blob: 953ec68250a731655e848a083ae6026e685be0a8 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <vector>
#include "./av1_rtcd.h"
#include "test/acm_random.h"
#include "test/util.h"
#include "test/av1_txfm_test.h"
#include "av1/common/av1_inv_txfm1d_cfg.h"
using libaom_test::ACMRandom;
using libaom_test::input_base;
using libaom_test::bd;
using libaom_test::compute_avg_abs_error;
using libaom_test::Fwd_Txfm2d_Func;
using libaom_test::Inv_Txfm2d_Func;
using std::vector;
namespace {
#if CONFIG_HIGHBITDEPTH
// AV1InvTxfm2dParam argument list:
// tx_type_, tx_size_, max_error_, max_avg_error_
typedef std::tr1::tuple<TX_TYPE, TX_SIZE, int, double> AV1InvTxfm2dParam;
class AV1InvTxfm2d : public ::testing::TestWithParam<AV1InvTxfm2dParam> {
public:
virtual void SetUp() {
tx_type_ = GET_PARAM(0);
tx_size_ = GET_PARAM(1);
max_error_ = GET_PARAM(2);
max_avg_error_ = GET_PARAM(3);
}
void RunRoundtripCheck() {
int tx_w = tx_size_wide[tx_size_];
int tx_h = tx_size_high[tx_size_];
int txfm2d_size = tx_w * tx_h;
const Fwd_Txfm2d_Func fwd_txfm_func =
libaom_test::fwd_txfm_func_ls[tx_size_];
const Inv_Txfm2d_Func inv_txfm_func =
libaom_test::inv_txfm_func_ls[tx_size_];
double avg_abs_error = 0;
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count = 500;
for (int ci = 0; ci < count; ci++) {
DECLARE_ALIGNED(16, int16_t, input[64 * 64]) = { 0 };
ASSERT_LE(txfm2d_size, NELEMENTS(input));
for (int ni = 0; ni < txfm2d_size; ++ni) {
if (ci == 0) {
int extreme_input = input_base - 1;
input[ni] = extreme_input; // extreme case
} else {
input[ni] = rnd.Rand16() % input_base;
}
}
DECLARE_ALIGNED(16, uint16_t, expected[64 * 64]) = { 0 };
ASSERT_LE(txfm2d_size, NELEMENTS(expected));
if (TxfmUsesApproximation()) {
// Compare reference forward HT + inverse HT vs forward HT + inverse HT.
double ref_input[64 * 64];
ASSERT_LE(txfm2d_size, NELEMENTS(ref_input));
for (int ni = 0; ni < txfm2d_size; ++ni) {
ref_input[ni] = input[ni];
}
double ref_coeffs[64 * 64] = { 0 };
ASSERT_LE(txfm2d_size, NELEMENTS(ref_coeffs));
ASSERT_EQ(tx_type_, DCT_DCT);
libaom_test::reference_hybrid_2d(ref_input, ref_coeffs, tx_type_,
tx_size_);
DECLARE_ALIGNED(16, int32_t, ref_coeffs_int[64 * 64]) = { 0 };
ASSERT_LE(txfm2d_size, NELEMENTS(ref_coeffs_int));
for (int ni = 0; ni < txfm2d_size; ++ni) {
ref_coeffs_int[ni] = (int32_t)round(ref_coeffs[ni]);
}
inv_txfm_func(ref_coeffs_int, expected, tx_w, tx_type_, bd);
} else {
// Compare original input vs forward HT + inverse HT.
for (int ni = 0; ni < txfm2d_size; ++ni) {
expected[ni] = input[ni];
}
}
DECLARE_ALIGNED(16, int32_t, coeffs[64 * 64]) = { 0 };
ASSERT_LE(txfm2d_size, NELEMENTS(coeffs));
fwd_txfm_func(input, coeffs, tx_w, tx_type_, bd);
DECLARE_ALIGNED(16, uint16_t, actual[64 * 64]) = { 0 };
ASSERT_LE(txfm2d_size, NELEMENTS(actual));
inv_txfm_func(coeffs, actual, tx_w, tx_type_, bd);
double actual_max_error = 0;
for (int ni = 0; ni < txfm2d_size; ++ni) {
const double this_error = abs(expected[ni] - actual[ni]);
actual_max_error = AOMMAX(actual_max_error, this_error);
}
EXPECT_GE(max_error_, actual_max_error)
<< " tx_w: " << tx_w << " tx_h " << tx_h << " tx_type: " << tx_type_;
if (actual_max_error > max_error_) { // exit early.
