blob: bfb57dd9df42ae6946d8540e5897deb99871a326 [file] [log] [blame]
/*
* Copyright (c) 2017, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <immintrin.h>
#include "config/av1_rtcd.h"
#include "aom_dsp/x86/convolve_avx2.h"
#include "aom_dsp/x86/convolve_common_intrin.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/aom_filter.h"
#include "aom_dsp/x86/synonyms.h"
#include "av1/common/convolve.h"
void av1_convolve_2d_sr_avx2(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y,
const int subpel_x_qn, const int subpel_y_qn,
ConvolveParams *conv_params) {
const int bd = 8;
int im_stride = 8;
int i, is_horiz_4tap = 0, is_vert_4tap = 0;
DECLARE_ALIGNED(32, int16_t, im_block[(MAX_SB_SIZE + MAX_FILTER_TAP) * 8]);
const int bits =
FILTER_BITS * 2 - conv_params->round_0 - conv_params->round_1;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
assert(conv_params->round_0 > 0);
const __m256i round_const_h = _mm256_set1_epi16(
((1 << (conv_params->round_0 - 1)) >> 1) + (1 << (bd + FILTER_BITS - 2)));
const __m128i round_shift_h = _mm_cvtsi32_si128(conv_params->round_0 - 1);
const __m256i sum_round_v = _mm256_set1_epi32(
(1 << offset_bits) + ((1 << conv_params->round_1) >> 1));
const __m128i sum_shift_v = _mm_cvtsi32_si128(conv_params->round_1);
const __m256i round_const_v = _mm256_set1_epi32(
((1 << bits) >> 1) - (1 << (offset_bits - conv_params->round_1)) -
((1 << (offset_bits - conv_params->round_1)) >> 1));
const __m128i round_shift_v = _mm_cvtsi32_si128(bits);
__m256i filt[4], coeffs_h[4], coeffs_v[4];
filt[0] = _mm256_load_si256((__m256i const *)(filt_global_avx2));
filt[1] = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32));
prepare_coeffs_lowbd(filter_params_x, subpel_x_qn, coeffs_h);
prepare_coeffs(filter_params_y, subpel_y_qn, coeffs_v);
// Condition for checking valid horz_filt taps
if (!(_mm256_extract_epi32(_mm256_or_si256(coeffs_h[0], coeffs_h[3]), 0)))
is_horiz_4tap = 1;
// Condition for checking valid vert_filt taps
if (!(_mm256_extract_epi32(_mm256_or_si256(coeffs_v[0], coeffs_v[3]), 0)))
is_vert_4tap = 1;
// horz_filt as 4 tap and vert_filt as 8 tap
if (is_horiz_4tap) {
int im_h = h + filter_params_y->taps - 1;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = 1;
const uint8_t *const src_ptr = src - fo_vert * src_stride - fo_horiz;
// horz-filter
for (int j = 0; j < w; j += 8) {
for (i = 0; i < (im_h - 2); i += 2) {
__m256i data = _mm256_castsi128_si256(
_mm_loadu_si128((__m128i *)&src_ptr[(i * src_stride) + j]));
// Load the next line
data = _mm256_inserti128_si256(
data,
_mm_loadu_si128(
(__m128i *)&src_ptr[(i * src_stride) + j + src_stride]),
1);
__m256i res = convolve_lowbd_x_4tap(data, coeffs_h + 1, filt);
res = _mm256_sra_epi16(_mm256_add_epi16(res, round_const_h),
round_shift_h);
_mm256_store_si256((__m256i *)&im_block[i * im_stride], res);
}
__m256i data_1 = _mm256_castsi128_si256(
_mm_loadu_si128((__m128i *)&src_ptr[(i * src_stride) + j]));
__m256i res = convolve_lowbd_x_4tap(data_1, coeffs_h + 1, filt);
res =
_mm256_sra_epi16(_mm256_add_epi16(res, round_const_h), round_shift_h);
_mm256_store_si256((__m256i *)&im_block[i * im_stride], res);
