blob: bc26cfc48d7b981d08631fdfb41e3e8909f7ff27 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "./av1_rtcd.h"
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
#include "aom_dsp/bitwriter.h"
#include "aom_dsp/quantize.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
#include "aom_util/debug_util.h"
#endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
#include "av1/common/idct.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/scan.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/encodemb.h"
#if CONFIG_LV_MAP
#include "av1/encoder/encodetxb.h"
#endif
#include "av1/encoder/hybrid_fwd_txfm.h"
#if CONFIG_DAALA_TX
#include "av1/common/daala_inv_txfm.h"
#endif
#include "av1/encoder/rd.h"
#include "av1/encoder/rdopt.h"
#if CONFIG_CFL
#include "av1/common/cfl.h"
#endif
// Check if one needs to use c version subtraction.
static int check_subtract_block_size(int w, int h) { return w < 4 || h < 4; }
static void subtract_block(const MACROBLOCKD *xd, int rows, int cols,
int16_t *diff, ptrdiff_t diff_stride,
const uint8_t *src8, ptrdiff_t src_stride,
const uint8_t *pred8, ptrdiff_t pred_stride) {
#if !CONFIG_HIGHBITDEPTH
(void)xd;
#endif
if (check_subtract_block_size(rows, cols)) {
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
aom_highbd_subtract_block_c(rows, cols, diff, diff_stride, src8,
src_stride, pred8, pred_stride, xd->bd);
return;
}
#endif // CONFIG_HIGHBITDEPTH
aom_subtract_block_c(rows, cols, diff, diff_stride, src8, src_stride, pred8,
pred_stride);
return;
}
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
aom_highbd_subtract_block(rows, cols, diff, diff_stride, src8, src_stride,
pred8, pred_stride, xd->bd);
return;
}
#endif // CONFIG_HIGHBITDEPTH
aom_subtract_block(rows, cols, diff, diff_stride, src8, src_stride, pred8,
pred_stride);
}
void av1_subtract_txb(MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize,
int blk_col, int blk_row, TX_SIZE tx_size) {
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
const int diff_stride = block_size_wide[plane_bsize];
const int src_stride = p->src.stride;
const int dst_stride = pd->dst.stride;
const int tx1d_width = tx_size_wide[tx_size];
const int tx1d_height = tx_size_high[tx_size];
uint8_t *dst =
&pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
uint8_t *src =
&p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]];
int16_t *src_diff =
&p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
subtract_block(xd, tx1d_height, tx1d_width, src_diff, diff_stride, src,
src_stride, dst, dst_stride);
}
void av1_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) {
struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
const MACROBLOCKD *xd = &x->e_mbd;
subtract_block(xd, bh, bw, p->src_diff, bw, p->src.buf, p->src.stride,
pd->dst.buf, pd->dst.stride);
}
#if !CONFIG_LV_MAP
// Shifting negative values is undefined behaviour in C99,
// and could mislead the optimizer, who might assume the shifted is positive.
// This also avoids ubsan warnings.
// In practise, this gets inlined by the optimizer to a single instruction.
static INLINE int signed_shift_right(int x, int shift) {
if (x >= 0)
return x >> shift;
else
return -((-x) >> shift);
}
// These numbers are empirically obtained.
static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] = {
{ 10, 7 }, { 8, 5 },
};
static int optimize_b_greedy(const AV1_COMMON *cm, MACROBLOCK *mb, int plane,
int blk_row, int blk_col, int block,
TX_SIZE tx_size, int ctx, int fast_mode) {
MACROBLOCKD *const xd = &mb->e_mbd;
struct macroblock_plane *const p = &mb->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
const PLANE_TYPE plane_type = pd->plane_type;
const int eob = p->eobs[block];
assert(mb->qindex > 0);
assert((!plane_type && !plane) || (plane_type && plane));
assert(eob <= av1_get_max_eob(tx_size));
const int ref = is_inter_block(&xd->mi[0]->mbmi);
const tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const int16_t *const dequant_ptr = p->dequant_QTX;
const uint8_t *const band_translate = get_band_translate(tx_size);
const TX_TYPE tx_type =
av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size);
const SCAN_ORDER *const scan_order =
get_scan(cm, tx_size, tx_type, &xd->mi[0]->mbmi);
const int16_t *const scan = scan_order->scan;
const int16_t *const nb = scan_order->neighbors;
#if CONFIG_DAALA_TX
// This is one of the few places where RDO is done on coeffs; it
// expects the coeffs to be in Q3/D11, so we need to scale them.
