| /* |
| * Copyright (c) 2019, Alliance for Open Media. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| // This is an example demonstrating how to implement a multi-layer AOM |
| // encoding scheme for RTC video applications. |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "aom/aom_encoder.h" |
| #include "aom/aomcx.h" |
| #include "av1/common/enums.h" |
| #include "av1/encoder/encoder.h" |
| #include "common/args.h" |
| #include "common/tools_common.h" |
| #include "common/video_writer.h" |
| #include "aom_ports/aom_timer.h" |
| |
| #define OPTION_BUFFER_SIZE 1024 |
| |
| typedef struct { |
| const char *output_filename; |
| char options[OPTION_BUFFER_SIZE]; |
| struct AvxInputContext input_ctx; |
| int speed; |
| int aq_mode; |
| int layering_mode; |
| } AppInput; |
| |
| typedef enum { |
| QUANTIZER = 0, |
| BITRATE, |
| SCALE_FACTOR, |
| AUTO_ALT_REF, |
| ALL_OPTION_TYPES |
| } LAYER_OPTION_TYPE; |
| |
| static const arg_def_t outputfile = |
| ARG_DEF("o", "output", 1, "Output filename"); |
| static const arg_def_t frames_arg = |
| ARG_DEF("f", "frames", 1, "Number of frames to encode"); |
| static const arg_def_t threads_arg = |
| ARG_DEF("th", "threads", 1, "Number of threads to use"); |
| static const arg_def_t width_arg = ARG_DEF("w", "width", 1, "Source width"); |
| static const arg_def_t height_arg = ARG_DEF("h", "height", 1, "Source height"); |
| static const arg_def_t timebase_arg = |
| ARG_DEF("t", "timebase", 1, "Timebase (num/den)"); |
| static const arg_def_t bitrate_arg = ARG_DEF( |
| "b", "target-bitrate", 1, "Encoding bitrate, in kilobits per second"); |
| static const arg_def_t spatial_layers_arg = |
| ARG_DEF("sl", "spatial-layers", 1, "Number of spatial SVC layers"); |
| static const arg_def_t temporal_layers_arg = |
| ARG_DEF("tl", "temporal-layers", 1, "Number of temporal SVC layers"); |
| static const arg_def_t layering_mode_arg = |
| ARG_DEF("lm", "layering-mode", 1, "Temporal layering scheme."); |
| static const arg_def_t kf_dist_arg = |
| ARG_DEF("k", "kf-dist", 1, "Number of frames between keyframes"); |
| static const arg_def_t scale_factors_arg = |
| ARG_DEF("r", "scale-factors", 1, "Scale factors (lowest to highest layer)"); |
| static const arg_def_t min_q_arg = |
| ARG_DEF(NULL, "min-q", 1, "Minimum quantizer"); |
| static const arg_def_t max_q_arg = |
| ARG_DEF(NULL, "max-q", 1, "Maximum quantizer"); |
| static const arg_def_t speed_arg = |
| ARG_DEF("sp", "speed", 1, "Speed configuration"); |
| static const arg_def_t aqmode_arg = |
| ARG_DEF("aq", "aqmode", 1, "AQ mode off/on"); |
| static const arg_def_t bitrates_arg = |
| ARG_DEF("bl", "bitrates", 1, |
| "Bitrates[spatial_layer * num_temporal_layer + temporal_layer]"); |
| static const arg_def_t dropframe_thresh_arg = |
| ARG_DEF(NULL, "drop-frame", 1, "Temporal resampling threshold (buf %)"); |
| static const arg_def_t error_resilient_arg = |
| ARG_DEF(NULL, "error-resilient", 1, "Error resilient flag"); |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| static const struct arg_enum_list bitdepth_enum[] = { |
| { "8", AOM_BITS_8 }, { "10", AOM_BITS_10 }, { "12", AOM_BITS_12 }, { NULL, 0 } |
| }; |
| |
| static const arg_def_t bitdepth_arg = ARG_DEF_ENUM( |
| "d", "bit-depth", 1, "Bit depth for codec 8, 10 or 12. ", bitdepth_enum); |
| #endif // CONFIG_AV1_HIGHBITDEPTH |
| |
| static const arg_def_t *svc_args[] = { |
| &frames_arg, &outputfile, &width_arg, |
| &height_arg, &timebase_arg, &bitrate_arg, |
| &spatial_layers_arg, &kf_dist_arg, &scale_factors_arg, |
| &min_q_arg, &max_q_arg, &temporal_layers_arg, |
| &layering_mode_arg, &threads_arg, &aqmode_arg, |
| #if CONFIG_AV1_HIGHBITDEPTH |
| &bitdepth_arg, |
| #endif |
| &speed_arg, &bitrates_arg, &dropframe_thresh_arg, |
| &error_resilient_arg, NULL |
| }; |
| |
| #define zero(Dest) memset(&(Dest), 0, sizeof(Dest)); |
| |
| static const char *exec_name; |
| |
| void usage_exit(void) { |
| fprintf(stderr, "Usage: %s <options> input_filename -o output_filename\n", |
| exec_name); |
| fprintf(stderr, "Options:\n"); |
| arg_show_usage(stderr, svc_args); |
| exit(EXIT_FAILURE); |
| } |
| |
| static int file_is_y4m(const char detect[4]) { |
| return memcmp(detect, "YUV4", 4) == 0; |
| } |
| |
| static int fourcc_is_ivf(const char detect[4]) { |
| if (memcmp(detect, "DKIF", 4) == 0) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| static const int option_max_values[ALL_OPTION_TYPES] = { 63, INT_MAX, INT_MAX, |
| 1 }; |
| |
| static const int option_min_values[ALL_OPTION_TYPES] = { 0, 0, 1, 0 }; |
| |
| static void open_input_file(struct AvxInputContext *input, |
| aom_chroma_sample_position_t csp) { |
| /* Parse certain options from the input file, if possible */ |
| input->file = strcmp(input->filename, "-") ? fopen(input->filename, "rb") |
| : set_binary_mode(stdin); |
| |
| if (!input->file) fatal("Failed to open input file"); |
| |
| if (!fseeko(input->file, 0, SEEK_END)) { |
| /* Input file is seekable. Figure out how long it is, so we can get |
| * progress info. |
| */ |
| input->length = ftello(input->file); |
| rewind(input->file); |
| } |
| |
| /* Default to 1:1 pixel aspect ratio. */ |
| input->pixel_aspect_ratio.numerator = 1; |
| input->pixel_aspect_ratio.denominator = 1; |
| |
| /* For RAW input sources, these bytes will applied on the first frame |
| * in read_frame(). |
| */ |
| input->detect.buf_read = fread(input->detect.buf, 1, 4, input->file); |
| input->detect.position = 0; |
| |
| if (input->detect.buf_read == 4 && file_is_y4m(input->detect.buf)) { |
| if (y4m_input_open(&input->y4m, input->file, input->detect.buf, 4, csp, |
| input->only_i420) >= 0) { |
| input->file_type = FILE_TYPE_Y4M; |
| input->width = input->y4m.pic_w; |
| input->height = input->y4m.pic_h; |
| input->pixel_aspect_ratio.numerator = input->y4m.par_n; |
| input->pixel_aspect_ratio.denominator = input->y4m.par_d; |
| input->framerate.numerator = input->y4m.fps_n; |
| input->framerate.denominator = input->y4m.fps_d; |
| input->fmt = input->y4m.aom_fmt; |
| input->bit_depth = input->y4m.bit_depth; |
| } else { |
| fatal("Unsupported Y4M stream."); |
