blob: b967c10d5916971c0d11a1cb961b007a9612834d [file] [log] [blame]
/*
* Copyright (c) 2016 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <immintrin.h>
#include "./vpx_config.h"
#include "vpx_ports/mem.h"
#include "vpx/vpx_integer.h"
#include "vpx_dsp/vpx_dsp_common.h"
#include "vpx_dsp/x86/synonyms.h"
#include "vpx_dsp/vpx_filter.h"
////////////////////////////////////////////////////////////////////////////////
// 8 bit
////////////////////////////////////////////////////////////////////////////////
static INLINE void obmc_variance_w4(const uint8_t *pre,
const int pre_stride,
const int32_t *wsrc,
const int32_t *mask,
unsigned int *const sse,
int *const sum,
const int h) {
const int pre_step = pre_stride - 4;
int n = 0;
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_d = _mm_setzero_si128();
assert(IS_POWER_OF_TWO(h));
do {
const __m128i v_p_b = xx_loadl_32(pre + n);
const __m128i v_m_d = xx_load_128(mask + n);
const __m128i v_w_d = xx_load_128(wsrc + n);
const __m128i v_p_d = _mm_cvtepu8_epi32(v_p_b);
// Values in both pre and mask fit in 15 bits, and are packed at 32 bit
// boundaries. We use pmaddwd, as it has lower latency on Haswell
// than pmulld but produces the same result with these inputs.
const __m128i v_pm_d = _mm_madd_epi16(v_p_d, v_m_d);
const __m128i v_diff_d = _mm_sub_epi32(v_w_d, v_pm_d);
const __m128i v_rdiff_d = xx_roundn_epi32(v_diff_d, 12);
const __m128i v_sqrdiff_d = _mm_mullo_epi32(v_rdiff_d, v_rdiff_d);
v_sum_d = _mm_add_epi32(v_sum_d, v_rdiff_d);
v_sse_d = _mm_add_epi32(v_sse_d, v_sqrdiff_d);
n += 4;
if (n % 4 == 0) pre += pre_step;
} while (n < 4 * h);
*sum = xx_hsum_epi32_si32(v_sum_d);
*sse = xx_hsum_epi32_si32(v_sse_d);
}
static INLINE void obmc_variance_w8n(const uint8_t *pre,
const int pre_stride,
const int32_t *wsrc,
const int32_t *mask,
unsigned int *const sse,
int *const sum,
const int w,
const int h) {
const int pre_step = pre_stride - w;
int n = 0;
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_d = _mm_setzero_si128();
assert(w >= 8);
assert(IS_POWER_OF_TWO(w));
assert(IS_POWER_OF_TWO(h));
do {
const __m128i v_p1_b = xx_loadl_32(pre + n + 4);
const __m128i v_m1_d = xx_load_128(mask + n + 4);
const __m128i v_w1_d = xx_load_128(wsrc + n + 4);
const __m128i v_p0_b = xx_loadl_32(pre + n);
const __m128i v_m0_d = xx_load_128(mask + n);
const __m128i v_w0_d = xx_load_128(wsrc + n);
const __m128i v_p0_d = _mm_cvtepu8_epi32(v_p0_b);
const __m128i v_p1_d = _mm_cvtepu8_epi32(v_p1_b);
// Values in both pre and mask fit in 15 bits, and are packed at 32 bit
// boundaries. We use pmaddwd, as it has lower latency on Haswell
// than pmulld but produces the same result with these inputs.
