blob: 9bf672de9cea68c0f4661d5d2e383026eed67219 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AV1_COMMON_ONYXC_INT_H_
#define AV1_COMMON_ONYXC_INT_H_
#include "./aom_config.h"
#include "./av1_rtcd.h"
#include "aom/internal/aom_codec_internal.h"
#include "aom_util/aom_thread.h"
#include "av1/common/alloccommon.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/frame_buffers.h"
#include "av1/common/loopfilter.h"
#include "av1/common/mv.h"
#include "av1/common/quant_common.h"
#if CONFIG_LOOP_RESTORATION
#include "av1/common/restoration.h"
#endif // CONFIG_LOOP_RESTORATION
#include "av1/common/tile_common.h"
#ifdef __cplusplus
extern "C" {
#endif
#define REF_FRAMES_LOG2 3
#define REF_FRAMES (1 << REF_FRAMES_LOG2)
// 4 scratch frames for the new frames to support a maximum of 4 cores decoding
// in parallel, 3 for scaled references on the encoder.
// TODO(hkuang): Add ondemand frame buffers instead of hardcoding the number
// of framebuffers.
// TODO(jkoleszar): These 3 extra references could probably come from the
// normal reference pool.
#define FRAME_BUFFERS (REF_FRAMES + 7)
#if CONFIG_EXT_REFS
#define FRAME_CONTEXTS_LOG2 3
#else
#define FRAME_CONTEXTS_LOG2 2
#endif
#define FRAME_CONTEXTS (1 << FRAME_CONTEXTS_LOG2)
#define NUM_PING_PONG_BUFFERS 2
typedef enum {
SINGLE_REFERENCE = 0,
COMPOUND_REFERENCE = 1,
REFERENCE_MODE_SELECT = 2,
REFERENCE_MODES = 3,
} REFERENCE_MODE;
typedef enum {
RESET_FRAME_CONTEXT_NONE = 0,
RESET_FRAME_CONTEXT_CURRENT = 1,
RESET_FRAME_CONTEXT_ALL = 2,
} RESET_FRAME_CONTEXT_MODE;
typedef enum {
/**
* Update frame context to values resulting from forward probability
* updates signaled in the frame header
*/
REFRESH_FRAME_CONTEXT_FORWARD,
/**
* Update frame context to values resulting from backward probability
* updates based on entropy/counts in the decoded frame
*/
REFRESH_FRAME_CONTEXT_BACKWARD,
} REFRESH_FRAME_CONTEXT_MODE;
typedef struct {
int_mv mv[2];
#if CONFIG_REF_MV
int_mv pred_mv[2];
#endif
MV_REFERENCE_FRAME ref_frame[2];
} MV_REF;
typedef struct {
int ref_count;
MV_REF *mvs;
int mi_rows;
int mi_cols;
aom_codec_frame_buffer_t raw_frame_buffer;
YV12_BUFFER_CONFIG buf;
// The Following variables will only be used in frame parallel decode.
// frame_worker_owner indicates which FrameWorker owns this buffer. NULL means
// that no FrameWorker owns, or is decoding, this buffer.
AVxWorker *frame_worker_owner;
// row and col indicate which position frame has been decoded to in real
// pixel unit. They are reset to -1 when decoding begins and set to INT_MAX
// when the frame is fully decoded.
int row;
int col;
} RefCntBuffer;
typedef struct BufferPool {
// Protect BufferPool from being accessed by several FrameWorkers at
// the same time during frame parallel decode.
// TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
#if CONFIG_MULTITHREAD
pthread_mutex_t pool_mutex;
#endif
// Private data associated with the frame buffer callbacks.
void *cb_priv;
aom_get_frame_buffer_cb_fn_t get_fb_cb;
aom_release_frame_buffer_cb_fn_t release_fb_cb;
RefCntBuffer frame_bufs[FRAME_BUFFERS];
// Frame buffers allocated internally by the codec.
