| /* |
| * Copyright (c) 2019, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <immintrin.h> |
| #include "config/av1_rtcd.h" |
| #include "av1/common/warped_motion.h" |
| #include "aom_dsp/x86/synonyms.h" |
| |
| DECLARE_ALIGNED(32, static const uint8_t, shuffle_alpha0_mask01_avx2[32]) = { |
| 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, |
| 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 |
| }; |
| |
| DECLARE_ALIGNED(32, static const uint8_t, shuffle_alpha0_mask23_avx2[32]) = { |
| 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, |
| 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3 |
| }; |
| |
| DECLARE_ALIGNED(32, static const uint8_t, shuffle_alpha0_mask45_avx2[32]) = { |
| 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, |
| 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5 |
| }; |
| |
| DECLARE_ALIGNED(32, static const uint8_t, shuffle_alpha0_mask67_avx2[32]) = { |
| 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, |
| 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7 |
| }; |
| |
| #if CONFIG_EXT_WARP |
| DECLARE_ALIGNED(32, static const uint8_t, |
| shuffle_ext_warp_horiz_filter_mask0_avx2[32]) = { |
| 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, |
| 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 |
| }; |
| |
| DECLARE_ALIGNED(32, static const uint8_t, |
| shuffle_ext_warp_horiz_filter_mask1_avx2[32]) = { |
| 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, |
| 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7 |
| }; |
| |
| DECLARE_ALIGNED(32, static const uint8_t, |
| shuffle_ext_warp_horiz_filter_mask2_avx2[32]) = { |
| 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, |
| 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11 |
| }; |
| |
| DECLARE_ALIGNED(32, static const uint8_t, |
| shuffle_ext_warp_horiz_filter_mask3_avx2[32]) = { |
| 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, |
| 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, |
| }; |
| #endif // CONFIG_EXT_WARP |
| |
| DECLARE_ALIGNED(32, static const uint8_t, shuffle_gamma0_mask0_avx2[32]) = { |
| 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, |
| 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3 |
| }; |
| |
| DECLARE_ALIGNED(32, static const uint8_t, shuffle_gamma0_mask1_avx2[32]) = { |
| 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, |
| 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7 |
| }; |
| |
| DECLARE_ALIGNED(32, static const uint8_t, shuffle_gamma0_mask2_avx2[32]) = { |
| 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, |
| 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11 |
| }; |
| |
| DECLARE_ALIGNED(32, static const uint8_t, shuffle_gamma0_mask3_avx2[32]) = { |
| 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, |
| 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15 |
| }; |
| |
| DECLARE_ALIGNED(32, static const uint8_t, |
| shuffle_src0[32]) = { 0, 2, 2, 4, 4, 6, 6, 8, 1, 3, 3, |
| 5, 5, 7, 7, 9, 0, 2, 2, 4, 4, 6, |
| 6, 8, 1, 3, 3, 5, 5, 7, 7, 9 }; |
| |
| DECLARE_ALIGNED(32, static const uint8_t, |
| shuffle_src1[32]) = { 4, 6, 6, 8, 8, 10, 10, 12, 5, 7, 7, |
| 9, 9, 11, 11, 13, 4, 6, 6, 8, 8, 10, |
| 10, 12, 5, 7, 7, 9, 9, 11, 11, 13 }; |
| |
| DECLARE_ALIGNED(32, static const uint8_t, |
| shuffle_src2[32]) = { 1, 3, 3, 5, 5, 7, 7, 9, 2, 4, 4, |
| 6, 6, 8, 8, 10, 1, 3, 3, 5, 5, 7, |
| 7, 9, 2, 4, 4, 6, 6, 8, 8, 10 }; |
| |
| DECLARE_ALIGNED(32, static const uint8_t, |
| shuffle_src3[32]) = { 5, 7, 7, 9, 9, 11, 11, 13, 6, 8, 8, |
| 10, 10, 12, 12, 14, 5, 7, 7, 9, 9, 11, |
| 11, 13, 6, 8, 8, 10, 10, 12, 12, 14 }; |
| |
| static INLINE void filter_src_pixels_avx2(const __m256i src, __m256i *horz_out, |
| __m256i *coeff, |
| const __m256i *shuffle_src, |
| const __m256i *round_const, |
| const __m128i *shift, int row) { |
| const __m256i src_0 = _mm256_shuffle_epi8(src, shuffle_src[0]); |
| const __m256i src_1 = _mm256_shuffle_epi8(src, shuffle_src[1]); |
| const __m256i src_2 = _mm256_shuffle_epi8(src, shuffle_src[2]); |
| const __m256i src_3 = _mm256_shuffle_epi8(src, shuffle_src[3]); |
| |
| const __m256i res_02 = _mm256_maddubs_epi16(src_0, coeff[0]); |
| const __m256i res_46 = _mm256_maddubs_epi16(src_1, coeff[1]); |
| const __m256i res_13 = _mm256_maddubs_epi16(src_2, coeff[2]); |
| const __m256i res_57 = _mm256_maddubs_epi16(src_3, coeff[3]); |
| |
| const __m256i res_even = _mm256_add_epi16(res_02, res_46); |
| const __m256i res_odd = _mm256_add_epi16(res_13, res_57); |
| const __m256i res = |
| _mm256_add_epi16(_mm256_add_epi16(res_even, res_odd), *round_const); |
| horz_out[row] = _mm256_srl_epi16(res, *shift); |
| } |
| |
| static INLINE void prepare_horizontal_filter_coeff_avx2(int alpha, int beta, |
| int sx, |
| __m256i *coeff) { |
| __m128i tmp_0 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 0 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| __m128i tmp_1 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 1 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| __m128i tmp_2 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 2 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| __m128i tmp_3 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 3 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| __m128i tmp_4 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 4 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| __m128i tmp_5 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 5 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| __m128i tmp_6 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 6 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| __m128i tmp_7 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 7 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| |
| tmp_0 = _mm_unpacklo_epi16(tmp_0, tmp_2); |
| tmp_1 = _mm_unpacklo_epi16(tmp_1, tmp_3); |
| tmp_4 = _mm_unpacklo_epi16(tmp_4, tmp_6); |
| tmp_5 = _mm_unpacklo_epi16(tmp_5, tmp_7); |
| |
| __m128i tmp_8 = |
| _mm_loadl_epi64((__m128i *)&av1_filter_8bit[((sx + beta) + 0 * alpha) >> |
| WARPEDDIFF_PREC_BITS]); |
| __m128i tmp_9 = |
| _mm_loadl_epi64((__m128i *)&av1_filter_8bit[((sx + beta) + 1 * alpha) >> |
| WARPEDDIFF_PREC_BITS]); |
| __m128i tmp_10 = |
| _mm_loadl_epi64((__m128i *)&av1_filter_8bit[((sx + beta) + 2 * alpha) >> |
| WARPEDDIFF_PREC_BITS]); |
| __m128i tmp_11 = |
| _mm_loadl_epi64((__m128i *)&av1_filter_8bit[((sx + beta) + 3 * alpha) >> |
| WARPEDDIFF_PREC_BITS]); |
| tmp_2 = |
| _mm_loadl_epi64((__m128i *)&av1_filter_8bit[((sx + beta) + 4 * alpha) >> |
| WARPEDDIFF_PREC_BITS]); |
| tmp_3 = |
| _mm_loadl_epi64((__m128i *)&av1_filter_8bit[((sx + beta) + 5 * alpha) >> |
| WARPEDDIFF_PREC_BITS]); |
| tmp_6 = |
| _mm_loadl_epi64((__m128i *)&av1_filter_8bit[((sx + beta) + 6 * alpha) >> |
| WARPEDDIFF_PREC_BITS]); |
| tmp_7 = |
| _mm_loadl_epi64((__m128i *)&av1_filter_8bit[((sx + beta) + 7 * alpha) >> |
| WARPEDDIFF_PREC_BITS]); |
| |
| tmp_8 = _mm_unpacklo_epi16(tmp_8, tmp_10); |
| tmp_2 = _mm_unpacklo_epi16(tmp_2, tmp_6); |
| tmp_9 = _mm_unpacklo_epi16(tmp_9, tmp_11); |
| tmp_3 = _mm_unpacklo_epi16(tmp_3, tmp_7); |
| |
| const __m256i tmp_12 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(tmp_0), tmp_8, 0x1); |
| const __m256i tmp_13 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(tmp_1), tmp_9, 0x1); |
| const __m256i tmp_14 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(tmp_4), tmp_2, 0x1); |
| const __m256i tmp_15 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(tmp_5), tmp_3, 0x1); |
| |
| const __m256i res_0 = _mm256_unpacklo_epi32(tmp_12, tmp_14); |
| const __m256i res_1 = _mm256_unpackhi_epi32(tmp_12, tmp_14); |
| const __m256i res_2 = _mm256_unpacklo_epi32(tmp_13, tmp_15); |
| const __m256i res_3 = _mm256_unpackhi_epi32(tmp_13, tmp_15); |
| |
| coeff[0] = _mm256_unpacklo_epi64(res_0, res_2); |
| coeff[1] = _mm256_unpackhi_epi64(res_0, res_2); |
| coeff[2] = _mm256_unpacklo_epi64(res_1, res_3); |
| coeff[3] = _mm256_unpackhi_epi64(res_1, res_3); |
| } |
| |
| static INLINE void prepare_horizontal_filter_coeff_beta0_avx2(int alpha, int sx, |
| __m256i *coeff) { |
| __m128i tmp_0 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 0 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| __m128i tmp_1 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 1 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| __m128i tmp_2 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 2 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| __m128i tmp_3 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 3 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| __m128i tmp_4 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 4 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| __m128i tmp_5 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 5 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| __m128i tmp_6 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 6 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| __m128i tmp_7 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 7 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| |
| tmp_0 = _mm_unpacklo_epi16(tmp_0, tmp_2); |
| tmp_1 = _mm_unpacklo_epi16(tmp_1, tmp_3); |
