blob: 174479b732639220b4fb58cac46664dbb8d7de8a [file] [log] [blame]
/*
* Copyright (c) 2019, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <immintrin.h>
#include "config/av1_rtcd.h"
#include "av1/common/warped_motion.h"
#include "aom_dsp/x86/synonyms.h"
DECLARE_ALIGNED(32, static const uint8_t, shuffle_alpha0_mask01_avx2[32]) = {
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1
};
DECLARE_ALIGNED(32, static const uint8_t, shuffle_alpha0_mask23_avx2[32]) = {
2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3,
2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3
};
DECLARE_ALIGNED(32, static const uint8_t, shuffle_alpha0_mask45_avx2[32]) = {
4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5,
4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5
};
DECLARE_ALIGNED(32, static const uint8_t, shuffle_alpha0_mask67_avx2[32]) = {
6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7,
6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7
};
#if CONFIG_EXT_WARP
DECLARE_ALIGNED(32, static const uint8_t,
shuffle_ext_warp_horiz_filter_mask0_avx2[32]) = {
0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3,
0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3
};
DECLARE_ALIGNED(32, static const uint8_t,
shuffle_ext_warp_horiz_filter_mask1_avx2[32]) = {
4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7,
4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7
};
DECLARE_ALIGNED(32, static const uint8_t,
shuffle_ext_warp_horiz_filter_mask2_avx2[32]) = {
8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11,
8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11
};
DECLARE_ALIGNED(32, static const uint8_t,
shuffle_ext_warp_horiz_filter_mask3_avx2[32]) = {
12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15,
12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15,
};
#endif // CONFIG_EXT_WARP
DECLARE_ALIGNED(32, static const uint8_t, shuffle_gamma0_mask0_avx2[32]) = {
0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3,
0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3
};
DECLARE_ALIGNED(32, static const uint8_t, shuffle_gamma0_mask1_avx2[32]) = {
4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7,
4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7
};
DECLARE_ALIGNED(32, static const uint8_t, shuffle_gamma0_mask2_avx2[32]) = {
8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11,
8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11, 8, 9, 10, 11
};
DECLARE_ALIGNED(32, static const uint8_t, shuffle_gamma0_mask3_avx2[32]) = {
12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15,
12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15, 12, 13, 14, 15
};
DECLARE_ALIGNED(32, static const uint8_t,
shuffle_src0[32]) = { 0, 2, 2, 4, 4, 6, 6, 8, 1, 3, 3,
5, 5, 7, 7, 9, 0, 2, 2, 4, 4, 6,
6, 8, 1, 3, 3, 5, 5, 7, 7, 9 };
DECLARE_ALIGNED(32, static const uint8_t,
shuffle_src1[32]) = { 4, 6, 6, 8, 8, 10, 10, 12, 5, 7, 7,
9, 9, 11, 11, 13, 4, 6, 6, 8, 8, 10,
10, 12, 5, 7, 7, 9, 9, 11, 11, 13 };
DECLARE_ALIGNED(32, static const uint8_t,
shuffle_src2[32]) = { 1, 3, 3, 5, 5, 7, 7, 9, 2, 4, 4,
6, 6, 8, 8, 10, 1, 3, 3, 5, 5, 7,
7, 9, 2, 4, 4, 6, 6, 8, 8, 10 };
DECLARE_ALIGNED(32, static const uint8_t,
shuffle_src3[32]) = { 5, 7, 7, 9, 9, 11, 11, 13, 6, 8, 8,
10, 10, 12, 12, 14, 5, 7, 7, 9, 9, 11,
11, 13, 6, 8, 8, 10, 10, 12, 12, 14 };
static INLINE void filter_src_pixels_avx2(const __m256i src, __m256i *horz_out,
__m256i *coeff,
const __m256i *shuffle_src,
const __m256i *round_const,
const __m128i *shift, int row) {
const __m256i src_0 = _mm256_shuffle_epi8(src, shuffle_src[0]);
const __m256i src_1 = _mm256_shuffle_epi8(src, shuffle_src[1]);
const __m256i src_2 = _mm256_shuffle_epi8(src, shuffle_src[2]);
const __m256i src_3 = _mm256_shuffle_epi8(src, shuffle_src[3]);
const __m256i res_02 = _mm256_maddubs_epi16(src_0, coeff[0]);
const __m256i res_46 = _mm256_maddubs_epi16(src_1, coeff[1]);
const __m256i res_13 = _mm256_maddubs_epi16(src_2, coeff[2]);
const __m256i res_57 = _mm256_maddubs_epi16(src_3, coeff[3]);
const __m256i res_even = _mm256_add_epi16(res_02, res_46);
const __m256i res_odd = _mm256_add_epi16(res_13, res_57);
const __m256i res =
_mm256_add_epi16(_mm256_add_epi16(res_even, res_odd), *round_const);
horz_out[row] = _mm256_srl_epi16(res, *shift);
}
static INLINE void prepare_horizontal_filter_coeff_avx2(int alpha, int beta,
int sx,
__m256i *coeff) {
__m128i tmp_0 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 0 * alpha) >> WARPEDDIFF_PREC_BITS]);
__m128i tmp_1 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 1 * alpha) >> WARPEDDIFF_PREC_BITS]);
__m128i tmp_2 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 2 * alpha) >> WARPEDDIFF_PREC_BITS]);
__m128i tmp_3 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 3 * alpha) >> WARPEDDIFF_PREC_BITS]);
__m128i tmp_4 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 4 * alpha) >> WARPEDDIFF_PREC_BITS]);
__m128i tmp_5 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 5 * alpha) >> WARPEDDIFF_PREC_BITS]);
__m128i tmp_6 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 6 * alpha) >> WARPEDDIFF_PREC_BITS]);
__m128i tmp_7 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 7 * alpha) >> WARPEDDIFF_PREC_BITS]);
tmp_0 = _mm_unpacklo_epi16(tmp_0, tmp_2);
tmp_1 = _mm_unpacklo_epi16(tmp_1, tmp_3);
tmp_4 = _mm_unpacklo_epi16(tmp_4, tmp_6);
tmp_5 = _mm_unpacklo_epi16(tmp_5, tmp_7);
__m128i tmp_8 =
_mm_loadl_epi64((__m128i *)&av1_filter_8bit[((sx + beta) + 0 * alpha) >>
WARPEDDIFF_PREC_BITS]);
__m128i tmp_9 =
_mm_loadl_epi64((__m128i *)&av1_filter_8bit[((sx + beta) + 1 * alpha) >>
WARPEDDIFF_PREC_BITS]);
__m128i tmp_10 =
_mm_loadl_epi64((__m128i *)&av1_filter_8bit[((sx + beta) + 2 * alpha) >>
WARPEDDIFF_PREC_BITS]);
__m128i tmp_11 =
_mm_loadl_epi64((__m128i *)&av1_filter_8bit[((sx + beta) + 3 * alpha) >>
WARPEDDIFF_PREC_BITS]);
tmp_2 =
_mm_loadl_epi64((__m128i *)&av1_filter_8bit[((sx + beta) + 4 * alpha) >>
WARPEDDIFF_PREC_BITS]);
tmp_3 =
_mm_loadl_epi64((__m128i *)&av1_filter_8bit[((sx + beta) + 5 * alpha) >>
WARPEDDIFF_PREC_BITS]);
tmp_6 =
_mm_loadl_epi64((__m128i *)&av1_filter_8bit[((sx + beta) + 6 * alpha) >>
WARPEDDIFF_PREC_BITS]);
tmp_7 =
_mm_loadl_epi64((__m128i *)&av1_filter_8bit[((sx + beta) + 7 * alpha) >>
WARPEDDIFF_PREC_BITS]);
tmp_8 = _mm_unpacklo_epi16(tmp_8, tmp_10);
tmp_2 = _mm_unpacklo_epi16(tmp_2, tmp_6);
tmp_9 = _mm_unpacklo_epi16(tmp_9, tmp_11);
tmp_3 = _mm_unpacklo_epi16(tmp_3, tmp_7);
const __m256i tmp_12 =
_mm256_inserti128_si256(_mm256_castsi128_si256(tmp_0), tmp_8, 0x1);
const __m256i tmp_13 =
_mm256_inserti128_si256(_mm256_castsi128_si256(tmp_1), tmp_9, 0x1);
const __m256i tmp_14 =
_mm256_inserti128_si256(_mm256_castsi128_si256(tmp_4), tmp_2, 0x1);
const __m256i tmp_15 =
_mm256_inserti128_si256(_mm256_castsi128_si256(tmp_5), tmp_3, 0x1);
const __m256i res_0 = _mm256_unpacklo_epi32(tmp_12, tmp_14);
const __m256i res_1 = _mm256_unpackhi_epi32(tmp_12, tmp_14);
const __m256i res_2 = _mm256_unpacklo_epi32(tmp_13, tmp_15);
const __m256i res_3 = _mm256_unpackhi_epi32(tmp_13, tmp_15);
coeff[0] = _mm256_unpacklo_epi64(res_0, res_2);
coeff[1] = _mm256_unpackhi_epi64(res_0, res_2);
coeff[2] = _mm256_unpacklo_epi64(res_1, res_3);
coeff[3] = _mm256_unpackhi_epi64(res_1, res_3);
}
static INLINE void prepare_horizontal_filter_coeff_beta0_avx2(int alpha, int sx,
__m256i *coeff) {
__m128i tmp_0 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 0 * alpha) >> WARPEDDIFF_PREC_BITS]);
__m128i tmp_1 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 1 * alpha) >> WARPEDDIFF_PREC_BITS]);
__m128i tmp_2 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 2 * alpha) >> WARPEDDIFF_PREC_BITS]);
__m128i tmp_3 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 3 * alpha) >> WARPEDDIFF_PREC_BITS]);
__m128i tmp_4 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 4 * alpha) >> WARPEDDIFF_PREC_BITS]);
__m128i tmp_5 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 5 * alpha) >> WARPEDDIFF_PREC_BITS]);
__m128i tmp_6 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 6 * alpha) >> WARPEDDIFF_PREC_BITS]);
__m128i tmp_7 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 7 * alpha) >> WARPEDDIFF_PREC_BITS]);
tmp_0 = _mm_unpacklo_epi16(tmp_0, tmp_2);
tmp_1 = _mm_unpacklo_epi16(tmp_1, tmp_3);
