| /* |
| * |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "./aom_config.h" |
| #include "aom_mem/aom_mem.h" |
| |
| #include "av1/common/alloccommon.h" |
| #include "av1/common/blockd.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/entropymv.h" |
| #include "av1/common/onyxc_int.h" |
| |
| int av1_get_MBs(int width, int height) { |
| const int aligned_width = ALIGN_POWER_OF_TWO(width, 3); |
| const int aligned_height = ALIGN_POWER_OF_TWO(height, 3); |
| const int mi_cols = aligned_width >> MI_SIZE_LOG2; |
| const int mi_rows = aligned_height >> MI_SIZE_LOG2; |
| |
| #if CONFIG_CB4X4 |
| const int mb_cols = (mi_cols + 2) >> 2; |
| const int mb_rows = (mi_rows + 2) >> 2; |
| #else |
| const int mb_cols = (mi_cols + 1) >> 1; |
| const int mb_rows = (mi_rows + 1) >> 1; |
| #endif |
| return mb_rows * mb_cols; |
| } |
| |
| void av1_set_mb_mi(AV1_COMMON *cm, int width, int height) { |
| // Ensure that the decoded width and height are both multiples of |
| // 8 luma pixels (note: this may only be a multiple of 4 chroma pixels if |
| // subsampling is used). |
| // This simplifies the implementation of various experiments, |
| // eg. cdef, which operates on units of 8x8 luma pixels. |
| const int aligned_width = ALIGN_POWER_OF_TWO(width, 3); |
| const int aligned_height = ALIGN_POWER_OF_TWO(height, 3); |
| |
| cm->mi_cols = aligned_width >> MI_SIZE_LOG2; |
| cm->mi_rows = aligned_height >> MI_SIZE_LOG2; |
| cm->mi_stride = calc_mi_size(cm->mi_cols); |
| |
| #if CONFIG_CB4X4 |
| cm->mb_cols = (cm->mi_cols + 2) >> 2; |
| cm->mb_rows = (cm->mi_rows + 2) >> 2; |
| #else |
| cm->mb_cols = (cm->mi_cols + 1) >> 1; |
| cm->mb_rows = (cm->mi_rows + 1) >> 1; |
| #endif |
| cm->MBs = cm->mb_rows * cm->mb_cols; |
| } |
| |
| static int alloc_seg_map(AV1_COMMON *cm, int seg_map_size) { |
| int i; |
| |
| for (i = 0; i < NUM_PING_PONG_BUFFERS; ++i) { |
| cm->seg_map_array[i] = (uint8_t *)aom_calloc(seg_map_size, 1); |
| if (cm->seg_map_array[i] == NULL) return 1; |
| } |
| cm->seg_map_alloc_size = seg_map_size; |
| |
| // Init the index. |
| cm->seg_map_idx = 0; |
| cm->prev_seg_map_idx = 1; |
| |
| cm->current_frame_seg_map = cm->seg_map_array[cm->seg_map_idx]; |
| if (!cm->frame_parallel_decode) |
| cm->last_frame_seg_map = cm->seg_map_array[cm->prev_seg_map_idx]; |
| |
| return 0; |
| } |
| |
| static void free_seg_map(AV1_COMMON *cm) { |
| int i; |
| |
| for (i = 0; i < NUM_PING_PONG_BUFFERS; ++i) { |
| aom_free(cm->seg_map_array[i]); |
| cm->seg_map_array[i] = NULL; |
| } |
| |
| cm->current_frame_seg_map = NULL; |
| |
| if (!cm->frame_parallel_decode) { |
| cm->last_frame_seg_map = NULL; |
| } |
| cm->seg_map_alloc_size = 0; |
| } |
| |
| void av1_free_ref_frame_buffers(BufferPool *pool) { |
| int i; |
| |
| for (i = 0; i < FRAME_BUFFERS; ++i) { |
| if (pool->frame_bufs[i].ref_count > 0 && |
| pool->frame_bufs[i].raw_frame_buffer.data != NULL) { |
| pool->release_fb_cb(pool->cb_priv, &pool->frame_bufs[i].raw_frame_buffer); |
| pool->frame_bufs[i].ref_count = 0; |
| } |