| tmp_4 = _mm_unpacklo_epi16(tmp_4, tmp_6); |
| tmp_5 = _mm_unpacklo_epi16(tmp_5, tmp_7); |
| |
| const __m256i tmp_12 = _mm256_broadcastsi128_si256(tmp_0); |
| const __m256i tmp_13 = _mm256_broadcastsi128_si256(tmp_1); |
| const __m256i tmp_14 = _mm256_broadcastsi128_si256(tmp_4); |
| const __m256i tmp_15 = _mm256_broadcastsi128_si256(tmp_5); |
| |
| const __m256i res_0 = _mm256_unpacklo_epi32(tmp_12, tmp_14); |
| const __m256i res_1 = _mm256_unpackhi_epi32(tmp_12, tmp_14); |
| const __m256i res_2 = _mm256_unpacklo_epi32(tmp_13, tmp_15); |
| const __m256i res_3 = _mm256_unpackhi_epi32(tmp_13, tmp_15); |
| |
| coeff[0] = _mm256_unpacklo_epi64(res_0, res_2); |
| coeff[1] = _mm256_unpackhi_epi64(res_0, res_2); |
| coeff[2] = _mm256_unpacklo_epi64(res_1, res_3); |
| coeff[3] = _mm256_unpackhi_epi64(res_1, res_3); |
| } |
| |
| static INLINE void prepare_horizontal_filter_coeff_alpha0_avx2(int beta, int sx, |
| __m256i *coeff) { |
| const __m128i tmp_0 = |
| _mm_loadl_epi64((__m128i *)&av1_filter_8bit[sx >> WARPEDDIFF_PREC_BITS]); |
| const __m128i tmp_1 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + beta) >> WARPEDDIFF_PREC_BITS]); |
| |
| const __m256i res_0 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(tmp_0), tmp_1, 0x1); |
| |
| coeff[0] = _mm256_shuffle_epi8( |
| res_0, _mm256_load_si256((__m256i *)shuffle_alpha0_mask01_avx2)); |
| coeff[1] = _mm256_shuffle_epi8( |
| res_0, _mm256_load_si256((__m256i *)shuffle_alpha0_mask23_avx2)); |
| coeff[2] = _mm256_shuffle_epi8( |
| res_0, _mm256_load_si256((__m256i *)shuffle_alpha0_mask45_avx2)); |
| coeff[3] = _mm256_shuffle_epi8( |
| res_0, _mm256_load_si256((__m256i *)shuffle_alpha0_mask67_avx2)); |
| } |
| |
| static INLINE void horizontal_filter_avx2(const __m256i src, __m256i *horz_out, |
| int sx, int alpha, int beta, int row, |
| const __m256i *shuffle_src, |
| const __m256i *round_const, |
| const __m128i *shift) { |
| __m256i coeff[4]; |
| prepare_horizontal_filter_coeff_avx2(alpha, beta, sx, coeff); |
| filter_src_pixels_avx2(src, horz_out, coeff, shuffle_src, round_const, shift, |
| row); |
| } |
| static INLINE void prepare_horizontal_filter_coeff(int alpha, int sx, |
| __m256i *coeff) { |
| const __m128i tmp_0 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 0 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| const __m128i tmp_1 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 1 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| const __m128i tmp_2 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 2 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| const __m128i tmp_3 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 3 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| const __m128i tmp_4 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 4 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| const __m128i tmp_5 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 5 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| const __m128i tmp_6 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 6 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| const __m128i tmp_7 = _mm_loadl_epi64( |
| (__m128i *)&av1_filter_8bit[(sx + 7 * alpha) >> WARPEDDIFF_PREC_BITS]); |
| |
| const __m128i tmp_8 = _mm_unpacklo_epi16(tmp_0, tmp_2); |
| const __m128i tmp_9 = _mm_unpacklo_epi16(tmp_1, tmp_3); |
| const __m128i tmp_10 = _mm_unpacklo_epi16(tmp_4, tmp_6); |
| const __m128i tmp_11 = _mm_unpacklo_epi16(tmp_5, tmp_7); |
| |
| const __m128i tmp_12 = _mm_unpacklo_epi32(tmp_8, tmp_10); |
| const __m128i tmp_13 = _mm_unpackhi_epi32(tmp_8, tmp_10); |
| const __m128i tmp_14 = _mm_unpacklo_epi32(tmp_9, tmp_11); |
| const __m128i tmp_15 = _mm_unpackhi_epi32(tmp_9, tmp_11); |
| |
| coeff[0] = _mm256_castsi128_si256(_mm_unpacklo_epi64(tmp_12, tmp_14)); |
| coeff[1] = _mm256_castsi128_si256(_mm_unpackhi_epi64(tmp_12, tmp_14)); |
| coeff[2] = _mm256_castsi128_si256(_mm_unpacklo_epi64(tmp_13, tmp_15)); |
| coeff[3] = _mm256_castsi128_si256(_mm_unpackhi_epi64(tmp_13, tmp_15)); |
| } |
| |
| static INLINE void warp_horizontal_filter_avx2( |
| const uint8_t *ref, __m256i *horz_out, int stride, int32_t ix4, int32_t iy4, |
| int32_t sx4, int alpha, int beta, int p_height, int height, int i, |
| const __m256i *round_const, const __m128i *shift, |
| const __m256i *shuffle_src) { |
| int k, iy, sx, row = 0; |
| __m256i coeff[4]; |
| for (k = -7; k <= (AOMMIN(8, p_height - i) - 2); k += 2) { |
| iy = iy4 + k; |
| iy = clamp(iy, 0, height - 1); |
| const __m128i src_0 = |
| _mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7)); |
| iy = iy4 + k + 1; |
| iy = clamp(iy, 0, height - 1); |
| const __m128i src_1 = |
| _mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7)); |
| const __m256i src_01 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(src_0), src_1, 0x1); |
| sx = sx4 + beta * (k + 4); |
| horizontal_filter_avx2(src_01, horz_out, sx, alpha, beta, row, shuffle_src, |
| round_const, shift); |
| row += 1; |
| } |
| iy = iy4 + k; |
| iy = clamp(iy, 0, height - 1); |
| const __m256i src_01 = _mm256_castsi128_si256( |
| _mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7))); |
| sx = sx4 + beta * (k + 4); |
| prepare_horizontal_filter_coeff(alpha, sx, coeff); |
| filter_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src, round_const, |
| shift, row); |
| } |
| |
| static INLINE void warp_horizontal_filter_alpha0_avx2( |
| const uint8_t *ref, __m256i *horz_out, int stride, int32_t ix4, int32_t iy4, |
| int32_t sx4, int alpha, int beta, int p_height, int height, int i, |
| const __m256i *round_const, const __m128i *shift, |
| const __m256i *shuffle_src) { |
| (void)alpha; |
| int k, iy, sx, row = 0; |
| __m256i coeff[4]; |
| for (k = -7; k <= (AOMMIN(8, p_height - i) - 2); k += 2) { |
| iy = iy4 + k; |
| iy = clamp(iy, 0, height - 1); |
| const __m128i src_0 = |
| _mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7)); |
| iy = iy4 + k + 1; |
| iy = clamp(iy, 0, height - 1); |
| const __m128i src_1 = |
| _mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7)); |
| const __m256i src_01 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(src_0), src_1, 0x1); |
| sx = sx4 + beta * (k + 4); |
| prepare_horizontal_filter_coeff_alpha0_avx2(beta, sx, coeff); |
| filter_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src, round_const, |
| shift, row); |
| row += 1; |
| } |
| iy = iy4 + k; |
| iy = clamp(iy, 0, height - 1); |
| const __m256i src_01 = _mm256_castsi128_si256( |
| _mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7))); |
| sx = sx4 + beta * (k + 4); |
| prepare_horizontal_filter_coeff_alpha0_avx2(beta, sx, coeff); |
| filter_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src, round_const, |
| shift, row); |
| } |
| |
| static INLINE void warp_horizontal_filter_beta0_avx2( |
| const uint8_t *ref, __m256i *horz_out, int stride, int32_t ix4, int32_t iy4, |
| int32_t sx4, int alpha, int beta, int p_height, int height, int i, |
| const __m256i *round_const, const __m128i *shift, |
| const __m256i *shuffle_src) { |
| (void)beta; |
| int k, iy, row = 0; |
| __m256i coeff[4]; |
| prepare_horizontal_filter_coeff_beta0_avx2(alpha, sx4, coeff); |
| for (k = -7; k <= (AOMMIN(8, p_height - i) - 2); k += 2) { |
| iy = iy4 + k; |
| iy = clamp(iy, 0, height - 1); |
| const __m128i src_0 = |
| _mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7)); |
| iy = iy4 + k + 1; |
| iy = clamp(iy, 0, height - 1); |
| const __m128i src_1 = |
| _mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7)); |
| const __m256i src_01 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(src_0), src_1, 0x1); |
| filter_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src, round_const, |
| shift, row); |
| row += 1; |
| } |
| iy = iy4 + k; |
| iy = clamp(iy, 0, height - 1); |
| const __m256i src_01 = _mm256_castsi128_si256( |
| _mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7))); |
| filter_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src, round_const, |
| shift, row); |
| } |
| |
| static INLINE void warp_horizontal_filter_alpha0_beta0_avx2( |
| const uint8_t *ref, __m256i *horz_out, int stride, int32_t ix4, int32_t iy4, |
| int32_t sx4, int alpha, int beta, int p_height, int height, int i, |
| const __m256i *round_const, const __m128i *shift, |
| const __m256i *shuffle_src) { |
| (void)alpha; |
| int k, iy, row = 0; |
| __m256i coeff[4]; |
| prepare_horizontal_filter_coeff_alpha0_avx2(beta, sx4, coeff); |
| for (k = -7; k <= (AOMMIN(8, p_height - i) - 2); k += 2) { |
| iy = iy4 + k; |
| iy = clamp(iy, 0, height - 1); |
| const __m128i src0 = |
| _mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7)); |
| iy = iy4 + k + 1; |
| iy = clamp(iy, 0, height - 1); |
| const __m128i src1 = |
| _mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7)); |
| const __m256i src_01 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(src0), src1, 0x1); |
| filter_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src, round_const, |
| shift, row); |
| row += 1; |
| } |
| iy = iy4 + k; |
| iy = clamp(iy, 0, height - 1); |
| const __m256i src_01 = _mm256_castsi128_si256( |
| _mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7))); |
