| /* | 
 |  * Copyright (c) 2019, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include <emmintrin.h> | 
 | #include "config/aom_dsp_rtcd.h" | 
 |  | 
 | #include "aom/aom_integer.h" | 
 | #include "aom_dsp/x86/quantize_x86.h" | 
 | #include "av1/encoder/av1_quantize.h" | 
 |  | 
 | static INLINE __m128i highbd_invert_sign_64bit_sse2(__m128i a, __m128i sign) { | 
 |   a = _mm_xor_si128(a, sign); | 
 |   return _mm_sub_epi64(a, sign); | 
 | } | 
 |  | 
 | static INLINE void highbd_mul_shift_sse2(const __m128i *x, const __m128i *y, | 
 |                                          __m128i *p, const int shift) { | 
 |   __m128i sign = _mm_srai_epi32(*y, 31); | 
 |   __m128i sign_lo = _mm_unpacklo_epi32(sign, sign); | 
 |   __m128i sign_hi = _mm_unpackhi_epi32(sign, sign); | 
 |   __m128i abs_y = invert_sign_32_sse2(*y, sign); | 
 |   __m128i prod_lo = _mm_mul_epu32(*x, abs_y); | 
 |   __m128i prod_hi = _mm_srli_epi64(*x, 32); | 
 |   const __m128i mult_hi = _mm_srli_epi64(abs_y, 32); | 
 |   prod_hi = _mm_mul_epu32(prod_hi, mult_hi); | 
 |   prod_lo = highbd_invert_sign_64bit_sse2(prod_lo, sign_lo); | 
 |   prod_hi = highbd_invert_sign_64bit_sse2(prod_hi, sign_hi); | 
 |  | 
 |   prod_lo = _mm_srli_epi64(prod_lo, shift); | 
 |   const __m128i mask = _mm_set_epi32(0, -1, 0, -1); | 
 |   prod_lo = _mm_and_si128(prod_lo, mask); | 
 |   prod_hi = _mm_srli_epi64(prod_hi, shift); | 
 |  | 
 |   prod_hi = _mm_slli_epi64(prod_hi, 32); | 
 |   *p = _mm_or_si128(prod_lo, prod_hi); | 
 | } | 
 |  | 
 | static INLINE void highbd_calculate_qcoeff(__m128i *coeff, const __m128i *round, | 
 |                                            const __m128i *quant, | 
 |                                            const __m128i *shift, | 
 |                                            const int *log_scale) { | 
 |   __m128i tmp, qcoeff; | 
 |   qcoeff = _mm_add_epi32(*coeff, *round); | 
 |   highbd_mul_shift_sse2(&qcoeff, quant, &tmp, 16); | 
 |   qcoeff = _mm_add_epi32(tmp, qcoeff); | 
 |   highbd_mul_shift_sse2(&qcoeff, shift, coeff, 16 - *log_scale); | 
 | } | 
 |  | 
 | static INLINE void highbd_update_mask1(__m128i *cmp_mask0, | 
 |                                        const int16_t *iscan_ptr, int *is_found, | 
 |                                        __m128i *mask) { | 
 |   __m128i temp_mask = _mm_setzero_si128(); | 
 |   if (_mm_movemask_epi8(*cmp_mask0)) { | 
 |     __m128i iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr)); | 
 |     __m128i mask0 = _mm_and_si128(*cmp_mask0, iscan0); | 
 |     temp_mask = mask0; | 
 |     *is_found = 1; | 
 |   } | 
 |   *mask = _mm_max_epi16(temp_mask, *mask); | 
 | } | 
 |  | 
 | static INLINE void highbd_update_mask0(__m128i *qcoeff0, __m128i *qcoeff1, | 
 |                                        __m128i *threshold, | 
 |                                        const int16_t *iscan_ptr, int *is_found, | 
 |                                        __m128i *mask) { | 
 |   __m128i coeff[2], cmp_mask0, cmp_mask1; | 
 |  | 
 |   coeff[0] = _mm_slli_epi32(*qcoeff0, AOM_QM_BITS); | 
 |   cmp_mask0 = _mm_cmpgt_epi32(coeff[0], threshold[0]); | 
 |   coeff[1] = _mm_slli_epi32(*qcoeff1, AOM_QM_BITS); | 
 |   cmp_mask1 = _mm_cmpgt_epi32(coeff[1], threshold[1]); | 
 |  | 
 |   cmp_mask0 = _mm_packs_epi32(cmp_mask0, cmp_mask1); | 
 |  | 
 |   highbd_update_mask1(&cmp_mask0, iscan_ptr, is_found, mask); | 
 | } | 
 |  | 
 | static INLINE __m128i highbd_calculate_dqcoeff(__m128i qcoeff, __m128i dequant, | 
 |                                                const int log_scale) { | 
 |   __m128i coeff_sign = _mm_srai_epi32(qcoeff, 31); | 
 |   __m128i abs_coeff = invert_sign_32_sse2(qcoeff, coeff_sign); | 
 |   highbd_mul_shift_sse2(&abs_coeff, &dequant, &abs_coeff, log_scale); | 
 |   return invert_sign_32_sse2(abs_coeff, coeff_sign); | 
 | } | 
 |  | 
 | #if CONFIG_EXTQUANT | 
 | void aom_highbd_quantize_b_adaptive_sse2( | 
