blob: 3b924ea0668e4353c67bb4e2440f00c7ecd53fef [file] [log] [blame]
/*
* Copyright (c) 2015 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be
* found in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include <math.h>
#include <assert.h>
#include "vp10/common/warped_motion.h"
typedef void (*projectPointsType)(int *mat,
int *points,
int *proj,
const int n,
const int stride_points,
const int stride_proj,
const int subsampling_x,
const int subsampling_y);
static void projectPointsHomography(int *mat,
int *points,
int *proj,
const int n,
const int stride_points,
const int stride_proj,
const int subsampling_x,
const int subsampling_y);
static void projectPointsAffine(int *mat,
int *points,
int *proj,
const int n,
const int stride_points,
const int stride_proj,
const int subsampling_x,
const int subsampling_y);
static void projectPointsRotZoom(int *mat,
int *points,
int *proj,
const int n,
const int stride_points,
const int stride_proj,
const int subsampling_x,
const int subsampling_y);
static void projectPointsTranslation(int *mat,
int *points,
int *proj,
const int n,
const int stride_points,
const int stride_proj,
const int subsampling_x,
const int subsampling_y);
static projectPointsType get_projectPointsType(TransformationType type) {
switch (type) {
case HOMOGRAPHY:
return projectPointsHomography;
case AFFINE:
return projectPointsAffine;
case ROTZOOM:
return projectPointsRotZoom;
case TRANSLATION:
return projectPointsTranslation;
default:
assert(0);
return NULL;
}
}
static void projectPointsTranslation(int *mat, int *points, int *proj,
const int n,
const int stride_points,
const int stride_proj,
const int subsampling_x,
const int subsampling_y) {
int i;
for (i = 0; i < n; ++i) {
const int x = *(points++), y = *(points++);
if (subsampling_x)
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(
((x << (WARPEDMODEL_PREC_BITS + 1)) + mat[0]),
WARPEDPIXEL_PREC_BITS + 1);
else
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(
((x << WARPEDMODEL_PREC_BITS)) + mat[0],
WARPEDPIXEL_PREC_BITS);
if (subsampling_y)
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(
((y << (WARPEDMODEL_PREC_BITS + 1)) + mat[1]),
WARPEDPIXEL_PREC_BITS + 1);
else
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(
((y << WARPEDMODEL_PREC_BITS)) + mat[1],
WARPEDPIXEL_PREC_BITS);
points += stride_points - 2;
proj += stride_proj - 2;
}
}
void projectPointsRotZoom(int *mat, int *points, int *proj,
const int n,
const int stride_points,
const int stride_proj,
const int subsampling_x,
const int subsampling_y) {
int i;
for (i = 0; i < n; ++i) {
const int x = *(points++), y = *(points++);
if (subsampling_x)
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(
mat[0] * 2 * x + mat[1] * 2 * y + mat[2] +
(mat[0] + mat[1] - (1 << WARPEDMODEL_PREC_BITS)) / 2,
WARPEDDIFF_PREC_BITS + 1);