| } |
| } else if (input->detect.buf_read == 4 && fourcc_is_ivf(input->detect.buf)) { |
| fatal("IVF is not supported as input."); |
| } else { |
| input->file_type = FILE_TYPE_RAW; |
| } |
| } |
| |
| static aom_codec_err_t extract_option(LAYER_OPTION_TYPE type, char *input, |
| int *value0, int *value1) { |
| if (type == SCALE_FACTOR) { |
| *value0 = (int)strtol(input, &input, 10); |
| if (*input++ != '/') return AOM_CODEC_INVALID_PARAM; |
| *value1 = (int)strtol(input, &input, 10); |
| |
| if (*value0 < option_min_values[SCALE_FACTOR] || |
| *value1 < option_min_values[SCALE_FACTOR] || |
| *value0 > option_max_values[SCALE_FACTOR] || |
| *value1 > option_max_values[SCALE_FACTOR] || |
| *value0 > *value1) // num shouldn't be greater than den |
| return AOM_CODEC_INVALID_PARAM; |
| } else { |
| *value0 = atoi(input); |
| if (*value0 < option_min_values[type] || *value0 > option_max_values[type]) |
| return AOM_CODEC_INVALID_PARAM; |
| } |
| return AOM_CODEC_OK; |
| } |
| |
| static aom_codec_err_t parse_layer_options_from_string( |
| aom_svc_params_t *svc_params, LAYER_OPTION_TYPE type, const char *input, |
| int *option0, int *option1) { |
| aom_codec_err_t res = AOM_CODEC_OK; |
| char *input_string; |
| char *token; |
| const char *delim = ","; |
| int num_layers = svc_params->number_spatial_layers; |
| int i = 0; |
| |
| if (type == BITRATE) |
| num_layers = |
| svc_params->number_spatial_layers * svc_params->number_temporal_layers; |
| |
| if (input == NULL || option0 == NULL || |
| (option1 == NULL && type == SCALE_FACTOR)) |
| return AOM_CODEC_INVALID_PARAM; |
| |
| input_string = malloc(strlen(input)); |
| memcpy(input_string, input, strlen(input)); |
| if (input_string == NULL) return AOM_CODEC_MEM_ERROR; |
| token = strtok(input_string, delim); // NOLINT |
| for (i = 0; i < num_layers; ++i) { |
| if (token != NULL) { |
| res = extract_option(type, token, option0 + i, option1 + i); |
| if (res != AOM_CODEC_OK) break; |
| token = strtok(NULL, delim); // NOLINT |
| } else { |
| break; |
| } |
| } |
| if (res == AOM_CODEC_OK && i != num_layers) { |
| res = AOM_CODEC_INVALID_PARAM; |
| } |
| free(input_string); |
| return res; |
| } |
| |
| static void parse_command_line(int argc, const char **argv_, |
| AppInput *app_input, |
| aom_svc_params_t *svc_params, |
| aom_codec_enc_cfg_t *enc_cfg) { |
| struct arg arg; |
| char **argv = NULL; |
| char **argi = NULL; |
| char **argj = NULL; |
| char string_options[1024] = { 0 }; |
| |
| // Default settings |
| svc_params->number_spatial_layers = 1; |
| svc_params->number_temporal_layers = 1; |
| app_input->layering_mode = 0; |
| enc_cfg->g_threads = 1; |
| enc_cfg->rc_end_usage = AOM_CBR; |
| |
| // process command line options |
| argv = argv_dup(argc - 1, argv_ + 1); |
| for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) { |
| arg.argv_step = 1; |
| |
| if (arg_match(&arg, &outputfile, argi)) { |
| app_input->output_filename = arg.val; |
| } else if (arg_match(&arg, &width_arg, argi)) { |
| enc_cfg->g_w = arg_parse_uint(&arg); |
| } else if (arg_match(&arg, &height_arg, argi)) { |
| enc_cfg->g_h = arg_parse_uint(&arg); |
| } else if (arg_match(&arg, &timebase_arg, argi)) { |
| enc_cfg->g_timebase = arg_parse_rational(&arg); |
| } else if (arg_match(&arg, &bitrate_arg, argi)) { |
| enc_cfg->rc_target_bitrate = arg_parse_uint(&arg); |
| } else if (arg_match(&arg, &spatial_layers_arg, argi)) { |
| svc_params->number_spatial_layers = arg_parse_uint(&arg); |
| } else if (arg_match(&arg, &temporal_layers_arg, argi)) { |
| svc_params->number_temporal_layers = arg_parse_uint(&arg); |
| } else if (arg_match(&arg, &speed_arg, argi)) { |
| app_input->speed = arg_parse_uint(&arg); |
| if (app_input->speed > 9) { |
| warn("Mapping speed %d to speed 9.\n", app_input->speed); |
| } |
| } else if (arg_match(&arg, &aqmode_arg, argi)) { |
| app_input->aq_mode = arg_parse_uint(&arg); |
| } else if (arg_match(&arg, &threads_arg, argi)) { |
| enc_cfg->g_threads = arg_parse_uint(&arg); |
| } else if (arg_match(&arg, &layering_mode_arg, argi)) { |
| app_input->layering_mode = arg_parse_int(&arg); |
| } else if (arg_match(&arg, &kf_dist_arg, argi)) { |
| enc_cfg->kf_min_dist = arg_parse_uint(&arg); |
| enc_cfg->kf_max_dist = enc_cfg->kf_min_dist; |
| } else if (arg_match(&arg, &scale_factors_arg, argi)) { |
| parse_layer_options_from_string(svc_params, SCALE_FACTOR, arg.val, |
| svc_params->scaling_factor_num, |
| svc_params->scaling_factor_den); |
| } else if (arg_match(&arg, &min_q_arg, argi)) { |
| enc_cfg->rc_min_quantizer = arg_parse_uint(&arg); |
| } else if (arg_match(&arg, &max_q_arg, argi)) { |
| enc_cfg->rc_max_quantizer = arg_parse_uint(&arg); |
| #if CONFIG_AV1_HIGHBITDEPTH |
| } else if (arg_match(&arg, &bitdepth_arg, argi)) { |
| enc_cfg->g_bit_depth = arg_parse_enum_or_int(&arg); |
| switch (enc_cfg->g_bit_depth) { |
| case AOM_BITS_8: |
| enc_cfg->g_input_bit_depth = 8; |
| enc_cfg->g_profile = 0; |
| break; |
| case AOM_BITS_10: |
| enc_cfg->g_input_bit_depth = 10; |
| enc_cfg->g_profile = 2; |
| break; |
| case AOM_BITS_12: |
| enc_cfg->g_input_bit_depth = 12; |
| enc_cfg->g_profile = 2; |
| break; |
| default: |
| die("Error: Invalid bit depth selected (%d)\n", enc_cfg->g_bit_depth); |
| break; |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| } else if (arg_match(&arg, &dropframe_thresh_arg, argi)) { |
| enc_cfg->rc_dropframe_thresh = arg_parse_uint(&arg); |
| } else if (arg_match(&arg, &error_resilient_arg, argi)) { |
| enc_cfg->g_error_resilient = arg_parse_uint(&arg); |
| if (enc_cfg->g_error_resilient != 0 && enc_cfg->g_error_resilient != 1) |
| die("Invalid value for error resilient (0, 1): %d.", |
| enc_cfg->g_error_resilient); |
| } else { |
| ++argj; |
| } |
| } |
| |
| // Total bitrate needs to be parsed after the number of layers. |
| for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) { |
| arg.argv_step = 1; |
| if (arg_match(&arg, &bitrates_arg, argi)) { |
| parse_layer_options_from_string(svc_params, BITRATE, arg.val, |
| svc_params->layer_target_bitrate, NULL); |
| } else { |
| ++argj; |
