, |
| 2, 2, 2, 1, 1, 1, |
| }; |
| /* clang-format on */ |
| #endif // CONFIG_EXT_PARTITION |
| |
| static void combine_interintra(INTERINTRA_MODE mode, int use_wedge_interintra, |
| int wedge_index, int wedge_sign, |
| BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize, |
| uint8_t *comppred, int compstride, |
| const uint8_t *interpred, int interstride, |
| const uint8_t *intrapred, int intrastride) { |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| const int size_scale = ii_size_scales[plane_bsize]; |
| int i, j; |
| |
| if (use_wedge_interintra) { |
| if (is_interintra_wedge_used(bsize)) { |
| const uint8_t *mask = |
| av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); |
| const int subw = 2 * num_4x4_blocks_wide_lookup[bsize] == bw; |
| const int subh = 2 * num_4x4_blocks_high_lookup[bsize] == bh; |
| aom_blend_a64_mask(comppred, compstride, intrapred, intrastride, |
| interpred, interstride, mask, block_size_wide[bsize], |
| bh, bw, subh, subw); |
| } |
| return; |
| } |
| |
| switch (mode) { |
| case II_V_PRED: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) { |
| int scale = ii_weights1d[i * size_scale]; |
| comppred[i * compstride + j] = |
| AOM_BLEND_A256(scale, intrapred[i * intrastride + j], |
| interpred[i * interstride + j]); |
| } |
| } |
| break; |
| |
| case II_H_PRED: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) { |
| int scale = ii_weights1d[j * size_scale]; |
| comppred[i * compstride + j] = |
| AOM_BLEND_A256(scale, intrapred[i * intrastride + j], |
| interpred[i * interstride + j]); |
| } |
| } |
| break; |
| |
| case II_D63_PRED: |
| case II_D117_PRED: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) { |
| int scale = (ii_weights1d[i * size_scale] * 3 + |
| ii_weights1d[j * size_scale]) >> |
| 2; |
| comppred[i * compstride + j] = |
| AOM_BLEND_A256(scale, intrapred[i * intrastride + j], |
| interpred[i * interstride + j]); |
| } |
| } |
| break; |
| |
| case II_D207_PRED: |
| case II_D153_PRED: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) { |
| int scale = (ii_weights1d[j * size_scale] * 3 + |
| ii_weights1d[i * size_scale]) >> |
| 2; |
| comppred[i * compstride + j] = |
| AOM_BLEND_A256(scale, intrapred[i * intrastride + j], |
| interpred[i * interstride + j]); |
| } |
| } |
| break; |
| |
| case II_D135_PRED: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) { |
| int scale = ii_weights1d[(i < j ? i : j) * size_scale]; |
| comppred[i * compstride + j] = |
| AOM_BLEND_A256(scale, intrapred[i * intrastride + j], |
| interpred[i * interstride + j]); |
| } |
| } |
| break; |
| |
| case II_D45_PRED: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) { |
| int scale = |
| (ii_weights1d[i * size_scale] + ii_weights1d[j * size_scale]) >> |
| 1; |
| comppred[i * compstride + j] = |
| AOM_BLEND_A256(scale, intrapred[i * intrastride + j], |
| interpred[i * interstride + j]); |
| } |
| } |
| break; |
| |
| case II_TM_PRED: |
| case II_DC_PRED: |
| default: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) { |
| comppred[i * compstride + j] = AOM_BLEND_AVG( |
| intrapred[i * intrastride + j], interpred[i * interstride + j]); |
| } |
| } |
| break; |
| } |
| } |
| |
| #if CONFIG_AOM_HIGHBITDEPTH |
| static void combine_interintra_highbd( |
| INTERINTRA_MODE mode, int use_wedge_interintra, int wedge_index, |
| int wedge_sign, BLOCK_SIZE bsize, BLOCK_SIZE plane_bsize, |
| uint8_t *comppred8, int compstride, const uint8_t *interpred8, |
| int interstride, const uint8_t *intrapred8, int intrastride, int bd) { |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| const int size_scale = ii_size_scales[plane_bsize]; |
| int i, j; |
| |
| uint16_t *comppred = CONVERT_TO_SHORTPTR(comppred8); |
