| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "av1/common/common.h" |
| #include "av1/common/pred_common.h" |
| #include "av1/common/reconinter.h" |
| #if CONFIG_EXT_INTRA |
| #include "av1/common/reconintra.h" |
| #endif // CONFIG_EXT_INTRA |
| #include "av1/common/seg_common.h" |
| |
| // Returns a context number for the given MB prediction signal |
| #if CONFIG_DUAL_FILTER |
| static InterpFilter get_ref_filter_type(const MODE_INFO *mi, |
| const MACROBLOCKD *xd, int dir, |
| MV_REFERENCE_FRAME ref_frame) { |
| InterpFilter ref_type = SWITCHABLE_FILTERS; |
| const MB_MODE_INFO *ref_mbmi = &mi->mbmi; |
| int use_subpel[2] = { |
| has_subpel_mv_component(mi, xd, dir), |
| has_subpel_mv_component(mi, xd, dir + 2), |
| }; |
| |
| if (ref_mbmi->ref_frame[0] == ref_frame && use_subpel[0]) |
| ref_type = ref_mbmi->interp_filter[(dir & 0x01)]; |
| else if (ref_mbmi->ref_frame[1] == ref_frame && use_subpel[1]) |
| ref_type = ref_mbmi->interp_filter[(dir & 0x01) + 2]; |
| |
| return ref_type; |
| } |
| |
| int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd, int dir) { |
| const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| const int ctx_offset = |
| (mbmi->ref_frame[1] > INTRA_FRAME) * INTER_FILTER_COMP_OFFSET; |
| MV_REFERENCE_FRAME ref_frame = |
| (dir < 2) ? mbmi->ref_frame[0] : mbmi->ref_frame[1]; |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries corresponding to real macroblocks. |
| // The prediction flags in these dummy entries are initialized to 0. |
| int filter_type_ctx = ctx_offset + (dir & 0x01) * INTER_FILTER_DIR_OFFSET; |
| int left_type = SWITCHABLE_FILTERS; |
| int above_type = SWITCHABLE_FILTERS; |
| |
| if (xd->left_available) |
| left_type = get_ref_filter_type(xd->mi[-1], xd, dir, ref_frame); |
| |
| if (xd->up_available) |
| above_type = |
| get_ref_filter_type(xd->mi[-xd->mi_stride], xd, dir, ref_frame); |
| |
| if (left_type == above_type) { |
| filter_type_ctx += left_type; |
| } else if (left_type == SWITCHABLE_FILTERS) { |
| assert(above_type != SWITCHABLE_FILTERS); |
| filter_type_ctx += above_type; |
| } else if (above_type == SWITCHABLE_FILTERS) { |
| assert(left_type != SWITCHABLE_FILTERS); |
| filter_type_ctx += left_type; |
| } else { |
| filter_type_ctx += SWITCHABLE_FILTERS; |
| } |
| |
| return filter_type_ctx; |
| } |
| #else |
| int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd) { |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries corresponding to real macroblocks. |
| // The prediction flags in these dummy entries are initialized to 0. |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int left_type = xd->left_available && is_inter_block(left_mbmi) |
| ? left_mbmi->interp_filter |
| : SWITCHABLE_FILTERS; |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const int above_type = xd->up_available && is_inter_block(above_mbmi) |
| ? above_mbmi->interp_filter |
| : SWITCHABLE_FILTERS; |
| |
| if (left_type == above_type) { |
| return left_type; |
| } else if (left_type == SWITCHABLE_FILTERS) { |
| assert(above_type != SWITCHABLE_FILTERS); |
| return above_type; |
| } else if (above_type == SWITCHABLE_FILTERS) { |
| assert(left_type != SWITCHABLE_FILTERS); |
| return left_type; |
| } else { |
| return SWITCHABLE_FILTERS; |
| } |
| } |
| #endif |
| |
| #if CONFIG_EXT_INTRA |
| #if CONFIG_INTRA_INTERP |
| // Obtain the reference filter type from the above/left neighbor blocks. |
| static INTRA_FILTER get_ref_intra_filter(const MB_MODE_INFO *ref_mbmi) { |
| INTRA_FILTER ref_type = INTRA_FILTERS; |
| |
| if (ref_mbmi->sb_type >= BLOCK_8X8) { |
| const PREDICTION_MODE mode = ref_mbmi->mode; |
| if (is_inter_block(ref_mbmi)) { |
| #if CONFIG_DUAL_FILTER |
| switch (ref_mbmi->interp_filter[0]) { |
| #else |
| switch (ref_mbmi->interp_filter) { |
| #endif |
| case EIGHTTAP_REGULAR: ref_type = INTRA_FILTER_8TAP; break; |
| case EIGHTTAP_SMOOTH: ref_type = INTRA_FILTER_8TAP_SMOOTH; break; |
| case MULTITAP_SHARP: ref_type = INTRA_FILTER_8TAP_SHARP; break; |
| case BILINEAR: ref_type = INTRA_FILTERS; break; |
| default: break; |
| } |
| } else { |
| if (av1_is_directional_mode(mode, ref_mbmi->sb_type)) { |
| const int p_angle = |
| mode_to_angle_map[mode] + ref_mbmi->angle_delta[0] * ANGLE_STEP; |
| if (av1_is_intra_filter_switchable(p_angle)) { |
| ref_type = ref_mbmi->intra_filter; |
| } |
| } |
| } |
| } |
| return ref_type; |
| } |
| |
| int av1_get_pred_context_intra_interp(const MACROBLOCKD *xd) { |
| int left_type = INTRA_FILTERS, above_type = INTRA_FILTERS; |
| |
| if (xd->left_available) left_type = get_ref_intra_filter(xd->left_mbmi); |
| |
| if (xd->up_available) above_type = get_ref_intra_filter(xd->above_mbmi); |
| |
| if (left_type == above_type) |
| return left_type; |
| else if (left_type == INTRA_FILTERS && above_type != INTRA_FILTERS) |
| return above_type; |
| else if (left_type != INTRA_FILTERS && above_type == INTRA_FILTERS) |
| return left_type; |
| else |
| return INTRA_FILTERS; |
| } |
| #endif // CONFIG_INTRA_INTERP |
| #endif // CONFIG_EXT_INTRA |
| |
| #if CONFIG_PALETTE_DELTA_ENCODING |
| int av1_get_palette_cache(const MACROBLOCKD *const xd, int plane, |
| uint16_t *cache) { |
| const int row = -xd->mb_to_top_edge >> 3; |
| // Do not refer to above SB row when on SB boundary. |
| const MODE_INFO *const above_mi = |
| (row % (1 << MIN_SB_SIZE_LOG2)) ? xd->above_mi : NULL; |
| const MODE_INFO *const left_mi = xd->left_mi; |
| int above_n = 0, left_n = 0; |
| if (above_mi) |
| above_n = above_mi->mbmi.palette_mode_info.palette_size[plane != 0]; |
| if (left_mi) |
| left_n = left_mi->mbmi.palette_mode_info.palette_size[plane != 0]; |
| if (above_n == 0 && left_n == 0) return 0; |
| int above_idx = plane * PALETTE_MAX_SIZE; |
| int left_idx = plane * PALETTE_MAX_SIZE; |
| int n = 0; |
| const uint16_t *above_colors = |
| above_mi ? above_mi->mbmi.palette_mode_info.palette_colors : NULL; |
| const uint16_t *left_colors = |
| left_mi ? left_mi->mbmi.palette_mode_info.palette_colors : NULL; |
| // Merge the sorted lists of base colors from above and left to get |
| // combined sorted color cache. |
| while (above_n > 0 && left_n > 0) { |
| uint16_t v_above = above_colors[above_idx]; |
| uint16_t v_left = left_colors[left_idx]; |
| if (v_left < v_above) { |
| if (n == 0 || v_left != cache[n - 1]) cache[n++] = v_left; |
| ++left_idx, --left_n; |
| } else { |
| if (n == 0 || v_above != cache[n - 1]) cache[n++] = v_above; |
| ++above_idx, --above_n; |
| if (v_left == v_above) ++left_idx, --left_n; |
| } |
| } |
| while (above_n-- > 0) { |
| uint16_t val = above_colors[above_idx++]; |
| if (n == 0 || val != cache[n - 1]) cache[n++] = val; |
| } |
| while (left_n-- > 0) { |
| uint16_t val = left_colors[left_idx++]; |
| if (n == 0 || val != cache[n - 1]) cache[n++] = val; |
| } |
| assert(n <= 2 * PALETTE_MAX_SIZE); |
| return n; |
| } |
| #endif // CONFIG_PALETTE_DELTA_ENCODING |
| |
| // The mode info data structure has a one element border above and to the |
| // left of the entries corresponding to real macroblocks. |
| // The prediction flags in these dummy entries are initialized to 0. |
| // 0 - inter/inter, inter/--, --/inter, --/-- |
| // 1 - intra/inter, inter/intra |
| // 2 - intra/--, --/intra |
| // 3 - intra/intra |