| } |
| } |
| |
| // There will be a space in front of the string options |
| if (strlen(string_options) > 0) |
| strncpy(app_input->options, string_options, OPTION_BUFFER_SIZE); |
| |
| // Check for unrecognized options |
| for (argi = argv; *argi; ++argi) |
| if (argi[0][0] == '-' && strlen(argi[0]) > 1) |
| die("Error: Unrecognized option %s\n", *argi); |
| |
| if (argv[0] == NULL) { |
| usage_exit(); |
| } |
| |
| app_input->input_ctx.filename = argv[0]; |
| free(argv); |
| |
| open_input_file(&app_input->input_ctx, 0); |
| if (app_input->input_ctx.file_type == FILE_TYPE_Y4M) { |
| enc_cfg->g_w = app_input->input_ctx.width; |
| enc_cfg->g_h = app_input->input_ctx.height; |
| } |
| |
| if (enc_cfg->g_w < 16 || enc_cfg->g_w % 2 || enc_cfg->g_h < 16 || |
| enc_cfg->g_h % 2) |
| die("Invalid resolution: %d x %d\n", enc_cfg->g_w, enc_cfg->g_h); |
| |
| printf( |
| "Codec %s\n" |
| "layers: %d\n" |
| "width %u, height: %u\n" |
| "num: %d, den: %d, bitrate: %u\n" |
| "gop size: %u\n", |
| aom_codec_iface_name(aom_codec_av1_cx()), |
| svc_params->number_spatial_layers, enc_cfg->g_w, enc_cfg->g_h, |
| enc_cfg->g_timebase.num, enc_cfg->g_timebase.den, |
| enc_cfg->rc_target_bitrate, enc_cfg->kf_max_dist); |
| } |
| |
| static unsigned int mode_to_num_temporal_layers[10] = { 1, 2, 3, 3, 2, |
| 1, 1, 3, 3, 3 }; |
| static unsigned int mode_to_num_spatial_layers[10] = { 1, 1, 1, 1, 1, |
| 2, 3, 3, 3, 3 }; |
| |
| // For rate control encoding stats. |
| struct RateControlMetrics { |
| // Number of input frames per layer. |
| int layer_input_frames[AOM_MAX_TS_LAYERS]; |
| // Number of encoded non-key frames per layer. |
| int layer_enc_frames[AOM_MAX_TS_LAYERS]; |
| // Framerate per layer layer (cumulative). |
| double layer_framerate[AOM_MAX_TS_LAYERS]; |
| // Target average frame size per layer (per-frame-bandwidth per layer). |
| double layer_pfb[AOM_MAX_LAYERS]; |
| // Actual average frame size per layer. |
| double layer_avg_frame_size[AOM_MAX_LAYERS]; |
| // Average rate mismatch per layer (|target - actual| / target). |
| double layer_avg_rate_mismatch[AOM_MAX_LAYERS]; |
| // Actual encoding bitrate per layer (cumulative across temporal layers). |
| double layer_encoding_bitrate[AOM_MAX_LAYERS]; |
| // Average of the short-time encoder actual bitrate. |
| // TODO(marpan): Should we add these short-time stats for each layer? |
| double avg_st_encoding_bitrate; |
| // Variance of the short-time encoder actual bitrate. |
| double variance_st_encoding_bitrate; |
| // Window (number of frames) for computing short-timee encoding bitrate. |
| int window_size; |
| // Number of window measurements. |
| int window_count; |
| int layer_target_bitrate[AOM_MAX_LAYERS]; |
| }; |
| |
| // Reference frames used in this example encoder. |
| enum { |
| SVC_LAST_FRAME = 0, |
| SVC_LAST2_FRAME, |
| SVC_LAST3_FRAME, |
| SVC_GOLDEN_FRAME, |
| SVC_BWDREF_FRAME, |
| SVC_ALTREF2_FRAME, |
| SVC_ALTREF_FRAME |
| }; |
| |
| static int read_frame(struct AvxInputContext *input_ctx, aom_image_t *img) { |
| FILE *f = input_ctx->file; |
| y4m_input *y4m = &input_ctx->y4m; |
| int shortread = 0; |
| |
| if (input_ctx->file_type == FILE_TYPE_Y4M) { |
| if (y4m_input_fetch_frame(y4m, f, img) < 1) return 0; |
| } else { |
| shortread = read_yuv_frame(input_ctx, img); |
| } |
| |
| return !shortread; |
| } |
| |
| static void close_input_file(struct AvxInputContext *input) { |
| fclose(input->file); |
| if (input->file_type == FILE_TYPE_Y4M) y4m_input_close(&input->y4m); |
| } |
| |
| // Note: these rate control metrics assume only 1 key frame in the |
| // sequence (i.e., first frame only). So for temporal pattern# 7 |
| // (which has key frame for every frame on base layer), the metrics |
| // computation will be off/wrong. |
| // TODO(marpan): Update these metrics to account for multiple key frames |
| // in the stream. |
| static void set_rate_control_metrics(struct RateControlMetrics *rc, |
| double framerate, |
| unsigned int ss_number_layers, |
| unsigned int ts_number_layers) { |
| int ts_rate_decimator[AOM_MAX_TS_LAYERS] = { 1 }; |
| ts_rate_decimator[0] = 1; |
| if (ts_number_layers == 2) { |
| ts_rate_decimator[0] = 2; |
| ts_rate_decimator[1] = 1; |
| } |
| if (ts_number_layers == 3) { |
| ts_rate_decimator[0] = 4; |
| ts_rate_decimator[1] = 2; |
| ts_rate_decimator[2] = 1; |
| } |
| // Set the layer (cumulative) framerate and the target layer (non-cumulative) |
| // per-frame-bandwidth, for the rate control encoding stats below. |
| for (unsigned int sl = 0; sl < ss_number_layers; ++sl) { |
| unsigned int i = sl * ts_number_layers; |
| rc->layer_framerate[0] = framerate / ts_rate_decimator[0]; |
| rc->layer_pfb[i] = |
| 1000.0 * rc->layer_target_bitrate[i] / rc->layer_framerate[0]; |
| for (unsigned int tl = 0; tl < ts_number_layers; ++tl) { |
| i = sl * ts_number_layers + tl; |
| if (tl > 0) { |
| rc->layer_framerate[tl] = framerate / ts_rate_decimator[tl]; |
| rc->layer_pfb[i] = |
| 1000.0 * |
| (rc->layer_target_bitrate[i] - rc->layer_target_bitrate[i - 1]) / |
| (rc->layer_framerate[tl] - rc->layer_framerate[tl - 1]); |
| } |
| rc->layer_input_frames[tl] = 0; |
| rc->layer_enc_frames[tl] = 0; |
| rc->layer_encoding_bitrate[i] = 0.0; |
| rc->layer_avg_frame_size[i] = 0.0; |
| rc->layer_avg_rate_mismatch[i] = 0.0; |
| } |
| } |
| rc->window_count = 0; |
| rc->window_size = 15; |
| rc->avg_st_encoding_bitrate = 0.0; |
| rc->variance_st_encoding_bitrate = 0.0; |
| } |
| |
| static void printout_rate_control_summary(struct RateControlMetrics *rc, |
| int frame_cnt, |
| unsigned int ss_number_layers, |
| unsigned int ts_number_layers) { |
| int tot_num_frames = 0; |
| double perc_fluctuation = 0.0; |
| printf("Total number of processed frames: %d\n\n", frame_cnt - 1); |
| printf("Rate control layer stats for %u layer(s):\n\n", ts_number_layers); |
| for (unsigned int sl = 0; sl < ss_number_layers; ++sl) { |
| tot_num_frames = 0; |
| for (unsigned int tl = 0; tl < ts_number_layers; ++tl) { |
| unsigned int i = sl * ts_number_layers + tl; |
| const int num_dropped = |
| tl > 0 ? rc->layer_input_frames[tl] - rc->layer_enc_frames[tl] |