tmp_4 = _mm_unpacklo_epi16(tmp_4, tmp_6);
tmp_5 = _mm_unpacklo_epi16(tmp_5, tmp_7);
const __m256i tmp_12 = _mm256_broadcastsi128_si256(tmp_0);
const __m256i tmp_13 = _mm256_broadcastsi128_si256(tmp_1);
const __m256i tmp_14 = _mm256_broadcastsi128_si256(tmp_4);
const __m256i tmp_15 = _mm256_broadcastsi128_si256(tmp_5);
const __m256i res_0 = _mm256_unpacklo_epi32(tmp_12, tmp_14);
const __m256i res_1 = _mm256_unpackhi_epi32(tmp_12, tmp_14);
const __m256i res_2 = _mm256_unpacklo_epi32(tmp_13, tmp_15);
const __m256i res_3 = _mm256_unpackhi_epi32(tmp_13, tmp_15);
coeff[0] = _mm256_unpacklo_epi64(res_0, res_2);
coeff[1] = _mm256_unpackhi_epi64(res_0, res_2);
coeff[2] = _mm256_unpacklo_epi64(res_1, res_3);
coeff[3] = _mm256_unpackhi_epi64(res_1, res_3);
}
static INLINE void prepare_horizontal_filter_coeff_alpha0_avx2(int beta, int sx,
__m256i *coeff) {
const __m128i tmp_0 =
_mm_loadl_epi64((__m128i *)&av1_filter_8bit[sx >> WARPEDDIFF_PREC_BITS]);
const __m128i tmp_1 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + beta) >> WARPEDDIFF_PREC_BITS]);
const __m256i res_0 =
_mm256_inserti128_si256(_mm256_castsi128_si256(tmp_0), tmp_1, 0x1);
coeff[0] = _mm256_shuffle_epi8(
res_0, _mm256_load_si256((__m256i *)shuffle_alpha0_mask01_avx2));
coeff[1] = _mm256_shuffle_epi8(
res_0, _mm256_load_si256((__m256i *)shuffle_alpha0_mask23_avx2));
coeff[2] = _mm256_shuffle_epi8(
res_0, _mm256_load_si256((__m256i *)shuffle_alpha0_mask45_avx2));
coeff[3] = _mm256_shuffle_epi8(
res_0, _mm256_load_si256((__m256i *)shuffle_alpha0_mask67_avx2));
}
static INLINE void horizontal_filter_avx2(const __m256i src, __m256i *horz_out,
int sx, int alpha, int beta, int row,
const __m256i *shuffle_src,
const __m256i *round_const,
const __m128i *shift) {
__m256i coeff[4];
prepare_horizontal_filter_coeff_avx2(alpha, beta, sx, coeff);
filter_src_pixels_avx2(src, horz_out, coeff, shuffle_src, round_const, shift,
row);
}
static INLINE void prepare_horizontal_filter_coeff(int alpha, int sx,
__m256i *coeff) {
const __m128i tmp_0 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 0 * alpha) >> WARPEDDIFF_PREC_BITS]);
const __m128i tmp_1 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 1 * alpha) >> WARPEDDIFF_PREC_BITS]);
const __m128i tmp_2 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 2 * alpha) >> WARPEDDIFF_PREC_BITS]);
const __m128i tmp_3 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 3 * alpha) >> WARPEDDIFF_PREC_BITS]);
const __m128i tmp_4 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 4 * alpha) >> WARPEDDIFF_PREC_BITS]);
const __m128i tmp_5 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 5 * alpha) >> WARPEDDIFF_PREC_BITS]);
const __m128i tmp_6 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 6 * alpha) >> WARPEDDIFF_PREC_BITS]);
const __m128i tmp_7 = _mm_loadl_epi64(
(__m128i *)&av1_filter_8bit[(sx + 7 * alpha) >> WARPEDDIFF_PREC_BITS]);
const __m128i tmp_8 = _mm_unpacklo_epi16(tmp_0, tmp_2);
const __m128i tmp_9 = _mm_unpacklo_epi16(tmp_1, tmp_3);
const __m128i tmp_10 = _mm_unpacklo_epi16(tmp_4, tmp_6);
const __m128i tmp_11 = _mm_unpacklo_epi16(tmp_5, tmp_7);
const __m128i tmp_12 = _mm_unpacklo_epi32(tmp_8, tmp_10);
const __m128i tmp_13 = _mm_unpackhi_epi32(tmp_8, tmp_10);
const __m128i tmp_14 = _mm_unpacklo_epi32(tmp_9, tmp_11);
const __m128i tmp_15 = _mm_unpackhi_epi32(tmp_9, tmp_11);
coeff[0] = _mm256_castsi128_si256(_mm_unpacklo_epi64(tmp_12, tmp_14));
coeff[1] = _mm256_castsi128_si256(_mm_unpackhi_epi64(tmp_12, tmp_14));
coeff[2] = _mm256_castsi128_si256(_mm_unpacklo_epi64(tmp_13, tmp_15));
coeff[3] = _mm256_castsi128_si256(_mm_unpackhi_epi64(tmp_13, tmp_15));
}
static INLINE void warp_horizontal_filter_avx2(
const uint8_t *ref, __m256i *horz_out, int stride, int32_t ix4, int32_t iy4,
int32_t sx4, int alpha, int beta, int p_height, int height, int i,
const __m256i *round_const, const __m128i *shift,
const __m256i *shuffle_src) {
int k, iy, sx, row = 0;
__m256i coeff[4];
for (k = -7; k <= (AOMMIN(8, p_height - i) - 2); k += 2) {
iy = iy4 + k;
iy = clamp(iy, 0, height - 1);
const __m128i src_0 =
_mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7));
iy = iy4 + k + 1;
iy = clamp(iy, 0, height - 1);
const __m128i src_1 =
_mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7));
const __m256i src_01 =
_mm256_inserti128_si256(_mm256_castsi128_si256(src_0), src_1, 0x1);
sx = sx4 + beta * (k + 4);
horizontal_filter_avx2(src_01, horz_out, sx, alpha, beta, row, shuffle_src,
round_const, shift);
row += 1;
}
iy = iy4 + k;
iy = clamp(iy, 0, height - 1);
const __m256i src_01 = _mm256_castsi128_si256(
_mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7)));
sx = sx4 + beta * (k + 4);
prepare_horizontal_filter_coeff(alpha, sx, coeff);
filter_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src, round_const,
shift, row);
}
static INLINE void warp_horizontal_filter_alpha0_avx2(
const uint8_t *ref, __m256i *horz_out, int stride, int32_t ix4, int32_t iy4,
int32_t sx4, int alpha, int beta, int p_height, int height, int i,
const __m256i *round_const, const __m128i *shift,
const __m256i *shuffle_src) {
(void)alpha;
int k, iy, sx, row = 0;
__m256i coeff[4];
for (k = -7; k <= (AOMMIN(8, p_height - i) - 2); k += 2) {
iy = iy4 + k;
iy = clamp(iy, 0, height - 1);
const __m128i src_0 =
_mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7));
iy = iy4 + k + 1;
iy = clamp(iy, 0, height - 1);
const __m128i src_1 =
_mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7));
const __m256i src_01 =
_mm256_inserti128_si256(_mm256_castsi128_si256(src_0), src_1, 0x1);
sx = sx4 + beta * (k + 4);
prepare_horizontal_filter_coeff_alpha0_avx2(beta, sx, coeff);
filter_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src, round_const,
shift, row);
row += 1;
}
iy = iy4 + k;
iy = clamp(iy, 0, height - 1);
const __m256i src_01 = _mm256_castsi128_si256(
_mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7)));
sx = sx4 + beta * (k + 4);
prepare_horizontal_filter_coeff_alpha0_avx2(beta, sx, coeff);
filter_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src, round_const,
shift, row);
}
static INLINE void warp_horizontal_filter_beta0_avx2(
const uint8_t *ref, __m256i *horz_out, int stride, int32_t ix4, int32_t iy4,
int32_t sx4, int alpha, int beta, int p_height, int height, int i,
const __m256i *round_const, const __m128i *shift,
const __m256i *shuffle_src) {
(void)beta;
int k, iy, row = 0;
__m256i coeff[4];
prepare_horizontal_filter_coeff_beta0_avx2(alpha, sx4, coeff);
for (k = -7; k <= (AOMMIN(8, p_height - i) - 2); k += 2) {
iy = iy4 + k;
iy = clamp(iy, 0, height - 1);
const __m128i src_0 =
_mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7));
iy = iy4 + k + 1;
iy = clamp(iy, 0, height - 1);
const __m128i src_1 =
_mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7));
const __m256i src_01 =
_mm256_inserti128_si256(_mm256_castsi128_si256(src_0), src_1, 0x1);
filter_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src, round_const,
shift, row);
row += 1;
}
iy = iy4 + k;
iy = clamp(iy, 0, height - 1);
const __m256i src_01 = _mm256_castsi128_si256(
_mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7)));
filter_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src, round_const,
shift, row);
}
static INLINE void warp_horizontal_filter_alpha0_beta0_avx2(
const uint8_t *ref, __m256i *horz_out, int stride, int32_t ix4, int32_t iy4,
int32_t sx4, int alpha, int beta, int p_height, int height, int i,
const __m256i *round_const, const __m128i *shift,
const __m256i *shuffle_src) {
(void)alpha;
int k, iy, row = 0;
__m256i coeff[4];
prepare_horizontal_filter_coeff_alpha0_avx2(beta, sx4, coeff);
for (k = -7; k <= (AOMMIN(8, p_height - i) - 2); k += 2) {
iy = iy4 + k;
iy = clamp(iy, 0, height - 1);
const __m128i src0 =
_mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7));
iy = iy4 + k + 1;
iy = clamp(iy, 0, height - 1);
const __m128i src1 =
_mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7));
const __m256i src_01 =
_mm256_inserti128_si256(_mm256_castsi128_si256(src0), src1, 0x1);
filter_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src, round_const,
shift, row);
row += 1;
}
iy = iy4 + k;
iy = clamp(iy, 0, height - 1);
const __m256i src_01 = _mm256_castsi128_si256(
_mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7)));