| const uint16_t *interpred = CONVERT_TO_SHORTPTR(interpred8); |
| const uint16_t *intrapred = CONVERT_TO_SHORTPTR(intrapred8); |
| |
| if (use_wedge_interintra) { |
| if (is_interintra_wedge_used(bsize)) { |
| const uint8_t *mask = |
| av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); |
| const int subh = 2 * num_4x4_blocks_high_lookup[bsize] == bh; |
| const int subw = 2 * num_4x4_blocks_wide_lookup[bsize] == bw; |
| aom_highbd_blend_a64_mask(comppred8, compstride, intrapred8, intrastride, |
| interpred8, interstride, mask, bw, bh, bw, subh, |
| subw, bd); |
| } |
| return; |
| } |
| |
| switch (mode) { |
| case II_V_PRED: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) { |
| int scale = ii_weights1d[i * size_scale]; |
| comppred[i * compstride + j] = |
| AOM_BLEND_A256(scale, intrapred[i * intrastride + j], |
| interpred[i * interstride + j]); |
| } |
| } |
| break; |
| |
| case II_H_PRED: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) { |
| int scale = ii_weights1d[j * size_scale]; |
| comppred[i * compstride + j] = |
| AOM_BLEND_A256(scale, intrapred[i * intrastride + j], |
| interpred[i * interstride + j]); |
| } |
| } |
| break; |
| |
| case II_D63_PRED: |
| case II_D117_PRED: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) { |
| int scale = (ii_weights1d[i * size_scale] * 3 + |
| ii_weights1d[j * size_scale]) >> |
| 2; |
| comppred[i * compstride + j] = |
| AOM_BLEND_A256(scale, intrapred[i * intrastride + j], |
| interpred[i * interstride + j]); |
| } |
| } |
| break; |
| |
| case II_D207_PRED: |
| case II_D153_PRED: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) { |
| int scale = (ii_weights1d[j * size_scale] * 3 + |
| ii_weights1d[i * size_scale]) >> |
| 2; |
| comppred[i * compstride + j] = |
| AOM_BLEND_A256(scale, intrapred[i * intrastride + j], |
| interpred[i * interstride + j]); |
| } |
| } |
| break; |
| |
| case II_D135_PRED: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) { |
| int scale = ii_weights1d[(i < j ? i : j) * size_scale]; |
| comppred[i * compstride + j] = |
| AOM_BLEND_A256(scale, intrapred[i * intrastride + j], |
| interpred[i * interstride + j]); |
| } |
| } |
| break; |
| |
| case II_D45_PRED: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) { |
| int scale = |
| (ii_weights1d[i * size_scale] + ii_weights1d[j * size_scale]) >> |
| 1; |
| comppred[i * compstride + j] = |
| AOM_BLEND_A256(scale, intrapred[i * intrastride + j], |
| interpred[i * interstride + j]); |
| } |
| } |
| break; |
| |
| case II_TM_PRED: |
| case II_DC_PRED: |
| default: |
| for (i = 0; i < bh; ++i) { |
| for (j = 0; j < bw; ++j) { |
| comppred[i * compstride + j] = AOM_BLEND_AVG( |
| interpred[i * interstride + j], intrapred[i * intrastride + j]); |
| } |
| } |
| break; |
| } |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| |
| void av1_build_intra_predictors_for_interintra(MACROBLOCKD *xd, |
| BLOCK_SIZE bsize, int plane, |
| BUFFER_SET *ctx, uint8_t *dst, |
| int dst_stride) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); |
| PREDICTION_MODE mode = |
| interintra_to_intra_mode[xd->mi[0]->mbmi.interintra_mode]; |
| |
| av1_predict_intra_block(xd, pd->width, pd->height, plane_bsize, mode, |
| ctx->plane[plane], ctx->stride[plane], dst, |
| dst_stride, 0, 0, plane); |
| } |
| |
| void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, |
| const uint8_t *inter_pred, int inter_stride, |
| const uint8_t *intra_pred, int intra_stride) { |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, &xd->plane[plane]); |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| combine_interintra_highbd( |
| xd->mi[0]->mbmi.interintra_mode, xd->mi[0]->mbmi.use_wedge_interintra, |
| xd->mi[0]->mbmi.interintra_wedge_index, |
| xd->mi[0]->mbmi.interintra_wedge_sign, bsize, plane_bsize, |
| xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, inter_pred, |
| inter_stride, intra_pred, intra_stride, xd->bd); |
| return; |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| combine_interintra(xd->mi[0]->mbmi.interintra_mode, |
| xd->mi[0]->mbmi.use_wedge_interintra, |
| xd->mi[0]->mbmi.interintra_wedge_index, |
| xd->mi[0]->mbmi.interintra_wedge_sign, bsize, plane_bsize, |
| xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, |
| inter_pred, inter_stride, intra_pred, intra_stride); |
| } |
| |
| void av1_build_interintra_predictors_sby(MACROBLOCKD *xd, uint8_t *ypred, |
| int ystride, BUFFER_SET *ctx, |
| BLOCK_SIZE bsize) { |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| DECLARE_ALIGNED(16, uint16_t, intrapredictor[MAX_SB_SQUARE]); |
| av1_build_intra_predictors_for_interintra( |
| xd, bsize, 0, ctx, CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE); |
| av1_combine_interintra(xd, bsize, 0, ypred, ystride, |
| CONVERT_TO_BYTEPTR(intrapredictor), MAX_SB_SIZE); |
| return; |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| { |
| DECLARE_ALIGNED(16, uint8_t, intrapredictor[MAX_SB_SQUARE]); |
| av1_build_intra_predictors_for_interintra(xd, bsize, 0, ctx, intrapredictor, |
| MAX_SB_SIZE); |
| av1_combine_interintra(xd, bsize, 0, ypred, ystride, intrapredictor, |
| MAX_SB_SIZE); |
| } |
| } |
| |
| void av1_build_interintra_predictors_sbc(MACROBLOCKD *xd, uint8_t *upred, |
| int ustride, BUFFER_SET *ctx, |
| int plane, BLOCK_SIZE bsize) { |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| DECLARE_ALIGNED(16, uint16_t, uintrapredictor[MAX_SB_SQUARE]); |
| av1_build_intra_predictors_for_interintra( |
| xd, bsize, plane, ctx, CONVERT_TO_BYTEPTR(uintrapredictor), |
| MAX_SB_SIZE); |
| av1_combine_interintra(xd, bsize, plane, upred, ustride, |
| CONVERT_TO_BYTEPTR(uintrapredictor), MAX_SB_SIZE); |
| return; |
| } |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| { |
| DECLARE_ALIGNED(16, uint8_t, uintrapredictor[MAX_SB_SQUARE]); |
| av1_build_intra_predictors_for_interintra(xd, bsize, plane, ctx, |
| uintrapredictor, MAX_SB_SIZE); |
| av1_combine_interintra(xd, bsize, plane, upred, ustride, uintrapredictor, |
| MAX_SB_SIZE); |
| } |
| } |
| |
| void av1_build_interintra_predictors_sbuv(MACROBLOCKD *xd, uint8_t *upred, |
| uint8_t *vpred, int ustride, |
| int vstride, BUFFER_SET *ctx, |
| BLOCK_SIZE bsize) { |
| av1_build_interintra_predictors_sbc(xd, upred, ustride, ctx, 1, bsize); |
| av1_build_interintra_predictors_sbc(xd, vpred, vstride, ctx, 2, bsize); |
| } |
| |
| void av1_build_interintra_predictors(MACROBLOCKD *xd, uint8_t *ypred, |
| uint8_t *upred, uint8_t *vpred, |
| int ystride, int ustride, int vstride, |
| BUFFER_SET *ctx, BLOCK_SIZE bsize) { |
| av1_build_interintra_predictors_sby(xd, ypred, ystride, ctx, bsize); |
| av1_build_interintra_predictors_sbuv(xd, upred, vpred, ustride, vstride, ctx, |
| bsize); |
| } |
| |
| // Builds the inter-predictor for the single ref case |
| // for use in the encoder to search the wedges efficiently. |
| static void build_inter_predictors_single_buf(MACROBLOCKD *xd, int plane, |
| int block, int bw, int bh, int x, |
| int y, int w, int h, int mi_x, |
| int mi_y, int ref, |
| uint8_t *const ext_dst, |
| int ext_dst_stride) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const MODE_INFO *mi = xd->mi[0]; |
| |
| const struct scale_factors *const sf = &xd->block_refs[ref]->sf; |
| struct buf_2d *const pre_buf = &pd->pre[ref]; |
| #if CONFIG_AOM_HIGHBITDEPTH |
| uint8_t *const dst = |
| (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? CONVERT_TO_BYTEPTR(ext_dst) |
| : ext_dst) + |
| ext_dst_stride * y + x; |
| #else |
| uint8_t *const dst = ext_dst + ext_dst_stride * y + x; |