| : rc->layer_input_frames[tl] - rc->layer_enc_frames[tl] - 1; |
| tot_num_frames += rc->layer_input_frames[tl]; |
| rc->layer_encoding_bitrate[i] = 0.001 * rc->layer_framerate[tl] * |
| rc->layer_encoding_bitrate[i] / |
| tot_num_frames; |
| rc->layer_avg_frame_size[i] = |
| rc->layer_avg_frame_size[i] / rc->layer_enc_frames[tl]; |
| rc->layer_avg_rate_mismatch[i] = |
| 100.0 * rc->layer_avg_rate_mismatch[i] / rc->layer_enc_frames[tl]; |
| printf("For layer#: %u %u \n", sl, tl); |
| printf("Bitrate (target vs actual): %d %f\n", rc->layer_target_bitrate[i], |
| rc->layer_encoding_bitrate[i]); |
| printf("Average frame size (target vs actual): %f %f\n", rc->layer_pfb[i], |
| rc->layer_avg_frame_size[i]); |
| printf("Average rate_mismatch: %f\n", rc->layer_avg_rate_mismatch[i]); |
| printf( |
| "Number of input frames, encoded (non-key) frames, " |
| "and perc dropped frames: %d %d %f\n", |
| rc->layer_input_frames[tl], rc->layer_enc_frames[tl], |
| 100.0 * num_dropped / rc->layer_input_frames[tl]); |
| printf("\n"); |
| } |
| } |
| rc->avg_st_encoding_bitrate = rc->avg_st_encoding_bitrate / rc->window_count; |
| rc->variance_st_encoding_bitrate = |
| rc->variance_st_encoding_bitrate / rc->window_count - |
| (rc->avg_st_encoding_bitrate * rc->avg_st_encoding_bitrate); |
| perc_fluctuation = 100.0 * sqrt(rc->variance_st_encoding_bitrate) / |
| rc->avg_st_encoding_bitrate; |
| printf("Short-time stats, for window of %d frames:\n", rc->window_size); |
| printf("Average, rms-variance, and percent-fluct: %f %f %f\n", |
| rc->avg_st_encoding_bitrate, sqrt(rc->variance_st_encoding_bitrate), |
| perc_fluctuation); |
| if (frame_cnt - 1 != tot_num_frames) |
| die("Error: Number of input frames not equal to output!\n"); |
| } |
| |
| // Layer pattern configuration. |
| static void set_layer_pattern(int layering_mode, int superframe_cnt, |
| aom_svc_layer_id_t *layer_id, |
| aom_svc_ref_frame_config_t *ref_frame_config, |
| int *use_svc_control, int spatial_layer_id, |
| int is_key_frame, int ksvc_mode) { |
| int i; |
| int enable_longterm_temporal_ref = 1; |
| int shift = (layering_mode == 7) ? 2 : 0; |
| *use_svc_control = 1; |
| layer_id->spatial_layer_id = spatial_layer_id; |
| int lag_index = 0; |
| int base_count = superframe_cnt >> 2; |
| // Set the referende map buffer idx for the 7 references: |
| // LAST_FRAME (0), LAST2_FRAME(1), LAST3_FRAME(2), GOLDEN_FRAME(3), |
| // BWDREF_FRAME(4), ALTREF2_FRAME(5), ALTREF_FRAME(6). |
| for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = i; |
| for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->reference[i] = 0; |
| for (i = 0; i < REF_FRAMES; i++) ref_frame_config->refresh[i] = 0; |
| |
| if (ksvc_mode) { |
| // Same pattern as case 8. |
| layering_mode = 8; |
| if (!is_key_frame) |
| // No inter-layer prediction on inter-frames. |
| ref_frame_config->reference[SVC_LAST_FRAME] = 1; |
| } |
| switch (layering_mode) { |
| case 0: |
| // 1-layer: update LAST on every frame, reference LAST. |
| layer_id->temporal_layer_id = 0; |
| ref_frame_config->refresh[0] = 1; |
| ref_frame_config->reference[SVC_LAST_FRAME] = 1; |
| break; |
| case 1: |
| // 2-temporal layer. |
| // 1 3 5 |
| // 0 2 4 |
| if (superframe_cnt % 2 == 0) { |
| layer_id->temporal_layer_id = 0; |
| // Update LAST on layer 0, reference LAST. |
| ref_frame_config->refresh[0] = 1; |
| ref_frame_config->reference[SVC_LAST_FRAME] = 1; |
| } else { |
| layer_id->temporal_layer_id = 1; |
| // No updates on layer 1, only reference LAST (TL0). |
| ref_frame_config->reference[SVC_LAST_FRAME] = 1; |
| } |
| break; |
| case 2: |
| // 3-temporal layer: |
| // 1 3 5 7 |
| // 2 6 |
| // 0 4 8 |
| if (superframe_cnt % 4 == 0) { |
| // Base layer. |
| layer_id->temporal_layer_id = 0; |
| // Update LAST on layer 0, reference LAST. |
| ref_frame_config->refresh[0] = 1; |
| ref_frame_config->reference[SVC_LAST_FRAME] = 1; |
| } else if ((superframe_cnt - 1) % 4 == 0) { |
| layer_id->temporal_layer_id = 2; |
| // First top layer: no updates, only reference LAST (TL0). |
| ref_frame_config->reference[SVC_LAST_FRAME] = 1; |
| } else if ((superframe_cnt - 2) % 4 == 0) { |
| layer_id->temporal_layer_id = 1; |
| // Middle layer (TL1): update LAST2, only reference LAST (TL0). |
| ref_frame_config->refresh[1] = 1; |
| ref_frame_config->reference[SVC_LAST_FRAME] = 1; |
| } else if ((superframe_cnt - 3) % 4 == 0) { |
| layer_id->temporal_layer_id = 2; |
| // Second top layer: no updates, only reference LAST. |
| // Set buffer idx for LAST to slot 1, since that was the slot |
| // updated in previous frame. So LAST is TL1 frame. |
| ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1; |
| ref_frame_config->ref_idx[SVC_LAST2_FRAME] = 0; |
| ref_frame_config->reference[SVC_LAST_FRAME] = 1; |
| } |
| break; |
| case 3: |
| // 3 TL, same as above, except allow for predicting |
| // off 2 more references (GOLDEN and ALTREF), with |
| // GOLDEN updated periodically, and ALTREF lagging from |
| // LAST from ~4 frames. Both GOLDEN and ALTREF |
| // can only be updated on base temporal layer. |
| |
| // Keep golden fixed at slot 3. |
| ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3; |
| // Cyclically refresh slots 4, 5, 6, 7, for lag altref. |
| lag_index = 4 + (base_count % 4); |
| // Set the altref slot to lag_index. |
| ref_frame_config->ref_idx[SVC_ALTREF_FRAME] = lag_index; |
| if (superframe_cnt % 4 == 0) { |
| // Base layer. |
| layer_id->temporal_layer_id = 0; |
| // Update LAST on layer 0, reference LAST. |
| ref_frame_config->refresh[0] = 1; |
| ref_frame_config->reference[SVC_LAST_FRAME] = 1; |
| // Refresh GOLDEN every x ~10 base layer frames. |
| if (base_count % 10 == 0) ref_frame_config->refresh[3] = 1; |
| // Refresh lag_index slot, needed for lagging altref. |
| ref_frame_config->refresh[lag_index] = 1; |
| } else if ((superframe_cnt - 1) % 4 == 0) { |
| layer_id->temporal_layer_id = 2; |
| // First top layer: no updates, only reference LAST (TL0). |
| ref_frame_config->reference[SVC_LAST_FRAME] = 1; |
| } else if ((superframe_cnt - 2) % 4 == 0) { |