filter_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src, round_const,
shift, row);
}
static INLINE void unpack_weights_and_set_round_const_avx2(
ConvolveParams *conv_params, const int round_bits, const int offset_bits,
__m256i *res_sub_const, __m256i *round_bits_const, __m256i *wt) {
*res_sub_const =
_mm256_set1_epi16(-(1 << (offset_bits - conv_params->round_1)) -
(1 << (offset_bits - conv_params->round_1 - 1)));
*round_bits_const = _mm256_set1_epi16(((1 << round_bits) >> 1));
const int w0 = conv_params->fwd_offset;
const int w1 = conv_params->bck_offset;
const __m256i wt0 = _mm256_set1_epi16(w0);
const __m256i wt1 = _mm256_set1_epi16(w1);
*wt = _mm256_unpacklo_epi16(wt0, wt1);
}
static INLINE void prepare_vertical_filter_coeffs_avx2(int gamma, int delta,
int sy,
__m256i *coeffs) {
__m128i filt_00 =
_mm_loadu_si128((__m128i *)(av1_warped_filter +
((sy + 0 * gamma) >> WARPEDDIFF_PREC_BITS)));
__m128i filt_01 =
_mm_loadu_si128((__m128i *)(av1_warped_filter +
((sy + 2 * gamma) >> WARPEDDIFF_PREC_BITS)));
__m128i filt_02 =
_mm_loadu_si128((__m128i *)(av1_warped_filter +
((sy + 4 * gamma) >> WARPEDDIFF_PREC_BITS)));
__m128i filt_03 =
_mm_loadu_si128((__m128i *)(av1_warped_filter +
((sy + 6 * gamma) >> WARPEDDIFF_PREC_BITS)));
__m128i filt_10 = _mm_loadu_si128(
(__m128i *)(av1_warped_filter +
(((sy + delta) + 0 * gamma) >> WARPEDDIFF_PREC_BITS)));
__m128i filt_11 = _mm_loadu_si128(
(__m128i *)(av1_warped_filter +
(((sy + delta) + 2 * gamma) >> WARPEDDIFF_PREC_BITS)));
__m128i filt_12 = _mm_loadu_si128(
(__m128i *)(av1_warped_filter +
(((sy + delta) + 4 * gamma) >> WARPEDDIFF_PREC_BITS)));
__m128i filt_13 = _mm_loadu_si128(
(__m128i *)(av1_warped_filter +
(((sy + delta) + 6 * gamma) >> WARPEDDIFF_PREC_BITS)));
__m256i filt_0 =
_mm256_inserti128_si256(_mm256_castsi128_si256(filt_00), filt_10, 0x1);
__m256i filt_1 =
_mm256_inserti128_si256(_mm256_castsi128_si256(filt_01), filt_11, 0x1);
__m256i filt_2 =
_mm256_inserti128_si256(_mm256_castsi128_si256(filt_02), filt_12, 0x1);
__m256i filt_3 =
_mm256_inserti128_si256(_mm256_castsi128_si256(filt_03), filt_13, 0x1);
__m256i res_0 = _mm256_unpacklo_epi32(filt_0, filt_1);
__m256i res_1 = _mm256_unpacklo_epi32(filt_2, filt_3);
__m256i res_2 = _mm256_unpackhi_epi32(filt_0, filt_1);
__m256i res_3 = _mm256_unpackhi_epi32(filt_2, filt_3);
coeffs[0] = _mm256_unpacklo_epi64(res_0, res_1);
coeffs[1] = _mm256_unpackhi_epi64(res_0, res_1);
coeffs[2] = _mm256_unpacklo_epi64(res_2, res_3);
coeffs[3] = _mm256_unpackhi_epi64(res_2, res_3);
filt_00 =
_mm_loadu_si128((__m128i *)(av1_warped_filter +
((sy + 1 * gamma) >> WARPEDDIFF_PREC_BITS)));
filt_01 =
_mm_loadu_si128((__m128i *)(av1_warped_filter +
((sy + 3 * gamma) >> WARPEDDIFF_PREC_BITS)));
filt_02 =
_mm_loadu_si128((__m128i *)(av1_warped_filter +
((sy + 5 * gamma) >> WARPEDDIFF_PREC_BITS)));
filt_03 =
_mm_loadu_si128((__m128i *)(av1_warped_filter +
((sy + 7 * gamma) >> WARPEDDIFF_PREC_BITS)));
filt_10 = _mm_loadu_si128(
(__m128i *)(av1_warped_filter +
(((sy + delta) + 1 * gamma) >> WARPEDDIFF_PREC_BITS)));
filt_11 = _mm_loadu_si128(
(__m128i *)(av1_warped_filter +
(((sy + delta) + 3 * gamma) >> WARPEDDIFF_PREC_BITS)));
filt_12 = _mm_loadu_si128(
(__m128i *)(av1_warped_filter +
(((sy + delta) + 5 * gamma) >> WARPEDDIFF_PREC_BITS)));
filt_13 = _mm_loadu_si128(
(__m128i *)(av1_warped_filter +
(((sy + delta) + 7 * gamma) >> WARPEDDIFF_PREC_BITS)));
filt_0 =
_mm256_inserti128_si256(_mm256_castsi128_si256(filt_00), filt_10, 0x1);
filt_1 =
_mm256_inserti128_si256(_mm256_castsi128_si256(filt_01), filt_11, 0x1);
filt_2 =
_mm256_inserti128_si256(_mm256_castsi128_si256(filt_02), filt_12, 0x1);
filt_3 =
_mm256_inserti128_si256(_mm256_castsi128_si256(filt_03), filt_13, 0x1);
res_0 = _mm256_unpacklo_epi32(filt_0, filt_1);
res_1 = _mm256_unpacklo_epi32(filt_2, filt_3);
res_2 = _mm256_unpackhi_epi32(filt_0, filt_1);
res_3 = _mm256_unpackhi_epi32(filt_2, filt_3);
coeffs[4] = _mm256_unpacklo_epi64(res_0, res_1);
coeffs[5] = _mm256_unpackhi_epi64(res_0, res_1);
coeffs[6] = _mm256_unpacklo_epi64(res_2, res_3);
coeffs[7] = _mm256_unpackhi_epi64(res_2, res_3);
}
static INLINE void prepare_vertical_filter_coeffs_delta0_avx2(int gamma, int sy,
__m256i *coeffs) {
__m128i filt_00 =
_mm_loadu_si128((__m128i *)(av1_warped_filter +
((sy + 0 * gamma) >> WARPEDDIFF_PREC_BITS)));
__m128i filt_01 =
_mm_loadu_si128((__m128i *)(av1_warped_filter +
((sy + 2 * gamma) >> WARPEDDIFF_PREC_BITS)));
__m128i filt_02 =
_mm_loadu_si128((__m128i *)(av1_warped_filter +
((sy + 4 * gamma) >> WARPEDDIFF_PREC_BITS)));
__m128i filt_03 =
_mm_loadu_si128((__m128i *)(av1_warped_filter +
((sy + 6 * gamma) >> WARPEDDIFF_PREC_BITS)));
__m256i filt_0 = _mm256_broadcastsi128_si256(filt_00);
__m256i filt_1 = _mm256_broadcastsi128_si256(filt_01);
__m256i filt_2 = _mm256_broadcastsi128_si256(filt_02);
__m256i filt_3 = _mm256_broadcastsi128_si256(filt_03);
__m256i res_0 = _mm256_unpacklo_epi32(filt_0, filt_1);
__m256i res_1 = _mm256_unpacklo_epi32(filt_2, filt_3);
__m256i res_2 = _mm256_unpackhi_epi32(filt_0, filt_1);
__m256i res_3 = _mm256_unpackhi_epi32(filt_2, filt_3);
coeffs[0] = _mm256_unpacklo_epi64(res_0, res_1);
coeffs[1] = _mm256_unpackhi_epi64(res_0, res_1);
coeffs[2] = _mm256_unpacklo_epi64(res_2, res_3);
coeffs[3] = _mm256_unpackhi_epi64(res_2, res_3);
filt_00 =
_mm_loadu_si128((__m128i *)(av1_warped_filter +
((sy + 1 * gamma) >> WARPEDDIFF_PREC_BITS)));
filt_01 =
_mm_loadu_si128((__m128i *)(av1_warped_filter +
((sy + 3 * gamma) >> WARPEDDIFF_PREC_BITS)));
filt_02 =
_mm_loadu_si128((__m128i *)(av1_warped_filter +
((sy + 5 * gamma) >> WARPEDDIFF_PREC_BITS)));
filt_03 =
_mm_loadu_si128((__m128i *)(av1_warped_filter +
((sy + 7 * gamma) >> WARPEDDIFF_PREC_BITS)));
filt_0 = _mm256_broadcastsi128_si256(filt_00);
filt_1 = _mm256_broadcastsi128_si256(filt_01);
filt_2 = _mm256_broadcastsi128_si256(filt_02);
filt_3 = _mm256_broadcastsi128_si256(filt_03);
res_0 = _mm256_unpacklo_epi32(filt_0, filt_1);
res_1 = _mm256_unpacklo_epi32(filt_2, filt_3);
res_2 = _mm256_unpackhi_epi32(filt_0, filt_1);
res_3 = _mm256_unpackhi_epi32(filt_2, filt_3);
coeffs[4] = _mm256_unpacklo_epi64(res_0, res_1);
coeffs[5] = _mm256_unpackhi_epi64(res_0, res_1);
coeffs[6] = _mm256_unpacklo_epi64(res_2, res_3);
coeffs[7] = _mm256_unpackhi_epi64(res_2, res_3);
}
static INLINE void prepare_vertical_filter_coeffs_gamma0_avx2(int delta, int sy,
__m256i *coeffs) {
const __m128i filt_0 = _mm_loadu_si128(
(__m128i *)(av1_warped_filter + (sy >> WARPEDDIFF_PREC_BITS)));
const __m128i filt_1 = _mm_loadu_si128(
(__m128i *)(av1_warped_filter + ((sy + delta) >> WARPEDDIFF_PREC_BITS)));
__m256i res_0 =
_mm256_inserti128_si256(_mm256_castsi128_si256(filt_0), filt_1, 0x1);
coeffs[0] = _mm256_shuffle_epi8(
res_0, _mm256_load_si256((__m256i *)shuffle_gamma0_mask0_avx2));
coeffs[1] = _mm256_shuffle_epi8(
res_0, _mm256_load_si256((__m256i *)shuffle_gamma0_mask1_avx2));
coeffs[2] = _mm256_shuffle_epi8(
res_0, _mm256_load_si256((__m256i *)shuffle_gamma0_mask2_avx2));
coeffs[3] = _mm256_shuffle_epi8(
res_0, _mm256_load_si256((__m256i *)shuffle_gamma0_mask3_avx2));
coeffs[4] = coeffs[0];
coeffs[5] = coeffs[1];
coeffs[6] = coeffs[2];
coeffs[7] = coeffs[3];
}
static INLINE void filter_src_pixels_vertical_avx2(__m256i *horz_out,
__m256i *src,
__m256i *coeffs,
__m256i *res_lo,
__m256i *res_hi, int row) {
const __m256i src_6 = horz_out[row + 3];
const __m256i src_7 =
_mm256_permute2x128_si256(horz_out[row + 3], horz_out[row + 4], 0x21);
src[6] = _mm256_unpacklo_epi16(src_6, src_7);
const __m256i res_0 = _mm256_madd_epi16(src[0], coeffs[0]);
const __m256i res_2 = _mm256_madd_epi16(src[2], coeffs[1]);
const __m256i res_4 = _mm256_madd_epi16(src[4], coeffs[2]);
const __m256i res_6 = _mm256_madd_epi16(src[6], coeffs[3]);
const __m256i res_even = _mm256_add_epi32(_mm256_add_epi32(res_0, res_2),
_mm256_add_epi32(res_4, res_6));
src[7] = _mm256_unpackhi_epi16(src_6, src_7);
const __m256i res_1 = _mm256_madd_epi16(src[1], coeffs[4]);
const __m256i res_3 = _mm256_madd_epi16(src[3], coeffs[5]);
const __m256i res_5 = _mm256_madd_epi16(src[5], coeffs[6]);
const __m256i res_7 = _mm256_madd_epi16(src[7], coeffs[7]);
const __m256i res_odd = _mm256_add_epi32(_mm256_add_epi32(res_1, res_3),
_mm256_add_epi32(res_5, res_7));
// Rearrange pixels back into the order 0 ... 7