| int av1_get_intra_inter_context(const MACROBLOCKD *xd) { |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int has_above = xd->up_available; |
| const int has_left = xd->left_available; |
| |
| if (has_above && has_left) { // both edges available |
| const int above_intra = !is_inter_block(above_mbmi); |
| const int left_intra = !is_inter_block(left_mbmi); |
| return left_intra && above_intra ? 3 : left_intra || above_intra; |
| } else if (has_above || has_left) { // one edge available |
| return 2 * !is_inter_block(has_above ? above_mbmi : left_mbmi); |
| } else { |
| return 0; |
| } |
| } |
| |
| #if CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF |
| // The compound/single mode info data structure has one element border above and |
| // to the left of the entries corresponding to real macroblocks. |
| // The prediction flags in these dummy entries are initialized to 0. |
| int av1_get_inter_mode_context(const MACROBLOCKD *xd) { |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int has_above = xd->up_available; |
| const int has_left = xd->left_available; |
| |
| if (has_above && has_left) { // both edges available |
| const int above_inter_comp_mode = |
| is_inter_anyref_comp_mode(above_mbmi->mode); |
| const int left_inter_comp_mode = is_inter_anyref_comp_mode(left_mbmi->mode); |
| if (above_inter_comp_mode && left_inter_comp_mode) |
| return 0; |
| else if (above_inter_comp_mode || left_inter_comp_mode) |
| return 1; |
| else if (!is_inter_block(above_mbmi) && !is_inter_block(left_mbmi)) |
| return 2; |
| else |
| return 3; |
| } else if (has_above || has_left) { // one edge available |
| const MB_MODE_INFO *const edge_mbmi = has_above ? above_mbmi : left_mbmi; |
| if (is_inter_anyref_comp_mode(edge_mbmi->mode)) |
| return 1; |
| else if (!is_inter_block(edge_mbmi)) |
| return 2; |
| else |
| return 3; |
| } else { // no edge available |
| return 2; |
| } |
| } |
| #endif // CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF |
| |
| #if CONFIG_EXT_REFS |
| #define CHECK_BACKWARD_REFS(ref_frame) \ |
| (((ref_frame) >= BWDREF_FRAME) && ((ref_frame) <= ALTREF_FRAME)) |
| #define IS_BACKWARD_REF_FRAME(ref_frame) CHECK_BACKWARD_REFS(ref_frame) |
| #else |
| #define IS_BACKWARD_REF_FRAME(ref_frame) ((ref_frame) == cm->comp_fixed_ref) |
| #endif // CONFIG_EXT_REFS |
| |
| #define CHECK_GOLDEN_OR_LAST3(ref_frame) \ |
| (((ref_frame) == GOLDEN_FRAME) || ((ref_frame) == LAST3_FRAME)) |
| |
| int av1_get_reference_mode_context(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd) { |
| int ctx; |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int has_above = xd->up_available; |
| const int has_left = xd->left_available; |
| |
| #if CONFIG_EXT_REFS |
| (void)cm; |
| #endif // CONFIG_EXT_REFS |
| |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries corresponding to real macroblocks. |
| // The prediction flags in these dummy entries are initialized to 0. |
| if (has_above && has_left) { // both edges available |
| if (!has_second_ref(above_mbmi) && !has_second_ref(left_mbmi)) |
| // neither edge uses comp pred (0/1) |
| ctx = IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) ^ |
| IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]); |
| else if (!has_second_ref(above_mbmi)) |
| // one of two edges uses comp pred (2/3) |
| ctx = 2 + (IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) || |
| !is_inter_block(above_mbmi)); |
| else if (!has_second_ref(left_mbmi)) |
| // one of two edges uses comp pred (2/3) |
| ctx = 2 + (IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]) || |
| !is_inter_block(left_mbmi)); |
| else // both edges use comp pred (4) |
| ctx = 4; |
| } else if (has_above || has_left) { // one edge available |
| const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; |
| |
| if (!has_second_ref(edge_mbmi)) |
| // edge does not use comp pred (0/1) |
| ctx = IS_BACKWARD_REF_FRAME(edge_mbmi->ref_frame[0]); |
| else |
| // edge uses comp pred (3) |
| ctx = 3; |
| } else { // no edges available (1) |
| ctx = 1; |
| } |
| assert(ctx >= 0 && ctx < COMP_INTER_CONTEXTS); |
| return ctx; |
| } |
| |
| #if CONFIG_EXT_COMP_REFS |
| // TODO(zoeliu): To try on the design of 3 contexts, instead of 5: |
| // COMP_REF_TYPE_CONTEXTS = 3 |
| int av1_get_comp_reference_type_context(const MACROBLOCKD *xd) { |
| int pred_context; |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int above_in_image = xd->up_available; |
| const int left_in_image = xd->left_available; |
| |
| if (above_in_image && left_in_image) { // both edges available |
| const int above_intra = !is_inter_block(above_mbmi); |
| const int left_intra = !is_inter_block(left_mbmi); |
| |
| if (above_intra && left_intra) { // intra/intra |
| pred_context = 2; |
| } else if (above_intra || left_intra) { // intra/inter |
| const MB_MODE_INFO *inter_mbmi = above_intra ? left_mbmi : above_mbmi; |
| |
| if (!has_second_ref(inter_mbmi)) // single pred |
| pred_context = 2; |
| else // comp pred |
| pred_context = 1 + 2 * has_uni_comp_refs(inter_mbmi); |
| } else { // inter/inter |
| const int a_sg = !has_second_ref(above_mbmi); |
| const int l_sg = !has_second_ref(left_mbmi); |
| const MV_REFERENCE_FRAME frfa = above_mbmi->ref_frame[0]; |
| const MV_REFERENCE_FRAME frfl = left_mbmi->ref_frame[0]; |
| |
| if (a_sg && l_sg) { // single/single |
| pred_context = |
| 1 + |
| 2 * (!(IS_BACKWARD_REF_FRAME(frfa) ^ IS_BACKWARD_REF_FRAME(frfl))); |
| } else if (l_sg || a_sg) { // single/comp |
| const int uni_rfc = |
| a_sg ? has_uni_comp_refs(left_mbmi) : has_uni_comp_refs(above_mbmi); |
| |
| if (!uni_rfc) // comp bidir |
| pred_context = 1; |
| else // comp unidir |
| pred_context = 3 + (!(IS_BACKWARD_REF_FRAME(frfa) ^ |
| IS_BACKWARD_REF_FRAME(frfl))); |
| } else { // comp/comp |
| const int a_uni_rfc = has_uni_comp_refs(above_mbmi); |
| const int l_uni_rfc = has_uni_comp_refs(left_mbmi); |
| |
| if (!a_uni_rfc && !l_uni_rfc) // bidir/bidir |
| pred_context = 0; |
| else if (!a_uni_rfc || !l_uni_rfc) // unidir/bidir |
| pred_context = 2; |
| else // unidir/unidir |
| pred_context = |
| 3 + (!((frfa == BWDREF_FRAME) ^ (frfl == BWDREF_FRAME))); |
| } |
| } |
| } else if (above_in_image || left_in_image) { // one edge available |
| const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; |
| |
| if (!is_inter_block(edge_mbmi)) { // intra |
| pred_context = 2; |
| } else { // inter |
| if (!has_second_ref(edge_mbmi)) // single pred |
| pred_context = 2; |
| else // comp pred |
| pred_context = 4 * has_uni_comp_refs(edge_mbmi); |
| } |
| } else { // no edges available |
| pred_context = 2; |
| } |
| |
| assert(pred_context >= 0 && pred_context < COMP_REF_TYPE_CONTEXTS); |
| return pred_context; |
| } |
| |
| // Returns a context number for the given MB prediction signal |
| // |
| // Signal the uni-directional compound reference frame pair as either |
| // (BWDREF, ALTREF), or (LAST, LAST2) / (LAST, LAST3) / (LAST, GOLDEN), |
| // conditioning on the pair is known as uni-directional. |
| // |
| // 3 contexts: Voting is used to compare the count of forward references with |
| // that of backward references from the spatial neighbors. |
| int av1_get_pred_context_uni_comp_ref_p(const MACROBLOCKD *xd) { |