| layer_id->temporal_layer_id = 1; |
| // Middle layer (TL1): update LAST2, only reference LAST (TL0). |
| ref_frame_config->refresh[1] = 1; |
| ref_frame_config->reference[SVC_LAST_FRAME] = 1; |
| } else if ((superframe_cnt - 3) % 4 == 0) { |
| layer_id->temporal_layer_id = 2; |
| // Second top layer: no updates, only reference LAST. |
| // Set buffer idx for LAST to slot 1, since that was the slot |
| // updated in previous frame. So LAST is TL1 frame. |
| ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1; |
| ref_frame_config->ref_idx[SVC_LAST2_FRAME] = 0; |
| ref_frame_config->reference[SVC_LAST_FRAME] = 1; |
| } |
| // Every frame can reference GOLDEN AND ALTREF. |
| ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1; |
| ref_frame_config->reference[SVC_ALTREF_FRAME] = 1; |
| break; |
| case 4: |
| // 3-temporal layer: but middle layer updates GF, so 2nd TL2 will |
| // only reference GF (not LAST). Other frames only reference LAST. |
| // 1 3 5 7 |
| // 2 6 |
| // 0 4 8 |
| if (superframe_cnt % 4 == 0) { |
| // Base layer. |
| layer_id->temporal_layer_id = 0; |
| // Update LAST on layer 0, only reference LAST. |
| ref_frame_config->refresh[0] = 1; |
| ref_frame_config->reference[SVC_LAST_FRAME] = 1; |
| } else if ((superframe_cnt - 1) % 4 == 0) { |
| layer_id->temporal_layer_id = 2; |
| // First top layer: no updates, only reference LAST (TL0). |
| ref_frame_config->reference[SVC_LAST_FRAME] = 1; |
| } else if ((superframe_cnt - 2) % 4 == 0) { |
| layer_id->temporal_layer_id = 1; |
| // Middle layer (TL1): update GF, only reference LAST (TL0). |
| ref_frame_config->refresh[3] = 1; |
| ref_frame_config->reference[SVC_LAST_FRAME] = 1; |
| } else if ((superframe_cnt - 3) % 4 == 0) { |
| layer_id->temporal_layer_id = 2; |
| // Second top layer: no updates, only reference GF. |
| ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1; |
| } |
| break; |
| case 5: |
| // 2 spatial layers, 1 temporal. |
| layer_id->temporal_layer_id = 0; |
| if (layer_id->spatial_layer_id == 0) { |
| // Reference LAST, update LAST. |
| ref_frame_config->refresh[0] = 1; |
| ref_frame_config->reference[SVC_LAST_FRAME] = 1; |
| } else if (layer_id->spatial_layer_id == 1) { |
| // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1 |
| // and GOLDEN to slot 0. Update slot 1 (LAST). |
| ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1; |
| ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 0; |
| ref_frame_config->refresh[1] = 1; |
| ref_frame_config->reference[SVC_LAST_FRAME] = 1; |
| ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1; |
| } |
| break; |
| case 6: |
| // 3 spatial layers, 1 temporal. |
| // Note for this case, we set the buffer idx for all references to be |
| // either LAST or GOLDEN, which are always valid references, since decoder |
| // will check if any of the 7 references is valid scale in |
| // valid_ref_frame_size(). |
| layer_id->temporal_layer_id = 0; |
| if (layer_id->spatial_layer_id == 0) { |
| // Reference LAST, update LAST. Set all buffer_idx to 0. |
| for (i = 0; i < INTER_REFS_PER_FRAME; i++) |
| ref_frame_config->ref_idx[i] = 0; |
| ref_frame_config->refresh[0] = 1; |
| ref_frame_config->reference[SVC_LAST_FRAME] = 1; |
| } else if (layer_id->spatial_layer_id == 1) { |
| // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1 |
| // and GOLDEN (and all other refs) to slot 0. |
| // Update slot 1 (LAST). |
| for (i = 0; i < INTER_REFS_PER_FRAME; i++) |
| ref_frame_config->ref_idx[i] = 0; |
| ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1; |
| ref_frame_config->refresh[1] = 1; |
| ref_frame_config->reference[SVC_LAST_FRAME] = 1; |
| ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1; |
| } else if (layer_id->spatial_layer_id == 2) { |
| // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2 |
| // and GOLDEN (and all other refs) to slot 1. |
| // Update slot 2 (LAST). |
| for (i = 0; i < INTER_REFS_PER_FRAME; i++) |
| ref_frame_config->ref_idx[i] = 1; |
| ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2; |
| ref_frame_config->refresh[2] = 1; |
| ref_frame_config->reference[SVC_LAST_FRAME] = 1; |
| ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1; |
| // For 3 spatial layer case: allow for top spatial layer to use |
| // additional temporal reference. Update every 10 frames. |
| if (enable_longterm_temporal_ref) { |
| ref_frame_config->ref_idx[SVC_ALTREF_FRAME] = REF_FRAMES - 1; |
| ref_frame_config->reference[SVC_ALTREF_FRAME] = 1; |
| if (base_count % 10 == 0) |
| ref_frame_config->refresh[REF_FRAMES - 1] = 1; |
| } |
| } |
| break; |
| case 7: |
| // 3 spatial and 3 temporal layer. |
| // Same as case 8 but overalap in the buffer slot updates. |
| // (shift = 2). The slots 3 and 4 updated by first TL2 are |
| // reused for update in TL1 superframe. |
| // Note for this case, frame order hint must be disabled for |
| // lower resolutios (operating points > 0) to be decoedable. |
| case 8: |
| // 3 spatial and 3 temporal layer. |
| // No overlap in buffer updates between TL2 and TL1. |
| // TL2 updates slot 3 and 4, TL1 updates 5, 6, 7. |
| // Set the references via the svc_ref_frame_config control. |
| // Always reference LAST. |
| ref_frame_config->reference[SVC_LAST_FRAME] = 1; |
| if (superframe_cnt % 4 == 0) { |
| // Base temporal layer. |
| layer_id->temporal_layer_id = 0; |
| if (layer_id->spatial_layer_id == 0) { |
| // Reference LAST, update LAST. |
| // Set all buffer_idx to 0. |
| for (i = 0; i < INTER_REFS_PER_FRAME; i++) |
| ref_frame_config->ref_idx[i] = 0; |
| ref_frame_config->refresh[0] = 1; |
| } else if (layer_id->spatial_layer_id == 1) { |
| // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1, |
| // GOLDEN (and all other refs) to slot 0. |
| // Update slot 1 (LAST). |
| for (i = 0; i < INTER_REFS_PER_FRAME; i++) |
| ref_frame_config->ref_idx[i] = 0; |
| ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1; |
| ref_frame_config->refresh[1] = 1; |
| } else if (layer_id->spatial_layer_id == 2) { |
| // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2, |
| // GOLDEN (and all other refs) to slot 1. |