const __m128i v_pm0_d = _mm_madd_epi16(v_p0_d, v_m0_d);
const __m128i v_pm1_d = _mm_madd_epi16(v_p1_d, v_m1_d);
const __m128i v_diff0_d = _mm_sub_epi32(v_w0_d, v_pm0_d);
const __m128i v_diff1_d = _mm_sub_epi32(v_w1_d, v_pm1_d);
const __m128i v_rdiff0_d = xx_roundn_epi32(v_diff0_d, 12);
const __m128i v_rdiff1_d = xx_roundn_epi32(v_diff1_d, 12);
const __m128i v_rdiff01_w = _mm_packs_epi32(v_rdiff0_d, v_rdiff1_d);
const __m128i v_sqrdiff_d = _mm_madd_epi16(v_rdiff01_w, v_rdiff01_w);
v_sum_d = _mm_add_epi32(v_sum_d, v_rdiff0_d);
v_sum_d = _mm_add_epi32(v_sum_d, v_rdiff1_d);
v_sse_d = _mm_add_epi32(v_sse_d, v_sqrdiff_d);
n += 8;
if (n % w == 0) pre += pre_step;
} while (n < w * h);
*sum = xx_hsum_epi32_si32(v_sum_d);
*sse = xx_hsum_epi32_si32(v_sse_d);
}
#define OBMCVARWXH(W, H) \
unsigned int vpx_obmc_variance##W##x##H##_sse4_1(const uint8_t *pre, \
int pre_stride, \
const int32_t *wsrc, \
const int32_t *mask, \
unsigned int *sse) { \
int sum; \
if (W == 4) { \
obmc_variance_w4(pre, pre_stride, wsrc, mask, sse, &sum, H); \
} else { \
obmc_variance_w8n(pre, pre_stride, wsrc, mask, sse, &sum, W, H); \
} \
return *sse - (((int64_t)sum * sum) / (W * H)); \
}
#if CONFIG_EXT_PARTITION
OBMCVARWXH(128, 128)
OBMCVARWXH(128, 64)
OBMCVARWXH(64, 128)
#endif // CONFIG_EXT_PARTITION
OBMCVARWXH(64, 64)
OBMCVARWXH(64, 32)
OBMCVARWXH(32, 64)
OBMCVARWXH(32, 32)
OBMCVARWXH(32, 16)
OBMCVARWXH(16, 32)
OBMCVARWXH(16, 16)
OBMCVARWXH(16, 8)
OBMCVARWXH(8, 16)
OBMCVARWXH(8, 8)
OBMCVARWXH(8, 4)
OBMCVARWXH(4, 8)
OBMCVARWXH(4, 4)
////////////////////////////////////////////////////////////////////////////////
// High bit-depth
////////////////////////////////////////////////////////////////////////////////
#if CONFIG_VP9_HIGHBITDEPTH
static INLINE void hbd_obmc_variance_w4(const uint8_t *pre8,
const int pre_stride,
const int32_t *wsrc,
const int32_t *mask,
uint64_t *const sse,
int64_t *const sum,
const int h) {
const uint16_t *pre = CONVERT_TO_SHORTPTR(pre8);
const int pre_step = pre_stride - 4;
int n = 0;
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_d = _mm_setzero_si128();
assert(IS_POWER_OF_TWO(h));
do {
const __m128i v_p_w = xx_loadl_64(pre + n);
const __m128i v_m_d = xx_load_128(mask + n);
const __m128i v_w_d = xx_load_128(wsrc + n);
const __m128i v_p_d = _mm_cvtepu16_epi32(v_p_w);
// Values in both pre and mask fit in 15 bits, and are packed at 32 bit
// boundaries. We use pmaddwd, as it has lower latency on Haswell
// than pmulld but produces the same result with these inputs.
