blob: 3f568e95f8bf2d489547b50b3cb8bc3294b72e3d [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <vector>
#include "test/acm_random.h"
#include "test/util.h"
#include "test/av1_txfm_test.h"
#include "av1/common/av1_txfm.h"
#include "./av1_rtcd.h"
using libaom_test::ACMRandom;
using libaom_test::input_base;
using libaom_test::bd;
using libaom_test::compute_avg_abs_error;
using libaom_test::Fwd_Txfm2d_Func;
using libaom_test::TYPE_TXFM;
using std::vector;
namespace {
#if CONFIG_HIGHBITDEPTH
// tx_type_, tx_size_, max_error_, max_avg_error_
typedef std::tr1::tuple<TX_TYPE, TX_SIZE, double, double> AV1FwdTxfm2dParam;
class AV1FwdTxfm2d : public ::testing::TestWithParam<AV1FwdTxfm2dParam> {
public:
virtual void SetUp() {
tx_type_ = GET_PARAM(0);
tx_size_ = GET_PARAM(1);
max_error_ = GET_PARAM(2);
max_avg_error_ = GET_PARAM(3);
count_ = 500;
TXFM_2D_FLIP_CFG fwd_txfm_flip_cfg;
av1_get_fwd_txfm_cfg(tx_type_, tx_size_, &fwd_txfm_flip_cfg);
amplify_factor_ = libaom_test::get_amplification_factor(tx_type_, tx_size_);
tx_width_ = fwd_txfm_flip_cfg.row_cfg->txfm_size;
tx_height_ = fwd_txfm_flip_cfg.col_cfg->txfm_size;
ud_flip_ = fwd_txfm_flip_cfg.ud_flip;
lr_flip_ = fwd_txfm_flip_cfg.lr_flip;
fwd_txfm_ = libaom_test::fwd_txfm_func_ls[tx_size_];
txfm2d_size_ = tx_width_ * tx_height_;
input_ = reinterpret_cast<int16_t *>(
aom_memalign(16, sizeof(input_[0]) * txfm2d_size_));
output_ = reinterpret_cast<int32_t *>(
aom_memalign(16, sizeof(output_[0]) * txfm2d_size_));
ref_input_ = reinterpret_cast<double *>(
aom_memalign(16, sizeof(ref_input_[0]) * txfm2d_size_));
ref_output_ = reinterpret_cast<double *>(
aom_memalign(16, sizeof(ref_output_[0]) * txfm2d_size_));
}
void RunFwdAccuracyCheck() {
ACMRandom rnd(ACMRandom::DeterministicSeed());
double avg_abs_error = 0;
for (int ci = 0; ci < count_; ci++) {
for (int ni = 0; ni < txfm2d_size_; ++ni) {
input_[ni] = rnd.Rand16() % input_base;
ref_input_[ni] = static_cast<double>(input_[ni]);
output_[ni] = 0;
ref_output_[ni] = 0;
}
fwd_txfm_(input_, output_, tx_width_, tx_type_, bd);
if (lr_flip_ && ud_flip_) {
libaom_test::fliplrud(ref_input_, tx_width_, tx_height_, tx_width_);
} else if (lr_flip_) {
libaom_test::fliplr(ref_input_, tx_width_, tx_height_, tx_width_);
} else if (ud_flip_) {
libaom_test::flipud(ref_input_, tx_width_, tx_height_, tx_width_);
}
libaom_test::reference_hybrid_2d(ref_input_, ref_output_, tx_type_,
tx_size_);
double actual_max_error = 0;
for (int ni = 0; ni < txfm2d_size_; ++ni) {
ref_output_[ni] = round(ref_output_[ni]);
const double this_error =
fabs(output_[ni] - ref_output_[ni]) / amplify_factor_;
actual_max_error = AOMMAX(actual_max_error, this_error);
}
EXPECT_GE(max_error_, actual_max_error)
<< "tx_size = " << tx_size_ << ", tx_type = " << tx_type_;
if (actual_max_error > max_error_) { // exit early.