InternalFrameBufferList int_frame_buffers;
} BufferPool;
typedef struct AV1Common {
struct aom_internal_error_info error;
aom_color_space_t color_space;
int color_range;
int width;
int height;
int render_width;
int render_height;
int last_width;
int last_height;
// TODO(jkoleszar): this implies chroma ss right now, but could vary per
// plane. Revisit as part of the future change to YV12_BUFFER_CONFIG to
// support additional planes.
int subsampling_x;
int subsampling_y;
#if CONFIG_AOM_HIGHBITDEPTH
// Marks if we need to use 16bit frame buffers (1: yes, 0: no).
int use_highbitdepth;
#endif
#if CONFIG_CLPF
// Two bits are used to signal the strength for all blocks and the
// valid values are:
// 0: no filtering
// 1: strength = 1
// 2: strength = 2
// 3: strength = 4
int clpf_strength_y;
int clpf_strength_u;
int clpf_strength_v;
// If clpf_strength_y is not 0, another two bits are used to signal
// the filter block size. The valid values for clfp_size are:
// 0: no block signalling
// 1: 32x32
// 2: 64x64
// 3: 128x128
CLPF_BLOCK_SIZE clpf_size;
// Buffer for storing whether to filter individual blocks.
int8_t *clpf_blocks;
int clpf_stride;
#endif
YV12_BUFFER_CONFIG *frame_to_show;
RefCntBuffer *prev_frame;
// TODO(hkuang): Combine this with cur_buf in macroblockd.
RefCntBuffer *cur_frame;
int ref_frame_map[REF_FRAMES]; /* maps fb_idx to reference slot */
// Prepare ref_frame_map for the next frame.
// Only used in frame parallel decode.
int next_ref_frame_map[REF_FRAMES];
// TODO(jkoleszar): could expand active_ref_idx to 4, with 0 as intra, and
// roll new_fb_idx into it.
// Each Inter frame can reference INTER_REFS_PER_FRAME buffers
RefBuffer frame_refs[INTER_REFS_PER_FRAME];
int new_fb_idx;
FRAME_TYPE last_frame_type; /* last frame's frame type for motion search.*/
FRAME_TYPE frame_type;
int show_frame;
int last_show_frame;
int show_existing_frame;
#if CONFIG_EXT_REFS
// Flag for a frame used as a reference - not written to the bitstream
int is_reference_frame;
#endif // CONFIG_EXT_REFS
// Flag signaling that the frame is encoded using only INTRA modes.
uint8_t intra_only;
uint8_t last_intra_only;
int allow_high_precision_mv;
#if CONFIG_PALETTE
int allow_screen_content_tools;
#endif // CONFIG_PALETTE
// Flag signaling which frame contexts should be reset to default values.
RESET_FRAME_CONTEXT_MODE reset_frame_context;
// MBs, mb_rows/cols is in 16-pixel units; mi_rows/cols is in
// MODE_INFO (8-pixel) units.
int MBs;
int mb_rows, mi_rows;
int mb_cols, mi_cols;
int mi_stride;
/* profile settings */
TX_MODE tx_mode;
int base_qindex;
int y_dc_delta_q;
int uv_dc_delta_q;
int uv_ac_delta_q;
int16_t y_dequant[MAX_SEGMENTS][2];
int16_t uv_dequant[MAX_SEGMENTS][2];
#if CONFIG_AOM_QM
// Global quant matrix tables
qm_val_t *giqmatrix[NUM_QM_LEVELS][2][2][TX_SIZES];
qm_val_t *gqmatrix[NUM_QM_LEVELS][2][2][TX_SIZES];
// Local quant matrix tables for each frame
qm_val_t *y_iqmatrix[MAX_SEGMENTS][2][TX_SIZES];
qm_val_t *uv_iqmatrix[MAX_SEGMENTS][2][TX_SIZES];
// Encoder
qm_val_t *y_qmatrix[MAX_SEGMENTS][2][TX_SIZES];
qm_val_t *uv_qmatrix[MAX_SEGMENTS][2][TX_SIZES];
int using_qmatrix;
int min_qmlevel;
int max_qmlevel;
#endif
#if CONFIG_NEW_QUANT
dequant_val_type_nuq y_dequant_nuq[MAX_SEGMENTS][QUANT_PROFILES][COEF_BANDS];
dequant_val_type_nuq uv_dequant_nuq[MAX_SEGMENTS][QUANT_PROFILES][COEF_BANDS];
#endif
/* We allocate a MODE_INFO struct for each macroblock, together with
an extra row on top and column on the left to simplify prediction. */
int mi_alloc_size;
MODE_INFO *mip; /* Base of allocated array */
MODE_INFO *mi; /* Corresponds to upper left visible macroblock */
// TODO(agrange): Move prev_mi into encoder structure.