| #endif |
| const MV mv = mi->mbmi.sb_type < BLOCK_8X8 |
| ? average_split_mvs(pd, mi, ref, block) |
| : mi->mbmi.mv[ref].as_mv; |
| |
| // TODO(jkoleszar): This clamping is done in the incorrect place for the |
| // scaling case. It needs to be done on the scaled MV, not the pre-scaling |
| // MV. Note however that it performs the subsampling aware scaling so |
| // that the result is always q4. |
| // mv_precision precision is MV_PRECISION_Q4. |
| const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh, pd->subsampling_x, |
| pd->subsampling_y); |
| |
| uint8_t *pre; |
| MV32 scaled_mv; |
| int xs, ys, subpel_x, subpel_y; |
| const int is_scaled = av1_is_scaled(sf); |
| ConvolveParams conv_params = get_conv_params(0, plane); |
| #if CONFIG_GLOBAL_MOTION |
| WarpedMotionParams *const wm = &xd->global_motion[mi->mbmi.ref_frame[ref]]; |
| const int is_global = |
| (get_y_mode(mi, block) == ZEROMV && wm->wmtype > TRANSLATION); |
| #endif // CONFIG_GLOBAL_MOTION |
| |
| if (is_scaled) { |
| pre = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, sf); |
| scaled_mv = av1_scale_mv(&mv_q4, mi_x + x, mi_y + y, sf); |
| xs = sf->x_step_q4; |
| ys = sf->y_step_q4; |
| } else { |
| pre = pre_buf->buf + (y * pre_buf->stride + x); |
| scaled_mv.row = mv_q4.row; |
| scaled_mv.col = mv_q4.col; |
| xs = ys = 16; |
| } |
| |
| subpel_x = scaled_mv.col & SUBPEL_MASK; |
| subpel_y = scaled_mv.row & SUBPEL_MASK; |
| pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride + |
| (scaled_mv.col >> SUBPEL_BITS); |
| |
| av1_make_inter_predictor(pre, pre_buf->stride, dst, ext_dst_stride, subpel_x, |
| subpel_y, sf, w, h, &conv_params, |
| mi->mbmi.interp_filter, |
| #if CONFIG_GLOBAL_MOTION |
| is_global, (mi_x >> pd->subsampling_x) + x, |
| (mi_y >> pd->subsampling_y) + y, plane, ref, |
| #endif // CONFIG_GLOBAL_MOTION |
| xs, ys, xd); |
| } |
| |
| void av1_build_inter_predictors_for_planes_single_buf( |
| MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, int mi_row, |
| int mi_col, int ref, uint8_t *ext_dst[3], int ext_dst_stride[3]) { |
| int plane; |
| const int mi_x = mi_col * MI_SIZE; |
| const int mi_y = mi_row * MI_SIZE; |
| for (plane = plane_from; plane <= plane_to; ++plane) { |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(bsize, &xd->plane[plane]); |
| const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; |
| const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| |
| if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8 && !CONFIG_CB4X4) { |
| int x, y; |
| assert(bsize == BLOCK_8X8); |
| for (y = 0; y < num_4x4_h; ++y) |
| for (x = 0; x < num_4x4_w; ++x) |
| build_inter_predictors_single_buf( |
| xd, plane, y * 2 + x, bw, bh, 4 * x, 4 * y, 4, 4, mi_x, mi_y, ref, |
| ext_dst[plane], ext_dst_stride[plane]); |
| } else { |
| build_inter_predictors_single_buf(xd, plane, 0, bw, bh, 0, 0, bw, bh, |
| mi_x, mi_y, ref, ext_dst[plane], |
| ext_dst_stride[plane]); |
| } |
| } |
| } |
| |
| static void build_wedge_inter_predictor_from_buf( |
| MACROBLOCKD *xd, int plane, int x, int y, int w, int h, |
| #if CONFIG_SUPERTX |
| int wedge_offset_x, int wedge_offset_y, |
| #endif // CONFIG_SUPERTX |
| uint8_t *ext_dst0, int ext_dst_stride0, uint8_t *ext_dst1, |
| int ext_dst_stride1) { |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| const int is_compound = has_second_ref(mbmi); |
| MACROBLOCKD_PLANE *const pd = &xd->plane[plane]; |
| struct buf_2d *const dst_buf = &pd->dst; |
| uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; |
| INTERINTER_COMPOUND_DATA *comp_data = &mbmi->interinter_compound_data; |
| |
| if (is_compound && |
| is_masked_compound_type(mbmi->interinter_compound_data.type)) { |
