| /* |
| * Copyright (c) 2017, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <tmmintrin.h> |
| |
| #include "config/av1_rtcd.h" |
| |
| #include "av1/common/cfl.h" |
| |
| #include "av1/common/x86/cfl_simd.h" |
| |
| // Load 32-bit integer from memory into the first element of dst. |
| static INLINE __m128i _mm_loadh_epi32(__m128i const *mem_addr) { |
| return _mm_cvtsi32_si128(*((int *)mem_addr)); |
| } |
| |
| // Store 32-bit integer from the first element of a into memory. |
| static INLINE void _mm_storeh_epi32(__m128i const *mem_addr, __m128i a) { |
| *((int *)mem_addr) = _mm_cvtsi128_si32(a); |
| } |
| |
| /** |
| * Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more |
| * precise version of a box filter 4:2:0 pixel subsampling in Q3. |
| * |
| * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the |
| * active area is specified using width and height. |
| * |
| * Note: We don't need to worry about going over the active area, as long as we |
| * stay inside the CfL prediction buffer. |
| */ |
| static INLINE void cfl_luma_subsampling_420_lbd_ssse3(const uint8_t *input, |
| int input_stride, |
| uint16_t *pred_buf_q3, |
| int width, int height) { |
| const __m128i twos = _mm_set1_epi8(2); |
| __m128i *pred_buf_m128i = (__m128i *)pred_buf_q3; |
| const __m128i *end = pred_buf_m128i + (height >> 1) * CFL_BUF_LINE_I128; |
| const int luma_stride = input_stride << 1; |
| do { |
| if (width == 4) { |
| __m128i top = _mm_loadh_epi32((__m128i *)input); |
| top = _mm_maddubs_epi16(top, twos); |
| __m128i bot = _mm_loadh_epi32((__m128i *)(input + input_stride)); |
| bot = _mm_maddubs_epi16(bot, twos); |
| const __m128i sum = _mm_add_epi16(top, bot); |
| _mm_storeh_epi32(pred_buf_m128i, sum); |
| } else if (width == 8) { |
| __m128i top = _mm_loadl_epi64((__m128i *)input); |
| top = _mm_maddubs_epi16(top, twos); |
| __m128i bot = _mm_loadl_epi64((__m128i *)(input + input_stride)); |
| bot = _mm_maddubs_epi16(bot, twos); |
| const __m128i sum = _mm_add_epi16(top, bot); |
| _mm_storel_epi64(pred_buf_m128i, sum); |
| } else { |
| __m128i top = _mm_loadu_si128((__m128i *)input); |
| top = _mm_maddubs_epi16(top, twos); |
| __m128i bot = _mm_loadu_si128((__m128i *)(input + input_stride)); |
| bot = _mm_maddubs_epi16(bot, twos); |
| const __m128i sum = _mm_add_epi16(top, bot); |
| _mm_storeu_si128(pred_buf_m128i, sum); |
| if (width == 32) { |
| __m128i top_1 = _mm_loadu_si128(((__m128i *)input) + 1); |
| __m128i bot_1 = |
| _mm_loadu_si128(((__m128i *)(input + input_stride)) + 1); |
| top_1 = _mm_maddubs_epi16(top_1, twos); |
| bot_1 = _mm_maddubs_epi16(bot_1, twos); |
| __m128i sum_1 = _mm_add_epi16(top_1, bot_1); |
| _mm_storeu_si128(pred_buf_m128i + 1, sum_1); |
| } |
| } |
| input += luma_stride; |
| pred_buf_m128i += CFL_BUF_LINE_I128; |
| } while (pred_buf_m128i < end); |
| } |
| |
| /** |
| * Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more |
| * precise version of a box filter 4:2:2 pixel subsampling in Q3. |
| * |
| * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the |
| * active area is specified using width and height. |
| * |
| * Note: We don't need to worry about going over the active area, as long as we |
| * stay inside the CfL prediction buffer. |
| */ |
| static INLINE void cfl_luma_subsampling_422_lbd_ssse3(const uint8_t *input, |
| int input_stride, |
| uint16_t *pred_buf_q3, |
| int width, int height) { |
| const __m128i fours = _mm_set1_epi8(4); |
| __m128i *pred_buf_m128i = (__m128i *)pred_buf_q3; |
| const __m128i *end = pred_buf_m128i + height * CFL_BUF_LINE_I128; |
| do { |
| if (width == 4) { |
| __m128i top = _mm_loadh_epi32((__m128i *)input); |
| top = _mm_maddubs_epi16(top, fours); |
| _mm_storeh_epi32(pred_buf_m128i, top); |
| } else if (width == 8) { |
| __m128i top = _mm_loadl_epi64((__m128i *)input); |
| top = _mm_maddubs_epi16(top, fours); |
| _mm_storel_epi64(pred_buf_m128i, top); |
| } else { |
| __m128i top = _mm_loadu_si128((__m128i *)input); |
| top = _mm_maddubs_epi16(top, fours); |
| _mm_storeu_si128(pred_buf_m128i, top); |
| if (width == 32) { |
| __m128i top_1 = _mm_loadu_si128(((__m128i *)input) + 1); |
| top_1 = _mm_maddubs_epi16(top_1, fours); |
| _mm_storeu_si128(pred_buf_m128i + 1, top_1); |
| } |
| } |
| input += input_stride; |
| pred_buf_m128i += CFL_BUF_LINE_I128; |
| } while (pred_buf_m128i < end); |
| } |
| |
| /** |
| * Multiplies the pixels by 8 (scaling in Q3). |
| * |
| * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the |
| * active area is specified using width and height. |
| * |
| * Note: We don't need to worry about going over the active area, as long as we |
| * stay inside the CfL prediction buffer. |
| */ |
| static INLINE void cfl_luma_subsampling_444_lbd_ssse3(const uint8_t *input, |
| int input_stride, |
| uint16_t *pred_buf_q3, |
| int width, int height) { |
| const __m128i zeros = _mm_setzero_si128(); |
| const int luma_stride = input_stride; |
| __m128i *pred_buf_m128i = (__m128i *)pred_buf_q3; |
| const __m128i *end = pred_buf_m128i + height * CFL_BUF_LINE_I128; |
| do { |
| if (width == 4) { |
| __m128i row = _mm_loadh_epi32((__m128i *)input); |
| row = _mm_unpacklo_epi8(row, zeros); |
| _mm_storel_epi64(pred_buf_m128i, _mm_slli_epi16(row, 3)); |
| } else if (width == 8) { |
| __m128i row = _mm_loadl_epi64((__m128i *)input); |
| row = _mm_unpacklo_epi8(row, zeros); |
| _mm_storeu_si128(pred_buf_m128i, _mm_slli_epi16(row, 3)); |
| } else { |
| __m128i row = _mm_loadu_si128((__m128i *)input); |
| const __m128i row_lo = _mm_unpacklo_epi8(row, zeros); |
| const __m128i row_hi = _mm_unpackhi_epi8(row, zeros); |
| _mm_storeu_si128(pred_buf_m128i, _mm_slli_epi16(row_lo, 3)); |
| _mm_storeu_si128(pred_buf_m128i + 1, _mm_slli_epi16(row_hi, 3)); |
| if (width == 32) { |
| __m128i row_1 = _mm_loadu_si128(((__m128i *)input) + 1); |
| const __m128i row_1_lo = _mm_unpacklo_epi8(row_1, zeros); |
| const __m128i row_1_hi = _mm_unpackhi_epi8(row_1, zeros); |
| _mm_storeu_si128(pred_buf_m128i + 2, _mm_slli_epi16(row_1_lo, 3)); |