int depth_shift = (TX_COEFF_DEPTH - 11) * 2;
int depth_round = depth_shift > 1 ? (1 << depth_shift >> 1) : 0;
#else
const int shift = av1_get_tx_scale(tx_size);
#endif
#if CONFIG_AOM_QM
int seg_id = xd->mi[0]->mbmi.segment_id;
const TX_SIZE qm_tx_size = get_qm_tx_size(tx_size);
// Use a flat matrix (i.e. no weighting) for 1D and Identity transforms
const qm_val_t *iqmatrix =
IS_2D_TRANSFORM(tx_type)
? pd->seg_iqmatrix[seg_id][qm_tx_size]
: cm->giqmatrix[NUM_QM_LEVELS - 1][0][qm_tx_size];
#endif // CONFIG_AOM_QM
#if CONFIG_NEW_QUANT
int dq = get_dq_profile(mb->qindex, ref, plane_type);
const dequant_val_type_nuq *dequant_val = p->dequant_val_nuq_QTX[dq];
#endif // CONFIG_NEW_QUANT
int64_t rd_cost0, rd_cost1;
int16_t t0, t1;
int i, final_eob = 0;
const int cat6_bits = av1_get_cat6_extrabits_size(tx_size, xd->bd);
int(*head_token_costs)[COEFF_CONTEXTS][TAIL_TOKENS] =
mb->token_head_costs[get_txsize_entropy_ctx(tx_size)][plane_type][ref];
int(*tail_token_costs)[COEFF_CONTEXTS][TAIL_TOKENS] =
mb->token_tail_costs[get_txsize_entropy_ctx(tx_size)][plane_type][ref];
const int64_t rdmult = (mb->rdmult * plane_rd_mult[ref][plane_type]) >> 1;
int64_t rate0, rate1;
int64_t eob_cost0, eob_cost1;
tran_low_t before_best_eob_qc = 0;
tran_low_t before_best_eob_dqc = 0;
uint8_t token_cache[MAX_TX_SQUARE];
// TODO(debargha): Implement a fast mode. For now just skip.
if (fast_mode) return eob;
for (i = 0; i < eob; i++) {
const int rc = scan[i];
token_cache[rc] = av1_pt_energy_class[av1_get_token(qcoeff[rc])];
}
/* Record the r-d cost */
int64_t accu_rate = 0;
// Initialized to the worst possible error for the largest transform size.
// This ensures that it never goes negative.
int64_t accu_error = ((int64_t)1) << 50;
rate0 = head_token_costs[0][ctx][0];
int64_t best_block_rd_cost = RDCOST(rdmult, rate0, accu_error);
// int64_t best_block_rd_cost_all0 = best_block_rd_cost;
const int seg_eob =
av1_get_tx_eob(&cm->seg, xd->mi[0]->mbmi.segment_id, tx_size);
for (i = 0; i < eob; i++) {
const int rc = scan[i];
const int x = qcoeff[rc];
const int sz = -(x < 0);
const int band_cur = band_translate[i];
const int ctx_cur = (i == 0) ? ctx : get_coef_context(nb, token_cache, i);
const int8_t eob_val =
(i + 1 == eob) ? (i + 1 == seg_eob ? LAST_EOB : EARLY_EOB) : NO_EOB;
const int is_first = (i == 0);
if (x == 0) {
// no need to search when x == 0
accu_rate += av1_get_coeff_token_cost(
ZERO_TOKEN, eob_val, is_first, head_token_costs[band_cur][ctx_cur],
tail_token_costs[band_cur][ctx_cur]);
// accu_error does not change when x==0
} else {
/* Computing distortion
*/
// compute the distortion for the first candidate
// and the distortion for quantizing to 0.