break;
}
avg_abs_error += compute_avg_abs_error<int32_t, double>(
output_, ref_output_, txfm2d_size_);
}
avg_abs_error /= amplify_factor_;
avg_abs_error /= count_;
EXPECT_GE(max_avg_error_, avg_abs_error)
<< "tx_size = " << tx_size_ << ", tx_type = " << tx_type_;
}
virtual void TearDown() {
aom_free(input_);
aom_free(output_);
aom_free(ref_input_);
aom_free(ref_output_);
}
private:
double max_error_;
double max_avg_error_;
int count_;
double amplify_factor_;
TX_TYPE tx_type_;
TX_SIZE tx_size_;
int tx_width_;
int tx_height_;
int txfm2d_size_;
Fwd_Txfm2d_Func fwd_txfm_;
int16_t *input_;
int32_t *output_;
double *ref_input_;
double *ref_output_;
int ud_flip_; // flip upside down
int lr_flip_; // flip left to right
};
vector<AV1FwdTxfm2dParam> GetTxfm2dParamList() {
vector<AV1FwdTxfm2dParam> param_list;
for (int t = 0; t <= FLIPADST_ADST; ++t) {
const TX_TYPE tx_type = static_cast<TX_TYPE>(t);
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_4X4, 2, 0.2));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_8X8, 5, 0.6));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_16X16, 11, 1.5));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_32X32, 70, 7));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_4X8, 2.5, 0.4));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_8X4, 2.5, 0.4));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_8X16, 6.5, 1));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_16X8, 6, 1));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_16X32, 46, 7));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_32X16, 30, 7));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_4X16, 5, 0.6));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_16X4, 5, 0.6));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_8X32, 14, 2.1));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_32X8, 11, 1.6));
#if CONFIG_TX64X64
if (tx_type == DCT_DCT) { // Other types not supported by these tx sizes.
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_64X64, 70, 7));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_32X64, 136, 7));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_64X32, 136, 7));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_16X64, 16, 1.6));
param_list.push_back(AV1FwdTxfm2dParam(tx_type, TX_64X16, 20, 2.0));
}
#endif // CONFIG_TX64X64
}
return param_list;
}
INSTANTIATE_TEST_CASE_P(C, AV1FwdTxfm2d,
::testing::ValuesIn(GetTxfm2dParamList()));
TEST_P(AV1FwdTxfm2d, RunFwdAccuracyCheck) { RunFwdAccuracyCheck(); }
TEST(AV1FwdTxfm2d, CfgTest) {
for (int bd_idx = 0; bd_idx < BD_NUM; ++bd_idx) {
int bd = libaom_test::bd_arr[bd_idx];
int8_t low_range = libaom_test::low_range_arr[bd_idx];
int8_t high_range = libaom_test::high_range_arr[bd_idx];
for (int tx_size = 0; tx_size < TX_SIZES_ALL; ++tx_size) {
for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) {
#if CONFIG_TX64X64
if ((tx_size_wide[tx_size] == 64 || tx_size_high[tx_size] == 64) &&
tx_type != DCT_DCT) {
continue;
}
#endif // CONFIG_TX64X64
TXFM_2D_FLIP_CFG cfg;
av1_get_fwd_txfm_cfg(static_cast<TX_TYPE>(tx_type),
static_cast<TX_SIZE>(tx_size), &cfg);
int8_t stage_range_col[MAX_TXFM_STAGE_NUM];
int8_t stage_range_row[MAX_TXFM_STAGE_NUM];
av1_gen_fwd_stage_range(stage_range_col, stage_range_row, &cfg, bd);
const TXFM_1D_CFG *col_cfg = cfg.col_cfg;
const TXFM_1D_CFG *row_cfg = cfg.row_cfg;
libaom_test::txfm_stage_range_check(stage_range_col, col_cfg->stage_num,
col_cfg->cos_bit, low_range,
high_range);
libaom_test::txfm_stage_range_check(stage_range_row, row_cfg->stage_num,
row_cfg->cos_bit, low_range,
high_range);
}
}
}
}
#endif // CONFIG_HIGHBITDEPTH
} // namespace