// prev_mip and prev_mi will only be allocated in encoder.
MODE_INFO *prev_mip; /* MODE_INFO array 'mip' from last decoded frame */
MODE_INFO *prev_mi; /* 'mi' from last frame (points into prev_mip) */
// Separate mi functions between encoder and decoder.
int (*alloc_mi)(struct AV1Common *cm, int mi_size);
void (*free_mi)(struct AV1Common *cm);
void (*setup_mi)(struct AV1Common *cm);
// Grid of pointers to 8x8 MODE_INFO structs. Any 8x8 not in the visible
// area will be NULL.
MODE_INFO **mi_grid_base;
MODE_INFO **mi_grid_visible;
MODE_INFO **prev_mi_grid_base;
MODE_INFO **prev_mi_grid_visible;
// Whether to use previous frame's motion vectors for prediction.
int use_prev_frame_mvs;
// Persistent mb segment id map used in prediction.
int seg_map_idx;
int prev_seg_map_idx;
uint8_t *seg_map_array[NUM_PING_PONG_BUFFERS];
uint8_t *last_frame_seg_map;
uint8_t *current_frame_seg_map;
int seg_map_alloc_size;
InterpFilter interp_filter;
loop_filter_info_n lf_info;
#if CONFIG_LOOP_RESTORATION
RestorationInfo rst_info;
RestorationInternal rst_internal;
#endif // CONFIG_LOOP_RESTORATION
// Flag signaling how frame contexts should be updated at the end of
// a frame decode
REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
int ref_frame_sign_bias[TOTAL_REFS_PER_FRAME]; /* Two state 0, 1 */
struct loopfilter lf;
struct segmentation seg;
int frame_parallel_decode; // frame-based threading.
// Context probabilities for reference frame prediction
#if CONFIG_EXT_REFS
MV_REFERENCE_FRAME comp_fwd_ref[FWD_REFS];
MV_REFERENCE_FRAME comp_bwd_ref[BWD_REFS];
#else
MV_REFERENCE_FRAME comp_fixed_ref;
MV_REFERENCE_FRAME comp_var_ref[COMP_REFS];
#endif // CONFIG_EXT_REFS
REFERENCE_MODE reference_mode;
FRAME_CONTEXT *fc; /* this frame entropy */
FRAME_CONTEXT *frame_contexts; // FRAME_CONTEXTS
unsigned int frame_context_idx; /* Context to use/update */
FRAME_COUNTS counts;
#if CONFIG_ENTROPY
// The initial probabilities for a frame, before any subframe backward update,
// and after forward update.
av1_coeff_probs_model starting_coef_probs[TX_SIZES][PLANE_TYPES];
// Number of subframe backward updates already done
uint8_t coef_probs_update_idx;
// Signal if the backward update is subframe or end-of-frame
uint8_t partial_prob_update;
// Frame level flag to turn on/off subframe backward update
uint8_t do_subframe_update;
#endif // CONFIG_ENTROPY
unsigned int current_video_frame;
BITSTREAM_PROFILE profile;
// AOM_BITS_8 in profile 0 or 1, AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
aom_bit_depth_t bit_depth;
aom_bit_depth_t dequant_bit_depth; // bit_depth of current dequantizer
int error_resilient_mode;
#if !CONFIG_EXT_TILE
int log2_tile_cols, log2_tile_rows;
#endif // !CONFIG_EXT_TILE
int tile_cols, tile_rows;
int tile_width, tile_height; // In MI units
int byte_alignment;
int skip_loop_filter;
// Private data associated with the frame buffer callbacks.
void *cb_priv;
aom_get_frame_buffer_cb_fn_t get_fb_cb;
aom_release_frame_buffer_cb_fn_t release_fb_cb;
// Handles memory for the codec.
InternalFrameBufferList int_frame_buffers;
// External BufferPool passed from outside.