#if CONFIG_DAALA_TX
int dx0 = coeff[rc];
const int64_t d0 = ((int64_t)dx0 * dx0 + depth_round) >> depth_shift;
#else
int dx0 = abs(coeff[rc]) * (1 << shift);
dx0 >>= xd->bd - 8;
const int64_t d0 = (int64_t)dx0 * dx0;
#endif
const int x_a = x - 2 * sz - 1;
int dqv = dequant_ptr[rc != 0];
#if CONFIG_AOM_QM
if (iqmatrix != NULL) {
const qm_val_t iwt = iqmatrix[rc];
dqv = ((iwt * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >> AOM_QM_BITS;
}
#endif // CONFIG_AOM_QM
#if CONFIG_DAALA_TX
int dx = dqcoeff[rc] - coeff[rc];
const int64_t d2 = ((int64_t)dx * dx + depth_round) >> depth_shift;
#else
int dx = (dqcoeff[rc] - coeff[rc]) * (1 << shift);
dx = signed_shift_right(dx, xd->bd - 8);
const int64_t d2 = (int64_t)dx * dx;
#endif
/* compute the distortion for the second candidate
* x_a = x - 2 * sz + 1;
*/
int64_t d2_a;
if (x_a != 0) {
#if CONFIG_DAALA_TX
#if CONFIG_NEW_QUANT
dx = av1_dequant_coeff_nuq(x_a, dqv, dequant_val[rc != 0]) - coeff[rc];
#else // CONFIG_NEW_QUANT
dx -= (dqv + sz) ^ sz;
#endif // CONFIG_NEW_QUANT
d2_a = ((int64_t)dx * dx + depth_round) >> depth_shift;
#else // CONFIG_DAALA_TX
#if CONFIG_NEW_QUANT
dx = av1_dequant_coeff_nuq(x_a, dqv, dequant_val[rc != 0]) -
(coeff[rc] * (1 << shift));
dx >>= xd->bd - 8;
#else // CONFIG_NEW_QUANT
dx -= ((dqv >> (xd->bd - 8)) + sz) ^ sz;
#endif // CONFIG_NEW_QUANT
d2_a = (int64_t)dx * dx;
#endif // CONFIG_DAALA_TX
} else {
d2_a = d0;
}
// Computing RD cost
int64_t base_bits;
// rate cost of x
base_bits = av1_get_token_cost(x, &t0, cat6_bits);
rate0 = base_bits +
av1_get_coeff_token_cost(t0, eob_val, is_first,
head_token_costs[band_cur][ctx_cur],
tail_token_costs[band_cur][ctx_cur]);
// rate cost of x_a
base_bits = av1_get_token_cost(x_a, &t1, cat6_bits);
if (t1 == ZERO_TOKEN && eob_val) {
rate1 = base_bits;
} else {
rate1 = base_bits +
av1_get_coeff_token_cost(t1, eob_val, is_first,
head_token_costs[band_cur][ctx_cur],
tail_token_costs[band_cur][ctx_cur]);
}
int64_t next_bits0 = 0, next_bits1 = 0;
if (i < eob - 1) {
int ctx_next;
const int band_next = band_translate[i + 1];
const int token_next = av1_get_token(qcoeff[scan[i + 1]]);
const int8_t eob_val_next =
(i + 2 == eob) ? (i + 2 == seg_eob ? LAST_EOB : EARLY_EOB) : NO_EOB;
token_cache[rc] = av1_pt_energy_class[t0];
ctx_next = get_coef_context(nb, token_cache, i + 1);
next_bits0 = av1_get_coeff_token_cost(
token_next, eob_val_next, 0, head_token_costs[band_next][ctx_next],
tail_token_costs[band_next][ctx_next]);
token_cache[rc] = av1_pt_energy_class[t1];
ctx_next = get_coef_context(nb, token_cache, i + 1);
next_bits1 = av1_get_coeff_token_cost(
token_next, eob_val_next, 0, head_token_costs[band_next][ctx_next],
tail_token_costs[band_next][ctx_next]);
}
rd_cost0 = RDCOST(rdmult, (rate0 + next_bits0), d2);
rd_cost1 = RDCOST(rdmult, (rate1 + next_bits1), d2_a);
const int best_x = (rd_cost1 < rd_cost0);
const int eob_v = (i + 1 == seg_eob) ? LAST_EOB : EARLY_EOB;
int64_t next_eob_bits0, next_eob_bits1;
int best_eob_x;
next_eob_bits0 = av1_get_coeff_token_cost(
t0, eob_v, is_first, head_token_costs[band_cur][ctx_cur],
tail_token_costs[band_cur][ctx_cur]);
eob_cost0 =
RDCOST(rdmult, (accu_rate + next_eob_bits0), (accu_error + d2 - d0));
eob_cost1 = eob_cost0;
if (x_a != 0) {
next_eob_bits1 = av1_get_coeff_token_cost(
t1, eob_v, is_first, head_token_costs[band_cur][ctx_cur],
tail_token_costs[band_cur][ctx_cur]);
eob_cost1 = RDCOST(rdmult, (accu_rate + next_eob_bits1),
(accu_error + d2_a - d0));