| // Update slot 2 (LAST). |
| for (i = 0; i < INTER_REFS_PER_FRAME; i++) |
| ref_frame_config->ref_idx[i] = 1; |
| ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2; |
| ref_frame_config->refresh[2] = 1; |
| } |
| } else if ((superframe_cnt - 1) % 4 == 0) { |
| // First top temporal enhancement layer. |
| layer_id->temporal_layer_id = 2; |
| if (layer_id->spatial_layer_id == 0) { |
| // Reference LAST (slot 0). |
| // Set GOLDEN to slot 3 and update slot 3. |
| // Set all other buffer_idx to slot 0. |
| for (i = 0; i < INTER_REFS_PER_FRAME; i++) |
| ref_frame_config->ref_idx[i] = 0; |
| ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3; |
| ref_frame_config->refresh[3] = 1; |
| } else if (layer_id->spatial_layer_id == 1) { |
| // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1, |
| // GOLDEN (and all other refs) to slot 3. |
| // Set LAST2 to slot 4 and Update slot 4. |
| for (i = 0; i < INTER_REFS_PER_FRAME; i++) |
| ref_frame_config->ref_idx[i] = 3; |
| ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1; |
| ref_frame_config->ref_idx[SVC_LAST2_FRAME] = 4; |
| ref_frame_config->refresh[4] = 1; |
| } else if (layer_id->spatial_layer_id == 2) { |
| // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2, |
| // GOLDEN (and all other refs) to slot 4. |
| // No update. |
| for (i = 0; i < INTER_REFS_PER_FRAME; i++) |
| ref_frame_config->ref_idx[i] = 4; |
| ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2; |
| } |
| } else if ((superframe_cnt - 2) % 4 == 0) { |
| // Middle temporal enhancement layer. |
| layer_id->temporal_layer_id = 1; |
| if (layer_id->spatial_layer_id == 0) { |
| // Reference LAST. |
| // Set all buffer_idx to 0. |
| // Set GOLDEN to slot 5 and update slot 5. |
| for (i = 0; i < INTER_REFS_PER_FRAME; i++) |
| ref_frame_config->ref_idx[i] = 0; |
| ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 5 - shift; |
| ref_frame_config->refresh[5 - shift] = 1; |
| } else if (layer_id->spatial_layer_id == 1) { |
| // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1, |
| // GOLDEN (and all other refs) to slot 5. |
| // Set LAST3 to slot 6 and update slot 6. |
| for (i = 0; i < INTER_REFS_PER_FRAME; i++) |
| ref_frame_config->ref_idx[i] = 5 - shift; |
| ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1; |
| ref_frame_config->ref_idx[SVC_LAST3_FRAME] = 6 - shift; |
| ref_frame_config->refresh[6 - shift] = 1; |
| } else if (layer_id->spatial_layer_id == 2) { |
| // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2, |
| // GOLDEN (and all other refs) to slot 6. |
| // Set LAST3 to slot 7 and update slot 7. |
| for (i = 0; i < INTER_REFS_PER_FRAME; i++) |
| ref_frame_config->ref_idx[i] = 6 - shift; |
| ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2; |
| ref_frame_config->ref_idx[SVC_LAST3_FRAME] = 7 - shift; |
| ref_frame_config->refresh[7 - shift] = 1; |
| } |
| } else if ((superframe_cnt - 3) % 4 == 0) { |
| // Second top temporal enhancement layer. |
| layer_id->temporal_layer_id = 2; |
| if (layer_id->spatial_layer_id == 0) { |
| // Set LAST to slot 5 and reference LAST. |
| // Set GOLDEN to slot 3 and update slot 3. |
| // Set all other buffer_idx to 0. |
| for (i = 0; i < INTER_REFS_PER_FRAME; i++) |
| ref_frame_config->ref_idx[i] = 0; |
| ref_frame_config->ref_idx[SVC_LAST_FRAME] = 5 - shift; |
| ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3; |
| ref_frame_config->refresh[3] = 1; |
| } else if (layer_id->spatial_layer_id == 1) { |
| // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 6, |
| // GOLDEN to slot 3. Set LAST2 to slot 4 and update slot 4. |
| for (i = 0; i < INTER_REFS_PER_FRAME; i++) |
| ref_frame_config->ref_idx[i] = 0; |
| ref_frame_config->ref_idx[SVC_LAST_FRAME] = 6 - shift; |
| ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3; |
| ref_frame_config->ref_idx[SVC_LAST2_FRAME] = 4; |
| ref_frame_config->refresh[4] = 1; |
| } else if (layer_id->spatial_layer_id == 2) { |
| // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 7, |
| // GOLDEN to slot 4. No update. |
| for (i = 0; i < INTER_REFS_PER_FRAME; i++) |
| ref_frame_config->ref_idx[i] = 0; |
| ref_frame_config->ref_idx[SVC_LAST_FRAME] = 7 - shift; |
| ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 4; |
| } |
| } |
| if (layer_id->spatial_layer_id > 0 && !ksvc_mode) |
| // Reference GOLDEN. |
| ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1; |
| // For 3 spatial layer case 7 (where there is free buffer slot): |
| // allow for top spatial layer to use additional temporal reference. |
| // Additional reference is only updated on base temporal layer, every |
| // 10 TL0 frames here. |
| if (enable_longterm_temporal_ref && layer_id->spatial_layer_id == 2 && |
| layering_mode == 7) { |
| ref_frame_config->ref_idx[SVC_ALTREF_FRAME] = REF_FRAMES - 1; |
| ref_frame_config->reference[SVC_ALTREF_FRAME] = 1; |
| if (base_count % 10 == 0 && layer_id->temporal_layer_id == 0) |
| ref_frame_config->refresh[REF_FRAMES - 1] = 1; |
| } |
| break; |
| default: assert(0); die("Error: Unsupported temporal layering mode!\n"); |
| } |
| } |
| |
| int main(int argc, const char **argv) { |
| AppInput app_input; |
| AvxVideoWriter *outfile[AOM_MAX_LAYERS] = { NULL }; |
| AvxVideoWriter *total_layer_file = NULL; |
| aom_codec_enc_cfg_t cfg; |
| int frame_cnt = 0; |
| aom_image_t raw; |
| int frame_avail; |
| int got_data = 0; |
| int flags = 0; |
| unsigned i; |
| int pts = 0; // PTS starts at 0. |
| int frame_duration = 1; // 1 timebase tick per frame. |
| aom_svc_layer_id_t layer_id; |
| aom_svc_params_t svc_params; |
| aom_svc_ref_frame_config_t ref_frame_config; |
| |
| struct RateControlMetrics rc; |
| int64_t cx_time = 0; |
| int64_t cx_time_sl[3]; // max number of spatial layers. |
| double sum_bitrate = 0.0; |
| double sum_bitrate2 = 0.0; |
| double framerate = 30.0; |
| int use_svc_control = 1; |
| int set_err_resil_frame = 0; |
| zero(rc.layer_target_bitrate); |
| memset(&layer_id, 0, sizeof(aom_svc_layer_id_t)); |
| memset(&app_input, 0, sizeof(AppInput)); |
| memset(&svc_params, 0, sizeof(svc_params)); |
| |
