blob: 5ecd87e7387ee492c0421bebdae1ca2b76e44fae [file] [log] [blame]
/*
* Copyright (c) 2015 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include <emmintrin.h>
#include <stdio.h>
#include "vpx_dsp/x86/synonyms.h"
#include "./vpx_dsp_rtcd.h"
static uint64_t vpx_sum_squares_2d_i16_4x4_sse2(const int16_t *src,
int stride) {
const __m128i v_val_0_w = _mm_loadl_epi64((const __m128i*)(src+0*stride));
const __m128i v_val_1_w = _mm_loadl_epi64((const __m128i*)(src+1*stride));
const __m128i v_val_2_w = _mm_loadl_epi64((const __m128i*)(src+2*stride));
const __m128i v_val_3_w = _mm_loadl_epi64((const __m128i*)(src+3*stride));
const __m128i v_sq_0_d = _mm_madd_epi16(v_val_0_w, v_val_0_w);
const __m128i v_sq_1_d = _mm_madd_epi16(v_val_1_w, v_val_1_w);
const __m128i v_sq_2_d = _mm_madd_epi16(v_val_2_w, v_val_2_w);
const __m128i v_sq_3_d = _mm_madd_epi16(v_val_3_w, v_val_3_w);
const __m128i v_sum_01_d = _mm_add_epi32(v_sq_0_d, v_sq_1_d);
const __m128i v_sum_23_d = _mm_add_epi32(v_sq_2_d, v_sq_3_d);
const __m128i v_sum_0123_d = _mm_add_epi32(v_sum_01_d, v_sum_23_d);
const __m128i v_sum_d = _mm_add_epi32(v_sum_0123_d,
_mm_srli_epi64(v_sum_0123_d, 32));
return (uint64_t)_mm_cvtsi128_si32(v_sum_d);
}
#ifdef __GNUC__
// This prevents GCC/Clang from inlining this function into
// vpx_sum_squares_2d_i16_sse2, which in turn saves some stack
// maintenance instructions in the common case of 4x4.
__attribute__((noinline))
#endif
static uint64_t vpx_sum_squares_2d_i16_nxn_sse2(const int16_t *src,
int stride,
int size) {
int r, c;
const __m128i v_zext_mask_q = _mm_set_epi32(0, 0xffffffff, 0, 0xffffffff);
__m128i v_acc_q = _mm_setzero_si128();
for (r = 0; r < size; r += 8) {
__m128i v_acc_d = _mm_setzero_si128();
for (c = 0; c < size; c += 8) {
const int16_t *b = src+c;
const __m128i v_val_0_w = _mm_load_si128((const __m128i*)(b+0*stride));
const __m128i v_val_1_w = _mm_load_si128((const __m128i*)(b+1*stride));
const __m128i v_val_2_w = _mm_load_si128((const __m128i*)(b+2*stride));
const __m128i v_val_3_w = _mm_load_si128((const __m128i*)(b+3*stride));
const __m128i v_val_4_w = _mm_load_si128((const __m128i*)(b+4*stride));
const __m128i v_val_5_w = _mm_load_si128((const __m128i*)(b+5*stride));
const __m128i v_val_6_w = _mm_load_si128((const __m128i*)(b+6*stride));
const __m128i v_val_7_w = _mm_load_si128((const __m128i*)(b+7*stride));
const __m128i v_sq_0_d = _mm_madd_epi16(v_val_0_w, v_val_0_w);
const __m128i v_sq_1_d = _mm_madd_epi16(v_val_1_w, v_val_1_w);
const __m128i v_sq_2_d = _mm_madd_epi16(v_val_2_w, v_val_2_w);
const __m128i v_sq_3_d = _mm_madd_epi16(v_val_3_w, v_val_3_w);
const __m128i v_sq_4_d = _mm_madd_epi16(v_val_4_w, v_val_4_w);
const __m128i v_sq_5_d = _mm_madd_epi16(v_val_5_w, v_val_5_w);
const __m128i v_sq_6_d = _mm_madd_epi16(v_val_6_w, v_val_6_w);
const __m128i v_sq_7_d = _mm_madd_epi16(v_val_7_w, v_val_7_w);
const __m128i v_sum_01_d = _mm_add_epi32(v_sq_0_d, v_sq_1_d);
const __m128i v_sum_23_d = _mm_add_epi32(v_sq_2_d, v_sq_3_d);
const __m128i v_sum_45_d = _mm_add_epi32(v_sq_4_d, v_sq_5_d);
const __m128i v_sum_67_d = _mm_add_epi32(v_sq_6_d, v_sq_7_d);
const __m128i v_sum_0123_d = _mm_add_epi32(v_sum_01_d, v_sum_23_d);
const __m128i v_sum_4567_d = _mm_add_epi32(v_sum_45_d, v_sum_67_d);
v_acc_d = _mm_add_epi32(v_acc_d, v_sum_0123_d);
v_acc_d = _mm_add_epi32(v_acc_d, v_sum_4567_d);
}
v_acc_q = _mm_add_epi64(v_acc_q, _mm_and_si128(v_acc_d, v_zext_mask_q));
v_acc_q = _mm_add_epi64(v_acc_q, _mm_srli_epi64(v_acc_d, 32));
src += 8*stride;
}
v_acc_q = _mm_add_epi64(v_acc_q, _mm_srli_si128(v_acc_q, 8));
#if ARCH_X86_64
return (uint64_t)_mm_cvtsi128_si64(v_acc_q);
#else
{
uint64_t tmp;
_mm_storel_epi64((__m128i*)&tmp, v_acc_q);
return tmp;
}
#endif
}
uint64_t vpx_sum_squares_2d_i16_sse2(const int16_t *src, int stride,
int size) {
// 4 elements per row only requires half an XMM register, so this
// must be a special case, but also note that over 75% of all calls
// are with size == 4, so it is also the common case.
