blob: 59db9e5eae3f39d0856c7e387e25ce0055664bbe [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/common/common.h"
#include "av1/common/pred_common.h"
#include "av1/common/reconinter.h"
#if CONFIG_EXT_INTRA
#include "av1/common/reconintra.h"
#endif // CONFIG_EXT_INTRA
#include "av1/common/seg_common.h"
// Returns a context number for the given MB prediction signal
#if CONFIG_DUAL_FILTER
static InterpFilter get_ref_filter_type(const MODE_INFO *mi,
const MACROBLOCKD *xd, int dir,
MV_REFERENCE_FRAME ref_frame) {
InterpFilter ref_type = SWITCHABLE_FILTERS;
const MB_MODE_INFO *ref_mbmi = &mi->mbmi;
int use_subpel[2] = {
has_subpel_mv_component(mi, xd, dir),
has_subpel_mv_component(mi, xd, dir + 2),
};
if (ref_mbmi->ref_frame[0] == ref_frame && use_subpel[0])
ref_type = ref_mbmi->interp_filter[(dir & 0x01)];
else if (ref_mbmi->ref_frame[1] == ref_frame && use_subpel[1])
ref_type = ref_mbmi->interp_filter[(dir & 0x01) + 2];
return ref_type;
}
int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd, int dir) {
const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const int ctx_offset =
(mbmi->ref_frame[1] > INTRA_FRAME) * INTER_FILTER_COMP_OFFSET;
MV_REFERENCE_FRAME ref_frame =
(dir < 2) ? mbmi->ref_frame[0] : mbmi->ref_frame[1];
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries corresponding to real macroblocks.
// The prediction flags in these dummy entries are initialized to 0.
int filter_type_ctx = ctx_offset + (dir & 0x01) * INTER_FILTER_DIR_OFFSET;
int left_type = SWITCHABLE_FILTERS;
int above_type = SWITCHABLE_FILTERS;
if (xd->left_available)
left_type = get_ref_filter_type(xd->mi[-1], xd, dir, ref_frame);
if (xd->up_available)
above_type =
get_ref_filter_type(xd->mi[-xd->mi_stride], xd, dir, ref_frame);
if (left_type == above_type) {
filter_type_ctx += left_type;
} else if (left_type == SWITCHABLE_FILTERS) {
assert(above_type != SWITCHABLE_FILTERS);
filter_type_ctx += above_type;
} else if (above_type == SWITCHABLE_FILTERS) {
assert(left_type != SWITCHABLE_FILTERS);
filter_type_ctx += left_type;
} else {
filter_type_ctx += SWITCHABLE_FILTERS;
}
return filter_type_ctx;
}
#else
int av1_get_pred_context_switchable_interp(const MACROBLOCKD *xd) {
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries corresponding to real macroblocks.
// The prediction flags in these dummy entries are initialized to 0.
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int left_type = xd->left_available && is_inter_block(left_mbmi)
? left_mbmi->interp_filter
: SWITCHABLE_FILTERS;
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const int above_type = xd->up_available && is_inter_block(above_mbmi)
? above_mbmi->interp_filter
: SWITCHABLE_FILTERS;
if (left_type == above_type) {
return left_type;
} else if (left_type == SWITCHABLE_FILTERS) {
assert(above_type != SWITCHABLE_FILTERS);
return above_type;
} else if (above_type == SWITCHABLE_FILTERS) {
assert(left_type != SWITCHABLE_FILTERS);
return left_type;
} else {
return SWITCHABLE_FILTERS;
}
}
#endif
#if CONFIG_EXT_INTRA
#if CONFIG_INTRA_INTERP
// Obtain the reference filter type from the above/left neighbor blocks.
static INTRA_FILTER get_ref_intra_filter(const MB_MODE_INFO *ref_mbmi) {
INTRA_FILTER ref_type = INTRA_FILTERS;
if (ref_mbmi->sb_type >= BLOCK_8X8) {
const PREDICTION_MODE mode = ref_mbmi->mode;
if (is_inter_block(ref_mbmi)) {
#if CONFIG_DUAL_FILTER
switch (ref_mbmi->interp_filter[0]) {
#else
switch (ref_mbmi->interp_filter) {
#endif
case EIGHTTAP_REGULAR: ref_type = INTRA_FILTER_8TAP; break;
case EIGHTTAP_SMOOTH: ref_type = INTRA_FILTER_8TAP_SMOOTH; break;
case MULTITAP_SHARP: ref_type = INTRA_FILTER_8TAP_SHARP; break;
case BILINEAR: ref_type = INTRA_FILTERS; break;
default: break;
}
} else {
if (av1_is_directional_mode(mode, ref_mbmi->sb_type)) {
const int p_angle =
mode_to_angle_map[mode] + ref_mbmi->angle_delta[0] * ANGLE_STEP;
if (av1_is_intra_filter_switchable(p_angle)) {
ref_type = ref_mbmi->intra_filter;
}
}
}
}
return ref_type;
}
int av1_get_pred_context_intra_interp(const MACROBLOCKD *xd) {
int left_type = INTRA_FILTERS, above_type = INTRA_FILTERS;
if (xd->left_available) left_type = get_ref_intra_filter(xd->left_mbmi);
if (xd->up_available) above_type = get_ref_intra_filter(xd->above_mbmi);
if (left_type == above_type)
return left_type;
else if (left_type == INTRA_FILTERS && above_type != INTRA_FILTERS)
return above_type;
else if (left_type != INTRA_FILTERS && above_type == INTRA_FILTERS)
return left_type;
else
return INTRA_FILTERS;
}
#endif // CONFIG_INTRA_INTERP
#endif // CONFIG_EXT_INTRA
#if CONFIG_PALETTE_DELTA_ENCODING
int av1_get_palette_cache(const MACROBLOCKD *const xd, int plane,
uint16_t *cache) {
const int row = -xd->mb_to_top_edge >> 3;
// Do not refer to above SB row when on SB boundary.
const MODE_INFO *const above_mi =
(row % (1 << MIN_SB_SIZE_LOG2)) ? xd->above_mi : NULL;
const MODE_INFO *const left_mi = xd->left_mi;
int above_n = 0, left_n = 0;
if (above_mi)
above_n = above_mi->mbmi.palette_mode_info.palette_size[plane != 0];
if (left_mi)
left_n = left_mi->mbmi.palette_mode_info.palette_size[plane != 0];
if (above_n == 0 && left_n == 0) return 0;
int above_idx = plane * PALETTE_MAX_SIZE;
int left_idx = plane * PALETTE_MAX_SIZE;
int n = 0;
const uint16_t *above_colors =
above_mi ? above_mi->mbmi.palette_mode_info.palette_colors : NULL;
const uint16_t *left_colors =
left_mi ? left_mi->mbmi.palette_mode_info.palette_colors : NULL;
// Merge the sorted lists of base colors from above and left to get
// combined sorted color cache.
while (above_n > 0 && left_n > 0) {
uint16_t v_above = above_colors[above_idx];
uint16_t v_left = left_colors[left_idx];
if (v_left < v_above) {
if (n == 0 || v_left != cache[n - 1]) cache[n++] = v_left;
++left_idx, --left_n;
} else {
if (n == 0 || v_above != cache[n - 1]) cache[n++] = v_above;
++above_idx, --above_n;
if (v_left == v_above) ++left_idx, --left_n;
}
}
while (above_n-- > 0) {
uint16_t val = above_colors[above_idx++];
if (n == 0 || val != cache[n - 1]) cache[n++] = val;
}
while (left_n-- > 0) {
uint16_t val = left_colors[left_idx++];
if (n == 0 || val != cache[n - 1]) cache[n++] = val;
}
assert(n <= 2 * PALETTE_MAX_SIZE);
return n;
}
#endif // CONFIG_PALETTE_DELTA_ENCODING
// The mode info data structure has a one element border above and to the
// left of the entries corresponding to real macroblocks.