BufferPool *buffer_pool;
PARTITION_CONTEXT *above_seg_context;
ENTROPY_CONTEXT *above_context[MAX_MB_PLANE];
#if CONFIG_VAR_TX
TXFM_CONTEXT *above_txfm_context;
TXFM_CONTEXT left_txfm_context[MAX_MIB_SIZE];
#endif
int above_context_alloc_cols;
// scratch memory for intraonly/keyframe forward updates from default tables
// - this is intentionally not placed in FRAME_CONTEXT since it's reset upon
// each keyframe and not used afterwards
aom_prob kf_y_prob[INTRA_MODES][INTRA_MODES][INTRA_MODES - 1];
#if CONFIG_DAALA_EC
aom_cdf_prob kf_y_cdf[INTRA_MODES][INTRA_MODES][INTRA_MODES];
#endif
#if CONFIG_GLOBAL_MOTION
Global_Motion_Params global_motion[TOTAL_REFS_PER_FRAME];
#endif
BLOCK_SIZE sb_size; // Size of the superblock used for this frame
int mib_size; // Size of the superblock in units of MI blocks
int mib_size_log2; // Log 2 of above.
#if CONFIG_DERING
int dering_level;
#endif
#if CONFIG_DELTA_Q
int delta_q_present_flag;
// Resolution of delta quant
int delta_q_res;
#endif
#if CONFIG_TILE_GROUPS
int num_tg;
#endif
} AV1_COMMON;
// TODO(hkuang): Don't need to lock the whole pool after implementing atomic
// frame reference count.
static void lock_buffer_pool(BufferPool *const pool) {
#if CONFIG_MULTITHREAD
pthread_mutex_lock(&pool->pool_mutex);
#else
(void)pool;
#endif
}
static void unlock_buffer_pool(BufferPool *const pool) {
#if CONFIG_MULTITHREAD
pthread_mutex_unlock(&pool->pool_mutex);
#else
(void)pool;
#endif
}
static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
if (index < 0 || index >= REF_FRAMES) return NULL;
if (cm->ref_frame_map[index] < 0) return NULL;
assert(cm->ref_frame_map[index] < FRAME_BUFFERS);
return &cm->buffer_pool->frame_bufs[cm->ref_frame_map[index]].buf;
}
static INLINE YV12_BUFFER_CONFIG *get_frame_new_buffer(
const AV1_COMMON *const cm) {
return &cm->buffer_pool->frame_bufs[cm->new_fb_idx].buf;
}
static INLINE int get_free_fb(AV1_COMMON *cm) {
RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
int i;
lock_buffer_pool(cm->buffer_pool);
for (i = 0; i < FRAME_BUFFERS; ++i)
if (frame_bufs[i].ref_count == 0) break;
if (i != FRAME_BUFFERS) {
frame_bufs[i].ref_count = 1;
} else {
// Reset i to be INVALID_IDX to indicate no free buffer found.
i = INVALID_IDX;
}
unlock_buffer_pool(cm->buffer_pool);
return i;
}
static INLINE void ref_cnt_fb(RefCntBuffer *bufs, int *idx, int new_idx) {
const int ref_index = *idx;
if (ref_index >= 0 && bufs[ref_index].ref_count > 0)
bufs[ref_index].ref_count--;
*idx = new_idx;
bufs[new_idx].ref_count++;
}
static INLINE int mi_cols_aligned_to_sb(const AV1_COMMON *cm) {
return ALIGN_POWER_OF_TWO(cm->mi_cols, cm->mib_size_log2);
}
static INLINE int mi_rows_aligned_to_sb(const AV1_COMMON *cm) {
return ALIGN_POWER_OF_TWO(cm->mi_rows, cm->mib_size_log2);
}
static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) {
return cm->frame_type == KEY_FRAME || cm->intra_only;
}
static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd,
tran_low_t *dqcoeff) {
int i;
for (i = 0; i < MAX_MB_PLANE; ++i) {
xd->plane[i].dqcoeff = dqcoeff;
xd->above_context[i] = cm->above_context[i];
if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
memcpy(xd->plane[i].seg_dequant, cm->y_dequant, sizeof(cm->y_dequant));
#if CONFIG_AOM_QM
memcpy(xd->plane[i].seg_iqmatrix, cm->y_iqmatrix, sizeof(cm->y_iqmatrix));
#endif
#if CONFIG_NEW_QUANT
memcpy(xd->plane[i].seg_dequant_nuq, cm->y_dequant_nuq,
sizeof(cm->y_dequant_nuq));
#endif
} else {
memcpy(xd->plane[i].seg_dequant, cm->uv_dequant, sizeof(cm->uv_dequant));
#if CONFIG_AOM_QM
memcpy(xd->plane[i].seg_iqmatrix, cm->uv_iqmatrix,
sizeof(cm->uv_iqmatrix));
#endif
#if CONFIG_NEW_QUANT
memcpy(xd->plane[i].seg_dequant_nuq, cm->uv_dequant_nuq,
sizeof(cm->uv_dequant_nuq));
#endif
}
xd->fc = cm->fc;
}
xd->above_seg_context = cm->above_seg_context;
#if CONFIG_VAR_TX
xd->above_txfm_context = cm->above_txfm_context;
#endif
xd->mi_stride = cm->mi_stride;
xd->error_info = &cm->error;
}
static INLINE void set_skip_context(MACROBLOCKD *xd, int mi_row, int mi_col) {
const int above_idx = mi_col * 2;
const int left_idx = (mi_row * 2) & MAX_MIB_MASK_2;
int i;
for (i = 0; i < MAX_MB_PLANE; ++i) {
struct macroblockd_plane *const pd = &xd->plane[i];
pd->above_context = &xd->above_context[i][above_idx >> pd->subsampling_x];
pd->left_context = &xd->left_context[i][left_idx >> pd->subsampling_y];
}
}
static INLINE int calc_mi_size(int len) {
// len is in mi units.