best_eob_x = (eob_cost1 < eob_cost0);
} else {
best_eob_x = 0;
}
const int dqc = dqcoeff[rc];
int dqc_a = 0;
if (best_x || best_eob_x) {
if (x_a != 0) {
#if CONFIG_DAALA_TX
#if CONFIG_NEW_QUANT
dqc_a = av1_dequant_abscoeff_nuq(abs(x_a), dqv, dequant_val[rc != 0]);
if (sz) dqc_a = -dqc_a;
#else
dqc_a = x_a * dqv;
#endif // CONFIG_NEW_QUANT
#else // CONFIG_DAALA_TX
#if CONFIG_NEW_QUANT
dqc_a = av1_dequant_abscoeff_nuq(abs(x_a), dqv, dequant_val[rc != 0]);
dqc_a = shift ? ROUND_POWER_OF_TWO(dqc_a, shift) : dqc_a;
if (sz) dqc_a = -dqc_a;
#else
if (x_a < 0)
dqc_a = -((-x_a * dqv) >> shift);
else
dqc_a = (x_a * dqv) >> shift;
#endif // CONFIG_NEW_QUANT
#endif // CONFIG_DAALA_TX
} else {
dqc_a = 0;
}
}
// record the better quantized value
if (best_x) {
assert(d2_a <= d0);
qcoeff[rc] = x_a;
dqcoeff[rc] = dqc_a;
accu_rate += rate1;
accu_error += d2_a - d0;
token_cache[rc] = av1_pt_energy_class[t1];
} else {
assert(d2 <= d0);
accu_rate += rate0;
accu_error += d2 - d0;
token_cache[rc] = av1_pt_energy_class[t0];
}
assert(accu_error >= 0);
// determine whether to move the eob position to i+1
const int use_a = (x_a != 0) && (best_eob_x);
const int64_t best_eob_cost_i = use_a ? eob_cost1 : eob_cost0;
if (best_eob_cost_i < best_block_rd_cost) {
best_block_rd_cost = best_eob_cost_i;
final_eob = i + 1;
if (use_a) {
before_best_eob_qc = x_a;
before_best_eob_dqc = dqc_a;
} else {
before_best_eob_qc = x;
before_best_eob_dqc = dqc;
}
}
} // if (x==0)
} // for (i)
assert(final_eob <= eob);
if (final_eob > 0) {
assert(before_best_eob_qc != 0);
i = final_eob - 1;
int rc = scan[i];
qcoeff[rc] = before_best_eob_qc;
dqcoeff[rc] = before_best_eob_dqc;
}
for (i = final_eob; i < eob; i++) {
int rc = scan[i];
qcoeff[rc] = 0;
dqcoeff[rc] = 0;
}
p->eobs[block] = final_eob;
return final_eob;
}
#endif // !CONFIG_LV_MAP
int av1_optimize_b(const AV1_COMMON *cm, MACROBLOCK *mb, int plane, int blk_row,
int blk_col, int block, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, const ENTROPY_CONTEXT *a,
const ENTROPY_CONTEXT *l, int fast_mode) {
MACROBLOCKD *const xd = &mb->e_mbd;
struct macroblock_plane *const p = &mb->plane[plane];
const int eob = p->eobs[block];
if (eob == 0 || !mb->optimize || xd->lossless[xd->mi[0]->mbmi.segment_id])
return eob;
#if !CONFIG_LV_MAP
(void)plane_bsize;
(void)blk_row;
(void)blk_col;
int ctx = get_entropy_context(tx_size, a, l);
return optimize_b_greedy(cm, mb, plane, blk_row, blk_col, block, tx_size, ctx,
fast_mode);
#else // !CONFIG_LV_MAP
TXB_CTX txb_ctx;
get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx);
return av1_optimize_txb(cm, mb, plane, blk_row, blk_col, block, tx_size,
&txb_ctx, fast_mode);
#endif // !CONFIG_LV_MAP
}
typedef enum QUANT_FUNC {
QUANT_FUNC_LOWBD = 0,
QUANT_FUNC_HIGHBD = 1,
QUANT_FUNC_TYPES = 2
} QUANT_FUNC;
static AV1_QUANT_FACADE
quant_func_list[AV1_XFORM_QUANT_TYPES][QUANT_FUNC_TYPES] = {
#if !CONFIG_NEW_QUANT
{ av1_quantize_fp_facade, av1_highbd_quantize_fp_facade },
{ av1_quantize_b_facade, av1_highbd_quantize_b_facade },
{ av1_quantize_dc_facade, av1_highbd_quantize_dc_facade },
#else // !CONFIG_NEW_QUANT
{ av1_quantize_fp_nuq_facade, av1_highbd_quantize_fp_nuq_facade },
{ av1_quantize_b_nuq_facade, av1_highbd_quantize_b_nuq_facade },
{ av1_quantize_dc_nuq_facade, av1_highbd_quantize_dc_nuq_facade },
#endif // !CONFIG_NEW_QUANT
{ NULL, NULL }
};
#if !CONFIG_TXMG
typedef void (*fwdTxfmFunc)(const int16_t *diff, tran_low_t *coeff, int stride,
TxfmParam *txfm_param);