// The prediction flags in these dummy entries are initialized to 0.
// 0 - inter/inter, inter/--, --/inter, --/--
// 1 - intra/inter, inter/intra
// 2 - intra/--, --/intra
// 3 - intra/intra
int av1_get_intra_inter_context(const MACROBLOCKD *xd) {
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int has_above = xd->up_available;
const int has_left = xd->left_available;
if (has_above && has_left) { // both edges available
const int above_intra = !is_inter_block(above_mbmi);
const int left_intra = !is_inter_block(left_mbmi);
return left_intra && above_intra ? 3 : left_intra || above_intra;
} else if (has_above || has_left) { // one edge available
return 2 * !is_inter_block(has_above ? above_mbmi : left_mbmi);
} else {
return 0;
}
}
#if CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
// The compound/single mode info data structure has one element border above and
// to the left of the entries corresponding to real macroblocks.
// The prediction flags in these dummy entries are initialized to 0.
int av1_get_inter_mode_context(const MACROBLOCKD *xd) {
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int has_above = xd->up_available;
const int has_left = xd->left_available;
if (has_above && has_left) { // both edges available
const int above_inter_comp_mode =
is_inter_anyref_comp_mode(above_mbmi->mode);
const int left_inter_comp_mode = is_inter_anyref_comp_mode(left_mbmi->mode);
if (above_inter_comp_mode && left_inter_comp_mode)
return 0;
else if (above_inter_comp_mode || left_inter_comp_mode)
return 1;
else if (!is_inter_block(above_mbmi) && !is_inter_block(left_mbmi))
return 2;
else
return 3;
} else if (has_above || has_left) { // one edge available
const MB_MODE_INFO *const edge_mbmi = has_above ? above_mbmi : left_mbmi;
if (is_inter_anyref_comp_mode(edge_mbmi->mode))
return 1;
else if (!is_inter_block(edge_mbmi))
return 2;
else
return 3;
} else { // no edge available
return 2;
}
}
#endif // CONFIG_EXT_INTER && CONFIG_COMPOUND_SINGLEREF
#if CONFIG_EXT_REFS
#define CHECK_BACKWARD_REFS(ref_frame) \
(((ref_frame) >= BWDREF_FRAME) && ((ref_frame) <= ALTREF_FRAME))
#define IS_BACKWARD_REF_FRAME(ref_frame) CHECK_BACKWARD_REFS(ref_frame)
#else
#define IS_BACKWARD_REF_FRAME(ref_frame) ((ref_frame) == cm->comp_fixed_ref)
#endif // CONFIG_EXT_REFS
#define CHECK_GOLDEN_OR_LAST3(ref_frame) \
(((ref_frame) == GOLDEN_FRAME) || ((ref_frame) == LAST3_FRAME))
int av1_get_reference_mode_context(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
int ctx;
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int has_above = xd->up_available;
const int has_left = xd->left_available;
#if CONFIG_EXT_REFS
(void)cm;
#endif // CONFIG_EXT_REFS
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries corresponding to real macroblocks.
// The prediction flags in these dummy entries are initialized to 0.
if (has_above && has_left) { // both edges available
if (!has_second_ref(above_mbmi) && !has_second_ref(left_mbmi))
// neither edge uses comp pred (0/1)
ctx = IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) ^
IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]);
else if (!has_second_ref(above_mbmi))
// one of two edges uses comp pred (2/3)
ctx = 2 + (IS_BACKWARD_REF_FRAME(above_mbmi->ref_frame[0]) ||
!is_inter_block(above_mbmi));
else if (!has_second_ref(left_mbmi))
// one of two edges uses comp pred (2/3)
ctx = 2 + (IS_BACKWARD_REF_FRAME(left_mbmi->ref_frame[0]) ||
!is_inter_block(left_mbmi));
else // both edges use comp pred (4)
ctx = 4;
} else if (has_above || has_left) { // one edge available
const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi;
if (!has_second_ref(edge_mbmi))
// edge does not use comp pred (0/1)
ctx = IS_BACKWARD_REF_FRAME(edge_mbmi->ref_frame[0]);
else
// edge uses comp pred (3)
ctx = 3;
} else { // no edges available (1)
ctx = 1;
}
assert(ctx >= 0 && ctx < COMP_INTER_CONTEXTS);
return ctx;
}
#if CONFIG_EXT_COMP_REFS
// TODO(zoeliu): To try on the design of 3 contexts, instead of 5:
// COMP_REF_TYPE_CONTEXTS = 3
int av1_get_comp_reference_type_context(const MACROBLOCKD *xd) {
int pred_context;
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int above_in_image = xd->up_available;
const int left_in_image = xd->left_available;
if (above_in_image && left_in_image) { // both edges available
const int above_intra = !is_inter_block(above_mbmi);
const int left_intra = !is_inter_block(left_mbmi);
if (above_intra && left_intra) { // intra/intra
pred_context = 2;
} else if (above_intra || left_intra) { // intra/inter
const MB_MODE_INFO *inter_mbmi = above_intra ? left_mbmi : above_mbmi;
if (!has_second_ref(inter_mbmi)) // single pred
pred_context = 2;
else // comp pred
pred_context = 1 + 2 * has_uni_comp_refs(inter_mbmi);
} else { // inter/inter
const int a_sg = !has_second_ref(above_mbmi);
const int l_sg = !has_second_ref(left_mbmi);
const MV_REFERENCE_FRAME frfa = above_mbmi->ref_frame[0];
const MV_REFERENCE_FRAME frfl = left_mbmi->ref_frame[0];
if (a_sg && l_sg) { // single/single
pred_context =
1 +
2 * (!(IS_BACKWARD_REF_FRAME(frfa) ^ IS_BACKWARD_REF_FRAME(frfl)));
} else if (l_sg || a_sg) { // single/comp
const int uni_rfc =
a_sg ? has_uni_comp_refs(left_mbmi) : has_uni_comp_refs(above_mbmi);
if (!uni_rfc) // comp bidir
pred_context = 1;
else // comp unidir
pred_context = 3 + (!(IS_BACKWARD_REF_FRAME(frfa) ^
IS_BACKWARD_REF_FRAME(frfl)));
} else { // comp/comp
const int a_uni_rfc = has_uni_comp_refs(above_mbmi);
const int l_uni_rfc = has_uni_comp_refs(left_mbmi);
if (!a_uni_rfc && !l_uni_rfc) // bidir/bidir
pred_context = 0;
else if (!a_uni_rfc || !l_uni_rfc) // unidir/bidir
pred_context = 2;
else // unidir/unidir
pred_context =
3 + (!((frfa == BWDREF_FRAME) ^ (frfl == BWDREF_FRAME)));
}
}
} else if (above_in_image || left_in_image) { // one edge available
const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi;
if (!is_inter_block(edge_mbmi)) { // intra
pred_context = 2;
} else { // inter
if (!has_second_ref(edge_mbmi)) // single pred
pred_context = 2;
else // comp pred
pred_context = 4 * has_uni_comp_refs(edge_mbmi);
}
} else { // no edges available
pred_context = 2;
}
assert(pred_context >= 0 && pred_context < COMP_REF_TYPE_CONTEXTS);
return pred_context;
}
// Returns a context number for the given MB prediction signal
//
// Signal the uni-directional compound reference frame pair as either
// (BWDREF, ALTREF), or (LAST, LAST2) / (LAST, LAST3) / (LAST, GOLDEN),
// conditioning on the pair is known as uni-directional.