return len + MAX_MIB_SIZE;
}
static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh, int bwl,
int bhl) {
int i;
for (i = 0; i < MAX_MB_PLANE; i++) {
xd->plane[i].n4_w = (bw << 1) >> xd->plane[i].subsampling_x;
xd->plane[i].n4_h = (bh << 1) >> xd->plane[i].subsampling_y;
xd->plane[i].n4_wl = bwl - xd->plane[i].subsampling_x;
xd->plane[i].n4_hl = bhl - xd->plane[i].subsampling_y;
xd->plane[i].width = xd->plane[i].n4_w * 4;
xd->plane[i].height = xd->plane[i].n4_h * 4;
}
}
static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
int mi_row, int bh, int mi_col, int bw,
int mi_rows, int mi_cols) {
xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
xd->mb_to_bottom_edge = ((mi_rows - bh - mi_row) * MI_SIZE) * 8;
xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
xd->mb_to_right_edge = ((mi_cols - bw - mi_col) * MI_SIZE) * 8;
// Are edges available for intra prediction?
xd->up_available = (mi_row > tile->mi_row_start);
xd->left_available = (mi_col > tile->mi_col_start);
if (xd->up_available) {
xd->above_mi = xd->mi[-xd->mi_stride];
// above_mi may be NULL in encoder's first pass.
xd->above_mbmi = xd->above_mi ? &xd->above_mi->mbmi : NULL;
} else {
xd->above_mi = NULL;
xd->above_mbmi = NULL;
}
if (xd->left_available) {
xd->left_mi = xd->mi[-1];
// left_mi may be NULL in encoder's first pass.
xd->left_mbmi = xd->left_mi ? &xd->left_mi->mbmi : NULL;
} else {
xd->left_mi = NULL;
xd->left_mbmi = NULL;
}
xd->n8_h = bh;
xd->n8_w = bw;
#if CONFIG_REF_MV
xd->is_sec_rect = 0;
if (xd->n8_w < xd->n8_h)
if (mi_col & (xd->n8_h - 1)) xd->is_sec_rect = 1;
if (xd->n8_w > xd->n8_h)
if (mi_row & (xd->n8_w - 1)) xd->is_sec_rect = 1;
#endif
}
static INLINE const aom_prob *get_y_mode_probs(const AV1_COMMON *cm,
const MODE_INFO *mi,
const MODE_INFO *above_mi,
const MODE_INFO *left_mi,
int block) {
const PREDICTION_MODE above = av1_above_block_mode(mi, above_mi, block);
const PREDICTION_MODE left = av1_left_block_mode(mi, left_mi, block);
return cm->kf_y_prob[above][left];
}
#if CONFIG_DAALA_EC
static INLINE aom_cdf_prob *get_y_mode_cdf(AV1_COMMON *cm, const MODE_INFO *mi,
const MODE_INFO *above_mi,
const MODE_INFO *left_mi,
int block) {
const PREDICTION_MODE above = av1_above_block_mode(mi, above_mi, block);
const PREDICTION_MODE left = av1_left_block_mode(mi, left_mi, block);
return cm->kf_y_cdf[above][left];
}
#endif
static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
int mi_col, BLOCK_SIZE subsize,
BLOCK_SIZE bsize) {
PARTITION_CONTEXT *const above_ctx = xd->above_seg_context + mi_col;
PARTITION_CONTEXT *const left_ctx =
xd->left_seg_context + (mi_row & MAX_MIB_MASK);
#if CONFIG_EXT_PARTITION_TYPES
const int bw = num_8x8_blocks_wide_lookup[bsize];
const int bh = num_8x8_blocks_high_lookup[bsize];
memset(above_ctx, partition_context_lookup[subsize].above, bw);
memset(left_ctx, partition_context_lookup[subsize].left, bh);
#else
// num_4x4_blocks_wide_lookup[bsize] / 2
const int bs = num_8x8_blocks_wide_lookup[bsize];
// update the partition context at the end notes. set partition bits
// of block sizes larger than the current one to be one, and partition
// bits of smaller block sizes to be zero.