else
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(mat[0] * x + mat[1] * y + mat[2],
WARPEDDIFF_PREC_BITS);
if (subsampling_y)
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(
-mat[1] * 2 * x + mat[0] * 2 * y + mat[3] +
(-mat[1] + mat[0] - (1 << WARPEDMODEL_PREC_BITS)) / 2,
WARPEDDIFF_PREC_BITS + 1);
else
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(-mat[1] * x + mat[0] * y + mat[3],
WARPEDDIFF_PREC_BITS);
points += stride_points - 2;
proj += stride_proj - 2;
}
}
static void projectPointsAffine(int *mat, int *points, int *proj,
const int n,
const int stride_points,
const int stride_proj,
const int subsampling_x,
const int subsampling_y) {
int i;
for (i = 0; i < n; ++i) {
const int x = *(points++), y = *(points++);
if (subsampling_x)
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(
mat[0] * 2 * x + mat[1] * 2 * y + mat[4] +
(mat[0] + mat[1] - (1 << WARPEDMODEL_PREC_BITS)) / 2,
WARPEDDIFF_PREC_BITS + 1);
else
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(mat[0] * x + mat[1] * y + mat[4],
WARPEDDIFF_PREC_BITS);
if (subsampling_y)
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(
mat[2] * 2 * x + mat[3] * 2 * y + mat[5] +
(mat[2] + mat[3] - (1 << WARPEDMODEL_PREC_BITS)) / 2,
WARPEDDIFF_PREC_BITS + 1);
else
*(proj++) = ROUND_POWER_OF_TWO_SIGNED(mat[2] * x + mat[3] * y + mat[5],
WARPEDDIFF_PREC_BITS);
points += stride_points - 2;
proj += stride_proj - 2;
}
}
static void projectPointsHomography(int *mat, int *points, int *proj,
const int n,
const int stride_points,
const int stride_proj,
const int subsampling_x,
const int subsampling_y) {
int i;
int64_t x, y, Z;
int64_t xp, yp;
for (i = 0; i < n; ++i) {
x = *(points++), y = *(points++);
x = (subsampling_x ? 4 * x + 1 : 2 * x);
y = (subsampling_y ? 4 * y + 1 : 2 * y);
Z = (mat[6] * x + mat[7] * y + (1 << (WARPEDMODEL_ROW3HOMO_PREC_BITS + 1)));
xp = (mat[0] * x + mat[1] * y + 2 * mat[2])
<< (WARPEDPIXEL_PREC_BITS +
WARPEDMODEL_ROW3HOMO_PREC_BITS - WARPEDMODEL_PREC_BITS);
yp = (mat[3] * x + mat[4] * y + 2 * mat[5])
<< (WARPEDPIXEL_PREC_BITS +
WARPEDMODEL_ROW3HOMO_PREC_BITS - WARPEDMODEL_PREC_BITS);
xp = xp > 0 ? (xp + Z / 2) / Z : (xp - Z / 2) / Z;
yp = yp > 0 ? (yp + Z / 2) / Z : (yp - Z / 2) / Z;
if (subsampling_x)
xp = (xp - (1 << (WARPEDPIXEL_PREC_BITS - 1))) / 2;
if (subsampling_y)
yp = (yp - (1 << (WARPEDPIXEL_PREC_BITS - 1))) / 2;
*(proj++) = xp;
*(proj++) = yp;
points += stride_points - 2;
proj += stride_proj - 2;
}
}
static const int16_t
filter_4tap[WARPEDPIXEL_PREC_SHIFTS][4] = {
{0, 128, 0, 0},
{-1, 127, 2, 0},
{-2, 127, 4, -1},
{-3, 126, 6, -1},
{-3, 125, 8, -2},
{-4, 124, 11, -3},
{-5, 123, 13, -3},
{-5, 121, 15, -3},
{-6, 120, 18, -4},
{-7, 119, 20, -4},
{-7, 118, 22, -5},
{-8, 116, 25, -5},
{-8, 115, 27, -6},
{-9, 113, 30, -6},
{-9, 112, 32, -7},
{-9, 110, 34, -7},
