blob: 795b1b0ac2f74eb58a1b52efd2b7d138abff47cf [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#if CONFIG_ANS
#include "aom_dsp/ans.h"
#endif // CONFIG_ANS
#include "av1/common/blockd.h"
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/idct.h"
#include "av1/decoder/detokenize.h"
#define ACCT_STR __func__
#define EOB_CONTEXT_NODE 0
#define ZERO_CONTEXT_NODE 1
#define ONE_CONTEXT_NODE 2
#define LOW_VAL_CONTEXT_NODE 0
#define TWO_CONTEXT_NODE 1
#define THREE_CONTEXT_NODE 2
#define HIGH_LOW_CONTEXT_NODE 3
#define CAT_ONE_CONTEXT_NODE 4
#define CAT_THREEFOUR_CONTEXT_NODE 5
#define CAT_THREE_CONTEXT_NODE 6
#define CAT_FIVE_CONTEXT_NODE 7
#define INCREMENT_COUNT(token) \
do { \
if (counts) ++coef_counts[band][ctx][token]; \
} while (0)
static INLINE int read_coeff(const aom_prob *probs, int n, aom_reader *r) {
int i, val = 0;
for (i = 0; i < n; ++i) val = (val << 1) | aom_read(r, probs[i], ACCT_STR);
return val;
}
#if CONFIG_AOM_QM
static int decode_coefs(MACROBLOCKD *xd, PLANE_TYPE type, tran_low_t *dqcoeff,
TX_SIZE tx_size, TX_TYPE tx_type, const int16_t *dq,
int ctx, const int16_t *scan, const int16_t *nb,
int16_t *max_scan_line, aom_reader *r,
const qm_val_t *iqm[2][TX_SIZES])
#else
static int decode_coefs(MACROBLOCKD *xd, PLANE_TYPE type, tran_low_t *dqcoeff,
TX_SIZE tx_size, TX_TYPE tx_type, const int16_t *dq,
#if CONFIG_NEW_QUANT
dequant_val_type_nuq *dq_val,
#endif // CONFIG_NEW_QUANT
int ctx, const int16_t *scan, const int16_t *nb,
int16_t *max_scan_line, aom_reader *r)
#endif
{
FRAME_COUNTS *counts = xd->counts;
FRAME_CONTEXT *const fc = xd->fc;
const int max_eob = tx_size_2d[tx_size];
const int ref = is_inter_block(&xd->mi[0]->mbmi);
#if CONFIG_AOM_QM
const qm_val_t *iqmatrix = iqm[!ref][tx_size];
#endif
int band, c = 0;
const int tx_size_ctx = txsize_sqr_map[tx_size];
aom_prob(*coef_probs)[COEFF_CONTEXTS][UNCONSTRAINED_NODES] =
fc->coef_probs[tx_size_ctx][type][ref];
const aom_prob *prob;
#if CONFIG_EC_MULTISYMBOL
aom_cdf_prob(*coef_cdfs)[COEFF_CONTEXTS][ENTROPY_TOKENS] =
fc->coef_cdfs[tx_size_ctx][type][ref];
aom_cdf_prob(*cdf)[ENTROPY_TOKENS];
#endif // CONFIG_EC_MULTISYMBOL
unsigned int(*coef_counts)[COEFF_CONTEXTS][UNCONSTRAINED_NODES + 1];
unsigned int(*eob_branch_count)[COEFF_CONTEXTS];
uint8_t token_cache[MAX_TX_SQUARE];
const uint8_t *band_translate = get_band_translate(tx_size);
int dq_shift;
int v, token;
int16_t dqv = dq[0];
#if CONFIG_NEW_QUANT
const tran_low_t *dqv_val = &dq_val[0][0];
#endif // CONFIG_NEW_QUANT
const uint8_t *cat1_prob;
const uint8_t *cat2_prob;
const uint8_t *cat3_prob;
const uint8_t *cat4_prob;
const uint8_t *cat5_prob;
const uint8_t *cat6_prob;
if (counts) {
coef_counts = counts->coef[tx_size_ctx][type][ref];
eob_branch_count = counts->eob_branch[tx_size_ctx][type][ref];
}
#if CONFIG_AOM_HIGHBITDEPTH
if (xd->bd > AOM_BITS_8) {
if (xd->bd == AOM_BITS_10) {
cat1_prob = av1_cat1_prob_high10;
cat2_prob = av1_cat2_prob_high10;
cat3_prob = av1_cat3_prob_high10;
cat4_prob = av1_cat4_prob_high10;
cat5_prob = av1_cat5_prob_high10;
cat6_prob = av1_cat6_prob_high10;
} else {
cat1_prob = av1_cat1_prob_high12;
cat2_prob = av1_cat2_prob_high12;
cat3_prob = av1_cat3_prob_high12;
cat4_prob = av1_cat4_prob_high12;
cat5_prob = av1_cat5_prob_high12;
cat6_prob = av1_cat6_prob_high12;
}
} else {
cat1_prob = av1_cat1_prob;