// vert filter
CONVOLVE_SR_VERTICAL_FILTER_8TAP;
}
} else if (is_vert_4tap) {
int im_h = h + 3;
const int fo_vert = 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const uint8_t *const src_ptr = src - fo_vert * src_stride - fo_horiz;
filt[2] = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 2));
filt[3] = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 3));
for (int j = 0; j < w; j += 8) {
// horz_filter
CONVOLVE_SR_HORIZONTAL_FILTER_8TAP;
// vert_filter
__m256i s[6];
__m256i src_0 = _mm256_loadu_si256((__m256i *)(im_block + 0 * im_stride));
__m256i src_1 = _mm256_loadu_si256((__m256i *)(im_block + 1 * im_stride));
__m256i src_2 = _mm256_loadu_si256((__m256i *)(im_block + 2 * im_stride));
__m256i src_3 = _mm256_loadu_si256((__m256i *)(im_block + 3 * im_stride));
s[0] = _mm256_unpacklo_epi16(src_0, src_1);
s[1] = _mm256_unpacklo_epi16(src_2, src_3);
s[3] = _mm256_unpackhi_epi16(src_0, src_1);
s[4] = _mm256_unpackhi_epi16(src_2, src_3);
for (i = 0; i < h; i += 2) {
const int16_t *data = &im_block[i * im_stride];
const __m256i s4 =
_mm256_loadu_si256((__m256i *)(data + 4 * im_stride));
const __m256i s5 =
_mm256_loadu_si256((__m256i *)(data + 5 * im_stride));
s[2] = _mm256_unpacklo_epi16(s4, s5);
s[5] = _mm256_unpackhi_epi16(s4, s5);
__m256i res_a = convolve_4tap(s, coeffs_v + 1);
__m256i res_b = convolve_4tap(s + 3, coeffs_v + 1);
// Combine V round and 2F-H-V round into a single rounding
res_a =
_mm256_sra_epi32(_mm256_add_epi32(res_a, sum_round_v), sum_shift_v);
res_b =
_mm256_sra_epi32(_mm256_add_epi32(res_b, sum_round_v), sum_shift_v);
const __m256i res_a_round = _mm256_sra_epi32(
_mm256_add_epi32(res_a, round_const_v), round_shift_v);
const __m256i res_b_round = _mm256_sra_epi32(
_mm256_add_epi32(res_b, round_const_v), round_shift_v);
/* rounding code */
// 16 bit conversion
const __m256i res_16bit = _mm256_packs_epi32(res_a_round, res_b_round);
// 8 bit conversion and saturation to uint8
const __m256i res_8b = _mm256_packus_epi16(res_16bit, res_16bit);
const __m128i res_0 = _mm256_castsi256_si128(res_8b);
const __m128i res_1 = _mm256_extracti128_si256(res_8b, 1);
// Store values into the destination buffer
__m128i *const p_0 = (__m128i *)&dst[i * dst_stride + j];
__m128i *const p_1 = (__m128i *)&dst[i * dst_stride + j + dst_stride];
if (w - j > 4) {
_mm_storel_epi64(p_0, res_0);
_mm_storel_epi64(p_1, res_1);
} else if (w == 4) {
xx_storel_32(p_0, res_0);
xx_storel_32(p_1, res_1);
} else {
*(uint16_t *)p_0 = _mm_cvtsi128_si32(res_0);
*(uint16_t *)p_1 = _mm_cvtsi128_si32(res_1);
}
s[0] = s[1];
s[1] = s[2];
s[3] = s[4];
s[4] = s[5];
}
}
} else {
int j;
int im_h = h + filter_params_y->taps - 1;
const int fo_vert = filter_params_y->taps / 2 - 1;
const int fo_horiz = filter_params_x->taps / 2 - 1;
const uint8_t *const src_ptr = src - fo_vert * src_stride - fo_horiz;
filt[2] = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 2));
filt[3] = _mm256_load_si256((__m256i const *)(filt_global_avx2 + 32 * 3));
for (j = 0; j < w; j += 8) {
CONVOLVE_SR_HORIZONTAL_FILTER_8TAP;
CONVOLVE_SR_VERTICAL_FILTER_8TAP;
}
}
}