{-10, 108, 37, -7},
{-10, 107, 39, -8},
{-10, 105, 41, -8},
{-11, 103, 44, -8},
{-11, 101, 47, -9},
{-11, 99, 49, -9},
{-11, 97, 51, -9},
{-11, 95, 54, -10},
{-11, 93, 56, -10},
{-12, 91, 59, -10},
{-12, 89, 61, -10},
{-12, 87, 64, -11},
{-12, 85, 66, -11},
{-12, 82, 69, -11},
{-12, 80, 71, -11},
{-12, 78, 73, -11},
{-11, 75, 75, -11},
{-11, 73, 78, -12},
{-11, 71, 80, -12},
{-11, 69, 82, -12},
{-11, 66, 85, -12},
{-11, 64, 87, -12},
{-10, 61, 89, -12},
{-10, 59, 91, -12},
{-10, 56, 93, -11},
{-10, 54, 95, -11},
{-9, 51, 97, -11},
{-9, 49, 99, -11},
{-9, 47, 101, -11},
{-8, 44, 103, -11},
{-8, 41, 105, -10},
{-8, 39, 107, -10},
{-7, 37, 108, -10},
{-7, 34, 110, -9},
{-7, 32, 112, -9},
{-6, 30, 113, -9},
{-6, 27, 115, -8},
{-5, 25, 116, -8},
{-5, 22, 118, -7},
{-4, 20, 119, -7},
{-4, 18, 120, -6},
{-3, 15, 121, -5},
{-3, 13, 123, -5},
{-3, 11, 124, -4},
{-2, 8, 125, -3},
{-1, 6, 126, -3},
{-1, 4, 127, -2},
{0, 2, 127, -1},
};
static const int16_t
filter_ntap[WARPEDPIXEL_PREC_SHIFTS][WARPEDPIXEL_FILTER_TAPS] = {
{0, 0, 128, 0, 0, 0},
{0, -1, 128, 2, -1, 0},
{1, -3, 127, 4, -1, 0},
{1, -4, 126, 6, -2, 1},
{1, -5, 126, 8, -3, 1},
{1, -6, 125, 11, -4, 1},
{1, -7, 124, 13, -4, 1},
{2, -8, 123, 15, -5, 1},
{2, -9, 122, 18, -6, 1},
{2, -10, 121, 20, -6, 1},
{2, -11, 120, 22, -7, 2},
{2, -12, 119, 25, -8, 2},
{3, -13, 117, 27, -8, 2},
{3, -13, 116, 29, -9, 2},
{3, -14, 114, 32, -10, 3},
{3, -15, 113, 35, -10, 2},
{3, -15, 111, 37, -11, 3},
{3, -16, 109, 40, -11, 3},
{3, -16, 108, 42, -12, 3},
{4, -17, 106, 45, -13, 3},
{4, -17, 104, 47, -13, 3},
{4, -17, 102, 50, -14, 3},
{4, -17, 100, 52, -14, 3},
{4, -18, 98, 55, -15, 4},
{4, -18, 96, 58, -15, 3},
{4, -18, 94, 60, -16, 4},
{4, -18, 91, 63, -16, 4},
{4, -18, 89, 65, -16, 4},
{4, -18, 87, 68, -17, 4},
{4, -18, 85, 70, -17, 4},
{4, -18, 82, 73, -17, 4},
{4, -18, 80, 75, -17, 4},
{4, -18, 78, 78, -18, 4},
{4, -17, 75, 80, -18, 4},
{4, -17, 73, 82, -18, 4},
{4, -17, 70, 85, -18, 4},
{4, -17, 68, 87, -18, 4},
{4, -16, 65, 89, -18, 4},
{4, -16, 63, 91, -18, 4},
{4, -16, 60, 94, -18, 4},
{3, -15, 58, 96, -18, 4},
{4, -15, 55, 98, -18, 4},
{3, -14, 52, 100, -17, 4},
{3, -14, 50, 102, -17, 4},
{3, -13, 47, 104, -17, 4},
{3, -13, 45, 106, -17, 4},
{3, -12, 42, 108, -16, 3},
{3, -11, 40, 109, -16, 3},
{3, -11, 37, 111, -15, 3},
{2, -10, 35, 113, -15, 3},
{3, -10, 32, 114, -14, 3},
{2, -9, 29, 116, -13, 3},
{2, -8, 27, 117, -13, 3},
{2, -8, 25, 119, -12, 2},
{2, -7, 22, 120, -11, 2},
{1, -6, 20, 121, -10, 2},
{1, -6, 18, 122, -9, 2},
{1, -5, 15, 123, -8, 2},
{1, -4, 13, 124, -7, 1},
{1, -4, 11, 125, -6, 1},
{1, -3, 8, 126, -5, 1},
{1, -2, 6, 126, -4, 1},
{0, -1, 4, 127, -3, 1},
{0, -1, 2, 128, -1, 0},
};
static int32_t do_ntap_filter(int32_t *p, int x) {
int i;
int32_t sum = 0;
for (i = 0; i < WARPEDPIXEL_FILTER_TAPS; ++i) {