static const fwdTxfmFunc fwd_txfm_func[2] = { av1_fwd_txfm,
av1_highbd_fwd_txfm };
#endif
void av1_xform_quant(const AV1_COMMON *cm, MACROBLOCK *x, int plane, int block,
int blk_row, int blk_col, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, AV1_XFORM_QUANT xform_quant_idx) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
#if !CONFIG_DIST_8X8
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
#else
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
#endif
PLANE_TYPE plane_type = get_plane_type(plane);
TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size);
#if CONFIG_NEW_QUANT
const int is_inter = is_inter_block(mbmi);
#endif
const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, mbmi);
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint16_t *const eob = &p->eobs[block];
const int diff_stride = block_size_wide[plane_bsize];
#if CONFIG_AOM_QM
int seg_id = mbmi->segment_id;
const TX_SIZE qm_tx_size = get_qm_tx_size(tx_size);
// Use a flat matrix (i.e. no weighting) for 1D and Identity transforms
const qm_val_t *qmatrix =
IS_2D_TRANSFORM(tx_type) ? pd->seg_qmatrix[seg_id][qm_tx_size]
: cm->gqmatrix[NUM_QM_LEVELS - 1][0][qm_tx_size];
const qm_val_t *iqmatrix =
IS_2D_TRANSFORM(tx_type)
? pd->seg_iqmatrix[seg_id][qm_tx_size]
: cm->giqmatrix[NUM_QM_LEVELS - 1][0][qm_tx_size];
#endif // CONFIG_AOM_QM
TxfmParam txfm_param;
#if CONFIG_DIST_8X8
uint8_t *dst;
const int dst_stride = pd->dst.stride;
#if CONFIG_DIST_8X8
int16_t *pred;
const int txw = tx_size_wide[tx_size];
const int txh = tx_size_high[tx_size];
int i, j;
#endif
#endif
QUANT_PARAM qparam;
const int16_t *src_diff;
src_diff =
&p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
#if CONFIG_DAALA_TX
qparam.log_scale = 0;
#else
qparam.log_scale = av1_get_tx_scale(tx_size);
#endif
qparam.tx_size = tx_size;
#if CONFIG_NEW_QUANT
qparam.dq = get_dq_profile(x->qindex, is_inter, plane_type);
#endif // CONFIG_NEW_QUANT
#if CONFIG_AOM_QM
qparam.qmatrix = qmatrix;
qparam.iqmatrix = iqmatrix;
#endif // CONFIG_AOM_QM
#if CONFIG_DIST_8X8
dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
#endif // CONFIG_DIST_8X8
#if CONFIG_DIST_8X8
if (x->using_dist_8x8) {
pred = &pd->pred[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]];
// copy uint8 orig and predicted block to int16 buffer
// in order to use existing VP10 transform functions
#if CONFIG_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
for (j = 0; j < txh; j++)
for (i = 0; i < txw; i++)
pred[diff_stride * j + i] =
CONVERT_TO_SHORTPTR(dst)[dst_stride * j + i];
} else {
#endif // CONFIG_HIGHBITDEPTH
for (j = 0; j < txh; j++)
for (i = 0; i < txw; i++)
pred[diff_stride * j + i] = dst[dst_stride * j + i];
#if CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_HIGHBITDEPTH
}
#endif // CONFIG_DIST_8X8
txfm_param.tx_type = tx_type;
txfm_param.tx_size = tx_size;
txfm_param.lossless = xd->lossless[mbmi->segment_id];
txfm_param.tx_set_type =
get_ext_tx_set_type(txfm_param.tx_size, plane_bsize, is_inter_block(mbmi),
cm->reduced_tx_set_used);
txfm_param.bd = xd->bd;
txfm_param.is_hbd = get_bitdepth_data_path_index(xd);
#if CONFIG_TXMG
av1_highbd_fwd_txfm(src_diff, coeff, diff_stride, &txfm_param);
#else // CONFIG_TXMG
fwd_txfm_func[txfm_param.is_hbd](src_diff, coeff, diff_stride, &txfm_param);
#endif // CONFIG_TXMG
if (xform_quant_idx != AV1_XFORM_QUANT_SKIP_QUANT) {
const int n_coeffs = av1_get_max_eob(tx_size);
if (LIKELY(!x->skip_block)) {
#if CONFIG_DAALA_TX