| _mm_storeu_si128(pred_buf_m128i + 3, _mm_slli_epi16(row_1_hi, 3)); |
| } |
| } |
| input += luma_stride; |
| pred_buf_m128i += CFL_BUF_LINE_I128; |
| } while (pred_buf_m128i < end); |
| } |
| |
| /** |
| * Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more |
| * precise version of a box filter 4:2:0 pixel subsampling in Q3. |
| * |
| * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the |
| * active area is specified using width and height. |
| * |
| * Note: We don't need to worry about going over the active area, as long as we |
| * stay inside the CfL prediction buffer. |
| */ |
| static INLINE void cfl_luma_subsampling_420_hbd_ssse3(const uint16_t *input, |
| int input_stride, |
| uint16_t *pred_buf_q3, |
| int width, int height) { |
| const uint16_t *end = pred_buf_q3 + (height >> 1) * CFL_BUF_LINE; |
| const int luma_stride = input_stride << 1; |
| do { |
| if (width == 4) { |
| const __m128i top = _mm_loadl_epi64((__m128i *)input); |
| const __m128i bot = _mm_loadl_epi64((__m128i *)(input + input_stride)); |
| __m128i sum = _mm_add_epi16(top, bot); |
| sum = _mm_hadd_epi16(sum, sum); |
| *((int *)pred_buf_q3) = _mm_cvtsi128_si32(_mm_add_epi16(sum, sum)); |
| } else { |
| const __m128i top = _mm_loadu_si128((__m128i *)input); |
| const __m128i bot = _mm_loadu_si128((__m128i *)(input + input_stride)); |
| __m128i sum = _mm_add_epi16(top, bot); |
| if (width == 8) { |
| sum = _mm_hadd_epi16(sum, sum); |
| _mm_storel_epi64((__m128i *)pred_buf_q3, _mm_add_epi16(sum, sum)); |
| } else { |
| const __m128i top_1 = _mm_loadu_si128(((__m128i *)input) + 1); |
| const __m128i bot_1 = |
| _mm_loadu_si128(((__m128i *)(input + input_stride)) + 1); |
| sum = _mm_hadd_epi16(sum, _mm_add_epi16(top_1, bot_1)); |
| _mm_storeu_si128((__m128i *)pred_buf_q3, _mm_add_epi16(sum, sum)); |
| if (width == 32) { |
| const __m128i top_2 = _mm_loadu_si128(((__m128i *)input) + 2); |
| const __m128i bot_2 = |
| _mm_loadu_si128(((__m128i *)(input + input_stride)) + 2); |
| const __m128i top_3 = _mm_loadu_si128(((__m128i *)input) + 3); |
| const __m128i bot_3 = |
| _mm_loadu_si128(((__m128i *)(input + input_stride)) + 3); |
| const __m128i sum_2 = _mm_add_epi16(top_2, bot_2); |
| const __m128i sum_3 = _mm_add_epi16(top_3, bot_3); |
| __m128i next_sum = _mm_hadd_epi16(sum_2, sum_3); |
| _mm_storeu_si128(((__m128i *)pred_buf_q3) + 1, |
| _mm_add_epi16(next_sum, next_sum)); |
| } |
| } |
| } |
| input += luma_stride; |
| } while ((pred_buf_q3 += CFL_BUF_LINE) < end); |
| } |
| |
| /** |
| * Adds 2 pixels (in a 2x1 grid) and multiplies them by 4. Resulting in a more |
| * precise version of a box filter 4:2:2 pixel subsampling in Q3. |
| * |
| * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the |
| * active area is specified using width and height. |
| * |
| * Note: We don't need to worry about going over the active area, as long as we |
| * stay inside the CfL prediction buffer. |
| */ |
| static INLINE void cfl_luma_subsampling_422_hbd_ssse3(const uint16_t *input, |