sum += p[i - WARPEDPIXEL_FILTER_TAPS / 2 + 1] * filter_ntap[x][i];
}
return sum;
}
static int32_t do_cubic_filter(int32_t *p, int x) {
if (x == 0) {
return p[0];
} else if (x == (1 << WARPEDPIXEL_PREC_BITS)) {
return p[1];
} else {
const int64_t v1 = x * x * x * (3 * (p[0] - p[1]) + p[2] - p[-1]);
const int64_t v2 = x * x * (2 * p[-1] - 5 * p[0] + 4 * p[1] - p[2]);
const int64_t v3 = x * (p[1] - p[-1]);
const int64_t v4 = 2 * p[0];
return (int32_t)ROUND_POWER_OF_TWO_SIGNED(
(v4 << (3 * WARPEDPIXEL_PREC_BITS)) +
(v3 << (2 * WARPEDPIXEL_PREC_BITS)) +
(v2 << WARPEDPIXEL_PREC_BITS) + v1,
3 * WARPEDPIXEL_PREC_BITS + 1 - WARPEDPIXEL_FILTER_BITS);
}
}
/*
static int32_t do_linear_filter(int32_t *p, int x) {
int32_t sum = 0;
sum = p[0] * (WARPEDPIXEL_PREC_SHIFTS - x) + p[1] * x;
sum <<= (WARPEDPIXEL_FILTER_BITS - WARPEDPIXEL_PREC_BITS);
return sum;
}
static int32_t do_4tap_filter(int32_t *p, int x) {
int i;
int32_t sum = 0;
for (i = 0; i < 4; ++i) {
sum += p[i - 1] * filter_4tap[x][i];
}
return sum;
}
*/
static INLINE void get_subcolumn(int taps, uint8_t *ref, int32_t *col,
int stride, int x, int y_start) {
int i;
for (i = 0; i < taps; ++i) {
col[i] = ref[(i + y_start) * stride + x];
}
}
static uint8_t bi_ntap_filter(uint8_t *ref, int x, int y, int stride) {
int32_t val, arr[WARPEDPIXEL_FILTER_TAPS];
int k;
int i = (int) x >> WARPEDPIXEL_PREC_BITS;
int j = (int) y >> WARPEDPIXEL_PREC_BITS;
for (k = 0; k < WARPEDPIXEL_FILTER_TAPS; ++k) {
int32_t arr_temp[WARPEDPIXEL_FILTER_TAPS];
get_subcolumn(WARPEDPIXEL_FILTER_TAPS, ref, arr_temp, stride,
i + k + 1 - WARPEDPIXEL_FILTER_TAPS / 2,
j + 1 - WARPEDPIXEL_FILTER_TAPS / 2);
arr[k] = do_ntap_filter(arr_temp + WARPEDPIXEL_FILTER_TAPS / 2 - 1,
y - (j << WARPEDPIXEL_PREC_BITS));
}
val = do_ntap_filter(arr + WARPEDPIXEL_FILTER_TAPS / 2 - 1,
x - (i << WARPEDPIXEL_PREC_BITS));
val = ROUND_POWER_OF_TWO_SIGNED(val, WARPEDPIXEL_FILTER_BITS * 2);
return (uint8_t)clip_pixel(val);
}
static uint8_t bi_cubic_filter(uint8_t *ref, int x, int y, int stride) {
int32_t val, arr[4];
int k;
int i = (int) x >> WARPEDPIXEL_PREC_BITS;
int j = (int) y >> WARPEDPIXEL_PREC_BITS;
for (k = 0; k < 4; ++k) {
int32_t arr_temp[4];
get_subcolumn(4, ref, arr_temp, stride,
i + k - 1, j - 1);
arr[k] = do_cubic_filter(arr_temp + 1, y - (j << WARPEDPIXEL_PREC_BITS));
}
val = do_cubic_filter(arr + 1, x - (i << WARPEDPIXEL_PREC_BITS));
val = ROUND_POWER_OF_TWO_SIGNED(val, WARPEDPIXEL_FILTER_BITS * 2);
return (uint8_t)clip_pixel(val);
}
static uint8_t bi_linear_filter(uint8_t *ref, int x, int y, int stride) {
const int ix = x >> WARPEDPIXEL_PREC_BITS;
const int iy = y >> WARPEDPIXEL_PREC_BITS;
const int sx = x - (ix << WARPEDPIXEL_PREC_BITS);
const int sy = y - (iy << WARPEDPIXEL_PREC_BITS);
int32_t val;
val = ROUND_POWER_OF_TWO_SIGNED(
ref[iy * stride + ix] * (WARPEDPIXEL_PREC_SHIFTS - sy) *