quant_func_list[xform_quant_idx][1](coeff, n_coeffs, p, qcoeff, dqcoeff,
eob, scan_order, &qparam);
#else
quant_func_list[xform_quant_idx][txfm_param.is_hbd](
coeff, n_coeffs, p, qcoeff, dqcoeff, eob, scan_order, &qparam);
#endif
} else {
av1_quantize_skip(n_coeffs, qcoeff, dqcoeff, eob);
}
}
#if CONFIG_LV_MAP
p->txb_entropy_ctx[block] =
(uint8_t)av1_get_txb_entropy_context(qcoeff, scan_order, *eob);
#endif // CONFIG_LV_MAP
return;
}
static void encode_block(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg,
int mi_row, int mi_col, RUN_TYPE dry_run) {
(void)mi_row;
(void)mi_col;
(void)dry_run;
struct encode_b_args *const args = arg;
AV1_COMMON *cm = args->cm;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
uint8_t *dst;
ENTROPY_CONTEXT *a, *l;
int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
dst = &pd->dst
.buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]];
a = &args->ta[blk_col];
l = &args->tl[blk_row];
// Assert not magic number (uninitialized).
assert(x->blk_skip[plane][blk_row * bw + blk_col] != 234);
if (x->blk_skip[plane][blk_row * bw + blk_col] == 0) {
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
AV1_XFORM_QUANT_FP);
} else {
p->eobs[block] = 0;
}
av1_optimize_b(cm, x, plane, blk_row, blk_col, block, plane_bsize, tx_size, a,
l, CONFIG_LV_MAP);
av1_set_txb_context(x, plane, block, tx_size, a, l);
if (p->eobs[block]) *(args->skip) = 0;
if (p->eobs[block] != 0)
{
TX_TYPE tx_type =
av1_get_tx_type(pd->plane_type, xd, blk_row, blk_col, tx_size);
av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst,
pd->dst.stride, p->eobs[block],
cm->reduced_tx_set_used);
}
#if CONFIG_TXK_SEL
if (plane == 0 && p->eobs[block] == 0) {
#if DISABLE_TRELLISQ_SEARCH
xd->mi[0]->mbmi.txk_type[(blk_row << MAX_MIB_SIZE_LOG2) + blk_col] =
DCT_DCT;
#else
assert(xd->mi[0]->mbmi.txk_type[blk_row << MAX_MIB_SIZE_LOG2 + blk_col] ==
DCT_DCT);
#endif
}
#endif // CONFIG_TXK_SEL
#if CONFIG_MISMATCH_DEBUG
if (dry_run == OUTPUT_ENABLED) {
int pixel_c, pixel_r;
BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
int blk_w = block_size_wide[bsize];
int blk_h = block_size_high[bsize];
mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, blk_col, blk_row,
pd->subsampling_x, pd->subsampling_y);
mismatch_record_block_tx(dst, pd->dst.stride, plane, pixel_c, pixel_r,
blk_w, blk_h);
}
#endif
}
static void encode_block_inter(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg, int mi_row, int mi_col,
RUN_TYPE dry_run) {
(void)mi_row;
(void)mi_col;
struct encode_b_args *const args = arg;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
const BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const int tx_row = blk_row >> (1 - pd->subsampling_y);
const int tx_col = blk_col >> (1 - pd->subsampling_x);
TX_SIZE plane_tx_size;
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
plane_tx_size =
plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0]
: mbmi->inter_tx_size[tx_row][tx_col];
if (tx_size == plane_tx_size
#if DISABLE_VARTX_FOR_CHROMA
|| pd->subsampling_x || pd->subsampling_y
#endif // DISABLE_VARTX_FOR_CHROMA
) {
encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg,
mi_row, mi_col, dry_run);
} else {
assert(tx_size < TX_SIZES_ALL);
const TX_SIZE sub_txs = sub_tx_size_map[1][tx_size];
assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size));
assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size));
// This is the square transform block partition entry point.