const __m128i v_pm_d = _mm_madd_epi16(v_p_d, v_m_d);
const __m128i v_diff_d = _mm_sub_epi32(v_w_d, v_pm_d);
const __m128i v_rdiff_d = xx_roundn_epi32(v_diff_d, 12);
const __m128i v_sqrdiff_d = _mm_mullo_epi32(v_rdiff_d, v_rdiff_d);
v_sum_d = _mm_add_epi32(v_sum_d, v_rdiff_d);
v_sse_d = _mm_add_epi32(v_sse_d, v_sqrdiff_d);
n += 4;
if (n % 4 == 0) pre += pre_step;
} while (n < 4 * h);
*sum = xx_hsum_epi32_si32(v_sum_d);
*sse = xx_hsum_epi32_si32(v_sse_d);
}
static INLINE void hbd_obmc_variance_w8n(const uint8_t *pre8,
const int pre_stride,
const int32_t *wsrc,
const int32_t *mask,
uint64_t *const sse,
int64_t *const sum,
const int w,
const int h) {
const uint16_t *pre = CONVERT_TO_SHORTPTR(pre8);
const int pre_step = pre_stride - w;
int n = 0;
__m128i v_sum_d = _mm_setzero_si128();
__m128i v_sse_d = _mm_setzero_si128();
assert(w >= 8);
assert(IS_POWER_OF_TWO(w));
assert(IS_POWER_OF_TWO(h));
do {
const __m128i v_p1_w = xx_loadl_64(pre + n + 4);
const __m128i v_m1_d = xx_load_128(mask + n + 4);
const __m128i v_w1_d = xx_load_128(wsrc + n + 4);
const __m128i v_p0_w = xx_loadl_64(pre + n);
const __m128i v_m0_d = xx_load_128(mask + n);
const __m128i v_w0_d = xx_load_128(wsrc + n);
const __m128i v_p0_d = _mm_cvtepu16_epi32(v_p0_w);
const __m128i v_p1_d = _mm_cvtepu16_epi32(v_p1_w);
// Values in both pre and mask fit in 15 bits, and are packed at 32 bit
// boundaries. We use pmaddwd, as it has lower latency on Haswell
// than pmulld but produces the same result with these inputs.
const __m128i v_pm0_d = _mm_madd_epi16(v_p0_d, v_m0_d);
const __m128i v_pm1_d = _mm_madd_epi16(v_p1_d, v_m1_d);
const __m128i v_diff0_d = _mm_sub_epi32(v_w0_d, v_pm0_d);
const __m128i v_diff1_d = _mm_sub_epi32(v_w1_d, v_pm1_d);
const __m128i v_rdiff0_d = xx_roundn_epi32(v_diff0_d, 12);
const __m128i v_rdiff1_d = xx_roundn_epi32(v_diff1_d, 12);
const __m128i v_rdiff01_w = _mm_packs_epi32(v_rdiff0_d, v_rdiff1_d);
const __m128i v_sqrdiff_d = _mm_madd_epi16(v_rdiff01_w, v_rdiff01_w);
v_sum_d = _mm_add_epi32(v_sum_d, v_rdiff0_d);
v_sum_d = _mm_add_epi32(v_sum_d, v_rdiff1_d);
v_sse_d = _mm_add_epi32(v_sse_d, v_sqrdiff_d);
n += 8;
if (n % w == 0) pre += pre_step;
} while (n < w * h);
*sum += xx_hsum_epi32_si64(v_sum_d);
*sse += xx_hsum_epi32_si64(v_sse_d);
}
static INLINE void highbd_obmc_variance(const uint8_t *pre8, int pre_stride,
const int32_t *wsrc,
const int32_t *mask,
int w, int h,
unsigned int *sse, int *sum) {
int64_t sum64 = 0;
uint64_t sse64 = 0;
if (w == 4) {
hbd_obmc_variance_w4(pre8, pre_stride, wsrc, mask, &sse64, &sum64, h);
} else {
hbd_obmc_variance_w8n(pre8, pre_stride, wsrc, mask, &sse64, &sum64, w, h);
}
*sum = (int)sum64;
*sse = (unsigned int)sse64;
}