(WARPEDPIXEL_PREC_SHIFTS - sx) +
ref[iy * stride + ix + 1] * (WARPEDPIXEL_PREC_SHIFTS - sy) * sx +
ref[(iy + 1) * stride + ix] * sy * (WARPEDPIXEL_PREC_SHIFTS - sx) +
ref[(iy + 1) * stride + ix + 1] * sy * sx,
WARPEDPIXEL_PREC_BITS * 2);
return (uint8_t)clip_pixel(val);
}
static uint8_t warp_interpolate(uint8_t *ref, int x, int y,
int width, int height, int stride) {
int ix = x >> WARPEDPIXEL_PREC_BITS;
int iy = y >> WARPEDPIXEL_PREC_BITS;
int sx = x - (ix << WARPEDPIXEL_PREC_BITS);
int sy = y - (iy << WARPEDPIXEL_PREC_BITS);
int32_t v;
if (ix < 0 && iy < 0) return ref[0];
else if (ix < 0 && iy > height - 1)
return ref[(height - 1) * stride];
else if (ix > width - 1 && iy < 0)
return ref[width - 1];
else if (ix > width - 1 && iy > height - 1)
return ref[(height - 1) * stride + (width - 1)];
else if (ix < 0) {
v = ROUND_POWER_OF_TWO_SIGNED(
ref[iy * stride] * (WARPEDPIXEL_PREC_SHIFTS - sy) +
ref[(iy + 1) * stride] * sy,
WARPEDPIXEL_PREC_BITS);
return clip_pixel(v);
} else if (iy < 0) {
v = ROUND_POWER_OF_TWO_SIGNED(
ref[ix] * (WARPEDPIXEL_PREC_SHIFTS - sx) +
ref[ix + 1] * sx,
WARPEDPIXEL_PREC_BITS);
return clip_pixel(v);
} else if (ix > width - 1) {
v = ROUND_POWER_OF_TWO_SIGNED(
ref[iy * stride + width - 1] * (WARPEDPIXEL_PREC_SHIFTS - sy) +
ref[(iy + 1) * stride + width - 1] * sy,
WARPEDPIXEL_PREC_BITS);
return clip_pixel(v);
} else if (iy > height - 1) {
v = ROUND_POWER_OF_TWO_SIGNED(
ref[(height - 1) * stride + ix] * (WARPEDPIXEL_PREC_SHIFTS - sx) +
ref[(height - 1) * stride + ix + 1] * sx,
WARPEDPIXEL_PREC_BITS);
return clip_pixel(v);
} else if (ix >= WARPEDPIXEL_FILTER_TAPS / 2 - 1 &&
iy >= WARPEDPIXEL_FILTER_TAPS / 2 - 1 &&
ix < width - WARPEDPIXEL_FILTER_TAPS / 2 &&
iy < height - WARPEDPIXEL_FILTER_TAPS / 2) {
return bi_ntap_filter(ref, x, y, stride);
} else if (ix >= 1 && iy >= 1 &&
ix < width - 2 && iy < height - 2) {
return bi_cubic_filter(ref, x, y, stride);
} else {
return bi_linear_filter(ref, x, y, stride);
}
}
void vp10_warp_plane(WarpedMotionParams *wm,
uint8_t *ref,
int width, int height, int stride,
uint8_t *pred,
int p_col, int p_row,
int p_width, int p_height, int p_stride,
int subsampling_x, int subsampling_y,
int x_scale, int y_scale) {
int i, j;
projectPointsType projectPoints = get_projectPointsType(wm->wmtype);
if (projectPoints == NULL)
return;
for (i = p_row; i < p_row + p_height; ++i) {
for (j = p_col; j < p_col + p_width; ++j) {
int in[2], out[2];
projectPoints(wm->wmmat, in, out, 1, 2, 2, subsampling_x, subsampling_y);
out[0] = ROUND_POWER_OF_TWO_SIGNED(out[0] * x_scale, 4);
out[1] = ROUND_POWER_OF_TWO_SIGNED(out[1] * y_scale, 4);
pred[(j - p_col) + (i - p_row) * p_stride] =
warp_interpolate(ref, out[0], out[1], width, height, stride);
}
}
}
#if CONFIG_VP9_HIGHBITDEPTH
static INLINE void highbd_get_subcolumn(int taps, uint16_t *ref, int32_t *col,