| // Flag to test dynamic scaling of source frames for single |
| // spatial stream, using the scaling_mode control. |
| const int test_dynamic_scaling_single_layer = 0; |
| |
| /* Setup default input stream settings */ |
| app_input.input_ctx.framerate.numerator = 30; |
| app_input.input_ctx.framerate.denominator = 1; |
| app_input.input_ctx.only_i420 = 1; |
| app_input.input_ctx.bit_depth = 0; |
| exec_name = argv[0]; |
| |
| // start with default encoder configuration |
| aom_codec_err_t res = |
| aom_codec_enc_config_default(aom_codec_av1_cx(), &cfg, 0); |
| if (res) { |
| die("Failed to get config: %s\n", aom_codec_err_to_string(res)); |
| } |
| |
| // Real time parameters. |
| cfg.g_usage = AOM_USAGE_REALTIME; |
| |
| cfg.rc_end_usage = AOM_CBR; |
| cfg.rc_min_quantizer = 2; |
| cfg.rc_max_quantizer = 52; |
| cfg.rc_undershoot_pct = 50; |
| cfg.rc_overshoot_pct = 50; |
| cfg.rc_buf_initial_sz = 600; |
| cfg.rc_buf_optimal_sz = 600; |
| cfg.rc_buf_sz = 1000; |
| cfg.rc_resize_mode = 0; // Set to RESIZE_DYNAMIC for dynamic resize. |
| cfg.g_lag_in_frames = 0; |
| cfg.kf_mode = AOM_KF_AUTO; |
| |
| parse_command_line(argc, argv, &app_input, &svc_params, &cfg); |
| |
| unsigned int ts_number_layers = svc_params.number_temporal_layers; |
| unsigned int ss_number_layers = svc_params.number_spatial_layers; |
| |
| unsigned int width = cfg.g_w; |
| unsigned int height = cfg.g_h; |
| |
| if (ts_number_layers != |
| mode_to_num_temporal_layers[app_input.layering_mode] || |
| ss_number_layers != mode_to_num_spatial_layers[app_input.layering_mode]) { |
| die("Number of layers doesn't match layering mode."); |
| } |
| |
| // Y4M reader has its own allocation. |
| if (app_input.input_ctx.file_type != FILE_TYPE_Y4M) { |
| if (!aom_img_alloc(&raw, AOM_IMG_FMT_I420, width, height, 32)) { |
| die("Failed to allocate image", width, height); |
| } |
| } |
| |
| aom_codec_iface_t *encoder = get_aom_encoder_by_short_name("av1"); |
| |
| memcpy(&rc.layer_target_bitrate[0], &svc_params.layer_target_bitrate[0], |
| sizeof(svc_params.layer_target_bitrate)); |
| |
| unsigned int total_rate = 0; |
| for (i = 0; i < ss_number_layers; i++) { |
| total_rate += |
| svc_params |
| .layer_target_bitrate[i * ts_number_layers + ts_number_layers - 1]; |
| } |
| if (total_rate != cfg.rc_target_bitrate) { |
| die("Incorrect total target bitrate"); |
| } |
| |
| svc_params.framerate_factor[0] = 1; |
| if (ts_number_layers == 2) { |
| svc_params.framerate_factor[0] = 2; |
| svc_params.framerate_factor[1] = 1; |
| } else if (ts_number_layers == 3) { |
| svc_params.framerate_factor[0] = 4; |
| svc_params.framerate_factor[1] = 2; |
| svc_params.framerate_factor[2] = 1; |
| } |
| |
| framerate = cfg.g_timebase.den / cfg.g_timebase.num; |
| set_rate_control_metrics(&rc, framerate, ss_number_layers, ts_number_layers); |
| |
| if (app_input.input_ctx.file_type == FILE_TYPE_Y4M) { |
| if (app_input.input_ctx.width != cfg.g_w || |
| app_input.input_ctx.height != cfg.g_h) { |
| die("Incorrect width or height: %d x %d", cfg.g_w, cfg.g_h); |
| } |
| if (app_input.input_ctx.framerate.numerator != cfg.g_timebase.den || |
| app_input.input_ctx.framerate.denominator != cfg.g_timebase.num) { |
| die("Incorrect framerate: numerator %d denominator %d", |
| cfg.g_timebase.num, cfg.g_timebase.den); |
| } |
| } |
| |
| AvxVideoInfo info; |
| info.codec_fourcc = get_fourcc_by_aom_encoder(encoder); |
| info.frame_width = cfg.g_w; |
| info.frame_height = cfg.g_h; |
| info.time_base.numerator = cfg.g_timebase.num; |
| info.time_base.denominator = cfg.g_timebase.den; |
| // Open an output file for each stream. |
| for (unsigned int sl = 0; sl < ss_number_layers; ++sl) { |
| for (unsigned tl = 0; tl < ts_number_layers; ++tl) { |
| i = sl * ts_number_layers + tl; |
| char file_name[PATH_MAX]; |
| |
| snprintf(file_name, sizeof(file_name), "%s_%u.av1", |
| app_input.output_filename, i); |
| outfile[i] = aom_video_writer_open(file_name, kContainerIVF, &info); |
| if (!outfile[i]) die("Failed to open %s for writing", file_name); |
| } |
| } |
| total_layer_file = |
| aom_video_writer_open(app_input.output_filename, kContainerIVF, &info); |
| if (!total_layer_file) |
| die("Failed to open %s for writing", app_input.output_filename); |
| |
| // Initialize codec. |
| aom_codec_ctx_t codec; |
| if (aom_codec_enc_init(&codec, encoder, &cfg, 0)) |
| die("Failed to initialize encoder"); |
| |
| aom_codec_control(&codec, AOME_SET_CPUUSED, app_input.speed); |
| aom_codec_control(&codec, AV1E_SET_AQ_MODE, app_input.aq_mode ? 3 : 0); |
| aom_codec_control(&codec, AV1E_SET_GF_CBR_BOOST_PCT, 0); |
| aom_codec_control(&codec, AV1E_SET_ENABLE_CDEF, 1); |
| aom_codec_control(&codec, AV1E_SET_ENABLE_ORDER_HINT, 0); |
| aom_codec_control(&codec, AV1E_SET_ENABLE_TPL_MODEL, 0); |
| aom_codec_control(&codec, AV1E_SET_DELTAQ_MODE, 0); |
| aom_codec_control(&codec, AV1E_SET_COEFF_COST_UPD_FREQ, 2); |
| aom_codec_control(&codec, AV1E_SET_MODE_COST_UPD_FREQ, 2); |
| aom_codec_control(&codec, AV1E_SET_MV_COST_UPD_FREQ, 3); |
| aom_codec_control(&codec, AV1E_SET_TILE_COLUMNS, |
| cfg.g_threads ? get_msb(cfg.g_threads) : 0); |
| if (cfg.g_threads > 1) aom_codec_control(&codec, AV1E_SET_ROW_MT, 1); |
| |
| svc_params.number_spatial_layers = ss_number_layers; |
| svc_params.number_temporal_layers = ts_number_layers; |
| for (i = 0; i < ss_number_layers * ts_number_layers; ++i) { |
| svc_params.max_quantizers[i] = cfg.rc_max_quantizer; |
| svc_params.min_quantizers[i] = cfg.rc_min_quantizer; |
| } |
| for (i = 0; i < ss_number_layers; ++i) { |
| svc_params.scaling_factor_num[i] = 1; |
| svc_params.scaling_factor_den[i] = 1; |
| } |
| if (ss_number_layers == 2) { |
| svc_params.scaling_factor_num[0] = 1; |
| svc_params.scaling_factor_den[0] = 2; |
| } else if (ss_number_layers == 3) { |
| svc_params.scaling_factor_num[0] = 1; |
| svc_params.scaling_factor_den[0] = 4; |
| svc_params.scaling_factor_num[1] = 1; |
| svc_params.scaling_factor_den[1] = 2; |
| } |
| |
| aom_codec_control(&codec, AV1E_SET_SVC_PARAMS, &svc_params); |
| |
| // This controls the maximum target size of the key frame. |