| aom_free(pool->frame_bufs[i].mvs); |
| pool->frame_bufs[i].mvs = NULL; |
| #if CONFIG_MFMV |
| aom_free(pool->frame_bufs[i].tpl_mvs); |
| pool->frame_bufs[i].tpl_mvs = NULL; |
| #endif |
| aom_free_frame_buffer(&pool->frame_bufs[i].buf); |
| #if CONFIG_HASH_ME |
| av1_hash_table_destroy(&pool->frame_bufs[i].hash_table); |
| #endif |
| } |
| } |
| |
| #if CONFIG_LOOP_RESTORATION |
| // Assumes cm->rst_info[p].restoration_tilesize is already initialized |
| void av1_alloc_restoration_buffers(AV1_COMMON *cm) { |
| int p; |
| #if CONFIG_FRAME_SUPERRES |
| int width = cm->superres_upscaled_width; |
| int height = cm->superres_upscaled_height; |
| #else |
| int width = cm->width; |
| int height = cm->height; |
| #endif // CONFIG_FRAME_SUPERRES |
| av1_alloc_restoration_struct(cm, &cm->rst_info[0], width, height); |
| for (p = 1; p < MAX_MB_PLANE; ++p) |
| av1_alloc_restoration_struct(cm, &cm->rst_info[p], |
| ROUND_POWER_OF_TWO(width, cm->subsampling_x), |
| ROUND_POWER_OF_TWO(height, cm->subsampling_y)); |
| aom_free(cm->rst_internal.tmpbuf); |
| CHECK_MEM_ERROR(cm, cm->rst_internal.tmpbuf, |
| (int32_t *)aom_memalign(16, RESTORATION_TMPBUF_SIZE)); |
| |
| #if CONFIG_STRIPED_LOOP_RESTORATION |
| // Allocate internal storage for the loop restoration stripe boundary lines |
| for (p = 0; p < MAX_MB_PLANE; ++p) { |
| int w = p == 0 ? width : ROUND_POWER_OF_TWO(width, cm->subsampling_x); |
| int align_bits = 5; // align for efficiency |
| int stride = ALIGN_POWER_OF_TWO(w, align_bits); |
| int num_stripes = (height + 63) / 64; |
| // for each processing stripe: 2 lines above, 2 below |
| int buf_size = num_stripes * 2 * stride; |
| uint8_t *above_buf, *below_buf; |
| |
| aom_free(cm->rst_internal.stripe_boundary_above[p]); |
| aom_free(cm->rst_internal.stripe_boundary_below[p]); |
| |
| #if CONFIG_HIGHBITDEPTH |
| if (cm->use_highbitdepth) buf_size = buf_size * 2; |
| #endif |
| CHECK_MEM_ERROR(cm, above_buf, |
| (uint8_t *)aom_memalign(1 << align_bits, buf_size)); |
| CHECK_MEM_ERROR(cm, below_buf, |
| (uint8_t *)aom_memalign(1 << align_bits, buf_size)); |
| cm->rst_internal.stripe_boundary_above[p] = above_buf; |
| cm->rst_internal.stripe_boundary_below[p] = below_buf; |
| cm->rst_internal.stripe_boundary_stride[p] = stride; |
| } |
| #endif // CONFIG_STRIPED_LOOP_RESTORATION |
| } |
| |
| void av1_free_restoration_buffers(AV1_COMMON *cm) { |
| int p; |
| for (p = 0; p < MAX_MB_PLANE; ++p) |
| av1_free_restoration_struct(&cm->rst_info[p]); |
| aom_free(cm->rst_internal.tmpbuf); |
| cm->rst_internal.tmpbuf = NULL; |
| } |
| #endif // CONFIG_LOOP_RESTORATION |
| |
| void av1_free_context_buffers(AV1_COMMON *cm) { |
| int i; |
| cm->free_mi(cm); |
| free_seg_map(cm); |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| aom_free(cm->above_context[i]); |
| cm->above_context[i] = NULL; |
| } |
| aom_free(cm->above_seg_context); |
| cm->above_seg_context = NULL; |
| cm->above_context_alloc_cols = 0; |
| #if CONFIG_VAR_TX |
| aom_free(cm->above_txfm_context); |
| cm->above_txfm_context = NULL; |