| #if CONFIG_COMPOUND_SEGMENT |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (!plane && comp_data->type == COMPOUND_SEG) { |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| build_compound_seg_mask_highbd( |
| comp_data->seg_mask, comp_data->mask_type, |
| CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, |
| CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, mbmi->sb_type, h, w, |
| xd->bd); |
| else |
| build_compound_seg_mask(comp_data->seg_mask, comp_data->mask_type, |
| ext_dst0, ext_dst_stride0, ext_dst1, |
| ext_dst_stride1, mbmi->sb_type, h, w); |
| } |
| #else |
| if (!plane && comp_data->type == COMPOUND_SEG) |
| build_compound_seg_mask(comp_data->seg_mask, comp_data->mask_type, |
| ext_dst0, ext_dst_stride0, ext_dst1, |
| ext_dst_stride1, mbmi->sb_type, h, w); |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| #endif // CONFIG_COMPOUND_SEGMENT |
| |
| #if CONFIG_SUPERTX |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| build_masked_compound_wedge_extend_highbd( |
| dst, dst_buf->stride, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, |
| CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, comp_data, |
| mbmi->sb_type, wedge_offset_x, wedge_offset_y, h, w, xd->bd); |
| else |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| build_masked_compound_wedge_extend( |
| dst, dst_buf->stride, ext_dst0, ext_dst_stride0, ext_dst1, |
| ext_dst_stride1, comp_data, mbmi->sb_type, wedge_offset_x, |
| wedge_offset_y, h, w); |
| #else |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| build_masked_compound_highbd( |
| dst, dst_buf->stride, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, |
| CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, comp_data, |
| mbmi->sb_type, h, w, xd->bd); |
| else |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| build_masked_compound(dst, dst_buf->stride, ext_dst0, ext_dst_stride0, |
| ext_dst1, ext_dst_stride1, comp_data, mbmi->sb_type, |
| h, w); |
| #endif // CONFIG_SUPERTX |
| } else { |
| #if CONFIG_AOM_HIGHBITDEPTH |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| aom_highbd_convolve_copy(CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, |
| dst, dst_buf->stride, NULL, 0, NULL, 0, w, h, |
| xd->bd); |
| else |
| #endif // CONFIG_AOM_HIGHBITDEPTH |
| aom_convolve_copy(ext_dst0, ext_dst_stride0, dst, dst_buf->stride, NULL, |
| 0, NULL, 0, w, h); |
| } |
| } |
| |
| void av1_build_wedge_inter_predictor_from_buf( |
| MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, |
| #if CONFIG_SUPERTX |
| int wedge_offset_x, int wedge_offset_y, |
| #endif // CONFIG_SUPERTX |
| uint8_t *ext_dst0[3], int ext_dst_stride0[3], uint8_t *ext_dst1[3], |
| int ext_dst_stride1[3]) { |
| int plane; |
| for (plane = plane_from; plane <= plane_to; ++plane) { |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(bsize, &xd->plane[plane]); |
| const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize]; |
| const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize]; |
| |
| if (xd->mi[0]->mbmi.sb_type < BLOCK_8X8 && !CONFIG_CB4X4) { |
| int x, y; |
| assert(bsize == BLOCK_8X8); |
| for (y = 0; y < num_4x4_h; ++y) |
| for (x = 0; x < num_4x4_w; ++x) |
| build_wedge_inter_predictor_from_buf( |
| xd, plane, 4 * x, 4 * y, 4, 4, |
| #if CONFIG_SUPERTX |
| wedge_offset_x, wedge_offset_y, |
| #endif // CONFIG_SUPERTX |
| ext_dst0[plane], ext_dst_stride0[plane], ext_dst1[plane], |
| ext_dst_stride1[plane]); |
| } else { |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| build_wedge_inter_predictor_from_buf( |
| xd, plane, 0, 0, bw, bh, |
| #if CONFIG_SUPERTX |
| wedge_offset_x, wedge_offset_y, |
| #endif // CONFIG_SUPERTX |
| ext_dst0[plane], ext_dst_stride0[plane], ext_dst1[plane], |
| ext_dst_stride1[plane]); |
| } |
| } |
| } |
| #endif // CONFIG_EXT_INTER |