| int pred_context; |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int above_in_image = xd->up_available; |
| const int left_in_image = xd->left_available; |
| |
| // Count of forward references (L, L2, L3, or G) |
| int frf_count = 0; |
| // Count of backward references (B or A) |
| int brf_count = 0; |
| |
| if (above_in_image && is_inter_block(above_mbmi)) { |
| if (above_mbmi->ref_frame[0] <= GOLDEN_FRAME) |
| ++frf_count; |
| else |
| ++brf_count; |
| if (has_second_ref(above_mbmi)) { |
| if (above_mbmi->ref_frame[1] <= GOLDEN_FRAME) |
| ++frf_count; |
| else |
| ++brf_count; |
| } |
| } |
| |
| if (left_in_image && is_inter_block(left_mbmi)) { |
| if (left_mbmi->ref_frame[0] <= GOLDEN_FRAME) |
| ++frf_count; |
| else |
| ++brf_count; |
| if (has_second_ref(left_mbmi)) { |
| if (left_mbmi->ref_frame[1] <= GOLDEN_FRAME) |
| ++frf_count; |
| else |
| ++brf_count; |
| } |
| } |
| |
| pred_context = |
| (frf_count == brf_count) ? 1 : ((frf_count < brf_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // Returns a context number for the given MB prediction signal |
| // |
| // Signal the uni-directional compound reference frame pair as |
| // either (LAST, LAST2), or (LAST, LAST3) / (LAST, GOLDEN), |
| // conditioning on the pair is known as one of the above three. |
| // |
| // 3 contexts: Voting is used to compare the count of LAST2_FRAME with the |
| // total count of LAST3/GOLDEN from the spatial neighbors. |
| int av1_get_pred_context_uni_comp_ref_p1(const MACROBLOCKD *xd) { |
| int pred_context; |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int above_in_image = xd->up_available; |
| const int left_in_image = xd->left_available; |
| |
| // Count of LAST2 |
| int last2_count = 0; |
| // Count of LAST3 or GOLDEN |
| int last3_or_gld_count = 0; |
| |
| if (above_in_image && is_inter_block(above_mbmi)) { |
| last2_count = (above_mbmi->ref_frame[0] == LAST2_FRAME) ? last2_count + 1 |
| : last2_count; |
| last3_or_gld_count = CHECK_GOLDEN_OR_LAST3(above_mbmi->ref_frame[0]) |
| ? last3_or_gld_count + 1 |
| : last3_or_gld_count; |
| if (has_second_ref(above_mbmi)) { |
| last2_count = (above_mbmi->ref_frame[1] == LAST2_FRAME) ? last2_count + 1 |
| : last2_count; |
| last3_or_gld_count = CHECK_GOLDEN_OR_LAST3(above_mbmi->ref_frame[1]) |
| ? last3_or_gld_count + 1 |
| : last3_or_gld_count; |
| } |
| } |
| |
| if (left_in_image && is_inter_block(left_mbmi)) { |
| last2_count = (left_mbmi->ref_frame[0] == LAST2_FRAME) ? last2_count + 1 |
| : last2_count; |
| last3_or_gld_count = CHECK_GOLDEN_OR_LAST3(left_mbmi->ref_frame[0]) |
| ? last3_or_gld_count + 1 |
| : last3_or_gld_count; |
| if (has_second_ref(left_mbmi)) { |
| last2_count = (left_mbmi->ref_frame[1] == LAST2_FRAME) ? last2_count + 1 |
| : last2_count; |
| last3_or_gld_count = CHECK_GOLDEN_OR_LAST3(left_mbmi->ref_frame[1]) |
| ? last3_or_gld_count + 1 |
| : last3_or_gld_count; |
| } |
| } |
| |
| pred_context = (last2_count == last3_or_gld_count) |
| ? 1 |
| : ((last2_count < last3_or_gld_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // Returns a context number for the given MB prediction signal |
| // |
| // Signal the uni-directional compound reference frame pair as |
| // either (LAST, LAST3) or (LAST, GOLDEN), |
| // conditioning on the pair is known as one of the above two. |
| // |
| // 3 contexts: Voting is used to compare the count of LAST3_FRAME with the |
| // total count of GOLDEN_FRAME from the spatial neighbors. |
| int av1_get_pred_context_uni_comp_ref_p2(const MACROBLOCKD *xd) { |
| int pred_context; |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int above_in_image = xd->up_available; |
| const int left_in_image = xd->left_available; |
| |
| // Count of LAST3 |
| int last3_count = 0; |
| // Count of GOLDEN |
| int gld_count = 0; |
| |
| if (above_in_image && is_inter_block(above_mbmi)) { |
| last3_count = (above_mbmi->ref_frame[0] == LAST3_FRAME) ? last3_count + 1 |
| : last3_count; |
| gld_count = |
| (above_mbmi->ref_frame[0] == GOLDEN_FRAME) ? gld_count + 1 : gld_count; |
| if (has_second_ref(above_mbmi)) { |
| last3_count = (above_mbmi->ref_frame[1] == LAST3_FRAME) ? last3_count + 1 |
| : last3_count; |
| gld_count = (above_mbmi->ref_frame[1] == GOLDEN_FRAME) ? gld_count + 1 |
| : gld_count; |
| } |
| } |
| |
| if (left_in_image && is_inter_block(left_mbmi)) { |
| last3_count = (left_mbmi->ref_frame[0] == LAST3_FRAME) ? last3_count + 1 |
| : last3_count; |
| gld_count = |
| (left_mbmi->ref_frame[0] == GOLDEN_FRAME) ? gld_count + 1 : gld_count; |
| if (has_second_ref(left_mbmi)) { |
| last3_count = (left_mbmi->ref_frame[1] == LAST3_FRAME) ? last3_count + 1 |
| : last3_count; |
| gld_count = |
| (left_mbmi->ref_frame[1] == GOLDEN_FRAME) ? gld_count + 1 : gld_count; |
| } |
| } |
| |
| pred_context = |
| (last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS); |
| return pred_context; |
| } |
| #endif // CONFIG_EXT_COMP_REFS |
| |
| #if CONFIG_EXT_REFS |
| |
| // TODO(zoeliu): Future work will be conducted to optimize the context design |
| // for the coding of the reference frames. |
| |
| #define CHECK_LAST_OR_LAST2(ref_frame) \ |
| ((ref_frame == LAST_FRAME) || (ref_frame == LAST2_FRAME)) |
| |
| // Returns a context number for the given MB prediction signal |
| // Signal the first reference frame for a compound mode be either |
| // GOLDEN/LAST3, or LAST/LAST2. |
| // |
| // NOTE(zoeliu): The probability of ref_frame[0] is either |
| // GOLDEN_FRAME or LAST3_FRAME. |
| int av1_get_pred_context_comp_ref_p(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd) { |
| int pred_context; |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int above_in_image = xd->up_available; |
| const int left_in_image = xd->left_available; |
| |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries correpsonding to real macroblocks. |
| // The prediction flags in these dummy entries are initialised to 0. |
| #if CONFIG_ONE_SIDED_COMPOUND // No change to bitstream |
| // Code seems to assume that signbias of cm->comp_bwd_ref[0] is always 1 |
| const int bwd_ref_sign_idx = 1; |
| #else |
| const int bwd_ref_sign_idx = cm->ref_frame_sign_bias[cm->comp_bwd_ref[0]]; |
| #endif // CONFIG_ONE_SIDED_COMPOUND |
| const int fwd_ref_sign_idx = !bwd_ref_sign_idx; |
| |
| (void)cm; |
| |
| if (above_in_image && left_in_image) { // both edges available |
| const int above_intra = !is_inter_block(above_mbmi); |
| const int left_intra = !is_inter_block(left_mbmi); |
| |
| if (above_intra && left_intra) { // intra/intra (2) |
| pred_context = 2; |
| } else if (above_intra || left_intra) { // intra/inter |
| const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; |
| |
| if (!has_second_ref(edge_mbmi)) // single pred (1/3) |
| pred_context = |
| 1 + 2 * (!CHECK_GOLDEN_OR_LAST3(edge_mbmi->ref_frame[0])); |
| else // comp pred (1/3) |
| pred_context = 1 + |
| 2 * (!CHECK_GOLDEN_OR_LAST3( |
| edge_mbmi->ref_frame[fwd_ref_sign_idx])); |
| } else { // inter/inter |
| const int l_sg = !has_second_ref(left_mbmi); |
| const int a_sg = !has_second_ref(above_mbmi); |
| const MV_REFERENCE_FRAME frfa = |
| a_sg ? above_mbmi->ref_frame[0] |
| : above_mbmi->ref_frame[fwd_ref_sign_idx]; |
| const MV_REFERENCE_FRAME frfl = |
| l_sg ? left_mbmi->ref_frame[0] |
| : left_mbmi->ref_frame[fwd_ref_sign_idx]; |
| |