if (LIKELY(size == 4)) {
return vpx_sum_squares_2d_i16_4x4_sse2(src, stride);
} else {
// Generic case
return vpx_sum_squares_2d_i16_nxn_sse2(src, stride, size);
}
}
//////////////////////////////////////////////////////////////////////////////
// 1D version
//////////////////////////////////////////////////////////////////////////////
static uint64_t vpx_sum_squares_i16_64n_sse2(const int16_t *src, uint32_t n) {
const __m128i v_zext_mask_q = _mm_set_epi32(0, 0xffffffff, 0, 0xffffffff);
__m128i v_acc0_q = _mm_setzero_si128();
__m128i v_acc1_q = _mm_setzero_si128();
const int16_t *const end = src + n;
assert(n % 64 == 0);
while (src < end) {
const __m128i v_val_0_w = xx_load_128(src);
const __m128i v_val_1_w = xx_load_128(src + 8);
const __m128i v_val_2_w = xx_load_128(src + 16);
const __m128i v_val_3_w = xx_load_128(src + 24);
const __m128i v_val_4_w = xx_load_128(src + 32);
const __m128i v_val_5_w = xx_load_128(src + 40);
const __m128i v_val_6_w = xx_load_128(src + 48);
const __m128i v_val_7_w = xx_load_128(src + 56);
const __m128i v_sq_0_d = _mm_madd_epi16(v_val_0_w, v_val_0_w);
const __m128i v_sq_1_d = _mm_madd_epi16(v_val_1_w, v_val_1_w);
const __m128i v_sq_2_d = _mm_madd_epi16(v_val_2_w, v_val_2_w);
const __m128i v_sq_3_d = _mm_madd_epi16(v_val_3_w, v_val_3_w);
const __m128i v_sq_4_d = _mm_madd_epi16(v_val_4_w, v_val_4_w);
const __m128i v_sq_5_d = _mm_madd_epi16(v_val_5_w, v_val_5_w);
const __m128i v_sq_6_d = _mm_madd_epi16(v_val_6_w, v_val_6_w);
const __m128i v_sq_7_d = _mm_madd_epi16(v_val_7_w, v_val_7_w);
const __m128i v_sum_01_d = _mm_add_epi32(v_sq_0_d, v_sq_1_d);
const __m128i v_sum_23_d = _mm_add_epi32(v_sq_2_d, v_sq_3_d);
const __m128i v_sum_45_d = _mm_add_epi32(v_sq_4_d, v_sq_5_d);
const __m128i v_sum_67_d = _mm_add_epi32(v_sq_6_d, v_sq_7_d);
const __m128i v_sum_0123_d = _mm_add_epi32(v_sum_01_d, v_sum_23_d);
const __m128i v_sum_4567_d = _mm_add_epi32(v_sum_45_d, v_sum_67_d);
const __m128i v_sum_d = _mm_add_epi32(v_sum_0123_d, v_sum_4567_d);
v_acc0_q = _mm_add_epi64(v_acc0_q, _mm_and_si128(v_sum_d, v_zext_mask_q));
v_acc1_q = _mm_add_epi64(v_acc1_q, _mm_srli_epi64(v_sum_d, 32));
src += 64;
}
v_acc0_q = _mm_add_epi64(v_acc0_q, v_acc1_q);
v_acc0_q = _mm_add_epi64(v_acc0_q, _mm_srli_si128(v_acc0_q, 8));
#if ARCH_X86_64
return (uint64_t)_mm_cvtsi128_si64(v_acc0_q);
#else
{
uint64_t tmp;
_mm_storel_epi64((__m128i*)&tmp, v_acc0_q);
return tmp;
}
#endif
}
uint64_t vpx_sum_squares_i16_sse2(const int16_t *src, uint32_t n) {
if (n % 64 == 0) {
return vpx_sum_squares_i16_64n_sse2(src, n);
} else if (n > 64) {
int k = n & ~(64-1);
return vpx_sum_squares_i16_64n_sse2(src, k) +
vpx_sum_squares_i16_c(src + k, n - k);
} else {
return vpx_sum_squares_i16_c(src, n);
}
}