static INLINE void highbd_10_obmc_variance(const uint8_t *pre8, int pre_stride,
const int32_t *wsrc,
const int32_t *mask,
int w, int h,
unsigned int *sse, int *sum) {
int64_t sum64 = 0;
uint64_t sse64 = 0;
if (w == 4) {
hbd_obmc_variance_w4(pre8, pre_stride, wsrc, mask, &sse64, &sum64, h);
} else {
hbd_obmc_variance_w8n(pre8, pre_stride, wsrc, mask, &sse64, &sum64, w, h);
}
*sum = (int)ROUND_POWER_OF_TWO(sum64, 2);
*sse = (unsigned int)ROUND_POWER_OF_TWO(sse64, 4);
}
static INLINE void highbd_12_obmc_variance(const uint8_t *pre8, int pre_stride,
const int32_t *wsrc,
const int32_t *mask,
int w, int h,
unsigned int *sse, int *sum) {
int64_t sum64 = 0;
uint64_t sse64 = 0;
if (w == 128) {
do {
hbd_obmc_variance_w8n(pre8, pre_stride, wsrc, mask,
&sse64, &sum64, 128, 32);
pre8 += 32 * pre_stride;
wsrc += 32 * 128;
mask += 32 * 128;
h -= 32;
} while (h > 0);
} else if (w == 64 && h >= 128) {
do {
hbd_obmc_variance_w8n(pre8, pre_stride, wsrc, mask,
&sse64, &sum64, 64, 64);
pre8 += 64 * pre_stride;
wsrc += 64 * 64;
mask += 64 * 64;
h -= 64;
} while (h > 0);
} else if (w == 4) {
hbd_obmc_variance_w4(pre8, pre_stride, wsrc, mask, &sse64, &sum64, h);
} else {
hbd_obmc_variance_w8n(pre8, pre_stride, wsrc, mask, &sse64, &sum64, w, h);
}
*sum = (int)ROUND_POWER_OF_TWO(sum64, 4);
*sse = (unsigned int)ROUND_POWER_OF_TWO(sse64, 8);
}
#define HBD_OBMCVARWXH(W, H) \
unsigned int vpx_highbd_obmc_variance##W##x##H##_sse4_1( \
const uint8_t *pre, \
int pre_stride, \
const int32_t *wsrc, \
const int32_t *mask, \
unsigned int *sse) { \
int sum; \
highbd_obmc_variance(pre, pre_stride, wsrc, mask, W, H, sse, &sum); \
return *sse - (((int64_t)sum * sum) / (W * H)); \
} \
\
unsigned int vpx_highbd_10_obmc_variance##W##x##H##_sse4_1( \
const uint8_t *pre, \
int pre_stride, \
const int32_t *wsrc, \
const int32_t *mask, \
unsigned int *sse) { \
int sum; \
highbd_10_obmc_variance(pre, pre_stride, wsrc, mask, W, H, sse, &sum); \
return *sse - (((int64_t)sum * sum) / (W * H)); \
} \
\
unsigned int vpx_highbd_12_obmc_variance##W##x##H##_sse4_1( \
const uint8_t *pre, \
int pre_stride, \
const int32_t *wsrc, \
const int32_t *mask, \
unsigned int *sse) { \
int sum; \
highbd_12_obmc_variance(pre, pre_stride, wsrc, mask, W, H, sse, &sum); \
return *sse - (((int64_t)sum * sum) / (W * H)); \
}
#if CONFIG_EXT_PARTITION
HBD_OBMCVARWXH(128, 128)
HBD_OBMCVARWXH(128, 64)
HBD_OBMCVARWXH(64, 128)
#endif // CONFIG_EXT_PARTITION
HBD_OBMCVARWXH(64, 64)
HBD_OBMCVARWXH(64, 32)
HBD_OBMCVARWXH(32, 64)
HBD_OBMCVARWXH(32, 32)
HBD_OBMCVARWXH(32, 16)
HBD_OBMCVARWXH(16, 32)
HBD_OBMCVARWXH(16, 16)
HBD_OBMCVARWXH(16, 8)
HBD_OBMCVARWXH(8, 16)
HBD_OBMCVARWXH(8, 8)
HBD_OBMCVARWXH(8, 4)
HBD_OBMCVARWXH(4, 8)
HBD_OBMCVARWXH(4, 4)
#endif // CONFIG_VP9_HIGHBITDEPTH