//
// 3 contexts: Voting is used to compare the count of forward references with
// that of backward references from the spatial neighbors.
int av1_get_pred_context_uni_comp_ref_p(const MACROBLOCKD *xd) {
int pred_context;
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int above_in_image = xd->up_available;
const int left_in_image = xd->left_available;
// Count of forward references (L, L2, L3, or G)
int frf_count = 0;
// Count of backward references (B or A)
int brf_count = 0;
if (above_in_image && is_inter_block(above_mbmi)) {
if (above_mbmi->ref_frame[0] <= GOLDEN_FRAME)
++frf_count;
else
++brf_count;
if (has_second_ref(above_mbmi)) {
if (above_mbmi->ref_frame[1] <= GOLDEN_FRAME)
++frf_count;
else
++brf_count;
}
}
if (left_in_image && is_inter_block(left_mbmi)) {
if (left_mbmi->ref_frame[0] <= GOLDEN_FRAME)
++frf_count;
else
++brf_count;
if (has_second_ref(left_mbmi)) {
if (left_mbmi->ref_frame[1] <= GOLDEN_FRAME)
++frf_count;
else
++brf_count;
}
}
pred_context =
(frf_count == brf_count) ? 1 : ((frf_count < brf_count) ? 0 : 2);
assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS);
return pred_context;
}
// Returns a context number for the given MB prediction signal
//
// Signal the uni-directional compound reference frame pair as
// either (LAST, LAST2), or (LAST, LAST3) / (LAST, GOLDEN),
// conditioning on the pair is known as one of the above three.
//
// 3 contexts: Voting is used to compare the count of LAST2_FRAME with the
// total count of LAST3/GOLDEN from the spatial neighbors.
int av1_get_pred_context_uni_comp_ref_p1(const MACROBLOCKD *xd) {
int pred_context;
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int above_in_image = xd->up_available;
const int left_in_image = xd->left_available;
// Count of LAST2
int last2_count = 0;
// Count of LAST3 or GOLDEN
int last3_or_gld_count = 0;
if (above_in_image && is_inter_block(above_mbmi)) {
last2_count = (above_mbmi->ref_frame[0] == LAST2_FRAME) ? last2_count + 1
: last2_count;
last3_or_gld_count = CHECK_GOLDEN_OR_LAST3(above_mbmi->ref_frame[0])
? last3_or_gld_count + 1
: last3_or_gld_count;
if (has_second_ref(above_mbmi)) {
last2_count = (above_mbmi->ref_frame[1] == LAST2_FRAME) ? last2_count + 1
: last2_count;
last3_or_gld_count = CHECK_GOLDEN_OR_LAST3(above_mbmi->ref_frame[1])
? last3_or_gld_count + 1
: last3_or_gld_count;
}
}
if (left_in_image && is_inter_block(left_mbmi)) {
last2_count = (left_mbmi->ref_frame[0] == LAST2_FRAME) ? last2_count + 1
: last2_count;
last3_or_gld_count = CHECK_GOLDEN_OR_LAST3(left_mbmi->ref_frame[0])
? last3_or_gld_count + 1
: last3_or_gld_count;
if (has_second_ref(left_mbmi)) {
last2_count = (left_mbmi->ref_frame[1] == LAST2_FRAME) ? last2_count + 1
: last2_count;
last3_or_gld_count = CHECK_GOLDEN_OR_LAST3(left_mbmi->ref_frame[1])
? last3_or_gld_count + 1
: last3_or_gld_count;
}
}
pred_context = (last2_count == last3_or_gld_count)
? 1
: ((last2_count < last3_or_gld_count) ? 0 : 2);
assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS);
return pred_context;
}
// Returns a context number for the given MB prediction signal
//
// Signal the uni-directional compound reference frame pair as
// either (LAST, LAST3) or (LAST, GOLDEN),
// conditioning on the pair is known as one of the above two.
//
// 3 contexts: Voting is used to compare the count of LAST3_FRAME with the
// total count of GOLDEN_FRAME from the spatial neighbors.
int av1_get_pred_context_uni_comp_ref_p2(const MACROBLOCKD *xd) {
int pred_context;
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int above_in_image = xd->up_available;
const int left_in_image = xd->left_available;
// Count of LAST3
int last3_count = 0;
// Count of GOLDEN
int gld_count = 0;
if (above_in_image && is_inter_block(above_mbmi)) {
last3_count = (above_mbmi->ref_frame[0] == LAST3_FRAME) ? last3_count + 1
: last3_count;
gld_count =
(above_mbmi->ref_frame[0] == GOLDEN_FRAME) ? gld_count + 1 : gld_count;
if (has_second_ref(above_mbmi)) {
last3_count = (above_mbmi->ref_frame[1] == LAST3_FRAME) ? last3_count + 1
: last3_count;
gld_count = (above_mbmi->ref_frame[1] == GOLDEN_FRAME) ? gld_count + 1
: gld_count;
}
}
if (left_in_image && is_inter_block(left_mbmi)) {
last3_count = (left_mbmi->ref_frame[0] == LAST3_FRAME) ? last3_count + 1
: last3_count;
gld_count =
(left_mbmi->ref_frame[0] == GOLDEN_FRAME) ? gld_count + 1 : gld_count;
if (has_second_ref(left_mbmi)) {
last3_count = (left_mbmi->ref_frame[1] == LAST3_FRAME) ? last3_count + 1
: last3_count;
gld_count =
(left_mbmi->ref_frame[1] == GOLDEN_FRAME) ? gld_count + 1 : gld_count;
}
}
pred_context =
(last3_count == gld_count) ? 1 : ((last3_count < gld_count) ? 0 : 2);
assert(pred_context >= 0 && pred_context < UNI_COMP_REF_CONTEXTS);
return pred_context;
}
#endif // CONFIG_EXT_COMP_REFS
#if CONFIG_EXT_REFS
// TODO(zoeliu): Future work will be conducted to optimize the context design
// for the coding of the reference frames.
#define CHECK_LAST_OR_LAST2(ref_frame) \
((ref_frame == LAST_FRAME) || (ref_frame == LAST2_FRAME))
// Returns a context number for the given MB prediction signal
// Signal the first reference frame for a compound mode be either
// GOLDEN/LAST3, or LAST/LAST2.
//
// NOTE(zoeliu): The probability of ref_frame[0] is either
// GOLDEN_FRAME or LAST3_FRAME.
int av1_get_pred_context_comp_ref_p(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
int pred_context;
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int above_in_image = xd->up_available;
const int left_in_image = xd->left_available;
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries correpsonding to real macroblocks.
// The prediction flags in these dummy entries are initialised to 0.