| int input_stride, |
| uint16_t *pred_buf_q3, |
| int width, int height) { |
| __m128i *pred_buf_m128i = (__m128i *)pred_buf_q3; |
| const __m128i *end = pred_buf_m128i + height * CFL_BUF_LINE_I128; |
| do { |
| if (width == 4) { |
| const __m128i top = _mm_loadl_epi64((__m128i *)input); |
| const __m128i sum = _mm_slli_epi16(_mm_hadd_epi16(top, top), 2); |
| _mm_storeh_epi32(pred_buf_m128i, sum); |
| } else { |
| const __m128i top = _mm_loadu_si128((__m128i *)input); |
| if (width == 8) { |
| const __m128i sum = _mm_slli_epi16(_mm_hadd_epi16(top, top), 2); |
| _mm_storel_epi64(pred_buf_m128i, sum); |
| } else { |
| const __m128i top_1 = _mm_loadu_si128(((__m128i *)input) + 1); |
| const __m128i sum = _mm_slli_epi16(_mm_hadd_epi16(top, top_1), 2); |
| _mm_storeu_si128(pred_buf_m128i, sum); |
| if (width == 32) { |
| const __m128i top_2 = _mm_loadu_si128(((__m128i *)input) + 2); |
| const __m128i top_3 = _mm_loadu_si128(((__m128i *)input) + 3); |
| const __m128i sum_1 = _mm_slli_epi16(_mm_hadd_epi16(top_2, top_3), 2); |
| _mm_storeu_si128(pred_buf_m128i + 1, sum_1); |
| } |
| } |
| } |
| pred_buf_m128i += CFL_BUF_LINE_I128; |
| input += input_stride; |
| } while (pred_buf_m128i < end); |
| } |
| |
| static INLINE void cfl_luma_subsampling_444_hbd_ssse3(const uint16_t *input, |
| int input_stride, |
| uint16_t *pred_buf_q3, |
| int width, int height) { |
| const uint16_t *end = pred_buf_q3 + height * CFL_BUF_LINE; |
| do { |
| if (width == 4) { |
| const __m128i row = _mm_slli_epi16(_mm_loadl_epi64((__m128i *)input), 3); |
| _mm_storel_epi64((__m128i *)pred_buf_q3, row); |
| } else { |
| const __m128i row = _mm_slli_epi16(_mm_loadu_si128((__m128i *)input), 3); |
| _mm_storeu_si128((__m128i *)pred_buf_q3, row); |
| if (width >= 16) { |
| __m128i row_1 = _mm_loadu_si128(((__m128i *)input) + 1); |
| row_1 = _mm_slli_epi16(row_1, 3); |
| _mm_storeu_si128(((__m128i *)pred_buf_q3) + 1, row_1); |
| if (width == 32) { |
| __m128i row_2 = _mm_loadu_si128(((__m128i *)input) + 2); |
| row_2 = _mm_slli_epi16(row_2, 3); |
| _mm_storeu_si128(((__m128i *)pred_buf_q3) + 2, row_2); |
| __m128i row_3 = _mm_loadu_si128(((__m128i *)input) + 3); |
| row_3 = _mm_slli_epi16(row_3, 3); |
| _mm_storeu_si128(((__m128i *)pred_buf_q3) + 3, row_3); |
| } |
| } |
| } |
| input += input_stride; |
| pred_buf_q3 += CFL_BUF_LINE; |
| } while (pred_buf_q3 < end); |
| } |
| |
| CFL_GET_SUBSAMPLE_FUNCTION(ssse3) |
| |
| static INLINE __m128i predict_unclipped(const __m128i *input, __m128i alpha_q12, |
| __m128i alpha_sign, __m128i dc_q0) { |
| __m128i ac_q3 = _mm_loadu_si128(input); |
| __m128i ac_sign = _mm_sign_epi16(alpha_sign, ac_q3); |
| __m128i scaled_luma_q0 = _mm_mulhrs_epi16(_mm_abs_epi16(ac_q3), alpha_q12); |
| scaled_luma_q0 = _mm_sign_epi16(scaled_luma_q0, ac_sign); |
| return _mm_add_epi16(scaled_luma_q0, dc_q0); |
| } |
| |
| static INLINE void cfl_predict_lbd_ssse3(const int16_t *pred_buf_q3, |
| uint8_t *dst, int dst_stride, |
| int alpha_q3, int width, int height) { |