*res_lo = _mm256_unpacklo_epi32(res_even, res_odd);
*res_hi = _mm256_unpackhi_epi32(res_even, res_odd);
}
static INLINE void store_vertical_filter_output_avx2(
const __m256i *res_lo, const __m256i *res_hi, const __m256i *res_add_const,
const __m256i *wt, const __m256i *res_sub_const,
const __m256i *round_bits_const, uint8_t *pred, ConvolveParams *conv_params,
int i, int j, int k, const int reduce_bits_vert, int p_stride, int p_width,
const int round_bits) {
__m256i res_lo_1 = *res_lo;
__m256i res_hi_1 = *res_hi;
if (conv_params->is_compound) {
__m128i *const p_0 =
(__m128i *)&conv_params->dst[(i + k + 4) * conv_params->dst_stride + j];
__m128i *const p_1 =
(__m128i *)&conv_params
->dst[(i + (k + 1) + 4) * conv_params->dst_stride + j];
res_lo_1 = _mm256_srai_epi32(_mm256_add_epi32(res_lo_1, *res_add_const),
reduce_bits_vert);
const __m256i temp_lo_16 = _mm256_packus_epi32(res_lo_1, res_lo_1);
__m256i res_lo_16;
if (conv_params->do_average) {
__m128i *const dst8_0 = (__m128i *)&pred[(i + k + 4) * p_stride + j];
__m128i *const dst8_1 =
(__m128i *)&pred[(i + (k + 1) + 4) * p_stride + j];
const __m128i p_16_0 = _mm_loadl_epi64(p_0);
const __m128i p_16_1 = _mm_loadl_epi64(p_1);
const __m256i p_16 =
_mm256_inserti128_si256(_mm256_castsi128_si256(p_16_0), p_16_1, 1);
if (conv_params->use_dist_wtd_comp_avg) {
const __m256i p_16_lo = _mm256_unpacklo_epi16(p_16, temp_lo_16);
const __m256i wt_res_lo = _mm256_madd_epi16(p_16_lo, *wt);
const __m256i shifted_32 =
_mm256_srai_epi32(wt_res_lo, DIST_PRECISION_BITS);
res_lo_16 = _mm256_packus_epi32(shifted_32, shifted_32);
} else {
res_lo_16 = _mm256_srai_epi16(_mm256_add_epi16(p_16, temp_lo_16), 1);
}
res_lo_16 = _mm256_add_epi16(res_lo_16, *res_sub_const);
res_lo_16 = _mm256_srai_epi16(
_mm256_add_epi16(res_lo_16, *round_bits_const), round_bits);
const __m256i res_8_lo = _mm256_packus_epi16(res_lo_16, res_lo_16);
const __m128i res_8_lo_0 = _mm256_castsi256_si128(res_8_lo);
const __m128i res_8_lo_1 = _mm256_extracti128_si256(res_8_lo, 1);
*(uint32_t *)dst8_0 = _mm_cvtsi128_si32(res_8_lo_0);
*(uint32_t *)dst8_1 = _mm_cvtsi128_si32(res_8_lo_1);
} else {
const __m128i temp_lo_16_0 = _mm256_castsi256_si128(temp_lo_16);
const __m128i temp_lo_16_1 = _mm256_extracti128_si256(temp_lo_16, 1);
_mm_storel_epi64(p_0, temp_lo_16_0);
_mm_storel_epi64(p_1, temp_lo_16_1);
}
if (p_width > 4) {
__m128i *const p4_0 =
(__m128i *)&conv_params
->dst[(i + k + 4) * conv_params->dst_stride + j + 4];
__m128i *const p4_1 =
(__m128i *)&conv_params
->dst[(i + (k + 1) + 4) * conv_params->dst_stride + j + 4];
res_hi_1 = _mm256_srai_epi32(_mm256_add_epi32(res_hi_1, *res_add_const),
reduce_bits_vert);
const __m256i temp_hi_16 = _mm256_packus_epi32(res_hi_1, res_hi_1);
__m256i res_hi_16;
if (conv_params->do_average) {
__m128i *const dst8_4_0 =
(__m128i *)&pred[(i + k + 4) * p_stride + j + 4];
__m128i *const dst8_4_1 =
(__m128i *)&pred[(i + (k + 1) + 4) * p_stride + j + 4];
const __m128i p4_16_0 = _mm_loadl_epi64(p4_0);
const __m128i p4_16_1 = _mm_loadl_epi64(p4_1);
const __m256i p4_16 = _mm256_inserti128_si256(
_mm256_castsi128_si256(p4_16_0), p4_16_1, 1);
if (conv_params->use_dist_wtd_comp_avg) {
const __m256i p_16_hi = _mm256_unpacklo_epi16(p4_16, temp_hi_16);
const __m256i wt_res_hi = _mm256_madd_epi16(p_16_hi, *wt);
const __m256i shifted_32 =
_mm256_srai_epi32(wt_res_hi, DIST_PRECISION_BITS);
res_hi_16 = _mm256_packus_epi32(shifted_32, shifted_32);
} else {
res_hi_16 = _mm256_srai_epi16(_mm256_add_epi16(p4_16, temp_hi_16), 1);
}
res_hi_16 = _mm256_add_epi16(res_hi_16, *res_sub_const);
res_hi_16 = _mm256_srai_epi16(
_mm256_add_epi16(res_hi_16, *round_bits_const), round_bits);
__m256i res_8_hi = _mm256_packus_epi16(res_hi_16, res_hi_16);
const __m128i res_8_hi_0 = _mm256_castsi256_si128(res_8_hi);
const __m128i res_8_hi_1 = _mm256_extracti128_si256(res_8_hi, 1);
*(uint32_t *)dst8_4_0 = _mm_cvtsi128_si32(res_8_hi_0);
*(uint32_t *)dst8_4_1 = _mm_cvtsi128_si32(res_8_hi_1);
} else {
const __m128i temp_hi_16_0 = _mm256_castsi256_si128(temp_hi_16);
const __m128i temp_hi_16_1 = _mm256_extracti128_si256(temp_hi_16, 1);
_mm_storel_epi64(p4_0, temp_hi_16_0);
_mm_storel_epi64(p4_1, temp_hi_16_1);
}
}
} else {
const __m256i res_lo_round = _mm256_srai_epi32(
_mm256_add_epi32(res_lo_1, *res_add_const), reduce_bits_vert);
const __m256i res_hi_round = _mm256_srai_epi32(
_mm256_add_epi32(res_hi_1, *res_add_const), reduce_bits_vert);
const __m256i res_16bit = _mm256_packs_epi32(res_lo_round, res_hi_round);
const __m256i res_8bit = _mm256_packus_epi16(res_16bit, res_16bit);
const __m128i res_8bit0 = _mm256_castsi256_si128(res_8bit);
const __m128i res_8bit1 = _mm256_extracti128_si256(res_8bit, 1);
// Store, blending with 'pred' if needed
__m128i *const p = (__m128i *)&pred[(i + k + 4) * p_stride + j];
__m128i *const p1 = (__m128i *)&pred[(i + (k + 1) + 4) * p_stride + j];
if (p_width == 4) {
*(uint32_t *)p = _mm_cvtsi128_si32(res_8bit0);
*(uint32_t *)p1 = _mm_cvtsi128_si32(res_8bit1);
} else {
_mm_storel_epi64(p, res_8bit0);
_mm_storel_epi64(p1, res_8bit1);
}
}
}
static INLINE void warp_vertical_filter_avx2(
uint8_t *pred, __m256i *horz_out, ConvolveParams *conv_params,
int16_t gamma, int16_t delta, int p_height, int p_stride, int p_width,
int i, int j, int sy4, const int reduce_bits_vert,
const __m256i *res_add_const, const int round_bits,
const __m256i *res_sub_const, const __m256i *round_bits_const,
const __m256i *wt) {
int k, row = 0;
__m256i src[8];
const __m256i src_0 = horz_out[0];
const __m256i src_1 =
_mm256_permute2x128_si256(horz_out[0], horz_out[1], 0x21);
const __m256i src_2 = horz_out[1];
const __m256i src_3 =
_mm256_permute2x128_si256(horz_out[1], horz_out[2], 0x21);
const __m256i src_4 = horz_out[2];
const __m256i src_5 =
_mm256_permute2x128_si256(horz_out[2], horz_out[3], 0x21);
src[0] = _mm256_unpacklo_epi16(src_0, src_1);
src[2] = _mm256_unpacklo_epi16(src_2, src_3);
src[4] = _mm256_unpacklo_epi16(src_4, src_5);
src[1] = _mm256_unpackhi_epi16(src_0, src_1);
src[3] = _mm256_unpackhi_epi16(src_2, src_3);
src[5] = _mm256_unpackhi_epi16(src_4, src_5);
for (k = -4; k < AOMMIN(4, p_height - i - 4); k += 2) {
int sy = sy4 + delta * (k + 4);
__m256i coeffs[8];
prepare_vertical_filter_coeffs_avx2(gamma, delta, sy, coeffs);
__m256i res_lo, res_hi;
filter_src_pixels_vertical_avx2(horz_out, src, coeffs, &res_lo, &res_hi,
row);
store_vertical_filter_output_avx2(&res_lo, &res_hi, res_add_const, wt,
res_sub_const, round_bits_const, pred,
conv_params, i, j, k, reduce_bits_vert,
p_stride, p_width, round_bits);
src[0] = src[2];
src[2] = src[4];
src[4] = src[6];
src[1] = src[3];
src[3] = src[5];
src[5] = src[7];
row += 1;
}
}
static INLINE void warp_vertical_filter_gamma0_avx2(
uint8_t *pred, __m256i *horz_out, ConvolveParams *conv_params,
int16_t gamma, int16_t delta, int p_height, int p_stride, int p_width,
int i, int j, int sy4, const int reduce_bits_vert,
const __m256i *res_add_const, const int round_bits,
const __m256i *res_sub_const, const __m256i *round_bits_const,
const __m256i *wt) {
(void)gamma;
int k, row = 0;
__m256i src[8];
const __m256i src_0 = horz_out[0];
const __m256i src_1 =
_mm256_permute2x128_si256(horz_out[0], horz_out[1], 0x21);
const __m256i src_2 = horz_out[1];
const __m256i src_3 =
_mm256_permute2x128_si256(horz_out[1], horz_out[2], 0x21);
const __m256i src_4 = horz_out[2];
const __m256i src_5 =
_mm256_permute2x128_si256(horz_out[2], horz_out[3], 0x21);
src[0] = _mm256_unpacklo_epi16(src_0, src_1);
src[2] = _mm256_unpacklo_epi16(src_2, src_3);
src[4] = _mm256_unpacklo_epi16(src_4, src_5);
src[1] = _mm256_unpackhi_epi16(src_0, src_1);
src[3] = _mm256_unpackhi_epi16(src_2, src_3);
src[5] = _mm256_unpackhi_epi16(src_4, src_5);
for (k = -4; k < AOMMIN(4, p_height - i - 4); k += 2) {
int sy = sy4 + delta * (k + 4);
__m256i coeffs[8];
prepare_vertical_filter_coeffs_gamma0_avx2(delta, sy, coeffs);
__m256i res_lo, res_hi;
filter_src_pixels_vertical_avx2(horz_out, src, coeffs, &res_lo, &res_hi,
row);
store_vertical_filter_output_avx2(&res_lo, &res_hi, res_add_const, wt,
res_sub_const, round_bits_const, pred,
conv_params, i, j, k, reduce_bits_vert,
p_stride, p_width, round_bits);
src[0] = src[2];
src[2] = src[4];
src[4] = src[6];
src[1] = src[3];
src[3] = src[5];
src[5] = src[7];
row += 1;
}
}
static INLINE void warp_vertical_filter_delta0_avx2(