#if CONFIG_ONE_SIDED_COMPOUND // No change to bitstream
// Code seems to assume that signbias of cm->comp_bwd_ref[0] is always 1
const int bwd_ref_sign_idx = 1;
#else
const int bwd_ref_sign_idx = cm->ref_frame_sign_bias[cm->comp_bwd_ref[0]];
#endif // CONFIG_ONE_SIDED_COMPOUND
const int fwd_ref_sign_idx = !bwd_ref_sign_idx;
(void)cm;
if (above_in_image && left_in_image) { // both edges available
const int above_intra = !is_inter_block(above_mbmi);
const int left_intra = !is_inter_block(left_mbmi);
if (above_intra && left_intra) { // intra/intra (2)
pred_context = 2;
} else if (above_intra || left_intra) { // intra/inter
const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi;
if (!has_second_ref(edge_mbmi)) // single pred (1/3)
pred_context =
1 + 2 * (!CHECK_GOLDEN_OR_LAST3(edge_mbmi->ref_frame[0]));
else // comp pred (1/3)
pred_context = 1 +
2 * (!CHECK_GOLDEN_OR_LAST3(
edge_mbmi->ref_frame[fwd_ref_sign_idx]));
} else { // inter/inter
const int l_sg = !has_second_ref(left_mbmi);
const int a_sg = !has_second_ref(above_mbmi);
const MV_REFERENCE_FRAME frfa =
a_sg ? above_mbmi->ref_frame[0]
: above_mbmi->ref_frame[fwd_ref_sign_idx];
const MV_REFERENCE_FRAME frfl =
l_sg ? left_mbmi->ref_frame[0]
: left_mbmi->ref_frame[fwd_ref_sign_idx];
if (frfa == frfl && CHECK_GOLDEN_OR_LAST3(frfa)) {
pred_context = 0;
} else if (l_sg && a_sg) { // single/single
if ((CHECK_BACKWARD_REFS(frfa) && CHECK_LAST_OR_LAST2(frfl)) ||
(CHECK_BACKWARD_REFS(frfl) && CHECK_LAST_OR_LAST2(frfa))) {
pred_context = 4;
} else if (CHECK_GOLDEN_OR_LAST3(frfa) || CHECK_GOLDEN_OR_LAST3(frfl)) {
pred_context = 1;
} else {
pred_context = 3;
}
} else if (l_sg || a_sg) { // single/comp
const MV_REFERENCE_FRAME frfc = l_sg ? frfa : frfl;
const MV_REFERENCE_FRAME rfs = a_sg ? frfa : frfl;
if (CHECK_GOLDEN_OR_LAST3(frfc) && !CHECK_GOLDEN_OR_LAST3(rfs))
pred_context = 1;
else if (CHECK_GOLDEN_OR_LAST3(rfs) && !CHECK_GOLDEN_OR_LAST3(frfc))
pred_context = 2;
else
pred_context = 4;
} else { // comp/comp
if ((CHECK_LAST_OR_LAST2(frfa) && CHECK_LAST_OR_LAST2(frfl))) {
pred_context = 4;
} else {
// NOTE(zoeliu): Following assert may be removed once confirmed.
#if !USE_UNI_COMP_REFS
// TODO(zoeliu): To further study the UNIDIR scenario
assert(CHECK_GOLDEN_OR_LAST3(frfa) || CHECK_GOLDEN_OR_LAST3(frfl));
#endif // !USE_UNI_COMP_REFS
pred_context = 2;
}
}
}
} else if (above_in_image || left_in_image) { // one edge available
const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi;
if (!is_inter_block(edge_mbmi)) {
pred_context = 2;
} else {
if (has_second_ref(edge_mbmi))
pred_context =
4 *
(!CHECK_GOLDEN_OR_LAST3(edge_mbmi->ref_frame[fwd_ref_sign_idx]));
else
pred_context = 3 * (!CHECK_GOLDEN_OR_LAST3(edge_mbmi->ref_frame[0]));
}
} else { // no edges available (2)
pred_context = 2;
}
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
return pred_context;
}
// Returns a context number for the given MB prediction signal
// Signal the first reference frame for a compound mode be LAST,
// conditioning on that it is known either LAST/LAST2.
//
// NOTE(zoeliu): The probability of ref_frame[0] is LAST_FRAME,
// conditioning on it is either LAST_FRAME or LAST2_FRAME.
int av1_get_pred_context_comp_ref_p1(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
int pred_context;
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int above_in_image = xd->up_available;
const int left_in_image = xd->left_available;
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries correpsonding to real macroblocks.
// The prediction flags in these dummy entries are initialised to 0.
#if CONFIG_ONE_SIDED_COMPOUND // No change to bitstream
// Code seems to assume that signbias of cm->comp_bwd_ref[0] is always 1
const int bwd_ref_sign_idx = 1;
#else
const int bwd_ref_sign_idx = cm->ref_frame_sign_bias[cm->comp_bwd_ref[0]];
#endif // CONFIG_ONE_SIDED_COMPOUND
const int fwd_ref_sign_idx = !bwd_ref_sign_idx;
(void)cm;
if (above_in_image && left_in_image) { // both edges available
const int above_intra = !is_inter_block(above_mbmi);
const int left_intra = !is_inter_block(left_mbmi);
if (above_intra && left_intra) { // intra/intra (2)
pred_context = 2;
} else if (above_intra || left_intra) { // intra/inter
const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi;
if (!has_second_ref(edge_mbmi)) // single pred (1/3)
pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] != LAST_FRAME);
else // comp pred (1/3)
pred_context =
1 + 2 * (edge_mbmi->ref_frame[fwd_ref_sign_idx] != LAST_FRAME);
} else { // inter/inter
const int l_sg = !has_second_ref(left_mbmi);
const int a_sg = !has_second_ref(above_mbmi);
const MV_REFERENCE_FRAME frfa =
a_sg ? above_mbmi->ref_frame[0]
: above_mbmi->ref_frame[fwd_ref_sign_idx];
const MV_REFERENCE_FRAME frfl =
l_sg ? left_mbmi->ref_frame[0]
: left_mbmi->ref_frame[fwd_ref_sign_idx];
if (frfa == frfl && frfa == LAST_FRAME)
pred_context = 0;
else if (l_sg && a_sg) { // single/single
if (frfa == LAST_FRAME || frfl == LAST_FRAME)
pred_context = 1;
else if (CHECK_GOLDEN_OR_LAST3(frfa) || CHECK_GOLDEN_OR_LAST3(frfl))
pred_context = 2 + (frfa != frfl);
else if (frfa == frfl ||
(CHECK_BACKWARD_REFS(frfa) && CHECK_BACKWARD_REFS(frfl)))
pred_context = 3;
else
pred_context = 4;
} else if (l_sg || a_sg) { // single/comp
const MV_REFERENCE_FRAME frfc = l_sg ? frfa : frfl;
const MV_REFERENCE_FRAME rfs = a_sg ? frfa : frfl;
if (frfc == LAST_FRAME && rfs != LAST_FRAME)
pred_context = 1;
else if (rfs == LAST_FRAME && frfc != LAST_FRAME)
pred_context = 2;
else
pred_context =
3 + (frfc == LAST2_FRAME || CHECK_GOLDEN_OR_LAST3(rfs));
} else { // comp/comp
if (frfa == LAST_FRAME || frfl == LAST_FRAME)
pred_context = 2;
else
pred_context =
3 + (CHECK_GOLDEN_OR_LAST3(frfa) || CHECK_GOLDEN_OR_LAST3(frfl));
}
}
} else if (above_in_image || left_in_image) { // one edge available
const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi;
if (!is_inter_block(edge_mbmi)) {
pred_context = 2;
} else {
if (has_second_ref(edge_mbmi)) {
pred_context =
4 * (edge_mbmi->ref_frame[fwd_ref_sign_idx] != LAST_FRAME);
} else {
if (edge_mbmi->ref_frame[0] == LAST_FRAME)
pred_context = 0;
else
pred_context = 2 + CHECK_GOLDEN_OR_LAST3(edge_mbmi->ref_frame[0]);
}
}
} else { // no edges available (2)
pred_context = 2;
}
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
return pred_context;
}
// Returns a context number for the given MB prediction signal
// Signal the first reference frame for a compound mode be GOLDEN,
// conditioning on that it is known either GOLDEN or LAST3.
//
// NOTE(zoeliu): The probability of ref_frame[0] is GOLDEN_FRAME,
// conditioning on it is either GOLDEN or LAST3.
int av1_get_pred_context_comp_ref_p2(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
int pred_context;
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int above_in_image = xd->up_available;
const int left_in_image = xd->left_available;
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries correpsonding to real macroblocks.
// The prediction flags in these dummy entries are initialised to 0.