| |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| aom_free(cm->top_txfm_context[i]); |
| cm->top_txfm_context[i] = NULL; |
| } |
| #endif |
| } |
| |
| int av1_alloc_context_buffers(AV1_COMMON *cm, int width, int height) { |
| int new_mi_size; |
| |
| av1_set_mb_mi(cm, width, height); |
| new_mi_size = cm->mi_stride * calc_mi_size(cm->mi_rows); |
| if (cm->mi_alloc_size < new_mi_size) { |
| cm->free_mi(cm); |
| if (cm->alloc_mi(cm, new_mi_size)) goto fail; |
| } |
| |
| if (cm->seg_map_alloc_size < cm->mi_rows * cm->mi_cols) { |
| // Create the segmentation map structure and set to 0. |
| free_seg_map(cm); |
| if (alloc_seg_map(cm, cm->mi_rows * cm->mi_cols)) goto fail; |
| } |
| |
| if (cm->above_context_alloc_cols < cm->mi_cols) { |
| // TODO(geza.lore): These are bigger than they need to be. |
| // cm->tile_width would be enough but it complicates indexing a |
| // little elsewhere. |
| const int aligned_mi_cols = |
| ALIGN_POWER_OF_TWO(cm->mi_cols, MAX_MIB_SIZE_LOG2); |
| int i; |
| |
| for (i = 0; i < MAX_MB_PLANE; i++) { |
| aom_free(cm->above_context[i]); |
| cm->above_context[i] = (ENTROPY_CONTEXT *)aom_calloc( |
| aligned_mi_cols << (MI_SIZE_LOG2 - tx_size_wide_log2[0]), |
| sizeof(*cm->above_context[0])); |
| if (!cm->above_context[i]) goto fail; |
| } |
| |
| aom_free(cm->above_seg_context); |
| cm->above_seg_context = (PARTITION_CONTEXT *)aom_calloc( |
| aligned_mi_cols, sizeof(*cm->above_seg_context)); |
| if (!cm->above_seg_context) goto fail; |
| |
| #if CONFIG_VAR_TX |
| aom_free(cm->above_txfm_context); |
| cm->above_txfm_context = (TXFM_CONTEXT *)aom_calloc( |
| aligned_mi_cols << TX_UNIT_WIDE_LOG2, sizeof(*cm->above_txfm_context)); |
| if (!cm->above_txfm_context) goto fail; |
| |
| for (i = 0; i < MAX_MB_PLANE; ++i) { |
| aom_free(cm->top_txfm_context[i]); |
| cm->top_txfm_context[i] = |
| (TXFM_CONTEXT *)aom_calloc(aligned_mi_cols << TX_UNIT_WIDE_LOG2, |
| sizeof(*cm->top_txfm_context[0])); |
| if (!cm->top_txfm_context[i]) goto fail; |
| } |
| #endif |
| |
| cm->above_context_alloc_cols = aligned_mi_cols; |
| } |
| |
| return 0; |
| |
| fail: |
| // clear the mi_* values to force a realloc on resync |
| av1_set_mb_mi(cm, 0, 0); |
| av1_free_context_buffers(cm); |
| return 1; |
| } |
| |
| void av1_remove_common(AV1_COMMON *cm) { |
| av1_free_context_buffers(cm); |
| |
| aom_free(cm->fc); |
| cm->fc = NULL; |
| aom_free(cm->frame_contexts); |
| cm->frame_contexts = NULL; |
| } |
| |
| void av1_init_context_buffers(AV1_COMMON *cm) { |
| cm->setup_mi(cm); |
| if (cm->last_frame_seg_map && !cm->frame_parallel_decode) |
| memset(cm->last_frame_seg_map, 0, cm->mi_rows * cm->mi_cols); |
| } |
| |
| void av1_swap_current_and_last_seg_map(AV1_COMMON *cm) { |
| // Swap indices. |
| const int tmp = cm->seg_map_idx; |
| cm->seg_map_idx = cm->prev_seg_map_idx; |
| cm->prev_seg_map_idx = tmp; |
| |
| cm->current_frame_seg_map = cm->seg_map_array[cm->seg_map_idx]; |
| cm->last_frame_seg_map = cm->seg_map_array[cm->prev_seg_map_idx]; |
| } |