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
const int step = bsh * bsw;
assert(bsw > 0 && bsh > 0);
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
const int offsetr = blk_row + row;
const int offsetc = blk_col + col;
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
encode_block_inter(plane, block, offsetr, offsetc, plane_bsize, sub_txs,
arg, mi_row, mi_col, dry_run);
block += step;
}
}
}
}
typedef struct encode_block_pass1_args {
AV1_COMMON *cm;
MACROBLOCK *x;
} encode_block_pass1_args;
static void encode_block_pass1(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
encode_block_pass1_args *args = (encode_block_pass1_args *)arg;
AV1_COMMON *cm = args->cm;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
TxfmParam txfm_param;
uint8_t *dst;
dst = &pd->dst
.buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]];
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
AV1_XFORM_QUANT_B);
if (p->eobs[block] > 0) {
txfm_param.bd = xd->bd;
txfm_param.is_hbd = get_bitdepth_data_path_index(xd);
txfm_param.tx_type = DCT_DCT;
txfm_param.tx_size = tx_size;
txfm_param.eob = p->eobs[block];
txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id];
txfm_param.tx_set_type = get_ext_tx_set_type(
txfm_param.tx_size, plane_bsize, is_inter_block(&xd->mi[0]->mbmi),
cm->reduced_tx_set_used);
#if CONFIG_DAALA_TX
daala_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &txfm_param);
#else
#if CONFIG_HIGHBITDEPTH
if (txfm_param.is_hbd) {
av1_highbd_inv_txfm_add_4x4(dqcoeff, dst, pd->dst.stride, &txfm_param);
return;
}
#endif // CONFIG_HIGHBITDEPTH
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
av1_iwht4x4_add(dqcoeff, dst, pd->dst.stride, &txfm_param);
} else {
av1_idct4x4_add(dqcoeff, dst, pd->dst.stride, &txfm_param);
}
#endif
}
}
void av1_encode_sby_pass1(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize) {
encode_block_pass1_args args = { cm, x };
av1_subtract_plane(x, bsize, 0);
av1_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0,
encode_block_pass1, &args);
}
void av1_encode_sb(AV1_COMMON *cm, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row,
int mi_col, RUN_TYPE dry_run) {
(void)dry_run;
MACROBLOCKD *const xd = &x->e_mbd;
struct optimize_ctx ctx;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct encode_b_args arg = { cm, x, &ctx, &mbmi->skip, NULL, NULL, 1 };
int plane;
mbmi->skip = 1;
if (x->skip) return;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const int subsampling_x = xd->plane[plane].subsampling_x;
const int subsampling_y = xd->plane[plane].subsampling_y;
if (!is_chroma_reference(mi_row, mi_col, bsize, subsampling_x,
subsampling_y))
continue;
const BLOCK_SIZE bsizec =
scale_chroma_bsize(bsize, subsampling_x, subsampling_y);
// TODO(jingning): Clean this up.
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsizec, pd);
const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
const int mi_height = block_size_high[plane_bsize] >> tx_size_wide_log2[0];
TX_SIZE max_tx_size = get_vartx_max_txsize(
xd, plane_bsize, pd->subsampling_x || pd->subsampling_y);
#if DISABLE_VARTX_FOR_CHROMA == 2
// If the luma transform size is split at least one level, split the chroma
// by one level. Otherwise use the largest possible trasnform size for
// chroma.
if (plane && (pd->subsampling_x || pd->subsampling_y)) {
const TX_SIZE l_max_tx_size = get_vartx_max_txsize(xd, bsizec, 0);
const int is_split =
(l_max_tx_size != mbmi->inter_tx_size[0][0] && bsize == bsizec &&
txsize_to_bsize[l_max_tx_size] == bsizec);
if (is_split) max_tx_size = sub_tx_size_map[1][max_tx_size];
}
#endif // DISABLE_VARTX_FOR_CHROMA == 2
const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size];
const int bw = block_size_wide[txb_size] >> tx_size_wide_log2[0];
const int bh = block_size_high[txb_size] >> tx_size_wide_log2[0];
int idx, idy;
int block = 0;
int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
av1_get_entropy_contexts(bsizec, 0, pd, ctx.ta[plane], ctx.tl[plane]);
av1_subtract_plane(x, bsizec, plane);
arg.ta = ctx.ta[plane];
arg.tl = ctx.tl[plane];