#if CONFIG_ONE_SIDED_COMPOUND // No change to bitstream
// Code seems to assume that signbias of cm->comp_bwd_ref[0] is always 1
const int bwd_ref_sign_idx = 1;
#else
const int bwd_ref_sign_idx = cm->ref_frame_sign_bias[cm->comp_bwd_ref[0]];
#endif // CONFIG_ONE_SIDED_COMPOUND
const int fwd_ref_sign_idx = !bwd_ref_sign_idx;
(void)cm;
if (above_in_image && left_in_image) { // both edges available
const int above_intra = !is_inter_block(above_mbmi);
const int left_intra = !is_inter_block(left_mbmi);
if (above_intra && left_intra) { // intra/intra (2)
pred_context = 2;
} else if (above_intra || left_intra) { // intra/inter
const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi;
if (!has_second_ref(edge_mbmi)) // single pred (1/3)
pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] != GOLDEN_FRAME);
else // comp pred (1/3)
pred_context =
1 + 2 * (edge_mbmi->ref_frame[fwd_ref_sign_idx] != GOLDEN_FRAME);
} else { // inter/inter
const int l_sg = !has_second_ref(left_mbmi);
const int a_sg = !has_second_ref(above_mbmi);
const MV_REFERENCE_FRAME frfa =
a_sg ? above_mbmi->ref_frame[0]
: above_mbmi->ref_frame[fwd_ref_sign_idx];
const MV_REFERENCE_FRAME frfl =
l_sg ? left_mbmi->ref_frame[0]
: left_mbmi->ref_frame[fwd_ref_sign_idx];
if (frfa == frfl && frfa == GOLDEN_FRAME)
pred_context = 0;
else if (l_sg && a_sg) { // single/single
if (frfa == GOLDEN_FRAME || frfl == GOLDEN_FRAME)
pred_context = 1;
else if (CHECK_LAST_OR_LAST2(frfa) || CHECK_LAST_OR_LAST2(frfl))
pred_context = 2 + (frfa != frfl);
else if (frfa == frfl ||
(CHECK_BACKWARD_REFS(frfa) && CHECK_BACKWARD_REFS(frfl)))
pred_context = 3;
else
pred_context = 4;
} else if (l_sg || a_sg) { // single/comp
const MV_REFERENCE_FRAME frfc = l_sg ? frfa : frfl;
const MV_REFERENCE_FRAME rfs = a_sg ? frfa : frfl;
if (frfc == GOLDEN_FRAME && rfs != GOLDEN_FRAME)
pred_context = 1;
else if (rfs == GOLDEN_FRAME && frfc != GOLDEN_FRAME)
pred_context = 2;
else
pred_context = 3 + (frfc == LAST3_FRAME || CHECK_LAST_OR_LAST2(rfs));
} else { // comp/comp
if (frfa == GOLDEN_FRAME || frfl == GOLDEN_FRAME)
pred_context = 2;
else
pred_context =
3 + (CHECK_LAST_OR_LAST2(frfa) || CHECK_LAST_OR_LAST2(frfl));
}
}
} else if (above_in_image || left_in_image) { // one edge available
const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi;
if (!is_inter_block(edge_mbmi)) {
pred_context = 2;
} else {
if (has_second_ref(edge_mbmi)) {
pred_context =
4 * (edge_mbmi->ref_frame[fwd_ref_sign_idx] != GOLDEN_FRAME);
} else {
if (edge_mbmi->ref_frame[0] == GOLDEN_FRAME)
pred_context = 0;
else
pred_context = 2 + CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[0]);
}
}
} else { // no edges available (2)
pred_context = 2;
}
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
return pred_context;
}
// Obtain contexts to signal a reference frame be either BWDREF/ALTREF2, or
// ALTREF.
int av1_get_pred_context_brfarf2_or_arf(const MACROBLOCKD *xd) {
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int above_in_image = xd->up_available;
const int left_in_image = xd->left_available;
// Counts of BWDREF, ALTREF2, or ALTREF frames (B, A2, or A)
int bwdref_counts[ALTREF_FRAME - BWDREF_FRAME + 1] = { 0 };
if (above_in_image && is_inter_block(above_mbmi)) {
if (above_mbmi->ref_frame[0] >= BWDREF_FRAME)
++bwdref_counts[above_mbmi->ref_frame[0] - BWDREF_FRAME];
if (has_second_ref(above_mbmi)) {
if (above_mbmi->ref_frame[1] >= BWDREF_FRAME)
++bwdref_counts[above_mbmi->ref_frame[1] - BWDREF_FRAME];
}
}
if (left_in_image && is_inter_block(left_mbmi)) {
if (left_mbmi->ref_frame[0] >= BWDREF_FRAME)
++bwdref_counts[left_mbmi->ref_frame[0] - BWDREF_FRAME];
if (has_second_ref(left_mbmi)) {
if (left_mbmi->ref_frame[1] >= BWDREF_FRAME)
++bwdref_counts[left_mbmi->ref_frame[1] - BWDREF_FRAME];
}
}
const int brfarf2_count = bwdref_counts[BWDREF_FRAME - BWDREF_FRAME] +
bwdref_counts[ALTREF2_FRAME - BWDREF_FRAME];
const int arf_count = bwdref_counts[ALTREF_FRAME - BWDREF_FRAME];
const int pred_context =
(brfarf2_count == arf_count) ? 1 : ((brfarf2_count < arf_count) ? 0 : 2);
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
return pred_context;
}
// Obtain contexts to signal a reference frame be either BWDREF or ALTREF2.
int av1_get_pred_context_brf_or_arf2(const MACROBLOCKD *xd) {
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int above_in_image = xd->up_available;
const int left_in_image = xd->left_available;
// Count of BWDREF frames (B)
int brf_count = 0;
// Count of ALTREF2 frames (A2)
int arf2_count = 0;
if (above_in_image && is_inter_block(above_mbmi)) {
if (above_mbmi->ref_frame[0] == BWDREF_FRAME)
++brf_count;
else if (above_mbmi->ref_frame[0] == ALTREF2_FRAME)
++arf2_count;
if (has_second_ref(above_mbmi)) {
if (above_mbmi->ref_frame[1] == BWDREF_FRAME)
++brf_count;
else if (above_mbmi->ref_frame[1] == ALTREF2_FRAME)
++arf2_count;
}
}
if (left_in_image && is_inter_block(left_mbmi)) {
if (left_mbmi->ref_frame[0] == BWDREF_FRAME)
++brf_count;
else if (left_mbmi->ref_frame[0] == ALTREF2_FRAME)
++arf2_count;
if (has_second_ref(left_mbmi)) {
if (left_mbmi->ref_frame[1] == BWDREF_FRAME)
++brf_count;
else if (left_mbmi->ref_frame[1] == ALTREF2_FRAME)
++arf2_count;
}
}
const int pred_context =
(brf_count == arf2_count) ? 1 : ((brf_count < arf2_count) ? 0 : 2);
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
return pred_context;
}
// Signal the 2nd reference frame for a compound mode be either
// ALTREF, or ALTREF2/BWDREF.
int av1_get_pred_context_comp_bwdref_p(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
(void)cm;
return av1_get_pred_context_brfarf2_or_arf(xd);
}
// Signal the 2nd reference frame for a compound mode be either
// ALTREF2 or BWDREF.
int av1_get_pred_context_comp_bwdref_p1(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
(void)cm;
return av1_get_pred_context_brf_or_arf2(xd);
}
#else // !CONFIG_EXT_REFS
// Returns a context number for the given MB prediction signal
int av1_get_pred_context_comp_ref_p(const AV1_COMMON *cm,
const MACROBLOCKD *xd) {
int pred_context;
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int above_in_image = xd->up_available;
const int left_in_image = xd->left_available;
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries corresponding to real macroblocks.