| filter_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src, round_const, |
| shift, row); |
| } |
| |
| static INLINE void unpack_weights_and_set_round_const_avx2( |
| ConvolveParams *conv_params, const int round_bits, const int offset_bits, |
| __m256i *res_sub_const, __m256i *round_bits_const, __m256i *wt) { |
| *res_sub_const = |
| _mm256_set1_epi16(-(1 << (offset_bits - conv_params->round_1)) - |
| (1 << (offset_bits - conv_params->round_1 - 1))); |
| *round_bits_const = _mm256_set1_epi16(((1 << round_bits) >> 1)); |
| |
| const int w0 = conv_params->fwd_offset; |
| const int w1 = conv_params->bck_offset; |
| const __m256i wt0 = _mm256_set1_epi16(w0); |
| const __m256i wt1 = _mm256_set1_epi16(w1); |
| *wt = _mm256_unpacklo_epi16(wt0, wt1); |
| } |
| |
| static INLINE void prepare_vertical_filter_coeffs_avx2(int gamma, int delta, |
| int sy, |
| __m256i *coeffs) { |
| __m128i filt_00 = |
| _mm_loadu_si128((__m128i *)(av1_warped_filter + |
| ((sy + 0 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| __m128i filt_01 = |
| _mm_loadu_si128((__m128i *)(av1_warped_filter + |
| ((sy + 2 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| __m128i filt_02 = |
| _mm_loadu_si128((__m128i *)(av1_warped_filter + |
| ((sy + 4 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| __m128i filt_03 = |
| _mm_loadu_si128((__m128i *)(av1_warped_filter + |
| ((sy + 6 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| |
| __m128i filt_10 = _mm_loadu_si128( |
| (__m128i *)(av1_warped_filter + |
| (((sy + delta) + 0 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| __m128i filt_11 = _mm_loadu_si128( |
| (__m128i *)(av1_warped_filter + |
| (((sy + delta) + 2 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| __m128i filt_12 = _mm_loadu_si128( |
| (__m128i *)(av1_warped_filter + |
| (((sy + delta) + 4 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| __m128i filt_13 = _mm_loadu_si128( |
| (__m128i *)(av1_warped_filter + |
| (((sy + delta) + 6 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| |
| __m256i filt_0 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(filt_00), filt_10, 0x1); |
| __m256i filt_1 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(filt_01), filt_11, 0x1); |
| __m256i filt_2 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(filt_02), filt_12, 0x1); |
| __m256i filt_3 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(filt_03), filt_13, 0x1); |
| |
| __m256i res_0 = _mm256_unpacklo_epi32(filt_0, filt_1); |
| __m256i res_1 = _mm256_unpacklo_epi32(filt_2, filt_3); |
| __m256i res_2 = _mm256_unpackhi_epi32(filt_0, filt_1); |
| __m256i res_3 = _mm256_unpackhi_epi32(filt_2, filt_3); |
| |
| coeffs[0] = _mm256_unpacklo_epi64(res_0, res_1); |
| coeffs[1] = _mm256_unpackhi_epi64(res_0, res_1); |
| coeffs[2] = _mm256_unpacklo_epi64(res_2, res_3); |
| coeffs[3] = _mm256_unpackhi_epi64(res_2, res_3); |
| |
| filt_00 = |
| _mm_loadu_si128((__m128i *)(av1_warped_filter + |
| ((sy + 1 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| filt_01 = |
| _mm_loadu_si128((__m128i *)(av1_warped_filter + |
| ((sy + 3 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| filt_02 = |
| _mm_loadu_si128((__m128i *)(av1_warped_filter + |
| ((sy + 5 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| filt_03 = |
| _mm_loadu_si128((__m128i *)(av1_warped_filter + |
| ((sy + 7 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| |
| filt_10 = _mm_loadu_si128( |
| (__m128i *)(av1_warped_filter + |
| (((sy + delta) + 1 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| filt_11 = _mm_loadu_si128( |
| (__m128i *)(av1_warped_filter + |
| (((sy + delta) + 3 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| filt_12 = _mm_loadu_si128( |
| (__m128i *)(av1_warped_filter + |
| (((sy + delta) + 5 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| filt_13 = _mm_loadu_si128( |
| (__m128i *)(av1_warped_filter + |
| (((sy + delta) + 7 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| |
| filt_0 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(filt_00), filt_10, 0x1); |
| filt_1 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(filt_01), filt_11, 0x1); |
| filt_2 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(filt_02), filt_12, 0x1); |
| filt_3 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(filt_03), filt_13, 0x1); |
| |
| res_0 = _mm256_unpacklo_epi32(filt_0, filt_1); |
| res_1 = _mm256_unpacklo_epi32(filt_2, filt_3); |
| res_2 = _mm256_unpackhi_epi32(filt_0, filt_1); |
| res_3 = _mm256_unpackhi_epi32(filt_2, filt_3); |
| |
| coeffs[4] = _mm256_unpacklo_epi64(res_0, res_1); |
| coeffs[5] = _mm256_unpackhi_epi64(res_0, res_1); |
| coeffs[6] = _mm256_unpacklo_epi64(res_2, res_3); |
| coeffs[7] = _mm256_unpackhi_epi64(res_2, res_3); |
| } |
| |
| static INLINE void prepare_vertical_filter_coeffs_delta0_avx2(int gamma, int sy, |
| __m256i *coeffs) { |
| __m128i filt_00 = |
| _mm_loadu_si128((__m128i *)(av1_warped_filter + |
| ((sy + 0 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| __m128i filt_01 = |
| _mm_loadu_si128((__m128i *)(av1_warped_filter + |
| ((sy + 2 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| __m128i filt_02 = |
| _mm_loadu_si128((__m128i *)(av1_warped_filter + |
| ((sy + 4 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| __m128i filt_03 = |
| _mm_loadu_si128((__m128i *)(av1_warped_filter + |
| ((sy + 6 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| |
| __m256i filt_0 = _mm256_broadcastsi128_si256(filt_00); |
| __m256i filt_1 = _mm256_broadcastsi128_si256(filt_01); |
| __m256i filt_2 = _mm256_broadcastsi128_si256(filt_02); |
| __m256i filt_3 = _mm256_broadcastsi128_si256(filt_03); |
| |
| __m256i res_0 = _mm256_unpacklo_epi32(filt_0, filt_1); |
| __m256i res_1 = _mm256_unpacklo_epi32(filt_2, filt_3); |
| __m256i res_2 = _mm256_unpackhi_epi32(filt_0, filt_1); |
| __m256i res_3 = _mm256_unpackhi_epi32(filt_2, filt_3); |
| |
| coeffs[0] = _mm256_unpacklo_epi64(res_0, res_1); |
| coeffs[1] = _mm256_unpackhi_epi64(res_0, res_1); |
| coeffs[2] = _mm256_unpacklo_epi64(res_2, res_3); |
| coeffs[3] = _mm256_unpackhi_epi64(res_2, res_3); |
| |
| filt_00 = |
| _mm_loadu_si128((__m128i *)(av1_warped_filter + |
| ((sy + 1 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| filt_01 = |
| _mm_loadu_si128((__m128i *)(av1_warped_filter + |
| ((sy + 3 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| filt_02 = |
| _mm_loadu_si128((__m128i *)(av1_warped_filter + |
| ((sy + 5 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| filt_03 = |
| _mm_loadu_si128((__m128i *)(av1_warped_filter + |
| ((sy + 7 * gamma) >> WARPEDDIFF_PREC_BITS))); |
| |
| filt_0 = _mm256_broadcastsi128_si256(filt_00); |
| filt_1 = _mm256_broadcastsi128_si256(filt_01); |
| filt_2 = _mm256_broadcastsi128_si256(filt_02); |
| filt_3 = _mm256_broadcastsi128_si256(filt_03); |
| |
| res_0 = _mm256_unpacklo_epi32(filt_0, filt_1); |
| res_1 = _mm256_unpacklo_epi32(filt_2, filt_3); |
| res_2 = _mm256_unpackhi_epi32(filt_0, filt_1); |
| res_3 = _mm256_unpackhi_epi32(filt_2, filt_3); |
| |
| coeffs[4] = _mm256_unpacklo_epi64(res_0, res_1); |
| coeffs[5] = _mm256_unpackhi_epi64(res_0, res_1); |
| coeffs[6] = _mm256_unpacklo_epi64(res_2, res_3); |
| coeffs[7] = _mm256_unpackhi_epi64(res_2, res_3); |
| } |
| |
| static INLINE void prepare_vertical_filter_coeffs_gamma0_avx2(int delta, int sy, |
| __m256i *coeffs) { |
| const __m128i filt_0 = _mm_loadu_si128( |
| (__m128i *)(av1_warped_filter + (sy >> WARPEDDIFF_PREC_BITS))); |
| const __m128i filt_1 = _mm_loadu_si128( |
| (__m128i *)(av1_warped_filter + ((sy + delta) >> WARPEDDIFF_PREC_BITS))); |
| |
| __m256i res_0 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(filt_0), filt_1, 0x1); |
| |
| coeffs[0] = _mm256_shuffle_epi8( |
| res_0, _mm256_load_si256((__m256i *)shuffle_gamma0_mask0_avx2)); |
| coeffs[1] = _mm256_shuffle_epi8( |
| res_0, _mm256_load_si256((__m256i *)shuffle_gamma0_mask1_avx2)); |
| coeffs[2] = _mm256_shuffle_epi8( |
| res_0, _mm256_load_si256((__m256i *)shuffle_gamma0_mask2_avx2)); |
| coeffs[3] = _mm256_shuffle_epi8( |
| res_0, _mm256_load_si256((__m256i *)shuffle_gamma0_mask3_avx2)); |
| |
| coeffs[4] = coeffs[0]; |
| coeffs[5] = coeffs[1]; |
| coeffs[6] = coeffs[2]; |
| coeffs[7] = coeffs[3]; |
| } |
| |
| static INLINE void filter_src_pixels_vertical_avx2(__m256i *horz_out, |
| __m256i *src, |
| __m256i *coeffs, |
| __m256i *res_lo, |
| __m256i *res_hi, int row) { |
| const __m256i src_6 = horz_out[row + 3]; |
| const __m256i src_7 = |
| _mm256_permute2x128_si256(horz_out[row + 3], horz_out[row + 4], 0x21); |
| |
| src[6] = _mm256_unpacklo_epi16(src_6, src_7); |
| |
| const __m256i res_0 = _mm256_madd_epi16(src[0], coeffs[0]); |
| const __m256i res_2 = _mm256_madd_epi16(src[2], coeffs[1]); |
| const __m256i res_4 = _mm256_madd_epi16(src[4], coeffs[2]); |
| const __m256i res_6 = _mm256_madd_epi16(src[6], coeffs[3]); |
| |
| const __m256i res_even = _mm256_add_epi32(_mm256_add_epi32(res_0, res_2), |
| _mm256_add_epi32(res_4, res_6)); |
| |
| src[7] = _mm256_unpackhi_epi16(src_6, src_7); |
| |
| const __m256i res_1 = _mm256_madd_epi16(src[1], coeffs[4]); |
| const __m256i res_3 = _mm256_madd_epi16(src[3], coeffs[5]); |
| const __m256i res_5 = _mm256_madd_epi16(src[5], coeffs[6]); |