const BLOCK_SIZE max_unit_bsize = get_plane_block_size(BLOCK_64X64, pd);
int mu_blocks_wide =
block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0];
int mu_blocks_high =
block_size_high[max_unit_bsize] >> tx_size_high_log2[0];
mu_blocks_wide = AOMMIN(mi_width, mu_blocks_wide);
mu_blocks_high = AOMMIN(mi_height, mu_blocks_high);
for (idy = 0; idy < mi_height; idy += mu_blocks_high) {
for (idx = 0; idx < mi_width; idx += mu_blocks_wide) {
int blk_row, blk_col;
const int unit_height = AOMMIN(mu_blocks_high + idy, mi_height);
const int unit_width = AOMMIN(mu_blocks_wide + idx, mi_width);
for (blk_row = idy; blk_row < unit_height; blk_row += bh) {
for (blk_col = idx; blk_col < unit_width; blk_col += bw) {
encode_block_inter(plane, block, blk_row, blk_col, plane_bsize,
max_tx_size, &arg, mi_row, mi_col, dry_run);
block += step;
}
}
}
}
}
}
void av1_set_txb_context(MACROBLOCK *x, int plane, int block, TX_SIZE tx_size,
ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) {
(void)tx_size;
struct macroblock_plane *p = &x->plane[plane];
#if !CONFIG_LV_MAP
*a = *l = p->eobs[block] > 0;
#else // !CONFIG_LV_MAP
*a = *l = p->txb_entropy_ctx[block];
#endif // !CONFIG_LV_MAP
int i;
for (i = 0; i < tx_size_wide_unit[tx_size]; ++i) a[i] = a[0];
for (i = 0; i < tx_size_high_unit[tx_size]; ++i) l[i] = l[0];
}
static void encode_block_intra_and_set_context(int plane, int block,
int blk_row, int blk_col,
BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size,
arg);
struct encode_b_args *const args = arg;
MACROBLOCK *x = args->x;
ENTROPY_CONTEXT *a = &args->ta[blk_col];
ENTROPY_CONTEXT *l = &args->tl[blk_row];
av1_set_txb_context(x, plane, block, tx_size, a, l);
}
void av1_encode_block_intra(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct encode_b_args *const args = arg;
AV1_COMMON *cm = args->cm;
MACROBLOCK *const x = args->x;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = &x->plane[plane];
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
PLANE_TYPE plane_type = get_plane_type(plane);
const TX_TYPE tx_type =
av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size);
uint16_t *eob = &p->eobs[block];
const int dst_stride = pd->dst.stride;
uint8_t *dst =
&pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]];
av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size);
av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size);
const ENTROPY_CONTEXT *a = &args->ta[blk_col];
const ENTROPY_CONTEXT *l = &args->tl[blk_row];
if (args->enable_optimize_b) {
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
AV1_XFORM_QUANT_FP);
av1_optimize_b(cm, x, plane, blk_row, blk_col, block, plane_bsize, tx_size,
a, l, CONFIG_LV_MAP);
#if CONFIG_TXK_SEL
if (plane == 0 && p->eobs[block] == 0) {
#if DISABLE_TRELLISQ_SEARCH
xd->mi[0]->mbmi.txk_type[(blk_row << MAX_MIB_SIZE_LOG2) + blk_col] =
DCT_DCT;
#else
assert(xd->mi[0]->mbmi.txk_type[blk_row << MAX_MIB_SIZE_LOG2 + blk_col] ==
DCT_DCT);
#endif
}
#endif // CONFIG_TXK_SEL
} else {
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
AV1_XFORM_QUANT_B);
}
av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst,
dst_stride, *eob, cm->reduced_tx_set_used);
if (*eob) *(args->skip) = 0;
#if CONFIG_CFL
if (plane == AOM_PLANE_Y && xd->cfl.store_y &&
is_cfl_allowed(&xd->mi[0]->mbmi)) {
cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize);
}
#endif // CONFIG_CFL
}
void av1_encode_intra_block_plane(AV1_COMMON *cm, MACROBLOCK *x,
BLOCK_SIZE bsize, int plane,
int enable_optimize_b, int mi_row,
int mi_col) {
const MACROBLOCKD *const xd = &x->e_mbd;
ENTROPY_CONTEXT ta[2 * MAX_MIB_SIZE] = { 0 };
ENTROPY_CONTEXT tl[2 * MAX_MIB_SIZE] = { 0 };
struct encode_b_args arg = {
cm, x, NULL, &xd->mi[0]->mbmi.skip, ta, tl, enable_optimize_b
};
if (!is_chroma_reference(mi_row, mi_col, bsize,
xd->plane[plane].subsampling_x,
xd->plane[plane].subsampling_y))
return;
if (enable_optimize_b) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
av1_get_entropy_contexts(bsize, tx_size, pd, ta, tl);
}
av1_foreach_transformed_block_in_plane(
xd, bsize, plane, encode_block_intra_and_set_context, &arg);
}