memset(above_ctx, partition_context_lookup[subsize].above, bs);
memset(left_ctx, partition_context_lookup[subsize].left, bs);
#endif // CONFIG_EXT_PARTITION_TYPES
}
#if CONFIG_EXT_PARTITION_TYPES
static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
int mi_col, BLOCK_SIZE subsize,
BLOCK_SIZE bsize,
PARTITION_TYPE partition) {
if (bsize >= BLOCK_8X8) {
const int bsl = b_width_log2_lookup[bsize], hbs = (1 << bsl) / 4;
BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
switch (partition) {
case PARTITION_SPLIT:
if (bsize != BLOCK_8X8) break;
case PARTITION_NONE:
case PARTITION_HORZ:
case PARTITION_VERT:
update_partition_context(xd, mi_row, mi_col, subsize, bsize);
break;
case PARTITION_HORZ_A:
update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
break;
case PARTITION_HORZ_B:
update_partition_context(xd, mi_row, mi_col, subsize, subsize);
update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
break;
case PARTITION_VERT_A:
update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
break;
case PARTITION_VERT_B:
update_partition_context(xd, mi_row, mi_col, subsize, subsize);
update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
break;
default: assert(0 && "Invalid partition type");
}
}
}
#endif // CONFIG_EXT_PARTITION_TYPES
static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
const PARTITION_CONTEXT *above_ctx = xd->above_seg_context + mi_col;
const PARTITION_CONTEXT *left_ctx =
xd->left_seg_context + (mi_row & MAX_MIB_MASK);
const int bsl = mi_width_log2_lookup[bsize];
int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
assert(b_width_log2_lookup[bsize] == b_height_log2_lookup[bsize]);
assert(bsl >= 0);
return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
}
static INLINE int max_block_wide(const MACROBLOCKD *xd, const BLOCK_SIZE bsize,
const int plane) {
int max_blocks_wide = block_size_wide[bsize];
const struct macroblockd_plane *const pd = &xd->plane[plane];
if (xd->mb_to_right_edge < 0)
max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
// Scale the width in the transform block unit.
return max_blocks_wide >> tx_size_wide_log2[0];
}
static INLINE int max_block_high(const MACROBLOCKD *xd, const BLOCK_SIZE bsize,
const int plane) {
int max_blocks_high = block_size_high[bsize];
const struct macroblockd_plane *const pd = &xd->plane[plane];
if (xd->mb_to_bottom_edge < 0)
max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
// Scale the width in the transform block unit.