| if (frfa == frfl && CHECK_GOLDEN_OR_LAST3(frfa)) { |
| pred_context = 0; |
| } else if (l_sg && a_sg) { // single/single |
| if ((CHECK_BACKWARD_REFS(frfa) && CHECK_LAST_OR_LAST2(frfl)) || |
| (CHECK_BACKWARD_REFS(frfl) && CHECK_LAST_OR_LAST2(frfa))) { |
| pred_context = 4; |
| } else if (CHECK_GOLDEN_OR_LAST3(frfa) || CHECK_GOLDEN_OR_LAST3(frfl)) { |
| pred_context = 1; |
| } else { |
| pred_context = 3; |
| } |
| } else if (l_sg || a_sg) { // single/comp |
| const MV_REFERENCE_FRAME frfc = l_sg ? frfa : frfl; |
| const MV_REFERENCE_FRAME rfs = a_sg ? frfa : frfl; |
| |
| if (CHECK_GOLDEN_OR_LAST3(frfc) && !CHECK_GOLDEN_OR_LAST3(rfs)) |
| pred_context = 1; |
| else if (CHECK_GOLDEN_OR_LAST3(rfs) && !CHECK_GOLDEN_OR_LAST3(frfc)) |
| pred_context = 2; |
| else |
| pred_context = 4; |
| } else { // comp/comp |
| if ((CHECK_LAST_OR_LAST2(frfa) && CHECK_LAST_OR_LAST2(frfl))) { |
| pred_context = 4; |
| } else { |
| // NOTE(zoeliu): Following assert may be removed once confirmed. |
| #if !USE_UNI_COMP_REFS |
| // TODO(zoeliu): To further study the UNIDIR scenario |
| assert(CHECK_GOLDEN_OR_LAST3(frfa) || CHECK_GOLDEN_OR_LAST3(frfl)); |
| #endif // !USE_UNI_COMP_REFS |
| pred_context = 2; |
| } |
| } |
| } |
| } else if (above_in_image || left_in_image) { // one edge available |
| const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; |
| |
| if (!is_inter_block(edge_mbmi)) { |
| pred_context = 2; |
| } else { |
| if (has_second_ref(edge_mbmi)) |
| pred_context = |
| 4 * |
| (!CHECK_GOLDEN_OR_LAST3(edge_mbmi->ref_frame[fwd_ref_sign_idx])); |
| else |
| pred_context = 3 * (!CHECK_GOLDEN_OR_LAST3(edge_mbmi->ref_frame[0])); |
| } |
| } else { // no edges available (2) |
| pred_context = 2; |
| } |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| |
| return pred_context; |
| } |
| |
| // Returns a context number for the given MB prediction signal |
| // Signal the first reference frame for a compound mode be LAST, |
| // conditioning on that it is known either LAST/LAST2. |
| // |
| // NOTE(zoeliu): The probability of ref_frame[0] is LAST_FRAME, |
| // conditioning on it is either LAST_FRAME or LAST2_FRAME. |
| int av1_get_pred_context_comp_ref_p1(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd) { |
| int pred_context; |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int above_in_image = xd->up_available; |
| const int left_in_image = xd->left_available; |
| |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries correpsonding to real macroblocks. |
| // The prediction flags in these dummy entries are initialised to 0. |
| #if CONFIG_ONE_SIDED_COMPOUND // No change to bitstream |
| // Code seems to assume that signbias of cm->comp_bwd_ref[0] is always 1 |
| const int bwd_ref_sign_idx = 1; |
| #else |
| const int bwd_ref_sign_idx = cm->ref_frame_sign_bias[cm->comp_bwd_ref[0]]; |
| #endif // CONFIG_ONE_SIDED_COMPOUND |
| const int fwd_ref_sign_idx = !bwd_ref_sign_idx; |
| |
| (void)cm; |
| |
| if (above_in_image && left_in_image) { // both edges available |
| const int above_intra = !is_inter_block(above_mbmi); |
| const int left_intra = !is_inter_block(left_mbmi); |
| |
| if (above_intra && left_intra) { // intra/intra (2) |
| pred_context = 2; |
| } else if (above_intra || left_intra) { // intra/inter |
| const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; |
| |
| if (!has_second_ref(edge_mbmi)) // single pred (1/3) |
| pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] != LAST_FRAME); |
| else // comp pred (1/3) |
| pred_context = |
| 1 + 2 * (edge_mbmi->ref_frame[fwd_ref_sign_idx] != LAST_FRAME); |
| } else { // inter/inter |
| const int l_sg = !has_second_ref(left_mbmi); |
| const int a_sg = !has_second_ref(above_mbmi); |
| const MV_REFERENCE_FRAME frfa = |
| a_sg ? above_mbmi->ref_frame[0] |
| : above_mbmi->ref_frame[fwd_ref_sign_idx]; |
| const MV_REFERENCE_FRAME frfl = |
| l_sg ? left_mbmi->ref_frame[0] |
| : left_mbmi->ref_frame[fwd_ref_sign_idx]; |
| |
| if (frfa == frfl && frfa == LAST_FRAME) |
| pred_context = 0; |
| else if (l_sg && a_sg) { // single/single |
| if (frfa == LAST_FRAME || frfl == LAST_FRAME) |
| pred_context = 1; |
| else if (CHECK_GOLDEN_OR_LAST3(frfa) || CHECK_GOLDEN_OR_LAST3(frfl)) |
| pred_context = 2 + (frfa != frfl); |
| else if (frfa == frfl || |
| (CHECK_BACKWARD_REFS(frfa) && CHECK_BACKWARD_REFS(frfl))) |
| pred_context = 3; |
| else |
| pred_context = 4; |
| } else if (l_sg || a_sg) { // single/comp |
| const MV_REFERENCE_FRAME frfc = l_sg ? frfa : frfl; |
| const MV_REFERENCE_FRAME rfs = a_sg ? frfa : frfl; |
| |
| if (frfc == LAST_FRAME && rfs != LAST_FRAME) |
| pred_context = 1; |
| else if (rfs == LAST_FRAME && frfc != LAST_FRAME) |
| pred_context = 2; |
| else |
| pred_context = |
| 3 + (frfc == LAST2_FRAME || CHECK_GOLDEN_OR_LAST3(rfs)); |
| } else { // comp/comp |
| if (frfa == LAST_FRAME || frfl == LAST_FRAME) |
| pred_context = 2; |
| else |
| pred_context = |
| 3 + (CHECK_GOLDEN_OR_LAST3(frfa) || CHECK_GOLDEN_OR_LAST3(frfl)); |
| } |
| } |
| } else if (above_in_image || left_in_image) { // one edge available |
| const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; |
| |
| if (!is_inter_block(edge_mbmi)) { |
| pred_context = 2; |
| } else { |
| if (has_second_ref(edge_mbmi)) { |
| pred_context = |
| 4 * (edge_mbmi->ref_frame[fwd_ref_sign_idx] != LAST_FRAME); |
| } else { |
| if (edge_mbmi->ref_frame[0] == LAST_FRAME) |
| pred_context = 0; |
| else |
| pred_context = 2 + CHECK_GOLDEN_OR_LAST3(edge_mbmi->ref_frame[0]); |
| } |
| } |
| } else { // no edges available (2) |
| pred_context = 2; |
| } |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| |
| return pred_context; |
| } |
| |
| // Returns a context number for the given MB prediction signal |
| // Signal the first reference frame for a compound mode be GOLDEN, |
| // conditioning on that it is known either GOLDEN or LAST3. |
| // |
| // NOTE(zoeliu): The probability of ref_frame[0] is GOLDEN_FRAME, |
| // conditioning on it is either GOLDEN or LAST3. |
| int av1_get_pred_context_comp_ref_p2(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd) { |
| int pred_context; |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int above_in_image = xd->up_available; |
| const int left_in_image = xd->left_available; |
| |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries correpsonding to real macroblocks. |
| // The prediction flags in these dummy entries are initialised to 0. |
| #if CONFIG_ONE_SIDED_COMPOUND // No change to bitstream |
| // Code seems to assume that signbias of cm->comp_bwd_ref[0] is always 1 |
| const int bwd_ref_sign_idx = 1; |
| #else |
| const int bwd_ref_sign_idx = cm->ref_frame_sign_bias[cm->comp_bwd_ref[0]]; |
| #endif // CONFIG_ONE_SIDED_COMPOUND |
| const int fwd_ref_sign_idx = !bwd_ref_sign_idx; |
| |
| (void)cm; |
| |
| if (above_in_image && left_in_image) { // both edges available |
| const int above_intra = !is_inter_block(above_mbmi); |
| const int left_intra = !is_inter_block(left_mbmi); |
| |
| if (above_intra && left_intra) { // intra/intra (2) |
| pred_context = 2; |
| } else if (above_intra || left_intra) { // intra/inter |
| const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; |
| |
| if (!has_second_ref(edge_mbmi)) // single pred (1/3) |
| pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] != GOLDEN_FRAME); |
| else // comp pred (1/3) |
| pred_context = |
| 1 + 2 * (edge_mbmi->ref_frame[fwd_ref_sign_idx] != GOLDEN_FRAME); |
| } else { // inter/inter |
| const int l_sg = !has_second_ref(left_mbmi); |
| const int a_sg = !has_second_ref(above_mbmi); |
| const MV_REFERENCE_FRAME frfa = |
| a_sg ? above_mbmi->ref_frame[0] |
| : above_mbmi->ref_frame[fwd_ref_sign_idx]; |
| const MV_REFERENCE_FRAME frfl = |
| l_sg ? left_mbmi->ref_frame[0] |
| : left_mbmi->ref_frame[fwd_ref_sign_idx]; |
| |
| if (frfa == frfl && frfa == GOLDEN_FRAME) |
| pred_context = 0; |
| else if (l_sg && a_sg) { // single/single |
| if (frfa == GOLDEN_FRAME || frfl == GOLDEN_FRAME) |
| pred_context = 1; |
| else if (CHECK_LAST_OR_LAST2(frfa) || CHECK_LAST_OR_LAST2(frfl)) |
| pred_context = 2 + (frfa != frfl); |
| else if (frfa == frfl || |
| (CHECK_BACKWARD_REFS(frfa) && CHECK_BACKWARD_REFS(frfl))) |
| pred_context = 3; |
| else |
| pred_context = 4; |
| } else if (l_sg || a_sg) { // single/comp |
| const MV_REFERENCE_FRAME frfc = l_sg ? frfa : frfl; |
| const MV_REFERENCE_FRAME rfs = a_sg ? frfa : frfl; |
| |
| if (frfc == GOLDEN_FRAME && rfs != GOLDEN_FRAME) |
| pred_context = 1; |
| else if (rfs == GOLDEN_FRAME && frfc != GOLDEN_FRAME) |
| pred_context = 2; |
| else |
| pred_context = 3 + (frfc == LAST3_FRAME || CHECK_LAST_OR_LAST2(rfs)); |
| } else { // comp/comp |
| if (frfa == GOLDEN_FRAME || frfl == GOLDEN_FRAME) |
| pred_context = 2; |
| else |
| pred_context = |
| 3 + (CHECK_LAST_OR_LAST2(frfa) || CHECK_LAST_OR_LAST2(frfl)); |
| } |
| } |
| } else if (above_in_image || left_in_image) { // one edge available |
| const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; |
| |
| if (!is_inter_block(edge_mbmi)) { |
| pred_context = 2; |
| } else { |
| if (has_second_ref(edge_mbmi)) { |
| pred_context = |
| 4 * (edge_mbmi->ref_frame[fwd_ref_sign_idx] != GOLDEN_FRAME); |
| } else { |
| if (edge_mbmi->ref_frame[0] == GOLDEN_FRAME) |
| pred_context = 0; |
| else |
| pred_context = 2 + CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[0]); |
| } |
| } |
| } else { // no edges available (2) |
| pred_context = 2; |
| } |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| |
| return pred_context; |
| } |
| |
| // Obtain contexts to signal a reference frame be either BWDREF/ALTREF2, or |
| // ALTREF. |
| int av1_get_pred_context_brfarf2_or_arf(const MACROBLOCKD *xd) { |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int above_in_image = xd->up_available; |
| const int left_in_image = xd->left_available; |
| |
| // Counts of BWDREF, ALTREF2, or ALTREF frames (B, A2, or A) |
| int bwdref_counts[ALTREF_FRAME - BWDREF_FRAME + 1] = { 0 }; |
| |
| if (above_in_image && is_inter_block(above_mbmi)) { |
| if (above_mbmi->ref_frame[0] >= BWDREF_FRAME) |
| ++bwdref_counts[above_mbmi->ref_frame[0] - BWDREF_FRAME]; |
| if (has_second_ref(above_mbmi)) { |
| if (above_mbmi->ref_frame[1] >= BWDREF_FRAME) |
| ++bwdref_counts[above_mbmi->ref_frame[1] - BWDREF_FRAME]; |
| } |
| } |
| |
| if (left_in_image && is_inter_block(left_mbmi)) { |
| if (left_mbmi->ref_frame[0] >= BWDREF_FRAME) |
| ++bwdref_counts[left_mbmi->ref_frame[0] - BWDREF_FRAME]; |
| if (has_second_ref(left_mbmi)) { |
| if (left_mbmi->ref_frame[1] >= BWDREF_FRAME) |
| ++bwdref_counts[left_mbmi->ref_frame[1] - BWDREF_FRAME]; |
| } |
| } |
| |
| const int brfarf2_count = bwdref_counts[BWDREF_FRAME - BWDREF_FRAME] + |
| bwdref_counts[ALTREF2_FRAME - BWDREF_FRAME]; |
| const int arf_count = bwdref_counts[ALTREF_FRAME - BWDREF_FRAME]; |
| const int pred_context = |
| (brfarf2_count == arf_count) ? 1 : ((brfarf2_count < arf_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // Obtain contexts to signal a reference frame be either BWDREF or ALTREF2. |
| int av1_get_pred_context_brf_or_arf2(const MACROBLOCKD *xd) { |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int above_in_image = xd->up_available; |
| const int left_in_image = xd->left_available; |
| |
| // Count of BWDREF frames (B) |
| int brf_count = 0; |
| // Count of ALTREF2 frames (A2) |
| int arf2_count = 0; |
| |
| if (above_in_image && is_inter_block(above_mbmi)) { |
| if (above_mbmi->ref_frame[0] == BWDREF_FRAME) |
| ++brf_count; |
| else if (above_mbmi->ref_frame[0] == ALTREF2_FRAME) |
| ++arf2_count; |
| if (has_second_ref(above_mbmi)) { |
| if (above_mbmi->ref_frame[1] == BWDREF_FRAME) |
| ++brf_count; |
| else if (above_mbmi->ref_frame[1] == ALTREF2_FRAME) |
| ++arf2_count; |
| } |
| } |
| |
| if (left_in_image && is_inter_block(left_mbmi)) { |
| if (left_mbmi->ref_frame[0] == BWDREF_FRAME) |
| ++brf_count; |
| else if (left_mbmi->ref_frame[0] == ALTREF2_FRAME) |
| ++arf2_count; |
| if (has_second_ref(left_mbmi)) { |
| if (left_mbmi->ref_frame[1] == BWDREF_FRAME) |
| ++brf_count; |
| else if (left_mbmi->ref_frame[1] == ALTREF2_FRAME) |
| ++arf2_count; |
| } |
| } |
| |
| const int pred_context = |
| (brf_count == arf2_count) ? 1 : ((brf_count < arf2_count) ? 0 : 2); |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // Signal the 2nd reference frame for a compound mode be either |
| // ALTREF, or ALTREF2/BWDREF. |
| int av1_get_pred_context_comp_bwdref_p(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd) { |
| (void)cm; |
| return av1_get_pred_context_brfarf2_or_arf(xd); |
| } |
| |
| // Signal the 2nd reference frame for a compound mode be either |
| // ALTREF2 or BWDREF. |
| int av1_get_pred_context_comp_bwdref_p1(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd) { |
| (void)cm; |
| return av1_get_pred_context_brf_or_arf2(xd); |
| } |
| |
| #else // !CONFIG_EXT_REFS |
| |
| // Returns a context number for the given MB prediction signal |
| int av1_get_pred_context_comp_ref_p(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd) { |
| int pred_context; |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int above_in_image = xd->up_available; |
| const int left_in_image = xd->left_available; |
| |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries corresponding to real macroblocks. |
| // The prediction flags in these dummy entries are initialized to 0. |
| const int fix_ref_idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref]; |
| const int var_ref_idx = !fix_ref_idx; |
| |
| if (above_in_image && left_in_image) { // both edges available |
| const int above_intra = !is_inter_block(above_mbmi); |
| const int left_intra = !is_inter_block(left_mbmi); |
| |
| if (above_intra && left_intra) { // intra/intra (2) |
| pred_context = 2; |
| } else if (above_intra || left_intra) { // intra/inter |
| const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; |
| |
| if (!has_second_ref(edge_mbmi)) // single pred (1/3) |
| pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] != cm->comp_var_ref[1]); |
| else // comp pred (1/3) |
| pred_context = |
| 1 + 2 * (edge_mbmi->ref_frame[var_ref_idx] != cm->comp_var_ref[1]); |
| } else { // inter/inter |
| const int l_sg = !has_second_ref(left_mbmi); |
| const int a_sg = !has_second_ref(above_mbmi); |
| const MV_REFERENCE_FRAME vrfa = |
| a_sg ? above_mbmi->ref_frame[0] : above_mbmi->ref_frame[var_ref_idx]; |
| const MV_REFERENCE_FRAME vrfl = |
| l_sg ? left_mbmi->ref_frame[0] : left_mbmi->ref_frame[var_ref_idx]; |
| |