uint8_t *pred, __m256i *horz_out, ConvolveParams *conv_params,
int16_t gamma, int16_t delta, int p_height, int p_stride, int p_width,
int i, int j, int sy4, const int reduce_bits_vert,
const __m256i *res_add_const, const int round_bits,
const __m256i *res_sub_const, const __m256i *round_bits_const,
const __m256i *wt) {
(void)delta;
int k, row = 0;
__m256i src[8], coeffs[8];
const __m256i src_0 = horz_out[0];
const __m256i src_1 =
_mm256_permute2x128_si256(horz_out[0], horz_out[1], 0x21);
const __m256i src_2 = horz_out[1];
const __m256i src_3 =
_mm256_permute2x128_si256(horz_out[1], horz_out[2], 0x21);
const __m256i src_4 = horz_out[2];
const __m256i src_5 =
_mm256_permute2x128_si256(horz_out[2], horz_out[3], 0x21);
src[0] = _mm256_unpacklo_epi16(src_0, src_1);
src[2] = _mm256_unpacklo_epi16(src_2, src_3);
src[4] = _mm256_unpacklo_epi16(src_4, src_5);
src[1] = _mm256_unpackhi_epi16(src_0, src_1);
src[3] = _mm256_unpackhi_epi16(src_2, src_3);
src[5] = _mm256_unpackhi_epi16(src_4, src_5);
prepare_vertical_filter_coeffs_delta0_avx2(gamma, sy4, coeffs);
for (k = -4; k < AOMMIN(4, p_height - i - 4); k += 2) {
__m256i res_lo, res_hi;
filter_src_pixels_vertical_avx2(horz_out, src, coeffs, &res_lo, &res_hi,
row);
store_vertical_filter_output_avx2(&res_lo, &res_hi, res_add_const, wt,
res_sub_const, round_bits_const, pred,
conv_params, i, j, k, reduce_bits_vert,
p_stride, p_width, round_bits);
src[0] = src[2];
src[2] = src[4];
src[4] = src[6];
src[1] = src[3];
src[3] = src[5];
src[5] = src[7];
row += 1;
}
}
static INLINE void warp_vertical_filter_gamma0_delta0_avx2(
uint8_t *pred, __m256i *horz_out, ConvolveParams *conv_params,
int16_t gamma, int16_t delta, int p_height, int p_stride, int p_width,
int i, int j, int sy4, const int reduce_bits_vert,
const __m256i *res_add_const, const int round_bits,
const __m256i *res_sub_const, const __m256i *round_bits_const,
const __m256i *wt) {
(void)gamma;
int k, row = 0;
__m256i src[8], coeffs[8];
const __m256i src_0 = horz_out[0];
const __m256i src_1 =
_mm256_permute2x128_si256(horz_out[0], horz_out[1], 0x21);
const __m256i src_2 = horz_out[1];
const __m256i src_3 =
_mm256_permute2x128_si256(horz_out[1], horz_out[2], 0x21);
const __m256i src_4 = horz_out[2];
const __m256i src_5 =
_mm256_permute2x128_si256(horz_out[2], horz_out[3], 0x21);
src[0] = _mm256_unpacklo_epi16(src_0, src_1);
src[2] = _mm256_unpacklo_epi16(src_2, src_3);
src[4] = _mm256_unpacklo_epi16(src_4, src_5);
src[1] = _mm256_unpackhi_epi16(src_0, src_1);
src[3] = _mm256_unpackhi_epi16(src_2, src_3);
src[5] = _mm256_unpackhi_epi16(src_4, src_5);
prepare_vertical_filter_coeffs_gamma0_avx2(delta, sy4, coeffs);
for (k = -4; k < AOMMIN(4, p_height - i - 4); k += 2) {
__m256i res_lo, res_hi;
filter_src_pixels_vertical_avx2(horz_out, src, coeffs, &res_lo, &res_hi,
row);
store_vertical_filter_output_avx2(&res_lo, &res_hi, res_add_const, wt,
res_sub_const, round_bits_const, pred,
conv_params, i, j, k, reduce_bits_vert,
p_stride, p_width, round_bits);
src[0] = src[2];
src[2] = src[4];
src[4] = src[6];
src[1] = src[3];
src[3] = src[5];
src[5] = src[7];
row += 1;
}
}
static INLINE void prepare_warp_vertical_filter_avx2(
uint8_t *pred, __m256i *horz_out, ConvolveParams *conv_params,
int16_t gamma, int16_t delta, int p_height, int p_stride, int p_width,
int i, int j, int sy4, const int reduce_bits_vert,
const __m256i *res_add_const, const int round_bits,
const __m256i *res_sub_const, const __m256i *round_bits_const,
const __m256i *wt) {
if (gamma == 0 && delta == 0)
warp_vertical_filter_gamma0_delta0_avx2(
pred, horz_out, conv_params, gamma, delta, p_height, p_stride, p_width,
i, j, sy4, reduce_bits_vert, res_add_const, round_bits, res_sub_const,
round_bits_const, wt);
else if (gamma == 0 && delta != 0)
warp_vertical_filter_gamma0_avx2(
pred, horz_out, conv_params, gamma, delta, p_height, p_stride, p_width,
i, j, sy4, reduce_bits_vert, res_add_const, round_bits, res_sub_const,
round_bits_const, wt);
else if (gamma != 0 && delta == 0)
warp_vertical_filter_delta0_avx2(
pred, horz_out, conv_params, gamma, delta, p_height, p_stride, p_width,
i, j, sy4, reduce_bits_vert, res_add_const, round_bits, res_sub_const,
round_bits_const, wt);
else
warp_vertical_filter_avx2(pred, horz_out, conv_params, gamma, delta,
p_height, p_stride, p_width, i, j, sy4,
reduce_bits_vert, res_add_const, round_bits,
res_sub_const, round_bits_const, wt);
}
static INLINE void prepare_warp_horizontal_filter_avx2(
const uint8_t *ref, __m256i *horz_out, int stride, int32_t ix4, int32_t iy4,
int32_t sx4, int alpha, int beta, int p_height, int height, int i,
const __m256i *round_const, const __m128i *shift,
const __m256i *shuffle_src) {
if (alpha == 0 && beta == 0)
warp_horizontal_filter_alpha0_beta0_avx2(
ref, horz_out, stride, ix4, iy4, sx4, alpha, beta, p_height, height, i,
round_const, shift, shuffle_src);
else if (alpha == 0 && beta != 0)
warp_horizontal_filter_alpha0_avx2(ref, horz_out, stride, ix4, iy4, sx4,
alpha, beta, p_height, height, i,
round_const, shift, shuffle_src);
else if (alpha != 0 && beta == 0)
warp_horizontal_filter_beta0_avx2(ref, horz_out, stride, ix4, iy4, sx4,
alpha, beta, p_height, height, i,
round_const, shift, shuffle_src);
else
warp_horizontal_filter_avx2(ref, horz_out, stride, ix4, iy4, sx4, alpha,
beta, p_height, height, i, round_const, shift,
shuffle_src);
}
int64_t av1_calc_frame_error_avx2(const uint8_t *const ref, int ref_stride,
const uint8_t *const dst, int p_width,
int p_height, int dst_stride) {
int64_t sum_error = 0;
int i, j;
__m256i row_error, col_error;
__m256i zero = _mm256_set1_epi16(0);
__m256i dup_255 = _mm256_set1_epi16(255);
col_error = zero;
for (i = 0; i < (p_height / 4); i++) {
row_error = _mm256_set1_epi16(0);
for (j = 0; j < (p_width / 16); j++) {
__m256i ref_1_16 = _mm256_cvtepu8_epi16(_mm_load_si128(
(__m128i *)(ref + (j * 16) + (((i * 4) + 0) * ref_stride))));
__m256i dst_1_16 = _mm256_cvtepu8_epi16(_mm_load_si128(
(__m128i *)(dst + (j * 16) + (((i * 4) + 0) * dst_stride))));
__m256i ref_2_16 = _mm256_cvtepu8_epi16(_mm_load_si128(
(__m128i *)(ref + (j * 16) + (((i * 4) + 1) * ref_stride))));
__m256i dst_2_16 = _mm256_cvtepu8_epi16(_mm_load_si128(
(__m128i *)(dst + (j * 16) + (((i * 4) + 1) * dst_stride))));
__m256i ref_3_16 = _mm256_cvtepu8_epi16(_mm_load_si128(
(__m128i *)(ref + (j * 16) + (((i * 4) + 2) * ref_stride))));
__m256i dst_3_16 = _mm256_cvtepu8_epi16(_mm_load_si128(
(__m128i *)(dst + (j * 16) + (((i * 4) + 2) * dst_stride))));
__m256i ref_4_16 = _mm256_cvtepu8_epi16(_mm_load_si128(
(__m128i *)(ref + (j * 16) + (((i * 4) + 3) * ref_stride))));
__m256i dst_4_16 = _mm256_cvtepu8_epi16(_mm_load_si128(
(__m128i *)(dst + (j * 16) + (((i * 4) + 3) * dst_stride))));
__m256i diff_1 =
_mm256_add_epi16(_mm256_sub_epi16(dst_1_16, ref_1_16), dup_255);
__m256i diff_2 =
_mm256_add_epi16(_mm256_sub_epi16(dst_2_16, ref_2_16), dup_255);
__m256i diff_3 =
_mm256_add_epi16(_mm256_sub_epi16(dst_3_16, ref_3_16), dup_255);
__m256i diff_4 =
_mm256_add_epi16(_mm256_sub_epi16(dst_4_16, ref_4_16), dup_255);
__m256i diff_1_lo = _mm256_unpacklo_epi16(diff_1, zero);
__m256i diff_1_hi = _mm256_unpackhi_epi16(diff_1, zero);
__m256i diff_2_lo = _mm256_unpacklo_epi16(diff_2, zero);
__m256i diff_2_hi = _mm256_unpackhi_epi16(diff_2, zero);
__m256i diff_3_lo = _mm256_unpacklo_epi16(diff_3, zero);
__m256i diff_3_hi = _mm256_unpackhi_epi16(diff_3, zero);
__m256i diff_4_lo = _mm256_unpacklo_epi16(diff_4, zero);
__m256i diff_4_hi = _mm256_unpackhi_epi16(diff_4, zero);
__m256i error_1_lo =
_mm256_i32gather_epi32(error_measure_lut, diff_1_lo, 4);
__m256i error_1_hi =
_mm256_i32gather_epi32(error_measure_lut, diff_1_hi, 4);
__m256i error_2_lo =
_mm256_i32gather_epi32(error_measure_lut, diff_2_lo, 4);
__m256i error_2_hi =
_mm256_i32gather_epi32(error_measure_lut, diff_2_hi, 4);
__m256i error_3_lo =
_mm256_i32gather_epi32(error_measure_lut, diff_3_lo, 4);
__m256i error_3_hi =
_mm256_i32gather_epi32(error_measure_lut, diff_3_hi, 4);
__m256i error_4_lo =
_mm256_i32gather_epi32(error_measure_lut, diff_4_lo, 4);
__m256i error_4_hi =
_mm256_i32gather_epi32(error_measure_lut, diff_4_hi, 4);