return max_blocks_high >> tx_size_wide_log2[0];
}
static INLINE void av1_zero_above_context(AV1_COMMON *const cm,
int mi_col_start, int mi_col_end) {
const int width = mi_col_end - mi_col_start;
const int offset_y = 2 * mi_col_start;
const int width_y = 2 * width;
const int offset_uv = offset_y >> cm->subsampling_x;
const int width_uv = width_y >> cm->subsampling_x;
av1_zero_array(cm->above_context[0] + offset_y, width_y);
av1_zero_array(cm->above_context[1] + offset_uv, width_uv);
av1_zero_array(cm->above_context[2] + offset_uv, width_uv);
av1_zero_array(cm->above_seg_context + mi_col_start, width);
#if CONFIG_VAR_TX
av1_zero_array(cm->above_txfm_context + mi_col_start, width);
#endif // CONFIG_VAR_TX
}
static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) {
av1_zero(xd->left_context);
av1_zero(xd->left_seg_context);
#if CONFIG_VAR_TX
av1_zero(xd->left_txfm_context_buffer);
#endif
}
#if CONFIG_VAR_TX
static INLINE TX_SIZE get_min_tx_size(const TX_SIZE tx_size) {
if (tx_size >= TX_SIZES_ALL) assert(0);
return txsize_sqr_map[tx_size];
}
static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
int i;
for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
}
static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n8_w, int n8_h,
const MACROBLOCKD *xd) {
uint8_t bw = tx_size_wide[tx_size];
uint8_t bh = tx_size_high[tx_size];
set_txfm_ctx(xd->above_txfm_context, bw, n8_w);
set_txfm_ctx(xd->left_txfm_context, bh, n8_h);
}
static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx,
TXFM_CONTEXT *left_ctx,
TX_SIZE tx_size) {
BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
int bh = num_8x8_blocks_high_lookup[bsize];
int bw = num_8x8_blocks_wide_lookup[bsize];
uint8_t txw = tx_size_wide[tx_size];
uint8_t txh = tx_size_high[tx_size];
int i;
for (i = 0; i < bh; ++i) left_ctx[i] = txh;
for (i = 0; i < bw; ++i) above_ctx[i] = txw;
}
static INLINE int txfm_partition_context(TXFM_CONTEXT *above_ctx,
TXFM_CONTEXT *left_ctx,
const BLOCK_SIZE bsize,
const TX_SIZE tx_size) {
const uint8_t txw = tx_size_wide[tx_size];
const uint8_t txh = tx_size_high[tx_size];
const int above = *above_ctx < txw;
const int left = *left_ctx < txh;
TX_SIZE max_tx_size = max_txsize_lookup[bsize];
int category = 15;
if (max_tx_size == TX_32X32) {
if (tx_size == TX_32X32)
category = 0;
else
category = 1;
} else if (max_tx_size == TX_16X16) {
if (tx_size == TX_16X16)
category = 2;
else
category = 3;
} else if (max_tx_size == TX_8X8) {
category = 4;
}
if (category == 15) return category;
return category * 3 + above + left;
}
#endif
static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
const int mi_row, const int mi_col,
const BLOCK_SIZE bsize) {
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) {
return PARTITION_INVALID;
} else {
const int offset = mi_row * cm->mi_stride + mi_col;
MODE_INFO **mi = cm->mi_grid_visible + offset;
const MB_MODE_INFO *const mbmi = &mi[0]->mbmi;
const int bsl = b_width_log2_lookup[bsize];
const PARTITION_TYPE partition = partition_lookup[bsl][mbmi->sb_type];
#if !CONFIG_EXT_PARTITION_TYPES
return partition;
#else
const int hbs = num_8x8_blocks_wide_lookup[bsize] / 2;
assert(cm->mi_grid_visible[offset] == &cm->mi[offset]);
if (partition != PARTITION_NONE && bsize > BLOCK_8X8 &&
mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) {
const BLOCK_SIZE h = get_subsize(bsize, PARTITION_HORZ_A);
const BLOCK_SIZE v = get_subsize(bsize, PARTITION_VERT_A);
const MB_MODE_INFO *const mbmi_right = &mi[hbs]->mbmi;
const MB_MODE_INFO *const mbmi_below = &mi[hbs * cm->mi_stride]->mbmi;
if (mbmi->sb_type == h) {
return mbmi_below->sb_type == h ? PARTITION_HORZ : PARTITION_HORZ_B;
} else if (mbmi->sb_type == v) {
return mbmi_right->sb_type == v ? PARTITION_VERT : PARTITION_VERT_B;
} else if (mbmi_below->sb_type == h) {
return PARTITION_HORZ_A;
} else if (mbmi_right->sb_type == v) {
return PARTITION_VERT_A;
} else {
return PARTITION_SPLIT;
}
}
return partition;
#endif // !CONFIG_EXT_PARTITION_TYPES
}
}
static INLINE void set_sb_size(AV1_COMMON *const cm, const BLOCK_SIZE sb_size) {
cm->sb_size = sb_size;
cm->mib_size = num_8x8_blocks_wide_lookup[cm->sb_size];
cm->mib_size_log2 = mi_width_log2_lookup[cm->sb_size];
}
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AV1_COMMON_ONYXC_INT_H_