| const __m128i alpha_sign = _mm_set1_epi16(alpha_q3); |
| const __m128i alpha_q12 = _mm_slli_epi16(_mm_abs_epi16(alpha_sign), 9); |
| const __m128i dc_q0 = _mm_set1_epi16(*dst); |
| __m128i *row = (__m128i *)pred_buf_q3; |
| const __m128i *row_end = row + height * CFL_BUF_LINE_I128; |
| do { |
| __m128i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0); |
| if (width < 16) { |
| res = _mm_packus_epi16(res, res); |
| if (width == 4) |
| _mm_storeh_epi32((__m128i *)dst, res); |
| else |
| _mm_storel_epi64((__m128i *)dst, res); |
| } else { |
| __m128i next = predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0); |
| res = _mm_packus_epi16(res, next); |
| _mm_storeu_si128((__m128i *)dst, res); |
| if (width == 32) { |
| res = predict_unclipped(row + 2, alpha_q12, alpha_sign, dc_q0); |
| next = predict_unclipped(row + 3, alpha_q12, alpha_sign, dc_q0); |
| res = _mm_packus_epi16(res, next); |
| _mm_storeu_si128((__m128i *)(dst + 16), res); |
| } |
| } |
| dst += dst_stride; |
| } while ((row += CFL_BUF_LINE_I128) < row_end); |
| } |
| |
| CFL_PREDICT_FN(ssse3, lbd) |
| |
| static INLINE __m128i highbd_max_epi16(int bd) { |
| const __m128i neg_one = _mm_set1_epi16(-1); |
| // (1 << bd) - 1 => -(-1 << bd) -1 => -1 - (-1 << bd) => -1 ^ (-1 << bd) |
| return _mm_xor_si128(_mm_slli_epi16(neg_one, bd), neg_one); |
| } |
| |
| static INLINE __m128i highbd_clamp_epi16(__m128i u, __m128i zero, __m128i max) { |
| return _mm_max_epi16(_mm_min_epi16(u, max), zero); |
| } |
| |
| static INLINE void cfl_predict_hbd_ssse3(const int16_t *pred_buf_q3, |
| uint16_t *dst, int dst_stride, |
| int alpha_q3, int bd, int width, |
| int height) { |
| const __m128i alpha_sign = _mm_set1_epi16(alpha_q3); |
| const __m128i alpha_q12 = _mm_slli_epi16(_mm_abs_epi16(alpha_sign), 9); |
| const __m128i dc_q0 = _mm_set1_epi16(*dst); |
| const __m128i max = highbd_max_epi16(bd); |
| const __m128i zeros = _mm_setzero_si128(); |
| __m128i *row = (__m128i *)pred_buf_q3; |
| const __m128i *row_end = row + height * CFL_BUF_LINE_I128; |
| do { |
| __m128i res = predict_unclipped(row, alpha_q12, alpha_sign, dc_q0); |
| res = highbd_clamp_epi16(res, zeros, max); |
| if (width == 4) { |
| _mm_storel_epi64((__m128i *)dst, res); |
| } else { |
| _mm_storeu_si128((__m128i *)dst, res); |
| } |
| if (width >= 16) { |
| const __m128i res_1 = |
| predict_unclipped(row + 1, alpha_q12, alpha_sign, dc_q0); |
| _mm_storeu_si128(((__m128i *)dst) + 1, |
| highbd_clamp_epi16(res_1, zeros, max)); |
| } |
| if (width == 32) { |
| const __m128i res_2 = |
| predict_unclipped(row + 2, alpha_q12, alpha_sign, dc_q0); |
| _mm_storeu_si128((__m128i *)(dst + 16), |
| highbd_clamp_epi16(res_2, zeros, max)); |
| const __m128i res_3 = |
| predict_unclipped(row + 3, alpha_q12, alpha_sign, dc_q0); |
| _mm_storeu_si128((__m128i *)(dst + 24), |
| highbd_clamp_epi16(res_3, zeros, max)); |
| } |
| dst += dst_stride; |
| } while ((row += CFL_BUF_LINE_I128) < row_end); |
| } |
| |
| CFL_PREDICT_FN(ssse3, hbd) |