__m256i error_1 = _mm256_add_epi32(error_1_lo, error_1_hi);
__m256i error_2 = _mm256_add_epi32(error_2_lo, error_2_hi);
__m256i error_3 = _mm256_add_epi32(error_3_lo, error_3_hi);
__m256i error_4 = _mm256_add_epi32(error_4_lo, error_4_hi);
__m256i error_1_2 = _mm256_add_epi32(error_1, error_2);
__m256i error_3_4 = _mm256_add_epi32(error_3, error_4);
__m256i error_1_2_3_4 = _mm256_add_epi32(error_1_2, error_3_4);
row_error = _mm256_add_epi32(row_error, error_1_2_3_4);
}
__m256i col_error_lo = _mm256_unpacklo_epi32(row_error, zero);
__m256i col_error_hi = _mm256_unpackhi_epi32(row_error, zero);
__m256i col_error_temp = _mm256_add_epi64(col_error_lo, col_error_hi);
col_error = _mm256_add_epi64(col_error, col_error_temp);
// Error summation for remaining width, which is not multiple of 16
if (p_width & 0xf) {
for (int k = 0; k < 4; ++k) {
for (int l = j * 16; l < p_width; ++l) {
sum_error +=
(int64_t)error_measure(dst[l + ((i * 4) + k) * dst_stride] -
ref[l + ((i * 4) + k) * ref_stride]);
}
}
}
}
__m128i sum_error_q_0 = _mm256_castsi256_si128(col_error);
__m128i sum_error_q_1 = _mm256_extracti128_si256(col_error, 1);
sum_error_q_0 = _mm_add_epi64(sum_error_q_0, sum_error_q_1);
int64_t sum_error_d_0, sum_error_d_1;
xx_storel_64(&sum_error_d_0, sum_error_q_0);
xx_storel_64(&sum_error_d_1, _mm_srli_si128(sum_error_q_0, 8));
sum_error = (sum_error + sum_error_d_0 + sum_error_d_1);
// Error summation for remaining height, which is not multiple of 4
if (p_height & 0x3) {
for (int k = i * 4; k < p_height; ++k) {
for (int l = 0; l < p_width; ++l) {
sum_error += (int64_t)error_measure(dst[l + k * dst_stride] -
ref[l + k * ref_stride]);
}
}
}
return sum_error;
}
void av1_warp_affine_avx2(const int32_t *mat, const uint8_t *ref, int width,
int height, int stride, uint8_t *pred, int p_col,
int p_row, int p_width, int p_height, int p_stride,
int subsampling_x, int subsampling_y,
ConvolveParams *conv_params, int16_t alpha,
int16_t beta, int16_t gamma, int16_t delta) {
__m256i horz_out[8];
int i, j, k;
const int bd = 8;
const int reduce_bits_horiz = conv_params->round_0;
const int reduce_bits_vert = conv_params->is_compound
? conv_params->round_1
: 2 * FILTER_BITS - reduce_bits_horiz;
const int offset_bits_horiz = bd + FILTER_BITS - 1;
assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL));
const int offset_bits_vert = bd + 2 * FILTER_BITS - reduce_bits_horiz;
const __m256i reduce_bits_vert_const =
_mm256_set1_epi32(((1 << reduce_bits_vert) >> 1));
const __m256i res_add_const = _mm256_set1_epi32(1 << offset_bits_vert);
const int round_bits =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
assert(IMPLIES(conv_params->do_average, conv_params->is_compound));
const __m256i round_const = _mm256_set1_epi16(
(1 << offset_bits_horiz) + ((1 << reduce_bits_horiz) >> 1));
const __m128i shift = _mm_cvtsi32_si128(reduce_bits_horiz);
__m256i res_sub_const, round_bits_const, wt;
unpack_weights_and_set_round_const_avx2(conv_params, round_bits, offset_bits,
&res_sub_const, &round_bits_const,
&wt);
__m256i res_add_const_1;
if (conv_params->is_compound == 1) {
res_add_const_1 = _mm256_add_epi32(reduce_bits_vert_const, res_add_const);
} else {
res_add_const_1 = _mm256_set1_epi32(-(1 << (bd + reduce_bits_vert - 1)) +
((1 << reduce_bits_vert) >> 1));
}
const int32_t const1 = alpha * (-4) + beta * (-4) +
(1 << (WARPEDDIFF_PREC_BITS - 1)) +
(WARPEDPIXEL_PREC_SHIFTS << WARPEDDIFF_PREC_BITS);
const int32_t const2 = gamma * (-4) + delta * (-4) +
(1 << (WARPEDDIFF_PREC_BITS - 1)) +
(WARPEDPIXEL_PREC_SHIFTS << WARPEDDIFF_PREC_BITS);
const int32_t const3 = ((1 << WARP_PARAM_REDUCE_BITS) - 1);
const int16_t const4 = (1 << (bd + FILTER_BITS - reduce_bits_horiz - 1));
const int16_t const5 = (1 << (FILTER_BITS - reduce_bits_horiz));
__m256i shuffle_src[4];
shuffle_src[0] = _mm256_load_si256((__m256i *)shuffle_src0);
shuffle_src[1] = _mm256_load_si256((__m256i *)shuffle_src1);
shuffle_src[2] = _mm256_load_si256((__m256i *)shuffle_src2);
shuffle_src[3] = _mm256_load_si256((__m256i *)shuffle_src3);
for (i = 0; i < p_height; i += 8) {
for (j = 0; j < p_width; j += 8) {
const int32_t src_x = (p_col + j + 4) << subsampling_x;
const int32_t src_y = (p_row + i + 4) << subsampling_y;
const int32_t dst_x = mat[2] * src_x + mat[3] * src_y + mat[0];
const int32_t dst_y = mat[4] * src_x + mat[5] * src_y + mat[1];
const int32_t x4 = dst_x >> subsampling_x;
const int32_t y4 = dst_y >> subsampling_y;
int32_t ix4 = x4 >> WARPEDMODEL_PREC_BITS;
int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
int32_t iy4 = y4 >> WARPEDMODEL_PREC_BITS;
int32_t sy4 = y4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
// Add in all the constant terms, including rounding and offset
sx4 += const1;
sy4 += const2;
sx4 &= ~const3;
sy4 &= ~const3;
// Horizontal filter
// If the block is aligned such that, after clamping, every sample
// would be taken from the leftmost/rightmost column, then we can
// skip the expensive horizontal filter.
if (ix4 <= -7) {
int iy, row = 0;
for (k = -7; k <= (AOMMIN(8, p_height - i) - 2); k += 2) {
iy = iy4 + k;
iy = clamp(iy, 0, height - 1);
const __m256i temp_0 =
_mm256_set1_epi16(const4 + ref[iy * stride] * const5);
iy = iy4 + k + 1;
iy = clamp(iy, 0, height - 1);
const __m256i temp_1 =
_mm256_set1_epi16(const4 + ref[iy * stride] * const5);
horz_out[row] = _mm256_blend_epi32(temp_0, temp_1, 0xf0);
row += 1;
}
iy = iy4 + k;
iy = clamp(iy, 0, height - 1);
horz_out[row] = _mm256_set1_epi16(const4 + ref[iy * stride] * const5);
} else if (ix4 >= width + 6) {
int iy, row = 0;
for (k = -7; k <= (AOMMIN(8, p_height - i) - 2); k += 2) {
iy = iy4 + k;
iy = clamp(iy, 0, height - 1);
const __m256i temp_0 = _mm256_set1_epi16(
const4 + ref[iy * stride + (width - 1)] * const5);
iy = iy4 + k + 1;
iy = clamp(iy, 0, height - 1);
const __m256i temp_1 = _mm256_set1_epi16(
const4 + ref[iy * stride + (width - 1)] * const5);
horz_out[row] = _mm256_blend_epi32(temp_0, temp_1, 0xf0);
row += 1;
}
iy = iy4 + k;
iy = clamp(iy, 0, height - 1);
horz_out[row] =
_mm256_set1_epi16(const4 + ref[iy * stride + (width - 1)] * const5);
} else if (((ix4 - 7) < 0) || ((ix4 + 9) > width)) {
const int out_of_boundary_left = -(ix4 - 6);
const int out_of_boundary_right = (ix4 + 8) - width;
int iy, sx, row = 0;
for (k = -7; k <= (AOMMIN(8, p_height - i) - 2); k += 2) {
iy = iy4 + k;
iy = clamp(iy, 0, height - 1);
__m128i src0 =
_mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7));
iy = iy4 + k + 1;
iy = clamp(iy, 0, height - 1);
__m128i src1 =
_mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7));
if (out_of_boundary_left >= 0) {
const __m128i shuffle_reg_left =
_mm_loadu_si128((__m128i *)warp_pad_left[out_of_boundary_left]);
src0 = _mm_shuffle_epi8(src0, shuffle_reg_left);
src1 = _mm_shuffle_epi8(src1, shuffle_reg_left);
}
if (out_of_boundary_right >= 0) {
const __m128i shuffle_reg_right = _mm_loadu_si128(
(__m128i *)warp_pad_right[out_of_boundary_right]);
src0 = _mm_shuffle_epi8(src0, shuffle_reg_right);
src1 = _mm_shuffle_epi8(src1, shuffle_reg_right);
}
sx = sx4 + beta * (k + 4);
const __m256i src_01 =
_mm256_inserti128_si256(_mm256_castsi128_si256(src0), src1, 0x1);
horizontal_filter_avx2(src_01, horz_out, sx, alpha, beta, row,
shuffle_src, &round_const, &shift);
row += 1;
}
iy = iy4 + k;
iy = clamp(iy, 0, height - 1);
__m128i src = _mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 7));
if (out_of_boundary_left >= 0) {
const __m128i shuffle_reg_left =
_mm_loadu_si128((__m128i *)warp_pad_left[out_of_boundary_left]);
src = _mm_shuffle_epi8(src, shuffle_reg_left);
}
if (out_of_boundary_right >= 0) {
const __m128i shuffle_reg_right =
_mm_loadu_si128((__m128i *)warp_pad_right[out_of_boundary_right]);
src = _mm_shuffle_epi8(src, shuffle_reg_right);
}
sx = sx4 + beta * (k + 4);
const __m256i src_01 = _mm256_castsi128_si256(src);
__m256i coeff[4];
prepare_horizontal_filter_coeff(alpha, sx, coeff);
filter_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src,
&round_const, &shift, row);
} else {
prepare_warp_horizontal_filter_avx2(
ref, horz_out, stride, ix4, iy4, sx4, alpha, beta, p_height, height,
i, &round_const, &shift, shuffle_src);
}
// Vertical filter
prepare_warp_vertical_filter_avx2(
pred, horz_out, conv_params, gamma, delta, p_height, p_stride,
p_width, i, j, sy4, reduce_bits_vert, &res_add_const_1, round_bits,
&res_sub_const, &round_bits_const, &wt);
}
}
}
#if CONFIG_EXT_WARP
static INLINE void store_ext_warp_vert_filter_output_avx2(
const __m256i *res_lo, const __m256i *res_hi, const __m256i *res_add_const,