| if (vrfa == vrfl && cm->comp_var_ref[1] == vrfa) { |
| pred_context = 0; |
| } else if (l_sg && a_sg) { // single/single |
| if ((vrfa == cm->comp_fixed_ref && vrfl == cm->comp_var_ref[0]) || |
| (vrfl == cm->comp_fixed_ref && vrfa == cm->comp_var_ref[0])) |
| pred_context = 4; |
| else if (vrfa == vrfl) |
| pred_context = 3; |
| else |
| pred_context = 1; |
| } else if (l_sg || a_sg) { // single/comp |
| const MV_REFERENCE_FRAME vrfc = l_sg ? vrfa : vrfl; |
| const MV_REFERENCE_FRAME rfs = a_sg ? vrfa : vrfl; |
| if (vrfc == cm->comp_var_ref[1] && rfs != cm->comp_var_ref[1]) |
| pred_context = 1; |
| else if (rfs == cm->comp_var_ref[1] && vrfc != cm->comp_var_ref[1]) |
| pred_context = 2; |
| else |
| pred_context = 4; |
| } else if (vrfa == vrfl) { // comp/comp |
| pred_context = 4; |
| } else { |
| pred_context = 2; |
| } |
| } |
| } else if (above_in_image || left_in_image) { // one edge available |
| const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; |
| |
| if (!is_inter_block(edge_mbmi)) { |
| pred_context = 2; |
| } else { |
| if (has_second_ref(edge_mbmi)) |
| pred_context = |
| 4 * (edge_mbmi->ref_frame[var_ref_idx] != cm->comp_var_ref[1]); |
| else |
| pred_context = 3 * (edge_mbmi->ref_frame[0] != cm->comp_var_ref[1]); |
| } |
| } else { // no edges available (2) |
| pred_context = 2; |
| } |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| |
| return pred_context; |
| } |
| |
| #endif // CONFIG_EXT_REFS |
| |
| #if CONFIG_EXT_REFS |
| |
| // For the bit to signal whether the single reference is a forward reference |
| // frame or a backward reference frame. |
| int av1_get_pred_context_single_ref_p1(const MACROBLOCKD *xd) { |
| int pred_context; |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int has_above = xd->up_available; |
| const int has_left = xd->left_available; |
| |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries correpsonding to real macroblocks. |
| // The prediction flags in these dummy entries are initialised to 0. |
| if (has_above && has_left) { // both edges available |
| const int above_intra = !is_inter_block(above_mbmi); |
| const int left_intra = !is_inter_block(left_mbmi); |
| |
| if (above_intra && left_intra) { // intra/intra |
| pred_context = 2; |
| } else if (above_intra || left_intra) { // intra/inter or inter/intra |
| const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; |
| |
| if (!has_second_ref(edge_mbmi)) // single |
| pred_context = 4 * (!CHECK_BACKWARD_REFS(edge_mbmi->ref_frame[0])); |
| else // comp |
| pred_context = 2; |
| } else { // inter/inter |
| const int above_has_second = has_second_ref(above_mbmi); |
| const int left_has_second = has_second_ref(left_mbmi); |
| |
| const MV_REFERENCE_FRAME above0 = above_mbmi->ref_frame[0]; |
| const MV_REFERENCE_FRAME left0 = left_mbmi->ref_frame[0]; |
| |
| if (above_has_second && left_has_second) { // comp/comp |
| pred_context = 2; |
| } else if (above_has_second || left_has_second) { // single/comp |
| const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0; |
| |
| pred_context = (!CHECK_BACKWARD_REFS(rfs)) ? 4 : 1; |
| } else { // single/single |
| pred_context = 2 * (!CHECK_BACKWARD_REFS(above0)) + |
| 2 * (!CHECK_BACKWARD_REFS(left0)); |
| } |
| } |
| } else if (has_above || has_left) { // one edge available |
| const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; |
| if (!is_inter_block(edge_mbmi)) { // intra |
| pred_context = 2; |
| } else { // inter |
| if (!has_second_ref(edge_mbmi)) // single |
| pred_context = 4 * (!CHECK_BACKWARD_REFS(edge_mbmi->ref_frame[0])); |
| else // comp |
| pred_context = 2; |
| } |
| } else { // no edges available |
| pred_context = 2; |
| } |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // For the bit to signal whether the single reference is ALTREF_FRAME or |
| // non-ALTREF backward reference frame, knowing that it shall be either of |
| // these 2 choices. |
| int av1_get_pred_context_single_ref_p2(const MACROBLOCKD *xd) { |
| return av1_get_pred_context_brfarf2_or_arf(xd); |
| } |
| |
| // For the bit to signal whether the single reference is LAST3/GOLDEN or |
| // LAST2/LAST, knowing that it shall be either of these 2 choices. |
| int av1_get_pred_context_single_ref_p3(const MACROBLOCKD *xd) { |
| int pred_context; |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int has_above = xd->up_available; |
| const int has_left = xd->left_available; |
| |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries correpsonding to real macroblocks. |
| // The prediction flags in these dummy entries are initialised to 0. |
| if (has_above && has_left) { // both edges available |
| const int above_intra = !is_inter_block(above_mbmi); |
| const int left_intra = !is_inter_block(left_mbmi); |
| |
| if (above_intra && left_intra) { // intra/intra |
| pred_context = 2; |
| } else if (above_intra || left_intra) { // intra/inter or inter/intra |
| const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; |
| if (!has_second_ref(edge_mbmi)) { // single |
| if (CHECK_BACKWARD_REFS(edge_mbmi->ref_frame[0])) |
| pred_context = 3; |
| else |
| pred_context = 4 * CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[0]); |
| } else { // comp |
| pred_context = 1 + |
| 2 * (CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[0]) || |
| CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[1])); |
| } |
| } else { // inter/inter |
| const int above_has_second = has_second_ref(above_mbmi); |
| const int left_has_second = has_second_ref(left_mbmi); |
| const MV_REFERENCE_FRAME above0 = above_mbmi->ref_frame[0]; |
| const MV_REFERENCE_FRAME above1 = above_mbmi->ref_frame[1]; |
| const MV_REFERENCE_FRAME left0 = left_mbmi->ref_frame[0]; |
| const MV_REFERENCE_FRAME left1 = left_mbmi->ref_frame[1]; |
| |
| if (above_has_second && left_has_second) { // comp/comp |
| if (above0 == left0 && above1 == left1) |
| pred_context = |
| 3 * (CHECK_LAST_OR_LAST2(above0) || CHECK_LAST_OR_LAST2(above1) || |
| CHECK_LAST_OR_LAST2(left0) || CHECK_LAST_OR_LAST2(left1)); |
| else |
| pred_context = 2; |
| } else if (above_has_second || left_has_second) { // single/comp |
| const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0; |
| const MV_REFERENCE_FRAME crf1 = above_has_second ? above0 : left0; |
| const MV_REFERENCE_FRAME crf2 = above_has_second ? above1 : left1; |
| |
| if (CHECK_LAST_OR_LAST2(rfs)) |
| pred_context = |
| 3 + (CHECK_LAST_OR_LAST2(crf1) || CHECK_LAST_OR_LAST2(crf2)); |
| else if (CHECK_GOLDEN_OR_LAST3(rfs)) |
| pred_context = |
| (CHECK_LAST_OR_LAST2(crf1) || CHECK_LAST_OR_LAST2(crf2)); |
| else |
| pred_context = |
| 1 + 2 * (CHECK_LAST_OR_LAST2(crf1) || CHECK_LAST_OR_LAST2(crf2)); |
| } else { // single/single |
| if (CHECK_BACKWARD_REFS(above0) && CHECK_BACKWARD_REFS(left0)) { |
| pred_context = 2 + (above0 == left0); |
| } else if (CHECK_BACKWARD_REFS(above0) || CHECK_BACKWARD_REFS(left0)) { |
| const MV_REFERENCE_FRAME edge0 = |
| CHECK_BACKWARD_REFS(above0) ? left0 : above0; |
| pred_context = 4 * CHECK_LAST_OR_LAST2(edge0); |
| } else { |
| pred_context = |
| 2 * CHECK_LAST_OR_LAST2(above0) + 2 * CHECK_LAST_OR_LAST2(left0); |
| } |
| } |
| } |
| } else if (has_above || has_left) { // one edge available |
| const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; |