| const __m256i res_7 = _mm256_madd_epi16(src[7], coeffs[7]); |
| |
| const __m256i res_odd = _mm256_add_epi32(_mm256_add_epi32(res_1, res_3), |
| _mm256_add_epi32(res_5, res_7)); |
| |
| // Rearrange pixels back into the order 0 ... 7 |
| *res_lo = _mm256_unpacklo_epi32(res_even, res_odd); |
| *res_hi = _mm256_unpackhi_epi32(res_even, res_odd); |
| } |
| |
| static INLINE void store_vertical_filter_output_avx2( |
| const __m256i *res_lo, const __m256i *res_hi, const __m256i *res_add_const, |
| const __m256i *wt, const __m256i *res_sub_const, |
| const __m256i *round_bits_const, uint8_t *pred, ConvolveParams *conv_params, |
| int i, int j, int k, const int reduce_bits_vert, int p_stride, int p_width, |
| const int round_bits) { |
| __m256i res_lo_1 = *res_lo; |
| __m256i res_hi_1 = *res_hi; |
| |
| if (conv_params->is_compound) { |
| __m128i *const p_0 = |
| (__m128i *)&conv_params->dst[(i + k + 4) * conv_params->dst_stride + j]; |
| __m128i *const p_1 = |
| (__m128i *)&conv_params |
| ->dst[(i + (k + 1) + 4) * conv_params->dst_stride + j]; |
| |
| res_lo_1 = _mm256_srai_epi32(_mm256_add_epi32(res_lo_1, *res_add_const), |
| reduce_bits_vert); |
| |
| const __m256i temp_lo_16 = _mm256_packus_epi32(res_lo_1, res_lo_1); |
| __m256i res_lo_16; |
| if (conv_params->do_average) { |
| __m128i *const dst8_0 = (__m128i *)&pred[(i + k + 4) * p_stride + j]; |
| __m128i *const dst8_1 = |
| (__m128i *)&pred[(i + (k + 1) + 4) * p_stride + j]; |
| const __m128i p_16_0 = _mm_loadl_epi64(p_0); |
| const __m128i p_16_1 = _mm_loadl_epi64(p_1); |
| const __m256i p_16 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(p_16_0), p_16_1, 1); |
| if (conv_params->use_dist_wtd_comp_avg) { |
| const __m256i p_16_lo = _mm256_unpacklo_epi16(p_16, temp_lo_16); |
| const __m256i wt_res_lo = _mm256_madd_epi16(p_16_lo, *wt); |
| const __m256i shifted_32 = |
| _mm256_srai_epi32(wt_res_lo, DIST_PRECISION_BITS); |
| res_lo_16 = _mm256_packus_epi32(shifted_32, shifted_32); |
| } else { |
| res_lo_16 = _mm256_srai_epi16(_mm256_add_epi16(p_16, temp_lo_16), 1); |
| } |
| res_lo_16 = _mm256_add_epi16(res_lo_16, *res_sub_const); |
| res_lo_16 = _mm256_srai_epi16( |
| _mm256_add_epi16(res_lo_16, *round_bits_const), round_bits); |
| const __m256i res_8_lo = _mm256_packus_epi16(res_lo_16, res_lo_16); |
| const __m128i res_8_lo_0 = _mm256_castsi256_si128(res_8_lo); |
| const __m128i res_8_lo_1 = _mm256_extracti128_si256(res_8_lo, 1); |
| *(uint32_t *)dst8_0 = _mm_cvtsi128_si32(res_8_lo_0); |
| *(uint32_t *)dst8_1 = _mm_cvtsi128_si32(res_8_lo_1); |
| } else { |
| const __m128i temp_lo_16_0 = _mm256_castsi256_si128(temp_lo_16); |
| const __m128i temp_lo_16_1 = _mm256_extracti128_si256(temp_lo_16, 1); |
| _mm_storel_epi64(p_0, temp_lo_16_0); |
| _mm_storel_epi64(p_1, temp_lo_16_1); |
| } |
| if (p_width > 4) { |
| __m128i *const p4_0 = |
| (__m128i *)&conv_params |
| ->dst[(i + k + 4) * conv_params->dst_stride + j + 4]; |
| __m128i *const p4_1 = |
| (__m128i *)&conv_params |
| ->dst[(i + (k + 1) + 4) * conv_params->dst_stride + j + 4]; |
| res_hi_1 = _mm256_srai_epi32(_mm256_add_epi32(res_hi_1, *res_add_const), |
| reduce_bits_vert); |
| const __m256i temp_hi_16 = _mm256_packus_epi32(res_hi_1, res_hi_1); |
| __m256i res_hi_16; |
| if (conv_params->do_average) { |
| __m128i *const dst8_4_0 = |
| (__m128i *)&pred[(i + k + 4) * p_stride + j + 4]; |
| __m128i *const dst8_4_1 = |
| (__m128i *)&pred[(i + (k + 1) + 4) * p_stride + j + 4]; |
| const __m128i p4_16_0 = _mm_loadl_epi64(p4_0); |
| const __m128i p4_16_1 = _mm_loadl_epi64(p4_1); |
| const __m256i p4_16 = _mm256_inserti128_si256( |
| _mm256_castsi128_si256(p4_16_0), p4_16_1, 1); |
| if (conv_params->use_dist_wtd_comp_avg) { |
| const __m256i p_16_hi = _mm256_unpacklo_epi16(p4_16, temp_hi_16); |
| const __m256i wt_res_hi = _mm256_madd_epi16(p_16_hi, *wt); |
| const __m256i shifted_32 = |
| _mm256_srai_epi32(wt_res_hi, DIST_PRECISION_BITS); |
| res_hi_16 = _mm256_packus_epi32(shifted_32, shifted_32); |
| } else { |
| res_hi_16 = _mm256_srai_epi16(_mm256_add_epi16(p4_16, temp_hi_16), 1); |
| } |
| res_hi_16 = _mm256_add_epi16(res_hi_16, *res_sub_const); |
| res_hi_16 = _mm256_srai_epi16( |
| _mm256_add_epi16(res_hi_16, *round_bits_const), round_bits); |
| __m256i res_8_hi = _mm256_packus_epi16(res_hi_16, res_hi_16); |
| const __m128i res_8_hi_0 = _mm256_castsi256_si128(res_8_hi); |
| const __m128i res_8_hi_1 = _mm256_extracti128_si256(res_8_hi, 1); |
| *(uint32_t *)dst8_4_0 = _mm_cvtsi128_si32(res_8_hi_0); |
| *(uint32_t *)dst8_4_1 = _mm_cvtsi128_si32(res_8_hi_1); |
| } else { |
| const __m128i temp_hi_16_0 = _mm256_castsi256_si128(temp_hi_16); |
| const __m128i temp_hi_16_1 = _mm256_extracti128_si256(temp_hi_16, 1); |
| _mm_storel_epi64(p4_0, temp_hi_16_0); |
| _mm_storel_epi64(p4_1, temp_hi_16_1); |
| } |
| } |
| } else { |
| const __m256i res_lo_round = _mm256_srai_epi32( |
| _mm256_add_epi32(res_lo_1, *res_add_const), reduce_bits_vert); |
| const __m256i res_hi_round = _mm256_srai_epi32( |
| _mm256_add_epi32(res_hi_1, *res_add_const), reduce_bits_vert); |
| |
| const __m256i res_16bit = _mm256_packs_epi32(res_lo_round, res_hi_round); |
| const __m256i res_8bit = _mm256_packus_epi16(res_16bit, res_16bit); |
| const __m128i res_8bit0 = _mm256_castsi256_si128(res_8bit); |
| const __m128i res_8bit1 = _mm256_extracti128_si256(res_8bit, 1); |
| |
| // Store, blending with 'pred' if needed |
| __m128i *const p = (__m128i *)&pred[(i + k + 4) * p_stride + j]; |
| __m128i *const p1 = (__m128i *)&pred[(i + (k + 1) + 4) * p_stride + j]; |
| |
| if (p_width == 4) { |
| *(uint32_t *)p = _mm_cvtsi128_si32(res_8bit0); |
| *(uint32_t *)p1 = _mm_cvtsi128_si32(res_8bit1); |
| } else { |
| _mm_storel_epi64(p, res_8bit0); |
| _mm_storel_epi64(p1, res_8bit1); |
| } |
| } |
| } |
| |
| static INLINE void warp_vertical_filter_avx2( |
| uint8_t *pred, __m256i *horz_out, ConvolveParams *conv_params, |
| int16_t gamma, int16_t delta, int p_height, int p_stride, int p_width, |
| int i, int j, int sy4, const int reduce_bits_vert, |
| const __m256i *res_add_const, const int round_bits, |
| const __m256i *res_sub_const, const __m256i *round_bits_const, |
| const __m256i *wt) { |
| int k, row = 0; |
| __m256i src[8]; |
| const __m256i src_0 = horz_out[0]; |
| const __m256i src_1 = |
| _mm256_permute2x128_si256(horz_out[0], horz_out[1], 0x21); |
| const __m256i src_2 = horz_out[1]; |
| const __m256i src_3 = |
| _mm256_permute2x128_si256(horz_out[1], horz_out[2], 0x21); |
| const __m256i src_4 = horz_out[2]; |
| const __m256i src_5 = |
| _mm256_permute2x128_si256(horz_out[2], horz_out[3], 0x21); |
| |
| src[0] = _mm256_unpacklo_epi16(src_0, src_1); |
| src[2] = _mm256_unpacklo_epi16(src_2, src_3); |
| src[4] = _mm256_unpacklo_epi16(src_4, src_5); |
| |
| src[1] = _mm256_unpackhi_epi16(src_0, src_1); |
| src[3] = _mm256_unpackhi_epi16(src_2, src_3); |
| src[5] = _mm256_unpackhi_epi16(src_4, src_5); |
| |
| for (k = -4; k < AOMMIN(4, p_height - i - 4); k += 2) { |
| int sy = sy4 + delta * (k + 4); |
| __m256i coeffs[8]; |
| prepare_vertical_filter_coeffs_avx2(gamma, delta, sy, coeffs); |
| __m256i res_lo, res_hi; |
| filter_src_pixels_vertical_avx2(horz_out, src, coeffs, &res_lo, &res_hi, |
| row); |
| store_vertical_filter_output_avx2(&res_lo, &res_hi, res_add_const, wt, |
| res_sub_const, round_bits_const, pred, |
| conv_params, i, j, k, reduce_bits_vert, |
| p_stride, p_width, round_bits); |
| src[0] = src[2]; |
| src[2] = src[4]; |
| src[4] = src[6]; |
| src[1] = src[3]; |
| src[3] = src[5]; |
| src[5] = src[7]; |
| |
| row += 1; |
| } |
| } |
| |
| static INLINE void warp_vertical_filter_gamma0_avx2( |
| uint8_t *pred, __m256i *horz_out, ConvolveParams *conv_params, |
| int16_t gamma, int16_t delta, int p_height, int p_stride, int p_width, |
| int i, int j, int sy4, const int reduce_bits_vert, |
| const __m256i *res_add_const, const int round_bits, |
| const __m256i *res_sub_const, const __m256i *round_bits_const, |
| const __m256i *wt) { |
| (void)gamma; |
| int k, row = 0; |
| __m256i src[8]; |
| const __m256i src_0 = horz_out[0]; |
| const __m256i src_1 = |
| _mm256_permute2x128_si256(horz_out[0], horz_out[1], 0x21); |
| const __m256i src_2 = horz_out[1]; |
| const __m256i src_3 = |
| _mm256_permute2x128_si256(horz_out[1], horz_out[2], 0x21); |
| const __m256i src_4 = horz_out[2]; |
| const __m256i src_5 = |
| _mm256_permute2x128_si256(horz_out[2], horz_out[3], 0x21); |
| |
| src[0] = _mm256_unpacklo_epi16(src_0, src_1); |
| src[2] = _mm256_unpacklo_epi16(src_2, src_3); |
| src[4] = _mm256_unpacklo_epi16(src_4, src_5); |
| |
| src[1] = _mm256_unpackhi_epi16(src_0, src_1); |
| src[3] = _mm256_unpackhi_epi16(src_2, src_3); |
| src[5] = _mm256_unpackhi_epi16(src_4, src_5); |
| |
| for (k = -4; k < AOMMIN(4, p_height - i - 4); k += 2) { |
| int sy = sy4 + delta * (k + 4); |
| __m256i coeffs[8]; |
| prepare_vertical_filter_coeffs_gamma0_avx2(delta, sy, coeffs); |
| __m256i res_lo, res_hi; |
| filter_src_pixels_vertical_avx2(horz_out, src, coeffs, &res_lo, &res_hi, |
| row); |
| store_vertical_filter_output_avx2(&res_lo, &res_hi, res_add_const, wt, |
| res_sub_const, round_bits_const, pred, |
| conv_params, i, j, k, reduce_bits_vert, |
| p_stride, p_width, round_bits); |
| src[0] = src[2]; |