cat2_prob = av1_cat2_prob;
cat3_prob = av1_cat3_prob;
cat4_prob = av1_cat4_prob;
cat5_prob = av1_cat5_prob;
cat6_prob = av1_cat6_prob;
}
#else
cat1_prob = av1_cat1_prob;
cat2_prob = av1_cat2_prob;
cat3_prob = av1_cat3_prob;
cat4_prob = av1_cat4_prob;
cat5_prob = av1_cat5_prob;
cat6_prob = av1_cat6_prob;
#endif
dq_shift = get_tx_scale(xd, tx_type, tx_size);
while (c < max_eob) {
int val = -1;
band = *band_translate++;
prob = coef_probs[band][ctx];
if (counts) ++eob_branch_count[band][ctx];
if (!aom_read(r, prob[EOB_CONTEXT_NODE], ACCT_STR)) {
INCREMENT_COUNT(EOB_MODEL_TOKEN);
break;
}
#if CONFIG_NEW_QUANT
dqv_val = &dq_val[band][0];
#endif // CONFIG_NEW_QUANT
while (!aom_read(r, prob[ZERO_CONTEXT_NODE], ACCT_STR)) {
INCREMENT_COUNT(ZERO_TOKEN);
dqv = dq[1];
token_cache[scan[c]] = 0;
++c;
if (c >= max_eob) return c; // zero tokens at the end (no eob token)
ctx = get_coef_context(nb, token_cache, c);
band = *band_translate++;
prob = coef_probs[band][ctx];
#if CONFIG_NEW_QUANT
dqv_val = &dq_val[band][0];
#endif // CONFIG_NEW_QUANT
}
*max_scan_line = AOMMAX(*max_scan_line, scan[c]);
#if CONFIG_EC_MULTISYMBOL
cdf = &coef_cdfs[band][ctx];
token = ONE_TOKEN +
aom_read_symbol(r, *cdf, CATEGORY6_TOKEN - ONE_TOKEN + 1, ACCT_STR);
INCREMENT_COUNT(ONE_TOKEN + (token > ONE_TOKEN));
switch (token) {
case ONE_TOKEN:
case TWO_TOKEN:
case THREE_TOKEN:
case FOUR_TOKEN: val = token; break;
case CATEGORY1_TOKEN:
val = CAT1_MIN_VAL + read_coeff(cat1_prob, 1, r);
break;
case CATEGORY2_TOKEN:
val = CAT2_MIN_VAL + read_coeff(cat2_prob, 2, r);
break;
case CATEGORY3_TOKEN:
val = CAT3_MIN_VAL + read_coeff(cat3_prob, 3, r);
break;
case CATEGORY4_TOKEN:
val = CAT4_MIN_VAL + read_coeff(cat4_prob, 4, r);
break;
case CATEGORY5_TOKEN:
val = CAT5_MIN_VAL + read_coeff(cat5_prob, 5, r);
break;
case CATEGORY6_TOKEN: {
const int skip_bits = TX_SIZES - 1 - txsize_sqr_up_map[tx_size];
const uint8_t *cat6p = cat6_prob + skip_bits;
#if CONFIG_AOM_HIGHBITDEPTH
switch (xd->bd) {
case AOM_BITS_8:
val = CAT6_MIN_VAL + read_coeff(cat6p, 14 - skip_bits, r);
break;
case AOM_BITS_10:
val = CAT6_MIN_VAL + read_coeff(cat6p, 16 - skip_bits, r);
break;
case AOM_BITS_12:
val = CAT6_MIN_VAL + read_coeff(cat6p, 18 - skip_bits, r);
break;
default: assert(0); return -1;
}
#else
val = CAT6_MIN_VAL + read_coeff(cat6p, 14 - skip_bits, r);
#endif
} break;
}
#else // CONFIG_EC_MULTISYMBOL
if (!aom_read(r, prob[ONE_CONTEXT_NODE], ACCT_STR)) {
INCREMENT_COUNT(ONE_TOKEN);
token = ONE_TOKEN;
val = 1;
} else {
INCREMENT_COUNT(TWO_TOKEN);
token = aom_read_tree(r, av1_coef_con_tree,
av1_pareto8_full[prob[PIVOT_NODE] - 1], ACCT_STR);
switch (token) {
case TWO_TOKEN:
case THREE_TOKEN:
case FOUR_TOKEN: val = token; break;
case CATEGORY1_TOKEN:
val = CAT1_MIN_VAL + read_coeff(cat1_prob, 1, r);
break;
case CATEGORY2_TOKEN:
val = CAT2_MIN_VAL + read_coeff(cat2_prob, 2, r);
break;
case CATEGORY3_TOKEN:
val = CAT3_MIN_VAL + read_coeff(cat3_prob, 3, r);
break;
case CATEGORY4_TOKEN:
val = CAT4_MIN_VAL + read_coeff(cat4_prob, 4, r);
break;
case CATEGORY5_TOKEN:
val = CAT5_MIN_VAL + read_coeff(cat5_prob, 5, r);
break;
case CATEGORY6_TOKEN: {
const int skip_bits = TX_SIZES - 1 - txsize_sqr_up_map[tx_size];
const uint8_t *cat6p = cat6_prob + skip_bits;
#if CONFIG_AOM_HIGHBITDEPTH
switch (xd->bd) {
case AOM_BITS_8:
val = CAT6_MIN_VAL + read_coeff(cat6p, 14 - skip_bits, r);