// The prediction flags in these dummy entries are initialized to 0.
const int fix_ref_idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref];
const int var_ref_idx = !fix_ref_idx;
if (above_in_image && left_in_image) { // both edges available
const int above_intra = !is_inter_block(above_mbmi);
const int left_intra = !is_inter_block(left_mbmi);
if (above_intra && left_intra) { // intra/intra (2)
pred_context = 2;
} else if (above_intra || left_intra) { // intra/inter
const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi;
if (!has_second_ref(edge_mbmi)) // single pred (1/3)
pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] != cm->comp_var_ref[1]);
else // comp pred (1/3)
pred_context =
1 + 2 * (edge_mbmi->ref_frame[var_ref_idx] != cm->comp_var_ref[1]);
} else { // inter/inter
const int l_sg = !has_second_ref(left_mbmi);
const int a_sg = !has_second_ref(above_mbmi);
const MV_REFERENCE_FRAME vrfa =
a_sg ? above_mbmi->ref_frame[0] : above_mbmi->ref_frame[var_ref_idx];
const MV_REFERENCE_FRAME vrfl =
l_sg ? left_mbmi->ref_frame[0] : left_mbmi->ref_frame[var_ref_idx];
if (vrfa == vrfl && cm->comp_var_ref[1] == vrfa) {
pred_context = 0;
} else if (l_sg && a_sg) { // single/single
if ((vrfa == cm->comp_fixed_ref && vrfl == cm->comp_var_ref[0]) ||
(vrfl == cm->comp_fixed_ref && vrfa == cm->comp_var_ref[0]))
pred_context = 4;
else if (vrfa == vrfl)
pred_context = 3;
else
pred_context = 1;
} else if (l_sg || a_sg) { // single/comp
const MV_REFERENCE_FRAME vrfc = l_sg ? vrfa : vrfl;
const MV_REFERENCE_FRAME rfs = a_sg ? vrfa : vrfl;
if (vrfc == cm->comp_var_ref[1] && rfs != cm->comp_var_ref[1])
pred_context = 1;
else if (rfs == cm->comp_var_ref[1] && vrfc != cm->comp_var_ref[1])
pred_context = 2;
else
pred_context = 4;
} else if (vrfa == vrfl) { // comp/comp
pred_context = 4;
} else {
pred_context = 2;
}
}
} else if (above_in_image || left_in_image) { // one edge available
const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi;
if (!is_inter_block(edge_mbmi)) {
pred_context = 2;
} else {
if (has_second_ref(edge_mbmi))
pred_context =
4 * (edge_mbmi->ref_frame[var_ref_idx] != cm->comp_var_ref[1]);
else
pred_context = 3 * (edge_mbmi->ref_frame[0] != cm->comp_var_ref[1]);
}
} else { // no edges available (2)
pred_context = 2;
}
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
return pred_context;
}
#endif // CONFIG_EXT_REFS
#if CONFIG_EXT_REFS
// For the bit to signal whether the single reference is a forward reference
// frame or a backward reference frame.
int av1_get_pred_context_single_ref_p1(const MACROBLOCKD *xd) {
int pred_context;
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int has_above = xd->up_available;
const int has_left = xd->left_available;
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries correpsonding to real macroblocks.
// The prediction flags in these dummy entries are initialised to 0.
if (has_above && has_left) { // both edges available
const int above_intra = !is_inter_block(above_mbmi);
const int left_intra = !is_inter_block(left_mbmi);
if (above_intra && left_intra) { // intra/intra
pred_context = 2;
} else if (above_intra || left_intra) { // intra/inter or inter/intra
const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi;
if (!has_second_ref(edge_mbmi)) // single
pred_context = 4 * (!CHECK_BACKWARD_REFS(edge_mbmi->ref_frame[0]));
else // comp
pred_context = 2;
} else { // inter/inter
const int above_has_second = has_second_ref(above_mbmi);
const int left_has_second = has_second_ref(left_mbmi);
const MV_REFERENCE_FRAME above0 = above_mbmi->ref_frame[0];
const MV_REFERENCE_FRAME left0 = left_mbmi->ref_frame[0];
if (above_has_second && left_has_second) { // comp/comp
pred_context = 2;
} else if (above_has_second || left_has_second) { // single/comp
const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0;
pred_context = (!CHECK_BACKWARD_REFS(rfs)) ? 4 : 1;
} else { // single/single
pred_context = 2 * (!CHECK_BACKWARD_REFS(above0)) +
2 * (!CHECK_BACKWARD_REFS(left0));
}
}
} else if (has_above || has_left) { // one edge available
const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi;
if (!is_inter_block(edge_mbmi)) { // intra
pred_context = 2;
} else { // inter
if (!has_second_ref(edge_mbmi)) // single
pred_context = 4 * (!CHECK_BACKWARD_REFS(edge_mbmi->ref_frame[0]));
else // comp
pred_context = 2;
}
} else { // no edges available
pred_context = 2;
}
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
return pred_context;
}
// For the bit to signal whether the single reference is ALTREF_FRAME or
// non-ALTREF backward reference frame, knowing that it shall be either of
// these 2 choices.
int av1_get_pred_context_single_ref_p2(const MACROBLOCKD *xd) {
return av1_get_pred_context_brfarf2_or_arf(xd);
}
// For the bit to signal whether the single reference is LAST3/GOLDEN or
// LAST2/LAST, knowing that it shall be either of these 2 choices.
int av1_get_pred_context_single_ref_p3(const MACROBLOCKD *xd) {
int pred_context;
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int has_above = xd->up_available;
const int has_left = xd->left_available;
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries correpsonding to real macroblocks.
// The prediction flags in these dummy entries are initialised to 0.
if (has_above && has_left) { // both edges available
const int above_intra = !is_inter_block(above_mbmi);
const int left_intra = !is_inter_block(left_mbmi);
if (above_intra && left_intra) { // intra/intra
pred_context = 2;
} else if (above_intra || left_intra) { // intra/inter or inter/intra
const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi;
if (!has_second_ref(edge_mbmi)) { // single
if (CHECK_BACKWARD_REFS(edge_mbmi->ref_frame[0]))
pred_context = 3;
else
pred_context = 4 * CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[0]);
} else { // comp
pred_context = 1 +
2 * (CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[0]) ||
CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[1]));
}
} else { // inter/inter
const int above_has_second = has_second_ref(above_mbmi);
const int left_has_second = has_second_ref(left_mbmi);
const MV_REFERENCE_FRAME above0 = above_mbmi->ref_frame[0];
const MV_REFERENCE_FRAME above1 = above_mbmi->ref_frame[1];
const MV_REFERENCE_FRAME left0 = left_mbmi->ref_frame[0];
const MV_REFERENCE_FRAME left1 = left_mbmi->ref_frame[1];
if (above_has_second && left_has_second) { // comp/comp
if (above0 == left0 && above1 == left1)
pred_context =
3 * (CHECK_LAST_OR_LAST2(above0) || CHECK_LAST_OR_LAST2(above1) ||
CHECK_LAST_OR_LAST2(left0) || CHECK_LAST_OR_LAST2(left1));
else
pred_context = 2;
} else if (above_has_second || left_has_second) { // single/comp
const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0;
const MV_REFERENCE_FRAME crf1 = above_has_second ? above0 : left0;
const MV_REFERENCE_FRAME crf2 = above_has_second ? above1 : left1;
if (CHECK_LAST_OR_LAST2(rfs))
pred_context =
3 + (CHECK_LAST_OR_LAST2(crf1) || CHECK_LAST_OR_LAST2(crf2));
else if (CHECK_GOLDEN_OR_LAST3(rfs))
pred_context =
(CHECK_LAST_OR_LAST2(crf1) || CHECK_LAST_OR_LAST2(crf2));
else
pred_context =
1 + 2 * (CHECK_LAST_OR_LAST2(crf1) || CHECK_LAST_OR_LAST2(crf2));
} else { // single/single
if (CHECK_BACKWARD_REFS(above0) && CHECK_BACKWARD_REFS(left0)) {
pred_context = 2 + (above0 == left0);
} else if (CHECK_BACKWARD_REFS(above0) || CHECK_BACKWARD_REFS(left0)) {
const MV_REFERENCE_FRAME edge0 =
CHECK_BACKWARD_REFS(above0) ? left0 : above0;
pred_context = 4 * CHECK_LAST_OR_LAST2(edge0);
} else {
pred_context =
2 * CHECK_LAST_OR_LAST2(above0) + 2 * CHECK_LAST_OR_LAST2(left0);
}
}
}
} else if (has_above || has_left) { // one edge available
const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi;
if (!is_inter_block(edge_mbmi) ||
(CHECK_BACKWARD_REFS(edge_mbmi->ref_frame[0]) &&
!has_second_ref(edge_mbmi)))
pred_context = 2;
else if (!has_second_ref(edge_mbmi)) // single
pred_context = 4 * (CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[0]));
else // comp
pred_context = 3 * (CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[0]) ||
CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[1]));
} else { // no edges available (2)
pred_context = 2;
}
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
return pred_context;
}
// For the bit to signal whether the single reference is LAST2_FRAME or
// LAST_FRAME, knowing that it shall be either of these 2 choices.