| src[2] = src[4]; |
| src[4] = src[6]; |
| src[1] = src[3]; |
| src[3] = src[5]; |
| src[5] = src[7]; |
| row += 1; |
| } |
| } |
| |
| static INLINE void warp_vertical_filter_delta0_avx2( |
| uint8_t *pred, __m256i *horz_out, ConvolveParams *conv_params, |
| int16_t gamma, int16_t delta, int p_height, int p_stride, int p_width, |
| int i, int j, int sy4, const int reduce_bits_vert, |
| const __m256i *res_add_const, const int round_bits, |
| const __m256i *res_sub_const, const __m256i *round_bits_const, |
| const __m256i *wt) { |
| (void)delta; |
| int k, row = 0; |
| __m256i src[8], coeffs[8]; |
| const __m256i src_0 = horz_out[0]; |
| const __m256i src_1 = |
| _mm256_permute2x128_si256(horz_out[0], horz_out[1], 0x21); |
| const __m256i src_2 = horz_out[1]; |
| const __m256i src_3 = |
| _mm256_permute2x128_si256(horz_out[1], horz_out[2], 0x21); |
| const __m256i src_4 = horz_out[2]; |
| const __m256i src_5 = |
| _mm256_permute2x128_si256(horz_out[2], horz_out[3], 0x21); |
| |
| src[0] = _mm256_unpacklo_epi16(src_0, src_1); |
| src[2] = _mm256_unpacklo_epi16(src_2, src_3); |
| src[4] = _mm256_unpacklo_epi16(src_4, src_5); |
| |
| src[1] = _mm256_unpackhi_epi16(src_0, src_1); |
| src[3] = _mm256_unpackhi_epi16(src_2, src_3); |
| src[5] = _mm256_unpackhi_epi16(src_4, src_5); |
| |
| prepare_vertical_filter_coeffs_delta0_avx2(gamma, sy4, coeffs); |
| |
| for (k = -4; k < AOMMIN(4, p_height - i - 4); k += 2) { |
| __m256i res_lo, res_hi; |
| filter_src_pixels_vertical_avx2(horz_out, src, coeffs, &res_lo, &res_hi, |
| row); |
| store_vertical_filter_output_avx2(&res_lo, &res_hi, res_add_const, wt, |
| res_sub_const, round_bits_const, pred, |
| conv_params, i, j, k, reduce_bits_vert, |
| p_stride, p_width, round_bits); |
| src[0] = src[2]; |
| src[2] = src[4]; |
| src[4] = src[6]; |
| src[1] = src[3]; |
| src[3] = src[5]; |
| src[5] = src[7]; |
| row += 1; |
| } |
| } |
| |
| static INLINE void warp_vertical_filter_gamma0_delta0_avx2( |
| uint8_t *pred, __m256i *horz_out, ConvolveParams *conv_params, |
| int16_t gamma, int16_t delta, int p_height, int p_stride, int p_width, |
| int i, int j, int sy4, const int reduce_bits_vert, |
| const __m256i *res_add_const, const int round_bits, |
| const __m256i *res_sub_const, const __m256i *round_bits_const, |
| const __m256i *wt) { |
| (void)gamma; |
| int k, row = 0; |
| __m256i src[8], coeffs[8]; |
| const __m256i src_0 = horz_out[0]; |
| const __m256i src_1 = |
| _mm256_permute2x128_si256(horz_out[0], horz_out[1], 0x21); |
| const __m256i src_2 = horz_out[1]; |
| const __m256i src_3 = |
| _mm256_permute2x128_si256(horz_out[1], horz_out[2], 0x21); |
| const __m256i src_4 = horz_out[2]; |
| const __m256i src_5 = |
| _mm256_permute2x128_si256(horz_out[2], horz_out[3], 0x21); |
| |
| src[0] = _mm256_unpacklo_epi16(src_0, src_1); |
| src[2] = _mm256_unpacklo_epi16(src_2, src_3); |
| src[4] = _mm256_unpacklo_epi16(src_4, src_5); |
| |
| src[1] = _mm256_unpackhi_epi16(src_0, src_1); |
| src[3] = _mm256_unpackhi_epi16(src_2, src_3); |
| src[5] = _mm256_unpackhi_epi16(src_4, src_5); |
| |
| prepare_vertical_filter_coeffs_gamma0_avx2(delta, sy4, coeffs); |
| |
| for (k = -4; k < AOMMIN(4, p_height - i - 4); k += 2) { |
| __m256i res_lo, res_hi; |
| filter_src_pixels_vertical_avx2(horz_out, src, coeffs, &res_lo, &res_hi, |
| row); |
| store_vertical_filter_output_avx2(&res_lo, &res_hi, res_add_const, wt, |
| res_sub_const, round_bits_const, pred, |
| conv_params, i, j, k, reduce_bits_vert, |
| p_stride, p_width, round_bits); |
| src[0] = src[2]; |
| src[2] = src[4]; |
| src[4] = src[6]; |
| src[1] = src[3]; |
| src[3] = src[5]; |
| src[5] = src[7]; |
| row += 1; |
| } |
| } |
| |
| static INLINE void prepare_warp_vertical_filter_avx2( |
| uint8_t *pred, __m256i *horz_out, ConvolveParams *conv_params, |
| int16_t gamma, int16_t delta, int p_height, int p_stride, int p_width, |
| int i, int j, int sy4, const int reduce_bits_vert, |
| const __m256i *res_add_const, const int round_bits, |
| const __m256i *res_sub_const, const __m256i *round_bits_const, |
| const __m256i *wt) { |
| if (gamma == 0 && delta == 0) |
| warp_vertical_filter_gamma0_delta0_avx2( |
| pred, horz_out, conv_params, gamma, delta, p_height, p_stride, p_width, |
| i, j, sy4, reduce_bits_vert, res_add_const, round_bits, res_sub_const, |
| round_bits_const, wt); |
| else if (gamma == 0 && delta != 0) |
| warp_vertical_filter_gamma0_avx2( |
| pred, horz_out, conv_params, gamma, delta, p_height, p_stride, p_width, |
| i, j, sy4, reduce_bits_vert, res_add_const, round_bits, res_sub_const, |
| round_bits_const, wt); |
| else if (gamma != 0 && delta == 0) |
| warp_vertical_filter_delta0_avx2( |
| pred, horz_out, conv_params, gamma, delta, p_height, p_stride, p_width, |
| i, j, sy4, reduce_bits_vert, res_add_const, round_bits, res_sub_const, |
| round_bits_const, wt); |
| else |
| warp_vertical_filter_avx2(pred, horz_out, conv_params, gamma, delta, |
| p_height, p_stride, p_width, i, j, sy4, |
| reduce_bits_vert, res_add_const, round_bits, |
| res_sub_const, round_bits_const, wt); |
| } |
| |
| static INLINE void prepare_warp_horizontal_filter_avx2( |
| const uint8_t *ref, __m256i *horz_out, int stride, int32_t ix4, int32_t iy4, |
| int32_t sx4, int alpha, int beta, int p_height, int height, int i, |
| const __m256i *round_const, const __m128i *shift, |
| const __m256i *shuffle_src) { |
| if (alpha == 0 && beta == 0) |
| warp_horizontal_filter_alpha0_beta0_avx2( |
| ref, horz_out, stride, ix4, iy4, sx4, alpha, beta, p_height, height, i, |
| round_const, shift, shuffle_src); |
| else if (alpha == 0 && beta != 0) |
| warp_horizontal_filter_alpha0_avx2(ref, horz_out, stride, ix4, iy4, sx4, |
| alpha, beta, p_height, height, i, |
| round_const, shift, shuffle_src); |
| else if (alpha != 0 && beta == 0) |
| warp_horizontal_filter_beta0_avx2(ref, horz_out, stride, ix4, iy4, sx4, |
| alpha, beta, p_height, height, i, |
| round_const, shift, shuffle_src); |
| else |
| warp_horizontal_filter_avx2(ref, horz_out, stride, ix4, iy4, sx4, alpha, |
| beta, p_height, height, i, round_const, shift, |
| shuffle_src); |
| } |
| |
| int64_t av1_calc_frame_error_avx2(const uint8_t *const ref, int ref_stride, |
| const uint8_t *const dst, int p_width, |
| int p_height, int dst_stride) { |
| int64_t sum_error = 0; |
| int i, j; |
| __m256i row_error, col_error; |
| __m256i zero = _mm256_set1_epi16(0); |
| __m256i dup_255 = _mm256_set1_epi16(255); |
| col_error = zero; |
| |
| for (i = 0; i < (p_height / 4); i++) { |
| row_error = _mm256_set1_epi16(0); |
| for (j = 0; j < (p_width / 16); j++) { |
| __m256i ref_1_16 = _mm256_cvtepu8_epi16(_mm_load_si128( |
| (__m128i *)(ref + (j * 16) + (((i * 4) + 0) * ref_stride)))); |
| __m256i dst_1_16 = _mm256_cvtepu8_epi16(_mm_load_si128( |
| (__m128i *)(dst + (j * 16) + (((i * 4) + 0) * dst_stride)))); |
| __m256i ref_2_16 = _mm256_cvtepu8_epi16(_mm_load_si128( |
| (__m128i *)(ref + (j * 16) + (((i * 4) + 1) * ref_stride)))); |
| __m256i dst_2_16 = _mm256_cvtepu8_epi16(_mm_load_si128( |
| (__m128i *)(dst + (j * 16) + (((i * 4) + 1) * dst_stride)))); |
| __m256i ref_3_16 = _mm256_cvtepu8_epi16(_mm_load_si128( |
| (__m128i *)(ref + (j * 16) + (((i * 4) + 2) * ref_stride)))); |
| __m256i dst_3_16 = _mm256_cvtepu8_epi16(_mm_load_si128( |
| (__m128i *)(dst + (j * 16) + (((i * 4) + 2) * dst_stride)))); |
| __m256i ref_4_16 = _mm256_cvtepu8_epi16(_mm_load_si128( |
| (__m128i *)(ref + (j * 16) + (((i * 4) + 3) * ref_stride)))); |
| __m256i dst_4_16 = _mm256_cvtepu8_epi16(_mm_load_si128( |
| (__m128i *)(dst + (j * 16) + (((i * 4) + 3) * dst_stride)))); |
| |
| __m256i diff_1 = |
| _mm256_add_epi16(_mm256_sub_epi16(dst_1_16, ref_1_16), dup_255); |
| __m256i diff_2 = |
| _mm256_add_epi16(_mm256_sub_epi16(dst_2_16, ref_2_16), dup_255); |
| __m256i diff_3 = |
| _mm256_add_epi16(_mm256_sub_epi16(dst_3_16, ref_3_16), dup_255); |
| __m256i diff_4 = |
| _mm256_add_epi16(_mm256_sub_epi16(dst_4_16, ref_4_16), dup_255); |
| |
| __m256i diff_1_lo = _mm256_unpacklo_epi16(diff_1, zero); |
| __m256i diff_1_hi = _mm256_unpackhi_epi16(diff_1, zero); |
| __m256i diff_2_lo = _mm256_unpacklo_epi16(diff_2, zero); |
| __m256i diff_2_hi = _mm256_unpackhi_epi16(diff_2, zero); |
| __m256i diff_3_lo = _mm256_unpacklo_epi16(diff_3, zero); |
| __m256i diff_3_hi = _mm256_unpackhi_epi16(diff_3, zero); |
| __m256i diff_4_lo = _mm256_unpacklo_epi16(diff_4, zero); |
| __m256i diff_4_hi = _mm256_unpackhi_epi16(diff_4, zero); |
| |
| __m256i error_1_lo = |
| _mm256_i32gather_epi32(error_measure_lut, diff_1_lo, 4); |
| __m256i error_1_hi = |
| _mm256_i32gather_epi32(error_measure_lut, diff_1_hi, 4); |
| __m256i error_2_lo = |
| _mm256_i32gather_epi32(error_measure_lut, diff_2_lo, 4); |
| __m256i error_2_hi = |
| _mm256_i32gather_epi32(error_measure_lut, diff_2_hi, 4); |
| __m256i error_3_lo = |
| _mm256_i32gather_epi32(error_measure_lut, diff_3_lo, 4); |
| __m256i error_3_hi = |
| _mm256_i32gather_epi32(error_measure_lut, diff_3_hi, 4); |
| __m256i error_4_lo = |
| _mm256_i32gather_epi32(error_measure_lut, diff_4_lo, 4); |
| __m256i error_4_hi = |
| _mm256_i32gather_epi32(error_measure_lut, diff_4_hi, 4); |
| |
| __m256i error_1 = _mm256_add_epi32(error_1_lo, error_1_hi); |
| __m256i error_2 = _mm256_add_epi32(error_2_lo, error_2_hi); |