| // For generating smaller key frames, use a smaller max_intra_size_pct |
| // value, like 100 or 200. |
| { |
| const int max_intra_size_pct = 300; |
| aom_codec_control(&codec, AOME_SET_MAX_INTRA_BITRATE_PCT, |
| max_intra_size_pct); |
| } |
| |
| for (unsigned int slx = 0; slx < ss_number_layers; slx++) cx_time_sl[slx] = 0; |
| frame_avail = 1; |
| while (frame_avail || got_data) { |
| struct aom_usec_timer timer; |
| frame_avail = read_frame(&(app_input.input_ctx), &raw); |
| int is_key_frame = (frame_cnt % cfg.kf_max_dist) == 0; |
| // Loop over spatial layers. |
| for (unsigned int slx = 0; slx < ss_number_layers; slx++) { |
| aom_codec_iter_t iter = NULL; |
| const aom_codec_cx_pkt_t *pkt; |
| int layer = 0; |
| |
| // Set the reference/update flags, layer_id, and reference_map |
| // buffer index. |
| set_layer_pattern(app_input.layering_mode, frame_cnt, &layer_id, |
| &ref_frame_config, &use_svc_control, slx, is_key_frame, |
| (app_input.layering_mode == 9)); |
| aom_codec_control(&codec, AV1E_SET_SVC_LAYER_ID, &layer_id); |
| if (use_svc_control) |
| aom_codec_control(&codec, AV1E_SET_SVC_REF_FRAME_CONFIG, |
| &ref_frame_config); |
| if (set_err_resil_frame) { |
| // Set error_resilient per frame: off/0 for base layer and |
| // on/1 for enhancement layer frames. |
| int err_resil_mode = |
| (layer_id.spatial_layer_id > 0 || layer_id.temporal_layer_id > 0); |
| aom_codec_control(&codec, AV1E_SET_ERROR_RESILIENT_MODE, |
| err_resil_mode); |
| } |
| |
| layer = slx * ts_number_layers + layer_id.temporal_layer_id; |
| if (frame_avail && slx == 0) ++rc.layer_input_frames[layer]; |
| |
| if (test_dynamic_scaling_single_layer) { |
| if (frame_cnt >= 200 && frame_cnt <= 400) { |
| // Scale source down by 2x2. |
| struct aom_scaling_mode mode = { AOME_ONETWO, AOME_ONETWO }; |
| aom_codec_control(&codec, AOME_SET_SCALEMODE, &mode); |
| } else { |
| // Source back up to original resolution (no scaling). |
| struct aom_scaling_mode mode = { AOME_NORMAL, AOME_NORMAL }; |
| aom_codec_control(&codec, AOME_SET_SCALEMODE, &mode); |
| } |
| } |
| |
| // Do the layer encode. |
| aom_usec_timer_start(&timer); |
| if (aom_codec_encode(&codec, frame_avail ? &raw : NULL, pts, 1, flags)) |
| die_codec(&codec, "Failed to encode frame"); |
| aom_usec_timer_mark(&timer); |
| cx_time += aom_usec_timer_elapsed(&timer); |
| cx_time_sl[slx] += aom_usec_timer_elapsed(&timer); |
| |
| got_data = 0; |
| while ((pkt = aom_codec_get_cx_data(&codec, &iter))) { |
| got_data = 1; |
| switch (pkt->kind) { |
| case AOM_CODEC_CX_FRAME_PKT: |
| for (unsigned int sl = layer_id.spatial_layer_id; |
| sl < ss_number_layers; ++sl) { |
| for (unsigned tl = layer_id.temporal_layer_id; |
| tl < ts_number_layers; ++tl) { |
| unsigned int j = sl * ts_number_layers + tl; |
| aom_video_writer_write_frame(outfile[j], pkt->data.frame.buf, |
| pkt->data.frame.sz, pts); |
| if (sl == (unsigned int)layer_id.spatial_layer_id) |
| rc.layer_encoding_bitrate[j] += 8.0 * pkt->data.frame.sz; |
| } |
| } |
| // Write everything into the top layer. |
| aom_video_writer_write_frame(total_layer_file, pkt->data.frame.buf, |
| pkt->data.frame.sz, pts); |
| // Keep count of rate control stats per layer (for non-key). |
| if (!(pkt->data.frame.flags & AOM_FRAME_IS_KEY)) { |
| unsigned int j = layer_id.spatial_layer_id * ts_number_layers + |
| layer_id.temporal_layer_id; |
| rc.layer_avg_frame_size[j] += 8.0 * pkt->data.frame.sz; |
| rc.layer_avg_rate_mismatch[j] += |
| fabs(8.0 * pkt->data.frame.sz - rc.layer_pfb[j]) / |
| rc.layer_pfb[j]; |
| if (slx == 0) ++rc.layer_enc_frames[layer_id.temporal_layer_id]; |
| } |
| |
| // Update for short-time encoding bitrate states, for moving window |
| // of size rc->window, shifted by rc->window / 2. |
| // Ignore first window segment, due to key frame. |
| // For spatial layers: only do this for top/highest SL. |
| if (frame_cnt > rc.window_size && slx == ss_number_layers - 1) { |
| sum_bitrate += 0.001 * 8.0 * pkt->data.frame.sz * framerate; |
| rc.window_size = (rc.window_size <= 0) ? 1 : rc.window_size; |
| if (frame_cnt % rc.window_size == 0) { |
| rc.window_count += 1; |
| rc.avg_st_encoding_bitrate += sum_bitrate / rc.window_size; |
| rc.variance_st_encoding_bitrate += |
| (sum_bitrate / rc.window_size) * |
| (sum_bitrate / rc.window_size); |
| sum_bitrate = 0.0; |
| } |
| } |
| // Second shifted window. |
| if (frame_cnt > rc.window_size + rc.window_size / 2 && |
| slx == ss_number_layers - 1) { |
| sum_bitrate2 += 0.001 * 8.0 * pkt->data.frame.sz * framerate; |
| if (frame_cnt > 2 * rc.window_size && |
| frame_cnt % rc.window_size == 0) { |
| rc.window_count += 1; |
| rc.avg_st_encoding_bitrate += sum_bitrate2 / rc.window_size; |
| rc.variance_st_encoding_bitrate += |
| (sum_bitrate2 / rc.window_size) * |
| (sum_bitrate2 / rc.window_size); |
| sum_bitrate2 = 0.0; |
| } |
| } |
| break; |
| default: break; |
| } |
| } |
| } // loop over spatial layers |
| ++frame_cnt; |
| pts += frame_duration; |
| } |
| close_input_file(&(app_input.input_ctx)); |
| printout_rate_control_summary(&rc, frame_cnt, ss_number_layers, |
| ts_number_layers); |
| printf("\n"); |
| printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f\n", |
| frame_cnt, 1000 * (float)cx_time / (double)(frame_cnt * 1000000), |
| 1000000 * (double)frame_cnt / (double)cx_time); |
| |
| if (ss_number_layers > 1) { |
| printf("Per spatial layer: \n"); |
| for (unsigned int slx = 0; slx < ss_number_layers; slx++) |
| printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f\n", |
| frame_cnt, (float)cx_time_sl[slx] / (double)(frame_cnt * 1000), |
| 1000000 * (double)frame_cnt / (double)cx_time_sl[slx]); |
| } |
| |
| if (aom_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec"); |
| |
| // Try to rewrite the output file headers with the actual frame count. |
| for (i = 0; i < ss_number_layers * ts_number_layers; ++i) |
| aom_video_writer_close(outfile[i]); |
| aom_video_writer_close(total_layer_file); |
| |
| if (app_input.input_ctx.file_type != FILE_TYPE_Y4M) { |
| aom_img_free(&raw); |
| } |
| return EXIT_SUCCESS; |
| } |