break;
case AOM_BITS_10:
val = CAT6_MIN_VAL + read_coeff(cat6p, 16 - skip_bits, r);
break;
case AOM_BITS_12:
val = CAT6_MIN_VAL + read_coeff(cat6p, 18 - skip_bits, r);
break;
default: assert(0); return -1;
}
#else
val = CAT6_MIN_VAL + read_coeff(cat6p, 14 - skip_bits, r);
#endif
break;
}
}
}
#endif // CONFIG_EC_MULTISYMBOL
#if CONFIG_NEW_QUANT
v = av1_dequant_abscoeff_nuq(val, dqv, dqv_val);
v = dq_shift ? ROUND_POWER_OF_TWO(v, dq_shift) : v;
#else
#if CONFIG_AOM_QM
dqv = ((iqmatrix[scan[c]] * (int)dqv) + (1 << (AOM_QM_BITS - 1))) >>
AOM_QM_BITS;
#endif
v = (val * dqv) >> dq_shift;
#endif // CONFIG_NEW_QUANT
#if CONFIG_COEFFICIENT_RANGE_CHECKING
#if CONFIG_AOM_HIGHBITDEPTH
dqcoeff[scan[c]] =
highbd_check_range((aom_read_bit(r, ACCT_STR) ? -v : v), xd->bd);
#else
dqcoeff[scan[c]] = check_range(aom_read_bit(r, ACCT_STR) ? -v : v);
#endif // CONFIG_AOM_HIGHBITDEPTH
#else
dqcoeff[scan[c]] = aom_read_bit(r, ACCT_STR) ? -v : v;
#endif // CONFIG_COEFFICIENT_RANGE_CHECKING
token_cache[scan[c]] = av1_pt_energy_class[token];
++c;
ctx = get_coef_context(nb, token_cache, c);
dqv = dq[1];
}
return c;
}
#if CONFIG_PALETTE
void av1_decode_palette_tokens(MACROBLOCKD *const xd, int plane,
aom_reader *r) {
const MODE_INFO *const mi = xd->mi[0];
const MB_MODE_INFO *const mbmi = &mi->mbmi;
const BLOCK_SIZE bsize = mbmi->sb_type;
const int rows = (4 * num_4x4_blocks_high_lookup[bsize]) >>
(xd->plane[plane != 0].subsampling_y);
const int cols = (4 * num_4x4_blocks_wide_lookup[bsize]) >>
(xd->plane[plane != 0].subsampling_x);
uint8_t color_order[PALETTE_MAX_SIZE];
const int n = mbmi->palette_mode_info.palette_size[plane != 0];
int i, j;
uint8_t *color_map = xd->plane[plane != 0].color_index_map;
const aom_prob(*const prob)[PALETTE_COLOR_CONTEXTS][PALETTE_COLORS - 1] =
plane ? av1_default_palette_uv_color_prob
: av1_default_palette_y_color_prob;
for (i = 0; i < rows; ++i) {
for (j = (i == 0 ? 1 : 0); j < cols; ++j) {
const int color_ctx = av1_get_palette_color_context(color_map, cols, i, j,
n, color_order, NULL);
const int color_idx = aom_read_tree(r, av1_palette_color_tree[n - 2],
prob[n - 2][color_ctx], ACCT_STR);
assert(color_idx >= 0 && color_idx < n);
color_map[i * cols + j] = color_order[color_idx];
}
}
}
#endif // CONFIG_PALETTE
int av1_decode_block_tokens(MACROBLOCKD *const xd, int plane,
const SCAN_ORDER *sc, int x, int y, TX_SIZE tx_size,
TX_TYPE tx_type, int16_t *max_scan_line,
aom_reader *r, int seg_id) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const int16_t *const dequant = pd->seg_dequant[seg_id];
const int ctx =
get_entropy_context(tx_size, pd->above_context + x, pd->left_context + y);
#if CONFIG_NEW_QUANT
const int ref = is_inter_block(&xd->mi[0]->mbmi);
int dq =
get_dq_profile_from_ctx(xd->qindex[seg_id], ctx, ref, pd->plane_type);
#endif // CONFIG_NEW_QUANT
#if CONFIG_AOM_QM
const int eob = decode_coefs(xd, pd->plane_type, pd->dqcoeff, tx_size,
tx_type, dequant, ctx, sc->scan, sc->neighbors,
max_scan_line, r, pd->seg_iqmatrix[seg_id]);
#else
const int eob =
decode_coefs(xd, pd->plane_type, pd->dqcoeff, tx_size, tx_type, dequant,
#if CONFIG_NEW_QUANT
pd->seg_dequant_nuq[seg_id][dq],
#endif // CONFIG_NEW_QUANT
ctx, sc->scan, sc->neighbors, max_scan_line, r);
#endif // CONFIG_AOM_QM
av1_set_contexts(xd, pd, tx_size, eob > 0, x, y);
return eob;
}