| __m256i error_3 = _mm256_add_epi32(error_3_lo, error_3_hi); |
| __m256i error_4 = _mm256_add_epi32(error_4_lo, error_4_hi); |
| |
| __m256i error_1_2 = _mm256_add_epi32(error_1, error_2); |
| __m256i error_3_4 = _mm256_add_epi32(error_3, error_4); |
| |
| __m256i error_1_2_3_4 = _mm256_add_epi32(error_1_2, error_3_4); |
| row_error = _mm256_add_epi32(row_error, error_1_2_3_4); |
| } |
| __m256i col_error_lo = _mm256_unpacklo_epi32(row_error, zero); |
| __m256i col_error_hi = _mm256_unpackhi_epi32(row_error, zero); |
| __m256i col_error_temp = _mm256_add_epi64(col_error_lo, col_error_hi); |
| col_error = _mm256_add_epi64(col_error, col_error_temp); |
| // Error summation for remaining width, which is not multiple of 16 |
| if (p_width & 0xf) { |
| for (int k = 0; k < 4; ++k) { |
| for (int l = j * 16; l < p_width; ++l) { |
| sum_error += |
| (int64_t)error_measure(dst[l + ((i * 4) + k) * dst_stride] - |
| ref[l + ((i * 4) + k) * ref_stride]); |
| } |
| } |
| } |
| } |
| __m128i sum_error_q_0 = _mm256_castsi256_si128(col_error); |
| __m128i sum_error_q_1 = _mm256_extracti128_si256(col_error, 1); |
| sum_error_q_0 = _mm_add_epi64(sum_error_q_0, sum_error_q_1); |
| int64_t sum_error_d_0, sum_error_d_1; |
| xx_storel_64(&sum_error_d_0, sum_error_q_0); |
| xx_storel_64(&sum_error_d_1, _mm_srli_si128(sum_error_q_0, 8)); |
| sum_error = (sum_error + sum_error_d_0 + sum_error_d_1); |
| // Error summation for remaining height, which is not multiple of 4 |
| if (p_height & 0x3) { |
| for (int k = i * 4; k < p_height; ++k) { |
| for (int l = 0; l < p_width; ++l) { |
| sum_error += (int64_t)error_measure(dst[l + k * dst_stride] - |
| ref[l + k * ref_stride]); |
| } |
| } |
| } |
| return sum_error; |
| } |
| |
| void av1_warp_affine_avx2(const int32_t *mat, const uint8_t *ref, int width, |
| int height, int stride, uint8_t *pred, int p_col, |
| int p_row, int p_width, int p_height, int p_stride, |
| int subsampling_x, int subsampling_y, |
| ConvolveParams *conv_params, int16_t alpha, |
| int16_t beta, int16_t gamma, int16_t delta) { |
| __m256i horz_out[8]; |
| int i, j, k; |
| const int bd = 8; |
| const int reduce_bits_horiz = conv_params->round_0; |
| const int reduce_bits_vert = conv_params->is_compound |
| ? conv_params->round_1 |
| : 2 * FILTER_BITS - reduce_bits_horiz; |
| const int offset_bits_horiz = bd + FILTER_BITS - 1; |
| assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL)); |
| |
| const int offset_bits_vert = bd + 2 * FILTER_BITS - reduce_bits_horiz; |
| const __m256i reduce_bits_vert_const = |
| _mm256_set1_epi32(((1 << reduce_bits_vert) >> 1)); |
| const __m256i res_add_const = _mm256_set1_epi32(1 << offset_bits_vert); |
| const int round_bits = |
| 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; |
| const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; |
| assert(IMPLIES(conv_params->do_average, conv_params->is_compound)); |
| |
| const __m256i round_const = _mm256_set1_epi16( |
| (1 << offset_bits_horiz) + ((1 << reduce_bits_horiz) >> 1)); |
| const __m128i shift = _mm_cvtsi32_si128(reduce_bits_horiz); |
| |
| __m256i res_sub_const, round_bits_const, wt; |
| unpack_weights_and_set_round_const_avx2(conv_params, round_bits, offset_bits, |
| &res_sub_const, &round_bits_const, |
| &wt); |
| |
| __m256i res_add_const_1; |
| if (conv_params->is_compound == 1) { |
| res_add_const_1 = _mm256_add_epi32(reduce_bits_vert_const, res_add_const); |
| } else { |
| res_add_const_1 = _mm256_set1_epi32(-(1 << (bd + reduce_bits_vert - 1)) + |
| ((1 << reduce_bits_vert) >> 1)); |
| } |
| const int32_t const1 = alpha * (-4) + beta * (-4) + |
| (1 << (WARPEDDIFF_PREC_BITS - 1)) + |
| (WARPEDPIXEL_PREC_SHIFTS << WARPEDDIFF_PREC_BITS); |
| const int32_t const2 = gamma * (-4) + delta * (-4) + |
| (1 << (WARPEDDIFF_PREC_BITS - 1)) + |
| (WARPEDPIXEL_PREC_SHIFTS << WARPEDDIFF_PREC_BITS); |
| const int32_t const3 = ((1 << WARP_PARAM_REDUCE_BITS) - 1); |
| const int16_t const4 = (1 << (bd + FILTER_BITS - reduce_bits_horiz - 1)); |
| const int16_t const5 = (1 << (FILTER_BITS - reduce_bits_horiz)); |
| |
| __m256i shuffle_src[4]; |
| shuffle_src[0] = _mm256_load_si256((__m256i *)shuffle_src0); |
| shuffle_src[1] = _mm256_load_si256((__m256i *)shuffle_src1); |
| shuffle_src[2] = _mm256_load_si256((__m256i *)shuffle_src2); |
| shuffle_src[3] = _mm256_load_si256((__m256i *)shuffle_src3); |
| |
| for (i = 0; i < p_height; i += 8) { |
| for (j = 0; j < p_width; j += 8) { |
| const int32_t src_x = (p_col + j + 4) << subsampling_x; |
| const int32_t src_y = (p_row + i + 4) << subsampling_y; |
| const int32_t dst_x = mat[2] * src_x + mat[3] * src_y + mat[0]; |
| const int32_t dst_y = mat[4] * src_x + mat[5] * src_y + mat[1]; |
| const int32_t x4 = dst_x >> subsampling_x; |
| const int32_t y4 = dst_y >> subsampling_y; |
| |
| int32_t ix4 = x4 >> WARPEDMODEL_PREC_BITS; |
| int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1); |
| int32_t iy4 = y4 >> WARPEDMODEL_PREC_BITS; |
| int32_t sy4 = y4 & ((1 << WARPEDMODEL_PREC_BITS) - 1); |
| |
| // Add in all the constant terms, including rounding and offset |
| sx4 += const1; |
| sy4 += const2; |
| |
| sx4 &= ~const3; |
| sy4 &= ~const3; |
| |
| // Horizontal filter |
| // If the block is aligned such that, after clamping, every sample |
| // would be taken from the leftmost/rightmost column, then we can |
| // skip the expensive horizontal filter. |
| |
| if (ix4 <= -7) { |
| int iy, row = 0; |
| for (k = -7; k <= (AOMMIN(8, p_height - i) - 2); k += 2) { |
| iy = iy4 + k; |
| iy = clamp(iy, 0, height - 1); |
| const __m256i temp_0 = |
| _mm256_set1_epi16(const4 + ref[iy * stride] * const5); |
| iy = iy4 + k + 1; |
| iy = clamp(iy, 0, height - 1); |
| const __m256i temp_1 = |
| _mm256_set1_epi16(const4 + ref[iy * stride] * const5); |
| horz_out[row] = _mm256_blend_epi32(temp_0, temp_1, 0xf0); |
| row += 1; |
| } |
| iy = iy4 + k; |
| iy = clamp(iy, 0, height - 1); |
| horz_out[row] = _mm256_set1_epi16(const4 + ref[iy * stride] * const5); |
| } else if (ix4 >= width + 6) { |
| int iy, row = 0; |
| for (k = -7; k <= (AOMMIN(8, p_height - i) - 2); k += 2) { |
| iy = iy4 + k; |
| iy = clamp(iy, 0, height - 1); |
| const __m256i temp_0 = _mm256_set1_epi16( |
| const4 + ref[iy * stride + (width - 1)] * const5); |
| iy = iy4 + k + 1; |
| iy = clamp(iy, 0, height - 1); |
| const __m256i temp_1 = _mm256_set1_epi16( |
| const4 + ref[iy * stride + (width - 1)] * const5); |
| horz_out[row] = _mm256_blend_epi32(temp_0, temp_1, 0xf0); |
| row += 1; |
| } |
| iy = iy4 + k; |
| iy = clamp(iy, 0, height - 1); |
| horz_out[row] = |
| _mm256_set1_epi16(const4 + ref[iy * stride + (width - 1)] * const5); |
| } else if (((ix4 - 7) < 0) || ((ix4 + 9) > width)) { |
| const int out_of_boundary_left = -(ix4 - 6); |
| const int out_of_boundary_right = (ix4 + 8) - width; |
| int iy, sx, row = 0; |
| for (k = -7; k <= (AOMMIN(8, p_height - i) - 2); k += 2) { |
| iy = iy4 + k; |
| iy = clamp(iy, 0, height - 1); |
| __m128i src0 = |
| _mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7)); |
| iy = iy4 + k + 1; |
| iy = clamp(iy, 0, height - 1); |
| __m128i src1 = |
| _mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7)); |
| |
| if (out_of_boundary_left >= 0) { |
| const __m128i shuffle_reg_left = |
| _mm_loadu_si128((__m128i *)warp_pad_left[out_of_boundary_left]); |
| src0 = _mm_shuffle_epi8(src0, shuffle_reg_left); |
| src1 = _mm_shuffle_epi8(src1, shuffle_reg_left); |
| } |
| if (out_of_boundary_right >= 0) { |
| const __m128i shuffle_reg_right = _mm_loadu_si128( |
| (__m128i *)warp_pad_right[out_of_boundary_right]); |
| src0 = _mm_shuffle_epi8(src0, shuffle_reg_right); |
| src1 = _mm_shuffle_epi8(src1, shuffle_reg_right); |
| } |
| sx = sx4 + beta * (k + 4); |
| const __m256i src_01 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(src0), src1, 0x1); |
| horizontal_filter_avx2(src_01, horz_out, sx, alpha, beta, row, |
| shuffle_src, &round_const, &shift); |
| row += 1; |
| } |
| iy = iy4 + k; |
| iy = clamp(iy, 0, height - 1); |
| __m128i src = _mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7)); |
| if (out_of_boundary_left >= 0) { |
| const __m128i shuffle_reg_left = |
| _mm_loadu_si128((__m128i *)warp_pad_left[out_of_boundary_left]); |
| src = _mm_shuffle_epi8(src, shuffle_reg_left); |
| } |
| if (out_of_boundary_right >= 0) { |
| const __m128i shuffle_reg_right = |
| _mm_loadu_si128((__m128i *)warp_pad_right[out_of_boundary_right]); |
| src = _mm_shuffle_epi8(src, shuffle_reg_right); |
| } |
| sx = sx4 + beta * (k + 4); |
| const __m256i src_01 = _mm256_castsi128_si256(src); |
| __m256i coeff[4]; |
| prepare_horizontal_filter_coeff(alpha, sx, coeff); |
| filter_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src, |
| &round_const, &shift, row); |
| } else { |
| prepare_warp_horizontal_filter_avx2( |
| ref, horz_out, stride, ix4, iy4, sx4, alpha, beta, p_height, height, |
| i, &round_const, &shift, shuffle_src); |
| } |
| |
| // Vertical filter |
| prepare_warp_vertical_filter_avx2( |
| pred, horz_out, conv_params, gamma, delta, p_height, p_stride, |
| p_width, i, j, sy4, reduce_bits_vert, &res_add_const_1, round_bits, |
| &res_sub_const, &round_bits_const, &wt); |
| } |
| } |
| } |
| |