const __m256i *wt, const __m256i *res_sub_const,
const __m256i *round_bits_const, uint8_t *pred, ConvolveParams *conv_params,
int i, int j, int k, const int reduce_bits_vert, int p_stride,
const int round_bits) {
__m256i res_lo_1 = *res_lo;
__m256i res_hi_1 = *res_hi;
if (conv_params->is_compound) {
__m128i *const p_0 =
(__m128i *)&conv_params->dst[(i + k + 2) * conv_params->dst_stride + j];
__m128i *const p_1 =
(__m128i *)&conv_params
->dst[(i + (k + 1) + 2) * conv_params->dst_stride + j];
res_lo_1 = _mm256_srai_epi32(_mm256_add_epi32(res_lo_1, *res_add_const),
reduce_bits_vert);
const __m256i temp_lo_16 = _mm256_packus_epi32(res_lo_1, res_lo_1);
__m256i res_lo_16;
if (conv_params->do_average) {
__m128i *const dst8_0 = (__m128i *)&pred[(i + k + 2) * p_stride + j];
__m128i *const dst8_1 =
(__m128i *)&pred[(i + (k + 1) + 2) * p_stride + j];
const __m128i p_16_0 = _mm_loadl_epi64(p_0);
const __m128i p_16_1 = _mm_loadl_epi64(p_1);
const __m256i p_16 =
_mm256_inserti128_si256(_mm256_castsi128_si256(p_16_0), p_16_1, 1);
if (conv_params->use_dist_wtd_comp_avg) {
const __m256i p_16_lo = _mm256_unpacklo_epi16(p_16, temp_lo_16);
const __m256i wt_res_lo = _mm256_madd_epi16(p_16_lo, *wt);
const __m256i shifted_32 =
_mm256_srai_epi32(wt_res_lo, DIST_PRECISION_BITS);
res_lo_16 = _mm256_packus_epi32(shifted_32, shifted_32);
} else {
res_lo_16 = _mm256_srai_epi16(_mm256_add_epi16(p_16, temp_lo_16), 1);
}
res_lo_16 = _mm256_add_epi16(res_lo_16, *res_sub_const);
res_lo_16 = _mm256_srai_epi16(
_mm256_add_epi16(res_lo_16, *round_bits_const), round_bits);
const __m256i res_8_lo = _mm256_packus_epi16(res_lo_16, res_lo_16);
const __m128i res_8_lo_0 = _mm256_castsi256_si128(res_8_lo);
const __m128i res_8_lo_1 = _mm256_extracti128_si256(res_8_lo, 1);
*(uint32_t *)dst8_0 = _mm_cvtsi128_si32(res_8_lo_0);
*(uint32_t *)dst8_1 = _mm_cvtsi128_si32(res_8_lo_1);
} else {
const __m128i temp_lo_16_0 = _mm256_castsi256_si128(temp_lo_16);
const __m128i temp_lo_16_1 = _mm256_extracti128_si256(temp_lo_16, 1);
_mm_storel_epi64(p_0, temp_lo_16_0);
_mm_storel_epi64(p_1, temp_lo_16_1);
}
} else {
const __m256i res_lo_round = _mm256_srai_epi32(
_mm256_add_epi32(res_lo_1, *res_add_const), reduce_bits_vert);
const __m256i res_hi_round = _mm256_srai_epi32(
_mm256_add_epi32(res_hi_1, *res_add_const), reduce_bits_vert);
const __m256i res_16bit = _mm256_packs_epi32(res_lo_round, res_hi_round);
const __m256i res_8bit = _mm256_packus_epi16(res_16bit, res_16bit);
const __m128i res_8bit0 = _mm256_castsi256_si128(res_8bit);
const __m128i res_8bit1 = _mm256_extracti128_si256(res_8bit, 1);
// Store, blending with 'pred' if needed
__m128i *const p = (__m128i *)&pred[(i + k + 2) * p_stride + j];
__m128i *const p1 = (__m128i *)&pred[(i + (k + 1) + 2) * p_stride + j];
*(uint32_t *)p = _mm_cvtsi128_si32(res_8bit0);
*(uint32_t *)p1 = _mm_cvtsi128_si32(res_8bit1);
}
}
static INLINE void prepare_ext_warp_vert_filter_coeffs_avx2(int offset,
__m256i *coeffs) {
const __m128i filt_0 =
_mm_loadu_si128((__m128i *)(av1_ext_warped_filter + offset));
__m256i res_0 =
_mm256_inserti128_si256(_mm256_castsi128_si256(filt_0), filt_0, 0x1);
coeffs[0] = _mm256_shuffle_epi8(
res_0, _mm256_load_si256((__m256i *)shuffle_gamma0_mask0_avx2));
coeffs[1] = _mm256_shuffle_epi8(
res_0, _mm256_load_si256((__m256i *)shuffle_gamma0_mask1_avx2));
coeffs[2] = _mm256_shuffle_epi8(
res_0, _mm256_load_si256((__m256i *)shuffle_gamma0_mask2_avx2));
coeffs[3] = _mm256_shuffle_epi8(
res_0, _mm256_load_si256((__m256i *)shuffle_gamma0_mask3_avx2));
coeffs[4] = coeffs[0];
coeffs[5] = coeffs[1];
coeffs[6] = coeffs[2];
coeffs[7] = coeffs[3];
}
static INLINE void ext_warp_vertical_filter_avx2(
uint8_t *pred, __m256i *horz_out, ConvolveParams *conv_params, int p_height,
int p_stride, int i, int j, int offset, const int reduce_bits_vert,
const __m256i *res_add_const, const int round_bits,
const __m256i *res_sub_const, const __m256i *round_bits_const,
const __m256i *wt) {
int k, row = 0;
__m256i src[8], coeffs[8];
const __m256i src_0 = horz_out[0];
const __m256i src_1 =
_mm256_permute2x128_si256(horz_out[0], horz_out[1], 0x21);
const __m256i src_2 = horz_out[1];
const __m256i src_3 =
_mm256_permute2x128_si256(horz_out[1], horz_out[2], 0x21);
const __m256i src_4 = horz_out[2];
const __m256i src_5 =
_mm256_permute2x128_si256(horz_out[2], horz_out[3], 0x21);
src[0] = _mm256_unpacklo_epi16(src_0, src_1);
src[2] = _mm256_unpacklo_epi16(src_2, src_3);
src[4] = _mm256_unpacklo_epi16(src_4, src_5);
src[1] = _mm256_unpackhi_epi16(src_0, src_1);
src[3] = _mm256_unpackhi_epi16(src_2, src_3);
src[5] = _mm256_unpackhi_epi16(src_4, src_5);
prepare_ext_warp_vert_filter_coeffs_avx2(offset, coeffs);
for (k = -2; k < AOMMIN(2, p_height - i - 2); k += 2) {
__m256i res_lo, res_hi;
filter_src_pixels_vertical_avx2(horz_out, src, coeffs, &res_lo, &res_hi,
row);
res_hi = _mm256_permute2x128_si256(res_lo, res_hi, 0x21);
store_ext_warp_vert_filter_output_avx2(
&res_lo, &res_hi, res_add_const, wt, res_sub_const, round_bits_const,
pred, conv_params, i, j, k, reduce_bits_vert, p_stride, round_bits);
src[0] = src[2];
src[2] = src[4];
src[4] = src[6];
src[1] = src[3];
src[3] = src[5];
src[5] = src[7];
row += 1;
}
}
static INLINE void prepare_ext_warp_horiz_filter_coeffs_avx2(int offset,
__m256i *coeff) {
const __m128i tmp_0 =
_mm_load_si128((__m128i *)&av1_ext_filter_16bit[offset]);
const __m256i filter_coeff =
_mm256_inserti128_si256(_mm256_castsi128_si256(tmp_0), tmp_0, 0x1);
coeff[0] = _mm256_shuffle_epi8(
filter_coeff,
_mm256_load_si256((__m256i *)shuffle_ext_warp_horiz_filter_mask0_avx2));
coeff[1] = _mm256_shuffle_epi8(
filter_coeff,
_mm256_load_si256((__m256i *)shuffle_ext_warp_horiz_filter_mask1_avx2));
coeff[2] = _mm256_shuffle_epi8(
filter_coeff,
_mm256_load_si256((__m256i *)shuffle_ext_warp_horiz_filter_mask2_avx2));
coeff[3] = _mm256_shuffle_epi8(
filter_coeff,
_mm256_load_si256((__m256i *)shuffle_ext_warp_horiz_filter_mask3_avx2));
}
static INLINE void filter_ext_warp_src_pixels_avx2(
const __m256i src, __m256i *horz_out, __m256i *coeff,
const __m256i *shuffle_src, const __m256i *round_const,
const __m128i *shift, int row) {
__m256i row_01_for_coeff_02 = _mm256_shuffle_epi8(src, shuffle_src[0]);
__m256i row_01_for_coeff_46 = _mm256_shuffle_epi8(src, shuffle_src[1]);
__m256i row_01_for_coeff_13 = _mm256_shuffle_epi8(src, shuffle_src[2]);
__m256i row_01_for_coeff_57 = _mm256_shuffle_epi8(src, shuffle_src[3]);
// Row 0
const __m256i src0_for_coeff_02 =
_mm256_cvtepu8_epi16(_mm256_extracti128_si256(row_01_for_coeff_02, 0));
const __m256i src0_for_coeff_46 =
_mm256_cvtepu8_epi16(_mm256_extracti128_si256(row_01_for_coeff_46, 0));
const __m256i src0_for_coeff_13 =
_mm256_cvtepu8_epi16(_mm256_extracti128_si256(row_01_for_coeff_13, 0));
const __m256i src0_for_coeff_57 =
_mm256_cvtepu8_epi16(_mm256_extracti128_si256(row_01_for_coeff_57, 0));
const __m256i res0_02 = _mm256_madd_epi16(src0_for_coeff_02, coeff[0]);
const __m256i res0_46 = _mm256_madd_epi16(src0_for_coeff_46, coeff[1]);
const __m256i res0_13 = _mm256_madd_epi16(src0_for_coeff_13, coeff[2]);
const __m256i res0_57 = _mm256_madd_epi16(src0_for_coeff_57, coeff[3]);
const __m256i res0_even = _mm256_add_epi32(res0_02, res0_46);
const __m256i res0_odd = _mm256_add_epi32(res0_13, res0_57);
__m256i res0 = _mm256_add_epi32(res0_even, res0_odd);
res0 = _mm256_srl_epi16(_mm256_add_epi32(res0, *round_const), *shift);
__m128i res0_low = _mm256_extracti128_si256(res0, 0);
__m128i res0_high = _mm256_extracti128_si256(res0, 1);
__m128i res_row0_16b = _mm_packs_epi32(res0_low, res0_high);
// Row 1
const __m256i src1_for_coeff_02 =
_mm256_cvtepu8_epi16(_mm256_extracti128_si256(row_01_for_coeff_02, 1));
const __m256i src1_for_coeff_46 =
_mm256_cvtepu8_epi16(_mm256_extracti128_si256(row_01_for_coeff_46, 1));
const __m256i src1_for_coeff_13 =
_mm256_cvtepu8_epi16(_mm256_extracti128_si256(row_01_for_coeff_13, 1));
const __m256i src1_for_coeff_57 =
_mm256_cvtepu8_epi16(_mm256_extracti128_si256(row_01_for_coeff_57, 1));
const __m256i res1_02 = _mm256_madd_epi16(src1_for_coeff_02, coeff[0]);
const __m256i res1_46 = _mm256_madd_epi16(src1_for_coeff_46, coeff[1]);
const __m256i res1_13 = _mm256_madd_epi16(src1_for_coeff_13, coeff[2]);
const __m256i res1_57 = _mm256_madd_epi16(src1_for_coeff_57, coeff[3]);