| |
| if (!is_inter_block(edge_mbmi) || |
| (CHECK_BACKWARD_REFS(edge_mbmi->ref_frame[0]) && |
| !has_second_ref(edge_mbmi))) |
| pred_context = 2; |
| else if (!has_second_ref(edge_mbmi)) // single |
| pred_context = 4 * (CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[0])); |
| else // comp |
| pred_context = 3 * (CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[0]) || |
| CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[1])); |
| } else { // no edges available (2) |
| pred_context = 2; |
| } |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // For the bit to signal whether the single reference is LAST2_FRAME or |
| // LAST_FRAME, knowing that it shall be either of these 2 choices. |
| // |
| // NOTE(zoeliu): The probability of ref_frame[0] is LAST2_FRAME, conditioning |
| // on it is either LAST2_FRAME/LAST_FRAME. |
| int av1_get_pred_context_single_ref_p4(const MACROBLOCKD *xd) { |
| int pred_context; |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int has_above = xd->up_available; |
| const int has_left = xd->left_available; |
| |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries correpsonding to real macroblocks. |
| // The prediction flags in these dummy entries are initialised to 0. |
| if (has_above && has_left) { // both edges available |
| const int above_intra = !is_inter_block(above_mbmi); |
| const int left_intra = !is_inter_block(left_mbmi); |
| |
| if (above_intra && left_intra) { // intra/intra |
| pred_context = 2; |
| } else if (above_intra || left_intra) { // intra/inter or inter/intra |
| const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; |
| if (!has_second_ref(edge_mbmi)) { // single |
| if (!CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[0])) |
| pred_context = 3; |
| else |
| pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST_FRAME); |
| } else { // comp |
| pred_context = 1 + |
| 2 * (edge_mbmi->ref_frame[0] == LAST_FRAME || |
| edge_mbmi->ref_frame[1] == LAST_FRAME); |
| } |
| } else { // inter/inter |
| const int above_has_second = has_second_ref(above_mbmi); |
| const int left_has_second = has_second_ref(left_mbmi); |
| const MV_REFERENCE_FRAME above0 = above_mbmi->ref_frame[0]; |
| const MV_REFERENCE_FRAME above1 = above_mbmi->ref_frame[1]; |
| const MV_REFERENCE_FRAME left0 = left_mbmi->ref_frame[0]; |
| const MV_REFERENCE_FRAME left1 = left_mbmi->ref_frame[1]; |
| |
| if (above_has_second && left_has_second) { // comp/comp |
| if (above0 == left0 && above1 == left1) |
| pred_context = 3 * (above0 == LAST_FRAME || above1 == LAST_FRAME || |
| left0 == LAST_FRAME || left1 == LAST_FRAME); |
| else |
| pred_context = 2; |
| } else if (above_has_second || left_has_second) { // single/comp |
| const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0; |
| const MV_REFERENCE_FRAME crf1 = above_has_second ? above0 : left0; |
| const MV_REFERENCE_FRAME crf2 = above_has_second ? above1 : left1; |
| |
| if (rfs == LAST_FRAME) |
| pred_context = 3 + (crf1 == LAST_FRAME || crf2 == LAST_FRAME); |
| else if (rfs == LAST2_FRAME) |
| pred_context = (crf1 == LAST_FRAME || crf2 == LAST_FRAME); |
| else |
| pred_context = 1 + 2 * (crf1 == LAST_FRAME || crf2 == LAST_FRAME); |
| } else { // single/single |
| if (!CHECK_LAST_OR_LAST2(above0) && !CHECK_LAST_OR_LAST2(left0)) { |
| pred_context = 2 + (above0 == left0); |
| } else if (!CHECK_LAST_OR_LAST2(above0) || |
| !CHECK_LAST_OR_LAST2(left0)) { |
| const MV_REFERENCE_FRAME edge0 = |
| !CHECK_LAST_OR_LAST2(above0) ? left0 : above0; |
| pred_context = 4 * (edge0 == LAST_FRAME); |
| } else { |
| pred_context = 2 * (above0 == LAST_FRAME) + 2 * (left0 == LAST_FRAME); |
| } |
| } |
| } |
| } else if (has_above || has_left) { // one edge available |
| const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; |
| |
| if (!is_inter_block(edge_mbmi) || |
| (!CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[0]) && |
| !has_second_ref(edge_mbmi))) |
| pred_context = 2; |
| else if (!has_second_ref(edge_mbmi)) // single |
| pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST_FRAME); |
| else // comp |
| pred_context = 3 * (edge_mbmi->ref_frame[0] == LAST_FRAME || |
| edge_mbmi->ref_frame[1] == LAST_FRAME); |
| } else { // no edges available (2) |
| pred_context = 2; |
| } |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // For the bit to signal whether the single reference is GOLDEN_FRAME or |
| // LAST3_FRAME, knowing that it shall be either of these 2 choices. |
| // |
| // NOTE(zoeliu): The probability of ref_frame[0] is GOLDEN_FRAME, conditioning |
| // on it is either GOLDEN_FRAME/LAST3_FRAME. |
| int av1_get_pred_context_single_ref_p5(const MACROBLOCKD *xd) { |
| int pred_context; |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int has_above = xd->up_available; |
| const int has_left = xd->left_available; |
| |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries correpsonding to real macroblocks. |
| // The prediction flags in these dummy entries are initialised to 0. |
| if (has_above && has_left) { // both edges available |
| const int above_intra = !is_inter_block(above_mbmi); |
| const int left_intra = !is_inter_block(left_mbmi); |
| |
| if (above_intra && left_intra) { // intra/intra |
| pred_context = 2; |
| } else if (above_intra || left_intra) { // intra/inter or inter/intra |
| const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; |
| if (!has_second_ref(edge_mbmi)) { // single |
| if (!CHECK_GOLDEN_OR_LAST3(edge_mbmi->ref_frame[0])) |
| pred_context = 3; |
| else |
| pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST3_FRAME); |
| } else { // comp |
| pred_context = 1 + |
| 2 * (edge_mbmi->ref_frame[0] == LAST3_FRAME || |
| edge_mbmi->ref_frame[1] == LAST3_FRAME); |
| } |
| } else { // inter/inter |
| const int above_has_second = has_second_ref(above_mbmi); |
| const int left_has_second = has_second_ref(left_mbmi); |
| const MV_REFERENCE_FRAME above0 = above_mbmi->ref_frame[0]; |
| const MV_REFERENCE_FRAME above1 = above_mbmi->ref_frame[1]; |
| const MV_REFERENCE_FRAME left0 = left_mbmi->ref_frame[0]; |
| const MV_REFERENCE_FRAME left1 = left_mbmi->ref_frame[1]; |
| |
| if (above_has_second && left_has_second) { // comp/comp |
| if (above0 == left0 && above1 == left1) |
| pred_context = 3 * (above0 == LAST3_FRAME || above1 == LAST3_FRAME || |
| left0 == LAST3_FRAME || left1 == LAST3_FRAME); |
| else |
| pred_context = 2; |
| } else if (above_has_second || left_has_second) { // single/comp |
| const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0; |
| const MV_REFERENCE_FRAME crf1 = above_has_second ? above0 : left0; |
| const MV_REFERENCE_FRAME crf2 = above_has_second ? above1 : left1; |
| |
| if (rfs == LAST3_FRAME) |
| pred_context = 3 + (crf1 == LAST3_FRAME || crf2 == LAST3_FRAME); |
| else if (rfs == GOLDEN_FRAME) |
| pred_context = (crf1 == LAST3_FRAME || crf2 == LAST3_FRAME); |
| else |
| pred_context = 1 + 2 * (crf1 == LAST3_FRAME || crf2 == LAST3_FRAME); |
| } else { // single/single |
| if (!CHECK_GOLDEN_OR_LAST3(above0) && !CHECK_GOLDEN_OR_LAST3(left0)) { |
| pred_context = 2 + (above0 == left0); |
| } else if (!CHECK_GOLDEN_OR_LAST3(above0) || |
| !CHECK_GOLDEN_OR_LAST3(left0)) { |
| const MV_REFERENCE_FRAME edge0 = |