| #if CONFIG_EXT_WARP |
| static INLINE void store_ext_warp_vert_filter_output_avx2( |
| const __m256i *res_lo, const __m256i *res_hi, const __m256i *res_add_const, |
| const __m256i *wt, const __m256i *res_sub_const, |
| const __m256i *round_bits_const, uint8_t *pred, ConvolveParams *conv_params, |
| int i, int j, int k, const int reduce_bits_vert, int p_stride, |
| const int round_bits) { |
| __m256i res_lo_1 = *res_lo; |
| __m256i res_hi_1 = *res_hi; |
| |
| if (conv_params->is_compound) { |
| __m128i *const p_0 = |
| (__m128i *)&conv_params->dst[(i + k + 2) * conv_params->dst_stride + j]; |
| __m128i *const p_1 = |
| (__m128i *)&conv_params |
| ->dst[(i + (k + 1) + 2) * conv_params->dst_stride + j]; |
| |
| res_lo_1 = _mm256_srai_epi32(_mm256_add_epi32(res_lo_1, *res_add_const), |
| reduce_bits_vert); |
| |
| const __m256i temp_lo_16 = _mm256_packus_epi32(res_lo_1, res_lo_1); |
| __m256i res_lo_16; |
| if (conv_params->do_average) { |
| __m128i *const dst8_0 = (__m128i *)&pred[(i + k + 2) * p_stride + j]; |
| __m128i *const dst8_1 = |
| (__m128i *)&pred[(i + (k + 1) + 2) * p_stride + j]; |
| const __m128i p_16_0 = _mm_loadl_epi64(p_0); |
| const __m128i p_16_1 = _mm_loadl_epi64(p_1); |
| const __m256i p_16 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(p_16_0), p_16_1, 1); |
| if (conv_params->use_dist_wtd_comp_avg) { |
| const __m256i p_16_lo = _mm256_unpacklo_epi16(p_16, temp_lo_16); |
| const __m256i wt_res_lo = _mm256_madd_epi16(p_16_lo, *wt); |
| const __m256i shifted_32 = |
| _mm256_srai_epi32(wt_res_lo, DIST_PRECISION_BITS); |
| res_lo_16 = _mm256_packus_epi32(shifted_32, shifted_32); |
| } else { |
| res_lo_16 = _mm256_srai_epi16(_mm256_add_epi16(p_16, temp_lo_16), 1); |
| } |
| res_lo_16 = _mm256_add_epi16(res_lo_16, *res_sub_const); |
| res_lo_16 = _mm256_srai_epi16( |
| _mm256_add_epi16(res_lo_16, *round_bits_const), round_bits); |
| const __m256i res_8_lo = _mm256_packus_epi16(res_lo_16, res_lo_16); |
| const __m128i res_8_lo_0 = _mm256_castsi256_si128(res_8_lo); |
| const __m128i res_8_lo_1 = _mm256_extracti128_si256(res_8_lo, 1); |
| *(uint32_t *)dst8_0 = _mm_cvtsi128_si32(res_8_lo_0); |
| *(uint32_t *)dst8_1 = _mm_cvtsi128_si32(res_8_lo_1); |
| } else { |
| const __m128i temp_lo_16_0 = _mm256_castsi256_si128(temp_lo_16); |
| const __m128i temp_lo_16_1 = _mm256_extracti128_si256(temp_lo_16, 1); |
| _mm_storel_epi64(p_0, temp_lo_16_0); |
| _mm_storel_epi64(p_1, temp_lo_16_1); |
| } |
| } else { |
| const __m256i res_lo_round = _mm256_srai_epi32( |
| _mm256_add_epi32(res_lo_1, *res_add_const), reduce_bits_vert); |
| const __m256i res_hi_round = _mm256_srai_epi32( |
| _mm256_add_epi32(res_hi_1, *res_add_const), reduce_bits_vert); |
| |
| const __m256i res_16bit = _mm256_packs_epi32(res_lo_round, res_hi_round); |
| const __m256i res_8bit = _mm256_packus_epi16(res_16bit, res_16bit); |
| const __m128i res_8bit0 = _mm256_castsi256_si128(res_8bit); |
| const __m128i res_8bit1 = _mm256_extracti128_si256(res_8bit, 1); |
| |
| // Store, blending with 'pred' if needed |
| __m128i *const p = (__m128i *)&pred[(i + k + 2) * p_stride + j]; |
| __m128i *const p1 = (__m128i *)&pred[(i + (k + 1) + 2) * p_stride + j]; |
| |
| *(uint32_t *)p = _mm_cvtsi128_si32(res_8bit0); |
| *(uint32_t *)p1 = _mm_cvtsi128_si32(res_8bit1); |
| } |
| } |
| |
| static INLINE void prepare_ext_warp_vert_filter_coeffs_avx2(int offset, |
| __m256i *coeffs) { |
| const __m128i filt_0 = |
| _mm_loadu_si128((__m128i *)(av1_ext_warped_filter + offset)); |
| |
| __m256i res_0 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(filt_0), filt_0, 0x1); |
| |
| coeffs[0] = _mm256_shuffle_epi8( |
| res_0, _mm256_load_si256((__m256i *)shuffle_gamma0_mask0_avx2)); |
| coeffs[1] = _mm256_shuffle_epi8( |
| res_0, _mm256_load_si256((__m256i *)shuffle_gamma0_mask1_avx2)); |
| coeffs[2] = _mm256_shuffle_epi8( |
| res_0, _mm256_load_si256((__m256i *)shuffle_gamma0_mask2_avx2)); |
| coeffs[3] = _mm256_shuffle_epi8( |
| res_0, _mm256_load_si256((__m256i *)shuffle_gamma0_mask3_avx2)); |
| |
| coeffs[4] = coeffs[0]; |
| coeffs[5] = coeffs[1]; |
| coeffs[6] = coeffs[2]; |
| coeffs[7] = coeffs[3]; |
| } |
| |
| static INLINE void ext_warp_vertical_filter_avx2( |
| uint8_t *pred, __m256i *horz_out, ConvolveParams *conv_params, int p_height, |
| int p_stride, int i, int j, int offset, const int reduce_bits_vert, |
| const __m256i *res_add_const, const int round_bits, |
| const __m256i *res_sub_const, const __m256i *round_bits_const, |
| const __m256i *wt) { |
| int k, row = 0; |
| __m256i src[8], coeffs[8]; |
| const __m256i src_0 = horz_out[0]; |
| const __m256i src_1 = |
| _mm256_permute2x128_si256(horz_out[0], horz_out[1], 0x21); |
| const __m256i src_2 = horz_out[1]; |
| const __m256i src_3 = |
| _mm256_permute2x128_si256(horz_out[1], horz_out[2], 0x21); |
| const __m256i src_4 = horz_out[2]; |
| const __m256i src_5 = |
| _mm256_permute2x128_si256(horz_out[2], horz_out[3], 0x21); |
| |
| src[0] = _mm256_unpacklo_epi16(src_0, src_1); |
| src[2] = _mm256_unpacklo_epi16(src_2, src_3); |
| src[4] = _mm256_unpacklo_epi16(src_4, src_5); |
| |
| src[1] = _mm256_unpackhi_epi16(src_0, src_1); |
| src[3] = _mm256_unpackhi_epi16(src_2, src_3); |
| src[5] = _mm256_unpackhi_epi16(src_4, src_5); |
| |
| prepare_ext_warp_vert_filter_coeffs_avx2(offset, coeffs); |
| |
| for (k = -2; k < AOMMIN(2, p_height - i - 2); k += 2) { |
| __m256i res_lo, res_hi; |
| |
| filter_src_pixels_vertical_avx2(horz_out, src, coeffs, &res_lo, &res_hi, |
| row); |
| res_hi = _mm256_permute2x128_si256(res_lo, res_hi, 0x21); |
| |
| store_ext_warp_vert_filter_output_avx2( |
| &res_lo, &res_hi, res_add_const, wt, res_sub_const, round_bits_const, |
| pred, conv_params, i, j, k, reduce_bits_vert, p_stride, round_bits); |
| src[0] = src[2]; |
| src[2] = src[4]; |
| src[4] = src[6]; |
| src[1] = src[3]; |
| src[3] = src[5]; |
| src[5] = src[7]; |
| row += 1; |
| } |
| } |
| |
| static INLINE void prepare_ext_warp_horiz_filter_coeffs_avx2(int offset, |
| __m256i *coeff) { |
| const __m128i tmp_0 = |
| _mm_load_si128((__m128i *)&av1_ext_filter_16bit[offset]); |
| |
| const __m256i filter_coeff = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(tmp_0), tmp_0, 0x1); |
| |
| coeff[0] = _mm256_shuffle_epi8( |
| filter_coeff, |
| _mm256_load_si256((__m256i *)shuffle_ext_warp_horiz_filter_mask0_avx2)); |
| coeff[1] = _mm256_shuffle_epi8( |
| filter_coeff, |
| _mm256_load_si256((__m256i *)shuffle_ext_warp_horiz_filter_mask1_avx2)); |
| coeff[2] = _mm256_shuffle_epi8( |
| filter_coeff, |
| _mm256_load_si256((__m256i *)shuffle_ext_warp_horiz_filter_mask2_avx2)); |
| coeff[3] = _mm256_shuffle_epi8( |
| filter_coeff, |
| _mm256_load_si256((__m256i *)shuffle_ext_warp_horiz_filter_mask3_avx2)); |
| } |
| |
| static INLINE void filter_ext_warp_src_pixels_avx2( |
| const __m256i src, __m256i *horz_out, __m256i *coeff, |
| const __m256i *shuffle_src, const __m256i *round_const, |
| const __m128i *shift, int row) { |
| __m256i row_01_for_coeff_02 = _mm256_shuffle_epi8(src, shuffle_src[0]); |
| __m256i row_01_for_coeff_46 = _mm256_shuffle_epi8(src, shuffle_src[1]); |
| __m256i row_01_for_coeff_13 = _mm256_shuffle_epi8(src, shuffle_src[2]); |
| __m256i row_01_for_coeff_57 = _mm256_shuffle_epi8(src, shuffle_src[3]); |
| |
| // Row 0 |
| const __m256i src0_for_coeff_02 = |
| _mm256_cvtepu8_epi16(_mm256_extracti128_si256(row_01_for_coeff_02, 0)); |
| const __m256i src0_for_coeff_46 = |
| _mm256_cvtepu8_epi16(_mm256_extracti128_si256(row_01_for_coeff_46, 0)); |
| const __m256i src0_for_coeff_13 = |
| _mm256_cvtepu8_epi16(_mm256_extracti128_si256(row_01_for_coeff_13, 0)); |
| const __m256i src0_for_coeff_57 = |
| _mm256_cvtepu8_epi16(_mm256_extracti128_si256(row_01_for_coeff_57, 0)); |
| |
| const __m256i res0_02 = _mm256_madd_epi16(src0_for_coeff_02, coeff[0]); |
| const __m256i res0_46 = _mm256_madd_epi16(src0_for_coeff_46, coeff[1]); |
| const __m256i res0_13 = _mm256_madd_epi16(src0_for_coeff_13, coeff[2]); |
| const __m256i res0_57 = _mm256_madd_epi16(src0_for_coeff_57, coeff[3]); |
| |
| const __m256i res0_even = _mm256_add_epi32(res0_02, res0_46); |
| const __m256i res0_odd = _mm256_add_epi32(res0_13, res0_57); |
| |
| __m256i res0 = _mm256_add_epi32(res0_even, res0_odd); |
| |
| res0 = _mm256_srl_epi16(_mm256_add_epi32(res0, *round_const), *shift); |
| |
| __m128i res0_low = _mm256_extracti128_si256(res0, 0); |
| __m128i res0_high = _mm256_extracti128_si256(res0, 1); |
| __m128i res_row0_16b = _mm_packs_epi32(res0_low, res0_high); |
| |
| // Row 1 |
| const __m256i src1_for_coeff_02 = |
| _mm256_cvtepu8_epi16(_mm256_extracti128_si256(row_01_for_coeff_02, 1)); |
| const __m256i src1_for_coeff_46 = |
| _mm256_cvtepu8_epi16(_mm256_extracti128_si256(row_01_for_coeff_46, 1)); |
| const __m256i src1_for_coeff_13 = |
| _mm256_cvtepu8_epi16(_mm256_extracti128_si256(row_01_for_coeff_13, 1)); |
| const __m256i src1_for_coeff_57 = |
| _mm256_cvtepu8_epi16(_mm256_extracti128_si256(row_01_for_coeff_57, 1)); |
| |
| const __m256i res1_02 = _mm256_madd_epi16(src1_for_coeff_02, coeff[0]); |
| const __m256i res1_46 = _mm256_madd_epi16(src1_for_coeff_46, coeff[1]); |
| const __m256i res1_13 = _mm256_madd_epi16(src1_for_coeff_13, coeff[2]); |
| const __m256i res1_57 = _mm256_madd_epi16(src1_for_coeff_57, coeff[3]); |