break;
}
avg_abs_error += compute_avg_abs_error<uint16_t, uint16_t>(
expected, actual, txfm2d_size);
}
avg_abs_error /= count;
EXPECT_GE(max_avg_error_, avg_abs_error)
<< " tx_w: " << tx_w << " tx_h " << tx_h << " tx_type: " << tx_type_;
}
private:
bool TxfmUsesApproximation() {
#if CONFIG_TX64X64
if (tx_size_wide[tx_size_] == 64 || tx_size_high[tx_size_] == 64) {
return true;
}
#endif // CONFIG_TX64X64
return false;
}
int max_error_;
double max_avg_error_;
TX_TYPE tx_type_;
TX_SIZE tx_size_;
};
vector<AV1InvTxfm2dParam> GetInvTxfm2dParamList() {
vector<AV1InvTxfm2dParam> param_list;
for (int t = 0; t <= FLIPADST_ADST; ++t) {
const TX_TYPE tx_type = static_cast<TX_TYPE>(t);
param_list.push_back(AV1InvTxfm2dParam(tx_type, TX_4X4, 2, 0.002));
param_list.push_back(AV1InvTxfm2dParam(tx_type, TX_8X8, 2, 0.02));
param_list.push_back(AV1InvTxfm2dParam(tx_type, TX_16X16, 2, 0.04));
param_list.push_back(AV1InvTxfm2dParam(tx_type, TX_32X32, 4, 0.4));
param_list.push_back(AV1InvTxfm2dParam(tx_type, TX_4X8, 2, 0.012));
param_list.push_back(AV1InvTxfm2dParam(tx_type, TX_8X4, 2, 0.012));
param_list.push_back(AV1InvTxfm2dParam(tx_type, TX_8X16, 2, 0.033));
param_list.push_back(AV1InvTxfm2dParam(tx_type, TX_16X8, 2, 0.033));
param_list.push_back(AV1InvTxfm2dParam(tx_type, TX_16X32, 2, 0.4));
param_list.push_back(AV1InvTxfm2dParam(tx_type, TX_32X16, 2, 0.4));
param_list.push_back(AV1InvTxfm2dParam(tx_type, TX_4X16, 2, 0.1));
param_list.push_back(AV1InvTxfm2dParam(tx_type, TX_16X4, 2, 0.1));
param_list.push_back(AV1InvTxfm2dParam(tx_type, TX_8X32, 2, 0.2));
param_list.push_back(AV1InvTxfm2dParam(tx_type, TX_32X8, 2, 0.1));
#if CONFIG_TX64X64
if (tx_type == DCT_DCT) { // Other types not supported by these tx sizes.
param_list.push_back(AV1InvTxfm2dParam(tx_type, TX_64X64, 3, 0.2));
param_list.push_back(AV1InvTxfm2dParam(tx_type, TX_32X64, 3, 0.3));
param_list.push_back(AV1InvTxfm2dParam(tx_type, TX_64X32, 3, 0.31));
param_list.push_back(AV1InvTxfm2dParam(tx_type, TX_16X64, 2, 0.16));
param_list.push_back(AV1InvTxfm2dParam(tx_type, TX_64X16, 2, 0.16));
}
#endif // CONFIG_TX64X64
}
return param_list;
}
INSTANTIATE_TEST_CASE_P(C, AV1InvTxfm2d,
::testing::ValuesIn(GetInvTxfm2dParamList()));
TEST_P(AV1InvTxfm2d, RunRoundtripCheck) { RunRoundtripCheck(); }
TEST(AV1InvTxfm2d, CfgTest) {
for (int bd_idx = 0; bd_idx < BD_NUM; ++bd_idx) {
int bd = libaom_test::bd_arr[bd_idx];
int8_t low_range = libaom_test::low_range_arr[bd_idx];
int8_t high_range = libaom_test::high_range_arr[bd_idx];
for (int tx_size = 0; tx_size < TX_SIZES_ALL; ++tx_size) {
for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) {
#if CONFIG_TX64X64
if ((tx_size_wide[tx_size] == 64 || tx_size_high[tx_size] == 64) &&
tx_type != DCT_DCT) {
continue;
}
#endif // CONFIG_TX64X64
TXFM_2D_FLIP_CFG cfg;
av1_get_inv_txfm_cfg(static_cast<TX_TYPE>(tx_type),
static_cast<TX_SIZE>(tx_size), &cfg);
int8_t stage_range_col[MAX_TXFM_STAGE_NUM];
int8_t stage_range_row[MAX_TXFM_STAGE_NUM];
const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size];
av1_gen_inv_stage_range(stage_range_col, stage_range_row, &cfg,
fwd_shift_sum[tx_size_sqr_up], bd);
const TXFM_1D_CFG *col_cfg = cfg.col_cfg;
const TXFM_1D_CFG *row_cfg = cfg.row_cfg;
libaom_test::txfm_stage_range_check(stage_range_col, col_cfg->stage_num,
col_cfg->cos_bit, low_range,
high_range);
libaom_test::txfm_stage_range_check(stage_range_row, row_cfg->stage_num,
row_cfg->cos_bit, low_range,
high_range);
}
}
}
}
#endif // CONFIG_HIGHBITDEPTH
} // namespace