int stride, int x, int y_start) {
int i;
for (i = 0; i < taps; ++i) {
col[i] = ref[(i + y_start) * stride + x];
}
}
static uint16_t highbd_bi_ntap_filter(uint16_t *ref,
int x, int y, int stride,
int bd) {
int32_t val, arr[WARPEDPIXEL_FILTER_TAPS];
int k;
int i = (int) x >> WARPEDPIXEL_PREC_BITS;
int j = (int) y >> WARPEDPIXEL_PREC_BITS;
for (k = 0; k < WARPEDPIXEL_FILTER_TAPS; ++k) {
int32_t arr_temp[WARPEDPIXEL_FILTER_TAPS];
highbd_get_subcolumn(WARPEDPIXEL_FILTER_TAPS, ref, arr_temp, stride,
i + k + 1 - WARPEDPIXEL_FILTER_TAPS / 2,
j + 1 - WARPEDPIXEL_FILTER_TAPS / 2);
arr[k] = do_ntap_filter(arr_temp + WARPEDPIXEL_FILTER_TAPS / 2 - 1,
y - (j << WARPEDPIXEL_PREC_BITS));
}
val = do_ntap_filter(arr + WARPEDPIXEL_FILTER_TAPS / 2 - 1,
x - (i << WARPEDPIXEL_PREC_BITS));
val = ROUND_POWER_OF_TWO_SIGNED(val, WARPEDPIXEL_FILTER_BITS * 2);
return (uint16_t)highbd_clip_pixel(val, bd);
}
static uint16_t highbd_bi_cubic_filter(uint16_t *ref,
int x, int y, int stride,
int bd) {
int32_t val, arr[4];
int k;
int i = (int) x >> WARPEDPIXEL_PREC_BITS;
int j = (int) y >> WARPEDPIXEL_PREC_BITS;
for (k = 0; k < 4; ++k) {
int32_t arr_temp[4];
highbd_get_subcolumn(4, ref, arr_temp, stride,
i + k - 1, j - 1);
arr[k] = do_cubic_filter(arr_temp + 1, y - (j << WARPEDPIXEL_PREC_BITS));
}
val = do_cubic_filter(arr + 1, x - (i << WARPEDPIXEL_PREC_BITS));
val = ROUND_POWER_OF_TWO_SIGNED(val, WARPEDPIXEL_FILTER_BITS * 2);
return (uint16_t)highbd_clip_pixel(val, bd);
}
static uint16_t highbd_bi_linear_filter(uint16_t *ref,
int x, int y, int stride,
int bd) {
const int ix = x >> WARPEDPIXEL_PREC_BITS;
const int iy = y >> WARPEDPIXEL_PREC_BITS;
const int sx = x - (ix << WARPEDPIXEL_PREC_BITS);
const int sy = y - (iy << WARPEDPIXEL_PREC_BITS);
int32_t val;
val = ROUND_POWER_OF_TWO_SIGNED(
ref[iy * stride + ix] * (WARPEDPIXEL_PREC_SHIFTS - sy) *
(WARPEDPIXEL_PREC_SHIFTS - sx) +
ref[iy * stride + ix + 1] * (WARPEDPIXEL_PREC_SHIFTS - sy) * sx +
ref[(iy + 1) * stride + ix] * sy * (WARPEDPIXEL_PREC_SHIFTS - sx) +
ref[(iy + 1) * stride + ix + 1] * sy * sx,
WARPEDPIXEL_PREC_BITS * 2);
return (uint16_t)highbd_clip_pixel(val, bd);
}
static uint16_t highbd_warp_interpolate(uint16_t *ref,
int x, int y,
int width, int height, int stride,
int bd) {
int ix = x >> WARPEDPIXEL_PREC_BITS;
int iy = y >> WARPEDPIXEL_PREC_BITS;
int sx = x - (ix << WARPEDPIXEL_PREC_BITS);
int sy = y - (iy << WARPEDPIXEL_PREC_BITS);
int32_t v;
if (ix < 0 && iy < 0) return ref[0];
else if (ix < 0 && iy > height - 1)
return ref[(height - 1) * stride];
else if (ix > width - 1 && iy < 0)
return ref[width - 1];
else if (ix > width - 1 && iy > height - 1)
return ref[(height - 1) * stride + (width - 1)];
else if (ix < 0) {
v = ROUND_POWER_OF_TWO_SIGNED(
ref[iy * stride] * (WARPEDPIXEL_PREC_SHIFTS - sy) +