//
// NOTE(zoeliu): The probability of ref_frame[0] is LAST2_FRAME, conditioning
// on it is either LAST2_FRAME/LAST_FRAME.
int av1_get_pred_context_single_ref_p4(const MACROBLOCKD *xd) {
int pred_context;
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int has_above = xd->up_available;
const int has_left = xd->left_available;
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries correpsonding to real macroblocks.
// The prediction flags in these dummy entries are initialised to 0.
if (has_above && has_left) { // both edges available
const int above_intra = !is_inter_block(above_mbmi);
const int left_intra = !is_inter_block(left_mbmi);
if (above_intra && left_intra) { // intra/intra
pred_context = 2;
} else if (above_intra || left_intra) { // intra/inter or inter/intra
const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi;
if (!has_second_ref(edge_mbmi)) { // single
if (!CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[0]))
pred_context = 3;
else
pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST_FRAME);
} else { // comp
pred_context = 1 +
2 * (edge_mbmi->ref_frame[0] == LAST_FRAME ||
edge_mbmi->ref_frame[1] == LAST_FRAME);
}
} else { // inter/inter
const int above_has_second = has_second_ref(above_mbmi);
const int left_has_second = has_second_ref(left_mbmi);
const MV_REFERENCE_FRAME above0 = above_mbmi->ref_frame[0];
const MV_REFERENCE_FRAME above1 = above_mbmi->ref_frame[1];
const MV_REFERENCE_FRAME left0 = left_mbmi->ref_frame[0];
const MV_REFERENCE_FRAME left1 = left_mbmi->ref_frame[1];
if (above_has_second && left_has_second) { // comp/comp
if (above0 == left0 && above1 == left1)
pred_context = 3 * (above0 == LAST_FRAME || above1 == LAST_FRAME ||
left0 == LAST_FRAME || left1 == LAST_FRAME);
else
pred_context = 2;
} else if (above_has_second || left_has_second) { // single/comp
const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0;
const MV_REFERENCE_FRAME crf1 = above_has_second ? above0 : left0;
const MV_REFERENCE_FRAME crf2 = above_has_second ? above1 : left1;
if (rfs == LAST_FRAME)
pred_context = 3 + (crf1 == LAST_FRAME || crf2 == LAST_FRAME);
else if (rfs == LAST2_FRAME)
pred_context = (crf1 == LAST_FRAME || crf2 == LAST_FRAME);
else
pred_context = 1 + 2 * (crf1 == LAST_FRAME || crf2 == LAST_FRAME);
} else { // single/single
if (!CHECK_LAST_OR_LAST2(above0) && !CHECK_LAST_OR_LAST2(left0)) {
pred_context = 2 + (above0 == left0);
} else if (!CHECK_LAST_OR_LAST2(above0) ||
!CHECK_LAST_OR_LAST2(left0)) {
const MV_REFERENCE_FRAME edge0 =
!CHECK_LAST_OR_LAST2(above0) ? left0 : above0;
pred_context = 4 * (edge0 == LAST_FRAME);
} else {
pred_context = 2 * (above0 == LAST_FRAME) + 2 * (left0 == LAST_FRAME);
}
}
}
} else if (has_above || has_left) { // one edge available
const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi;
if (!is_inter_block(edge_mbmi) ||
(!CHECK_LAST_OR_LAST2(edge_mbmi->ref_frame[0]) &&
!has_second_ref(edge_mbmi)))
pred_context = 2;
else if (!has_second_ref(edge_mbmi)) // single
pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST_FRAME);
else // comp
pred_context = 3 * (edge_mbmi->ref_frame[0] == LAST_FRAME ||
edge_mbmi->ref_frame[1] == LAST_FRAME);
} else { // no edges available (2)
pred_context = 2;
}
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
return pred_context;
}
// For the bit to signal whether the single reference is GOLDEN_FRAME or
// LAST3_FRAME, knowing that it shall be either of these 2 choices.
//
// NOTE(zoeliu): The probability of ref_frame[0] is GOLDEN_FRAME, conditioning
// on it is either GOLDEN_FRAME/LAST3_FRAME.
int av1_get_pred_context_single_ref_p5(const MACROBLOCKD *xd) {
int pred_context;
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int has_above = xd->up_available;
const int has_left = xd->left_available;
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries correpsonding to real macroblocks.
// The prediction flags in these dummy entries are initialised to 0.
if (has_above && has_left) { // both edges available
const int above_intra = !is_inter_block(above_mbmi);
const int left_intra = !is_inter_block(left_mbmi);
if (above_intra && left_intra) { // intra/intra
pred_context = 2;
} else if (above_intra || left_intra) { // intra/inter or inter/intra
const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi;
if (!has_second_ref(edge_mbmi)) { // single
if (!CHECK_GOLDEN_OR_LAST3(edge_mbmi->ref_frame[0]))
pred_context = 3;
else
pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST3_FRAME);
} else { // comp
pred_context = 1 +
2 * (edge_mbmi->ref_frame[0] == LAST3_FRAME ||
edge_mbmi->ref_frame[1] == LAST3_FRAME);
}
} else { // inter/inter
const int above_has_second = has_second_ref(above_mbmi);
const int left_has_second = has_second_ref(left_mbmi);
const MV_REFERENCE_FRAME above0 = above_mbmi->ref_frame[0];
const MV_REFERENCE_FRAME above1 = above_mbmi->ref_frame[1];
const MV_REFERENCE_FRAME left0 = left_mbmi->ref_frame[0];
const MV_REFERENCE_FRAME left1 = left_mbmi->ref_frame[1];
if (above_has_second && left_has_second) { // comp/comp
if (above0 == left0 && above1 == left1)
pred_context = 3 * (above0 == LAST3_FRAME || above1 == LAST3_FRAME ||
left0 == LAST3_FRAME || left1 == LAST3_FRAME);
else
pred_context = 2;
} else if (above_has_second || left_has_second) { // single/comp
const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0;
const MV_REFERENCE_FRAME crf1 = above_has_second ? above0 : left0;
const MV_REFERENCE_FRAME crf2 = above_has_second ? above1 : left1;
if (rfs == LAST3_FRAME)
pred_context = 3 + (crf1 == LAST3_FRAME || crf2 == LAST3_FRAME);
else if (rfs == GOLDEN_FRAME)
pred_context = (crf1 == LAST3_FRAME || crf2 == LAST3_FRAME);
else
pred_context = 1 + 2 * (crf1 == LAST3_FRAME || crf2 == LAST3_FRAME);
} else { // single/single
if (!CHECK_GOLDEN_OR_LAST3(above0) && !CHECK_GOLDEN_OR_LAST3(left0)) {
pred_context = 2 + (above0 == left0);
} else if (!CHECK_GOLDEN_OR_LAST3(above0) ||
!CHECK_GOLDEN_OR_LAST3(left0)) {
const MV_REFERENCE_FRAME edge0 =
!CHECK_GOLDEN_OR_LAST3(above0) ? left0 : above0;
pred_context = 4 * (edge0 == LAST3_FRAME);
} else {
pred_context =
2 * (above0 == LAST3_FRAME) + 2 * (left0 == LAST3_FRAME);
}
}
}
} else if (has_above || has_left) { // one edge available
const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi;
if (!is_inter_block(edge_mbmi) ||
(!CHECK_GOLDEN_OR_LAST3(edge_mbmi->ref_frame[0]) &&
!has_second_ref(edge_mbmi)))
pred_context = 2;
else if (!has_second_ref(edge_mbmi)) // single
pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST3_FRAME);
else // comp
pred_context = 3 * (edge_mbmi->ref_frame[0] == LAST3_FRAME ||
edge_mbmi->ref_frame[1] == LAST3_FRAME);
} else { // no edges available (2)
pred_context = 2;
}
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
return pred_context;
}
// For the bit to signal whether the single reference is ALTREF2_FRAME or
// BWDREF_FRAME, knowing that it shall be either of these 2 choices.