| !CHECK_GOLDEN_OR_LAST3(above0) ? left0 : above0; |
| pred_context = 4 * (edge0 == LAST3_FRAME); |
| } else { |
| pred_context = |
| 2 * (above0 == LAST3_FRAME) + 2 * (left0 == LAST3_FRAME); |
| } |
| } |
| } |
| } else if (has_above || has_left) { // one edge available |
| const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; |
| |
| if (!is_inter_block(edge_mbmi) || |
| (!CHECK_GOLDEN_OR_LAST3(edge_mbmi->ref_frame[0]) && |
| !has_second_ref(edge_mbmi))) |
| pred_context = 2; |
| else if (!has_second_ref(edge_mbmi)) // single |
| pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST3_FRAME); |
| else // comp |
| pred_context = 3 * (edge_mbmi->ref_frame[0] == LAST3_FRAME || |
| edge_mbmi->ref_frame[1] == LAST3_FRAME); |
| } else { // no edges available (2) |
| pred_context = 2; |
| } |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| // For the bit to signal whether the single reference is ALTREF2_FRAME or |
| // BWDREF_FRAME, knowing that it shall be either of these 2 choices. |
| int av1_get_pred_context_single_ref_p6(const MACROBLOCKD *xd) { |
| return av1_get_pred_context_brf_or_arf2(xd); |
| } |
| |
| #else // !CONFIG_EXT_REFS |
| |
| int av1_get_pred_context_single_ref_p1(const MACROBLOCKD *xd) { |
| int pred_context; |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int has_above = xd->up_available; |
| const int has_left = xd->left_available; |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries corresponding to real macroblocks. |
| // The prediction flags in these dummy entries are initialized to 0. |
| if (has_above && has_left) { // both edges available |
| const int above_intra = !is_inter_block(above_mbmi); |
| const int left_intra = !is_inter_block(left_mbmi); |
| |
| if (above_intra && left_intra) { // intra/intra |
| pred_context = 2; |
| } else if (above_intra || left_intra) { // intra/inter or inter/intra |
| const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; |
| if (!has_second_ref(edge_mbmi)) |
| pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST_FRAME); |
| else |
| pred_context = 1 + (edge_mbmi->ref_frame[0] == LAST_FRAME || |
| edge_mbmi->ref_frame[1] == LAST_FRAME); |
| } else { // inter/inter |
| const int above_has_second = has_second_ref(above_mbmi); |
| const int left_has_second = has_second_ref(left_mbmi); |
| const MV_REFERENCE_FRAME above0 = above_mbmi->ref_frame[0]; |
| const MV_REFERENCE_FRAME above1 = above_mbmi->ref_frame[1]; |
| const MV_REFERENCE_FRAME left0 = left_mbmi->ref_frame[0]; |
| const MV_REFERENCE_FRAME left1 = left_mbmi->ref_frame[1]; |
| |
| if (above_has_second && left_has_second) { |
| pred_context = 1 + (above0 == LAST_FRAME || above1 == LAST_FRAME || |
| left0 == LAST_FRAME || left1 == LAST_FRAME); |
| } else if (above_has_second || left_has_second) { |
| const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0; |
| const MV_REFERENCE_FRAME crf1 = above_has_second ? above0 : left0; |
| const MV_REFERENCE_FRAME crf2 = above_has_second ? above1 : left1; |
| |
| if (rfs == LAST_FRAME) |
| pred_context = 3 + (crf1 == LAST_FRAME || crf2 == LAST_FRAME); |
| else |
| pred_context = (crf1 == LAST_FRAME || crf2 == LAST_FRAME); |
| } else { |
| pred_context = 2 * (above0 == LAST_FRAME) + 2 * (left0 == LAST_FRAME); |
| } |
| } |
| } else if (has_above || has_left) { // one edge available |
| const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; |
| if (!is_inter_block(edge_mbmi)) { // intra |
| pred_context = 2; |
| } else { // inter |
| if (!has_second_ref(edge_mbmi)) |
| pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST_FRAME); |
| else |
| pred_context = 1 + (edge_mbmi->ref_frame[0] == LAST_FRAME || |
| edge_mbmi->ref_frame[1] == LAST_FRAME); |
| } |
| } else { // no edges available |
| pred_context = 2; |
| } |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| int av1_get_pred_context_single_ref_p2(const MACROBLOCKD *xd) { |
| int pred_context; |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| const int has_above = xd->up_available; |
| const int has_left = xd->left_available; |
| |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries corresponding to real macroblocks. |
| // The prediction flags in these dummy entries are initialized to 0. |
| if (has_above && has_left) { // both edges available |
| const int above_intra = !is_inter_block(above_mbmi); |
| const int left_intra = !is_inter_block(left_mbmi); |
| |
| if (above_intra && left_intra) { // intra/intra |
| pred_context = 2; |
| } else if (above_intra || left_intra) { // intra/inter or inter/intra |
| const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; |
| if (!has_second_ref(edge_mbmi)) { |
| if (edge_mbmi->ref_frame[0] == LAST_FRAME) |
| pred_context = 3; |
| else |
| pred_context = 4 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME); |
| } else { |
| pred_context = 1 + |
| 2 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME || |
| edge_mbmi->ref_frame[1] == GOLDEN_FRAME); |
| } |
| } else { // inter/inter |
| const int above_has_second = has_second_ref(above_mbmi); |
| const int left_has_second = has_second_ref(left_mbmi); |
| const MV_REFERENCE_FRAME above0 = above_mbmi->ref_frame[0]; |
| const MV_REFERENCE_FRAME above1 = above_mbmi->ref_frame[1]; |
| const MV_REFERENCE_FRAME left0 = left_mbmi->ref_frame[0]; |
| const MV_REFERENCE_FRAME left1 = left_mbmi->ref_frame[1]; |
| |
| if (above_has_second && left_has_second) { |
| if (above0 == left0 && above1 == left1) |
| pred_context = |
| 3 * (above0 == GOLDEN_FRAME || above1 == GOLDEN_FRAME || |
| left0 == GOLDEN_FRAME || left1 == GOLDEN_FRAME); |
| else |
| pred_context = 2; |
| } else if (above_has_second || left_has_second) { |
| const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0; |
| const MV_REFERENCE_FRAME crf1 = above_has_second ? above0 : left0; |
| const MV_REFERENCE_FRAME crf2 = above_has_second ? above1 : left1; |
| |
| if (rfs == GOLDEN_FRAME) |
| pred_context = 3 + (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME); |
| else if (rfs != GOLDEN_FRAME && rfs != LAST_FRAME) |
| pred_context = crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME; |
| else |
| pred_context = 1 + 2 * (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME); |
| } else { |
| if (above0 == LAST_FRAME && left0 == LAST_FRAME) { |
| pred_context = 3; |
| } else if (above0 == LAST_FRAME || left0 == LAST_FRAME) { |
| const MV_REFERENCE_FRAME edge0 = |
| (above0 == LAST_FRAME) ? left0 : above0; |
| pred_context = 4 * (edge0 == GOLDEN_FRAME); |
| } else { |
| pred_context = |
| 2 * (above0 == GOLDEN_FRAME) + 2 * (left0 == GOLDEN_FRAME); |
| } |
| } |
| } |
| } else if (has_above || has_left) { // one edge available |
| const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi; |
| |
| if (!is_inter_block(edge_mbmi) || |
| (edge_mbmi->ref_frame[0] == LAST_FRAME && !has_second_ref(edge_mbmi))) |
| pred_context = 2; |
| else if (!has_second_ref(edge_mbmi)) |
| pred_context = 4 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME); |
| else |
| pred_context = 3 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME || |
| edge_mbmi->ref_frame[1] == GOLDEN_FRAME); |
| } else { // no edges available (2) |
| pred_context = 2; |
| } |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| #endif // CONFIG_EXT_REFS |