| |
| const __m256i res1_even = _mm256_add_epi32(res1_02, res1_46); |
| const __m256i res1_odd = _mm256_add_epi32(res1_13, res1_57); |
| |
| __m256i res1 = _mm256_add_epi32(res1_even, res1_odd); |
| |
| res1 = _mm256_srl_epi16(_mm256_add_epi32(res1, *round_const), *shift); |
| |
| __m128i res1_low = _mm256_extracti128_si256(res1, 0); |
| __m128i res1_high = _mm256_extracti128_si256(res1, 1); |
| __m128i res_row1_16b = _mm_packs_epi32(res1_low, res1_high); |
| |
| __m256i res_row01 = _mm256_inserti128_si256( |
| _mm256_castsi128_si256(res_row0_16b), res_row1_16b, 0x1); |
| |
| // Lower 128, Row 0 : p0, p2, p4, p6, p1, p3, p5, p7 |
| // Upper 128, Row 1 : p0, p2, p4, p6, p1, p3, p5, p7 |
| horz_out[row] = res_row01; |
| } |
| |
| static INLINE void ext_warp_horizontal_filter_avx2( |
| const uint8_t *ref, __m256i *horz_out, int stride, int32_t ix4, int32_t iy4, |
| int offset, int height, const __m256i *round_const, const __m128i *shift, |
| const __m256i *shuffle_src) { |
| int k, iy, row = 0; |
| |
| __m256i coeff[4]; |
| prepare_ext_warp_horiz_filter_coeffs_avx2(offset, coeff); |
| |
| for (k = -5; k <= (6 - 2); k += 2) { |
| iy = iy4 + k; |
| iy = clamp(iy, 0, height - 1); |
| const __m128i src0 = |
| _mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 5)); |
| iy = iy4 + k + 1; |
| iy = clamp(iy, 0, height - 1); |
| const __m128i src1 = |
| _mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 5)); |
| const __m256i src_01 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(src0), src1, 0x1); |
| filter_ext_warp_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src, |
| round_const, shift, row); |
| row += 1; |
| } |
| iy = iy4 + k; |
| iy = clamp(iy, 0, height - 1); |
| const __m256i src_01 = _mm256_castsi128_si256( |
| _mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 5))); |
| filter_ext_warp_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src, |
| round_const, shift, row); |
| } |
| |
| void av1_ext_warp_affine_avx2(const int32_t *mat, const uint8_t *ref, int width, |
| int height, int stride, uint8_t *pred, int p_col, |
| int p_row, int p_width, int p_height, |
| int p_stride, int subsampling_x, |
| int subsampling_y, ConvolveParams *conv_params) { |
| __m256i horz_out[6]; |
| int i, j, k; |
| const int bd = 8; |
| const int reduce_bits_horiz = conv_params->round_0; |
| const int reduce_bits_vert = conv_params->is_compound |
| ? conv_params->round_1 |
| : 2 * FILTER_BITS - reduce_bits_horiz; |
| const int offset_bits_horiz = bd + FILTER_BITS - 1; |
| assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL)); |
| |
| const int offset_bits_vert = bd + 2 * FILTER_BITS - reduce_bits_horiz; |
| const __m256i reduce_bits_vert_const = |
| _mm256_set1_epi32(((1 << reduce_bits_vert) >> 1)); |
| const __m256i res_add_const = _mm256_set1_epi32(1 << offset_bits_vert); |
| const int round_bits = |
| 2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1; |
| const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0; |
| assert(IMPLIES(conv_params->do_average, conv_params->is_compound)); |
| |
| const __m256i round_const = _mm256_set1_epi32( |
| (1 << offset_bits_horiz) + ((1 << reduce_bits_horiz) >> 1)); |
| const __m128i shift = _mm_cvtsi32_si128(reduce_bits_horiz); |
| |
| __m256i res_sub_const, round_bits_const, wt; |
| unpack_weights_and_set_round_const_avx2(conv_params, round_bits, offset_bits, |
| &res_sub_const, &round_bits_const, |
| &wt); |
| |
| __m256i res_add_const_1; |
| if (conv_params->is_compound == 1) { |
| res_add_const_1 = _mm256_add_epi32(reduce_bits_vert_const, res_add_const); |
| } else { |
| res_add_const_1 = _mm256_set1_epi32(-(1 << (bd + reduce_bits_vert - 1)) + |
| ((1 << reduce_bits_vert) >> 1)); |
| } |
| |
| const int16_t const1 = (1 << (bd + FILTER_BITS - reduce_bits_horiz - 1)); |
| const int16_t const2 = (1 << (FILTER_BITS - reduce_bits_horiz)); |
| |
| __m256i shuffle_src[4]; |
| shuffle_src[0] = _mm256_load_si256((__m256i *)shuffle_src0); |
| shuffle_src[1] = _mm256_load_si256((__m256i *)shuffle_src1); |
| shuffle_src[2] = _mm256_load_si256((__m256i *)shuffle_src2); |
| shuffle_src[3] = _mm256_load_si256((__m256i *)shuffle_src3); |
| |
| for (i = 0; i < p_height; i += 4) { |
| for (j = 0; j < p_width; j += 4) { |
| // Calculate the center of this 4x4 block, |
| // project to luma coordinates (if in a subsampled chroma plane), |
| // apply the affine transformation, |
| // then convert back to the original coordinates (if necessary) |
| const int32_t src_x = (p_col + j + 2) << subsampling_x; |
| const int32_t src_y = (p_row + i + 2) << subsampling_y; |
| const int32_t dst_x = mat[2] * src_x + mat[3] * src_y + mat[0]; |
| const int32_t dst_y = mat[4] * src_x + mat[5] * src_y + mat[1]; |
| const int32_t x4 = dst_x >> subsampling_x; |
| const int32_t y4 = dst_y >> subsampling_y; |
| |
| int32_t ix4 = x4 >> WARPEDMODEL_PREC_BITS; |
| int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1); |
| int32_t iy4 = y4 >> WARPEDMODEL_PREC_BITS; |
| int32_t sy4 = y4 & ((1 << WARPEDMODEL_PREC_BITS) - 1); |
| |
| int offset_x = ROUND_POWER_OF_TWO(sx4, WARPEDDIFF_PREC_BITS); |
| int offset_y = ROUND_POWER_OF_TWO(sy4, WARPEDDIFF_PREC_BITS); |
| |
| assert(offset_x >= 0 && offset_x <= WARPEDPIXEL_PREC_SHIFTS); |
| assert(offset_y >= 0 && offset_y <= WARPEDPIXEL_PREC_SHIFTS); |
| |
| // Horizontal filter |
| // If the block is aligned such that, after clamping, every sample |
| // would be taken from the leftmost/rightmost column, then we can |
| // skip the expensive horizontal filter. |
| if (ix4 <= -5) { |
| int iy, row = 0; |
| for (k = -5; k <= (6 - 2); k += 2) { |
| iy = iy4 + k; |
| iy = clamp(iy, 0, height - 1); |
| const __m256i temp_0 = |
| _mm256_set1_epi16(const1 + ref[iy * stride] * const2); |
| iy = iy4 + k + 1; |
| iy = clamp(iy, 0, height - 1); |
| const __m256i temp_1 = |
| _mm256_set1_epi16(const1 + ref[iy * stride] * const2); |
| horz_out[row] = _mm256_blend_epi32(temp_0, temp_1, 0xf0); |
| row += 1; |
| } |
| iy = iy4 + k; |
| iy = clamp(iy, 0, height - 1); |
| horz_out[row] = _mm256_set1_epi16(const1 + ref[iy * stride] * const2); |
| } else if (ix4 >= width + 4) { |
| int iy, row = 0; |
| for (k = -5; k <= (6 - 2); k += 2) { |
| iy = iy4 + k; |
| iy = clamp(iy, 0, height - 1); |
| const __m256i temp_0 = _mm256_set1_epi16( |
| const1 + ref[iy * stride + (width - 1)] * const2); |
| iy = iy4 + k + 1; |
| iy = clamp(iy, 0, height - 1); |
| const __m256i temp_1 = _mm256_set1_epi16( |
| const1 + ref[iy * stride + (width - 1)] * const2); |
| horz_out[row] = _mm256_blend_epi32(temp_0, temp_1, 0xf0); |
| row += 1; |
| } |
| iy = iy4 + k; |
| iy = clamp(iy, 0, height - 1); |
| horz_out[row] = |
| _mm256_set1_epi16(const1 + ref[iy * stride + (width - 1)] * const2); |
| } else if (((ix4 - 5) < 0) || ((ix4 + 11) > width)) { |
| const int out_of_boundary_left = -(ix4 - 4); |
| const int out_of_boundary_right = (ix4 + 10) - width; |
| int iy, row = 0; |
| __m256i coeff[4]; |
| prepare_ext_warp_horiz_filter_coeffs_avx2(offset_x, coeff); |
| for (k = -5; k <= (6 - 2); k += 2) { |
| iy = iy4 + k; |
| iy = clamp(iy, 0, height - 1); |
| __m128i src0 = |
| _mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 5)); |
| iy = iy4 + k + 1; |
| iy = clamp(iy, 0, height - 1); |
| __m128i src1 = |
| _mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 5)); |
| |
| if (out_of_boundary_left >= 0) { |
| const __m128i shuffle_reg_left = |
| _mm_loadu_si128((__m128i *)warp_pad_left[out_of_boundary_left]); |
| src0 = _mm_shuffle_epi8(src0, shuffle_reg_left); |
| src1 = _mm_shuffle_epi8(src1, shuffle_reg_left); |
| } |
| if (out_of_boundary_right >= 0) { |
| const __m128i shuffle_reg_right = _mm_loadu_si128( |
| (__m128i *)warp_pad_right[out_of_boundary_right]); |
| src0 = _mm_shuffle_epi8(src0, shuffle_reg_right); |
| src1 = _mm_shuffle_epi8(src1, shuffle_reg_right); |
| } |
| const __m256i src_01 = |
| _mm256_inserti128_si256(_mm256_castsi128_si256(src0), src1, 0x1); |
| filter_ext_warp_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src, |
| &round_const, &shift, row); |
| row += 1; |
| } |
| iy = iy4 + k; |
| iy = clamp(iy, 0, height - 1); |
| __m128i src = _mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 5)); |
| if (out_of_boundary_left >= 0) { |
| const __m128i shuffle_reg_left = |
| _mm_loadu_si128((__m128i *)warp_pad_left[out_of_boundary_left]); |
| src = _mm_shuffle_epi8(src, shuffle_reg_left); |
| } |
| if (out_of_boundary_right >= 0) { |
| const __m128i shuffle_reg_right = |
| _mm_loadu_si128((__m128i *)warp_pad_right[out_of_boundary_right]); |
| src = _mm_shuffle_epi8(src, shuffle_reg_right); |
| } |
| const __m256i src_01 = _mm256_castsi128_si256(src); |
| filter_ext_warp_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src, |
| &round_const, &shift, row); |
| } else { |
| ext_warp_horizontal_filter_avx2(ref, horz_out, stride, ix4, iy4, |
| offset_x, height, &round_const, &shift, |
| shuffle_src); |
| } |
| |
| // Vertical filter |
| ext_warp_vertical_filter_avx2(pred, horz_out, conv_params, p_height, |
| p_stride, i, j, offset_y, reduce_bits_vert, |
| &res_add_const_1, round_bits, |
| &res_sub_const, &round_bits_const, &wt); |
| } |
| } |
| } |
| #endif // CONFIG_EXT_WARP |