int av1_get_pred_context_single_ref_p6(const MACROBLOCKD *xd) {
return av1_get_pred_context_brf_or_arf2(xd);
}
#else // !CONFIG_EXT_REFS
int av1_get_pred_context_single_ref_p1(const MACROBLOCKD *xd) {
int pred_context;
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int has_above = xd->up_available;
const int has_left = xd->left_available;
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries corresponding to real macroblocks.
// The prediction flags in these dummy entries are initialized to 0.
if (has_above && has_left) { // both edges available
const int above_intra = !is_inter_block(above_mbmi);
const int left_intra = !is_inter_block(left_mbmi);
if (above_intra && left_intra) { // intra/intra
pred_context = 2;
} else if (above_intra || left_intra) { // intra/inter or inter/intra
const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi;
if (!has_second_ref(edge_mbmi))
pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST_FRAME);
else
pred_context = 1 + (edge_mbmi->ref_frame[0] == LAST_FRAME ||
edge_mbmi->ref_frame[1] == LAST_FRAME);
} else { // inter/inter
const int above_has_second = has_second_ref(above_mbmi);
const int left_has_second = has_second_ref(left_mbmi);
const MV_REFERENCE_FRAME above0 = above_mbmi->ref_frame[0];
const MV_REFERENCE_FRAME above1 = above_mbmi->ref_frame[1];
const MV_REFERENCE_FRAME left0 = left_mbmi->ref_frame[0];
const MV_REFERENCE_FRAME left1 = left_mbmi->ref_frame[1];
if (above_has_second && left_has_second) {
pred_context = 1 + (above0 == LAST_FRAME || above1 == LAST_FRAME ||
left0 == LAST_FRAME || left1 == LAST_FRAME);
} else if (above_has_second || left_has_second) {
const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0;
const MV_REFERENCE_FRAME crf1 = above_has_second ? above0 : left0;
const MV_REFERENCE_FRAME crf2 = above_has_second ? above1 : left1;
if (rfs == LAST_FRAME)
pred_context = 3 + (crf1 == LAST_FRAME || crf2 == LAST_FRAME);
else
pred_context = (crf1 == LAST_FRAME || crf2 == LAST_FRAME);
} else {
pred_context = 2 * (above0 == LAST_FRAME) + 2 * (left0 == LAST_FRAME);
}
}
} else if (has_above || has_left) { // one edge available
const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi;
if (!is_inter_block(edge_mbmi)) { // intra
pred_context = 2;
} else { // inter
if (!has_second_ref(edge_mbmi))
pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST_FRAME);
else
pred_context = 1 + (edge_mbmi->ref_frame[0] == LAST_FRAME ||
edge_mbmi->ref_frame[1] == LAST_FRAME);
}
} else { // no edges available
pred_context = 2;
}
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
return pred_context;
}
int av1_get_pred_context_single_ref_p2(const MACROBLOCKD *xd) {
int pred_context;
const MB_MODE_INFO *const above_mbmi = xd->above_mbmi;
const MB_MODE_INFO *const left_mbmi = xd->left_mbmi;
const int has_above = xd->up_available;
const int has_left = xd->left_available;
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries corresponding to real macroblocks.
// The prediction flags in these dummy entries are initialized to 0.
if (has_above && has_left) { // both edges available
const int above_intra = !is_inter_block(above_mbmi);
const int left_intra = !is_inter_block(left_mbmi);
if (above_intra && left_intra) { // intra/intra
pred_context = 2;
} else if (above_intra || left_intra) { // intra/inter or inter/intra
const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi;
if (!has_second_ref(edge_mbmi)) {
if (edge_mbmi->ref_frame[0] == LAST_FRAME)
pred_context = 3;
else
pred_context = 4 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME);
} else {
pred_context = 1 +
2 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME ||
edge_mbmi->ref_frame[1] == GOLDEN_FRAME);
}
} else { // inter/inter
const int above_has_second = has_second_ref(above_mbmi);
const int left_has_second = has_second_ref(left_mbmi);
const MV_REFERENCE_FRAME above0 = above_mbmi->ref_frame[0];
const MV_REFERENCE_FRAME above1 = above_mbmi->ref_frame[1];
const MV_REFERENCE_FRAME left0 = left_mbmi->ref_frame[0];
const MV_REFERENCE_FRAME left1 = left_mbmi->ref_frame[1];
if (above_has_second && left_has_second) {
if (above0 == left0 && above1 == left1)
pred_context =
3 * (above0 == GOLDEN_FRAME || above1 == GOLDEN_FRAME ||
left0 == GOLDEN_FRAME || left1 == GOLDEN_FRAME);
else
pred_context = 2;
} else if (above_has_second || left_has_second) {
const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0;
const MV_REFERENCE_FRAME crf1 = above_has_second ? above0 : left0;
const MV_REFERENCE_FRAME crf2 = above_has_second ? above1 : left1;
if (rfs == GOLDEN_FRAME)
pred_context = 3 + (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME);
else if (rfs != GOLDEN_FRAME && rfs != LAST_FRAME)
pred_context = crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME;
else
pred_context = 1 + 2 * (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME);
} else {
if (above0 == LAST_FRAME && left0 == LAST_FRAME) {
pred_context = 3;
} else if (above0 == LAST_FRAME || left0 == LAST_FRAME) {
const MV_REFERENCE_FRAME edge0 =
(above0 == LAST_FRAME) ? left0 : above0;
pred_context = 4 * (edge0 == GOLDEN_FRAME);
} else {
pred_context =
2 * (above0 == GOLDEN_FRAME) + 2 * (left0 == GOLDEN_FRAME);
}
}
}
} else if (has_above || has_left) { // one edge available
const MB_MODE_INFO *edge_mbmi = has_above ? above_mbmi : left_mbmi;
if (!is_inter_block(edge_mbmi) ||
(edge_mbmi->ref_frame[0] == LAST_FRAME && !has_second_ref(edge_mbmi)))
pred_context = 2;
else if (!has_second_ref(edge_mbmi))
pred_context = 4 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME);
else
pred_context = 3 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME ||
edge_mbmi->ref_frame[1] == GOLDEN_FRAME);
} else { // no edges available (2)
pred_context = 2;
}
assert(pred_context >= 0 && pred_context < REF_CONTEXTS);
return pred_context;
}
#endif // CONFIG_EXT_REFS