const __m256i res1_even = _mm256_add_epi32(res1_02, res1_46);
const __m256i res1_odd = _mm256_add_epi32(res1_13, res1_57);
__m256i res1 = _mm256_add_epi32(res1_even, res1_odd);
res1 = _mm256_srl_epi16(_mm256_add_epi32(res1, *round_const), *shift);
__m128i res1_low = _mm256_extracti128_si256(res1, 0);
__m128i res1_high = _mm256_extracti128_si256(res1, 1);
__m128i res_row1_16b = _mm_packs_epi32(res1_low, res1_high);
__m256i res_row01 = _mm256_inserti128_si256(
_mm256_castsi128_si256(res_row0_16b), res_row1_16b, 0x1);
// Lower 128, Row 0 : p0, p2, p4, p6, p1, p3, p5, p7
// Upper 128, Row 1 : p0, p2, p4, p6, p1, p3, p5, p7
horz_out[row] = res_row01;
}
static INLINE void ext_warp_horizontal_filter_avx2(
const uint8_t *ref, __m256i *horz_out, int stride, int32_t ix4, int32_t iy4,
int offset, int height, const __m256i *round_const, const __m128i *shift,
const __m256i *shuffle_src) {
int k, iy, row = 0;
__m256i coeff[4];
prepare_ext_warp_horiz_filter_coeffs_avx2(offset, coeff);
for (k = -5; k <= (6 - 2); k += 2) {
iy = iy4 + k;
iy = clamp(iy, 0, height - 1);
const __m128i src0 =
_mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 5));
iy = iy4 + k + 1;
iy = clamp(iy, 0, height - 1);
const __m128i src1 =
_mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 5));
const __m256i src_01 =
_mm256_inserti128_si256(_mm256_castsi128_si256(src0), src1, 0x1);
filter_ext_warp_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src,
round_const, shift, row);
row += 1;
}
iy = iy4 + k;
iy = clamp(iy, 0, height - 1);
const __m256i src_01 = _mm256_castsi128_si256(
_mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 5)));
filter_ext_warp_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src,
round_const, shift, row);
}
void av1_ext_warp_affine_avx2(const int32_t *mat, const uint8_t *ref, int width,
int height, int stride, uint8_t *pred, int p_col,
int p_row, int p_width, int p_height,
int p_stride, int subsampling_x,
int subsampling_y, ConvolveParams *conv_params) {
__m256i horz_out[6];
int i, j, k;
const int bd = 8;
const int reduce_bits_horiz = conv_params->round_0;
const int reduce_bits_vert = conv_params->is_compound
? conv_params->round_1
: 2 * FILTER_BITS - reduce_bits_horiz;
const int offset_bits_horiz = bd + FILTER_BITS - 1;
assert(IMPLIES(conv_params->is_compound, conv_params->dst != NULL));
const int offset_bits_vert = bd + 2 * FILTER_BITS - reduce_bits_horiz;
const __m256i reduce_bits_vert_const =
_mm256_set1_epi32(((1 << reduce_bits_vert) >> 1));
const __m256i res_add_const = _mm256_set1_epi32(1 << offset_bits_vert);
const int round_bits =
2 * FILTER_BITS - conv_params->round_0 - conv_params->round_1;
const int offset_bits = bd + 2 * FILTER_BITS - conv_params->round_0;
assert(IMPLIES(conv_params->do_average, conv_params->is_compound));
const __m256i round_const = _mm256_set1_epi32(
(1 << offset_bits_horiz) + ((1 << reduce_bits_horiz) >> 1));
const __m128i shift = _mm_cvtsi32_si128(reduce_bits_horiz);
__m256i res_sub_const, round_bits_const, wt;
unpack_weights_and_set_round_const_avx2(conv_params, round_bits, offset_bits,
&res_sub_const, &round_bits_const,
&wt);
__m256i res_add_const_1;
if (conv_params->is_compound == 1) {
res_add_const_1 = _mm256_add_epi32(reduce_bits_vert_const, res_add_const);
} else {
res_add_const_1 = _mm256_set1_epi32(-(1 << (bd + reduce_bits_vert - 1)) +
((1 << reduce_bits_vert) >> 1));
}
const int16_t const1 = (1 << (bd + FILTER_BITS - reduce_bits_horiz - 1));
const int16_t const2 = (1 << (FILTER_BITS - reduce_bits_horiz));
__m256i shuffle_src[4];
shuffle_src[0] = _mm256_load_si256((__m256i *)shuffle_src0);
shuffle_src[1] = _mm256_load_si256((__m256i *)shuffle_src1);
shuffle_src[2] = _mm256_load_si256((__m256i *)shuffle_src2);
shuffle_src[3] = _mm256_load_si256((__m256i *)shuffle_src3);
for (i = 0; i < p_height; i += 4) {
for (j = 0; j < p_width; j += 4) {
// Calculate the center of this 4x4 block,
// project to luma coordinates (if in a subsampled chroma plane),
// apply the affine transformation,
// then convert back to the original coordinates (if necessary)
const int32_t src_x = (p_col + j + 2) << subsampling_x;
const int32_t src_y = (p_row + i + 2) << subsampling_y;
const int32_t dst_x = mat[2] * src_x + mat[3] * src_y + mat[0];
const int32_t dst_y = mat[4] * src_x + mat[5] * src_y + mat[1];
const int32_t x4 = dst_x >> subsampling_x;
const int32_t y4 = dst_y >> subsampling_y;
int32_t ix4 = x4 >> WARPEDMODEL_PREC_BITS;
int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
int32_t iy4 = y4 >> WARPEDMODEL_PREC_BITS;
int32_t sy4 = y4 & ((1 << WARPEDMODEL_PREC_BITS) - 1);
int offset_x = ROUND_POWER_OF_TWO(sx4, WARPEDDIFF_PREC_BITS);
int offset_y = ROUND_POWER_OF_TWO(sy4, WARPEDDIFF_PREC_BITS);
assert(offset_x >= 0 && offset_x <= WARPEDPIXEL_PREC_SHIFTS);
assert(offset_y >= 0 && offset_y <= WARPEDPIXEL_PREC_SHIFTS);
// Horizontal filter
// If the block is aligned such that, after clamping, every sample
// would be taken from the leftmost/rightmost column, then we can
// skip the expensive horizontal filter.
if (ix4 <= -5) {
int iy, row = 0;
for (k = -5; k <= (6 - 2); k += 2) {
iy = iy4 + k;
iy = clamp(iy, 0, height - 1);
const __m256i temp_0 =
_mm256_set1_epi16(const1 + ref[iy * stride] * const2);
iy = iy4 + k + 1;
iy = clamp(iy, 0, height - 1);
const __m256i temp_1 =
_mm256_set1_epi16(const1 + ref[iy * stride] * const2);
horz_out[row] = _mm256_blend_epi32(temp_0, temp_1, 0xf0);
row += 1;
}
iy = iy4 + k;
iy = clamp(iy, 0, height - 1);
horz_out[row] = _mm256_set1_epi16(const1 + ref[iy * stride] * const2);
} else if (ix4 >= width + 4) {
int iy, row = 0;
for (k = -5; k <= (6 - 2); k += 2) {
iy = iy4 + k;
iy = clamp(iy, 0, height - 1);
const __m256i temp_0 = _mm256_set1_epi16(
const1 + ref[iy * stride + (width - 1)] * const2);
iy = iy4 + k + 1;
iy = clamp(iy, 0, height - 1);
const __m256i temp_1 = _mm256_set1_epi16(
const1 + ref[iy * stride + (width - 1)] * const2);
horz_out[row] = _mm256_blend_epi32(temp_0, temp_1, 0xf0);
row += 1;
}
iy = iy4 + k;
iy = clamp(iy, 0, height - 1);
horz_out[row] =
_mm256_set1_epi16(const1 + ref[iy * stride + (width - 1)] * const2);
} else if (((ix4 - 5) < 0) || ((ix4 + 11) > width)) {
const int out_of_boundary_left = -(ix4 - 4);
const int out_of_boundary_right = (ix4 + 10) - width;
int iy, row = 0;
__m256i coeff[4];
prepare_ext_warp_horiz_filter_coeffs_avx2(offset_x, coeff);
for (k = -5; k <= (6 - 2); k += 2) {
iy = iy4 + k;
iy = clamp(iy, 0, height - 1);
__m128i src0 =
_mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 5));
iy = iy4 + k + 1;
iy = clamp(iy, 0, height - 1);
__m128i src1 =
_mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 5));
if (out_of_boundary_left >= 0) {
const __m128i shuffle_reg_left =
_mm_loadu_si128((__m128i *)warp_pad_left[out_of_boundary_left]);
src0 = _mm_shuffle_epi8(src0, shuffle_reg_left);
src1 = _mm_shuffle_epi8(src1, shuffle_reg_left);
}
if (out_of_boundary_right >= 0) {
const __m128i shuffle_reg_right = _mm_loadu_si128(
(__m128i *)warp_pad_right[out_of_boundary_right]);
src0 = _mm_shuffle_epi8(src0, shuffle_reg_right);
src1 = _mm_shuffle_epi8(src1, shuffle_reg_right);
}
const __m256i src_01 =
_mm256_inserti128_si256(_mm256_castsi128_si256(src0), src1, 0x1);
filter_ext_warp_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src,
&round_const, &shift, row);
row += 1;
}
iy = iy4 + k;
iy = clamp(iy, 0, height - 1);
__m128i src = _mm_loadu_si128((__m128i *)(ref + iy * stride + ix4 - 5));
if (out_of_boundary_left >= 0) {
const __m128i shuffle_reg_left =
_mm_loadu_si128((__m128i *)warp_pad_left[out_of_boundary_left]);
src = _mm_shuffle_epi8(src, shuffle_reg_left);
}
if (out_of_boundary_right >= 0) {
const __m128i shuffle_reg_right =
_mm_loadu_si128((__m128i *)warp_pad_right[out_of_boundary_right]);
src = _mm_shuffle_epi8(src, shuffle_reg_right);
}
const __m256i src_01 = _mm256_castsi128_si256(src);
filter_ext_warp_src_pixels_avx2(src_01, horz_out, coeff, shuffle_src,
&round_const, &shift, row);
} else {
ext_warp_horizontal_filter_avx2(ref, horz_out, stride, ix4, iy4,
offset_x, height, &round_const, &shift,
shuffle_src);
}
// Vertical filter
ext_warp_vertical_filter_avx2(pred, horz_out, conv_params, p_height,
p_stride, i, j, offset_y, reduce_bits_vert,
&res_add_const_1, round_bits,
&res_sub_const, &round_bits_const, &wt);
}
}
}
#endif // CONFIG_EXT_WARP