ref[(iy + 1) * stride] * sy,
WARPEDPIXEL_PREC_BITS);
return highbd_clip_pixel(v, bd);
} else if (iy < 0) {
v = ROUND_POWER_OF_TWO_SIGNED(
ref[ix] * (WARPEDPIXEL_PREC_SHIFTS - sx) +
ref[ix + 1] * sx,
WARPEDPIXEL_PREC_BITS);
return highbd_clip_pixel(v, bd);
} else if (ix > width - 1) {
v = ROUND_POWER_OF_TWO_SIGNED(
ref[iy * stride + width - 1] * (WARPEDPIXEL_PREC_SHIFTS - sy) +
ref[(iy + 1) * stride + width - 1] * sy,
WARPEDPIXEL_PREC_BITS);
return highbd_clip_pixel(v, bd);
} else if (iy > height - 1) {
v = ROUND_POWER_OF_TWO_SIGNED(
ref[(height - 1) * stride + ix] * (WARPEDPIXEL_PREC_SHIFTS - sx) +
ref[(height - 1) * stride + ix + 1] * sx,
WARPEDPIXEL_PREC_BITS);
return highbd_clip_pixel(v, bd);
} else if (ix >= WARPEDPIXEL_FILTER_TAPS / 2 - 1 &&
iy >= WARPEDPIXEL_FILTER_TAPS / 2 - 1 &&
ix < width - WARPEDPIXEL_FILTER_TAPS / 2 &&
iy < height - WARPEDPIXEL_FILTER_TAPS / 2) {
return highbd_bi_ntap_filter(ref, x, y, stride, bd);
} else if (ix >= 1 && iy >= 1 &&
ix < width - 2 && iy < height - 2) {
return highbd_bi_cubic_filter(ref, x, y, stride, bd);
} else {
return highbd_bi_linear_filter(ref, x, y, stride, bd);
}
}
void vp10_highbd_warp_plane(WarpedMotionParams *wm,
uint8_t *ref8,
int width, int height, int stride,
uint8_t *pred8,
int p_col, int p_row,
int p_width, int p_height, int p_stride,
int subsampling_col, int subsampling_row,
int x_scale, int y_scale,
int bd) {
int i, j;
projectPointsType projectPoints = get_projectPointsType(wm->wmtype);
uint16_t *pred = CONVERT_TO_SHORTPTR(pred8);
uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
if (projectPoints == NULL)
return;
for (i = p_row; i < p_row + p_height; ++i) {
for (j = p_col; j < p_col + p_width; ++j) {
int in[2], out[2];
projectPoints(wm->wmmat, in, out, 1, 2, 2, subsampling_x, subsampling_y);
out[0] = ROUND_POWER_OF_TWO_SIGNED(out[0] * x_scale, 4);
out[1] = ROUND_POWER_OF_TWO_SIGNED(out[1] * y_scale, 4);
pred[(j - p_col) + (i - p_row) * p_stride] =
highbd_warp_interpolate(
ref, out[0], out[1], width, height, stride, bd);
}
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
void vp10_integerize_model(double *H, TransformationType wmtype,
WarpedMotionParams *wm) {
wm->wmtype = wmtype;
switch (wmtype) {
case HOMOGRAPHY:
assert(fabs(H[8] - 1.0) < 1e-12);
wm->wmmat[7] = rint(H[7] * (1 << WARPEDMODEL_ROW3HOMO_PREC_BITS));
wm->wmmat[6] = rint(H[6] * (1 << WARPEDMODEL_ROW3HOMO_PREC_BITS));
case AFFINE:
wm->wmmat[5] = rint(H[5] * (1 << WARPEDMODEL_PREC_BITS));
wm->wmmat[4] = rint(H[4] * (1 << WARPEDMODEL_PREC_BITS));
case ROTZOOM:
wm->wmmat[3] = rint(H[3] * (1 << WARPEDMODEL_PREC_BITS));
wm->wmmat[2] = rint(H[2] * (1 << WARPEDMODEL_PREC_BITS));
case TRANSLATION:
wm->wmmat[1] = rint(H[1] * (1 << WARPEDMODEL_PREC_BITS));
wm->wmmat[0] = rint(H[0] * (1 << WARPEDMODEL_PREC_BITS));
break;
default:
assert(0);
};
return;
}