 |     const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int32_t *zbin_ptr, | 
 |     const int32_t *round_ptr, const int32_t *quant_ptr, | 
 |     const int32_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, | 
 |     tran_low_t *dqcoeff_ptr, const int32_t *dequant_ptr, uint16_t *eob_ptr, | 
 |     const int16_t *scan, const int16_t *iscan) { | 
 | #else | 
 | void aom_highbd_quantize_b_adaptive_sse2( | 
 |     const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr, | 
 |     const int16_t *round_ptr, const int16_t *quant_ptr, | 
 |     const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, | 
 |     tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, | 
 |     const int16_t *scan, const int16_t *iscan) { | 
 | #endif | 
 |   int index = 8; | 
 |   const int log_scale = 0; | 
 |   int non_zero_count = 0; | 
 |   int non_zero_count_prescan_add_zero = 0; | 
 |   int is_found0 = 0, is_found1 = 0; | 
 |   int eob = -1; | 
 |   const __m128i zero = _mm_setzero_si128(); | 
 |   const __m128i one = _mm_set1_epi32(1); | 
 |   __m128i zbin, round, quant, dequant, shift; | 
 |   __m128i coeff0, coeff1, coeff0_sign, coeff1_sign; | 
 |   __m128i qcoeff0, qcoeff1; | 
 |   __m128i cmp_mask0, cmp_mask1, cmp_mask; | 
 |   __m128i all_zero; | 
 |   __m128i mask0 = zero, mask1 = zero; | 
 |  | 
 |   int prescan_add[2]; | 
 |   int thresh[4]; | 
 |   const qm_val_t wt = (1 << AOM_QM_BITS); | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     prescan_add[i] = | 
 |         ROUND_POWER_OF_TWO(dequant_ptr[i] * EOB_FACTOR, 7 + QUANT_TABLE_BITS); | 
 |     thresh[i] = (zbin_ptr[i] * wt + prescan_add[i]) - 1; | 
 |   } | 
 |   thresh[2] = thresh[3] = thresh[1]; | 
 |   __m128i threshold[2]; | 
 |   threshold[0] = _mm_loadu_si128((__m128i *)&thresh[0]); | 
 |   threshold[1] = _mm_unpackhi_epi64(threshold[0], threshold[0]); | 
 |  | 
 | #if SKIP_EOB_FACTOR_ADJUST | 
 |   int first = -1; | 
 | #endif | 
 |   // Setup global values. | 
 |   zbin = _mm_load_si128((const __m128i *)zbin_ptr); | 
 |   round = _mm_load_si128((const __m128i *)round_ptr); | 
 |   quant = _mm_load_si128((const __m128i *)quant_ptr); | 
 |   dequant = _mm_load_si128((const __m128i *)dequant_ptr); | 
 |   shift = _mm_load_si128((const __m128i *)quant_shift_ptr); | 
 |  | 
 |   __m128i zbin_sign = _mm_srai_epi16(zbin, 15); | 
 |   __m128i round_sign = _mm_srai_epi16(round, 15); | 
 |   __m128i quant_sign = _mm_srai_epi16(quant, 15); | 
 |   __m128i dequant_sign = _mm_srai_epi16(dequant, 15); | 
 |   __m128i shift_sign = _mm_srai_epi16(shift, 15); | 
 |  | 
 |   zbin = _mm_unpacklo_epi16(zbin, zbin_sign); | 
 |   round = _mm_unpacklo_epi16(round, round_sign); | 
 |   quant = _mm_unpacklo_epi16(quant, quant_sign); | 
 |   dequant = _mm_unpacklo_epi16(dequant, dequant_sign); | 
 |   shift = _mm_unpacklo_epi16(shift, shift_sign); | 
 |   zbin = _mm_sub_epi32(zbin, one); | 
 |  | 
 |   // Do DC and first 15 AC. | 
 |   coeff0 = _mm_load_si128((__m128i *)(coeff_ptr)); | 
 |   coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + 4)); | 
 |  | 
 |   coeff0_sign = _mm_srai_epi32(coeff0, 31); | 
 |   coeff1_sign = _mm_srai_epi32(coeff1, 31); | 
 |   qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign); | 
 |   qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign); | 
 |  | 
 |   highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan, &is_found0, &mask0); | 
 |  | 
 |   cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin); | 
 |   zbin = _mm_unpackhi_epi64(zbin, zbin);  // Switch DC to AC | 
 |   cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin); | 
 |   cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1); | 
 |   highbd_update_mask1(&cmp_mask, iscan, &is_found1, &mask1); | 
 |  | 
 |   threshold[0] = threshold[1]; | 
 |   all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); | 
 |   if (_mm_movemask_epi8(all_zero) == 0) { | 
 |     _mm_store_si128((__m128i *)(qcoeff_ptr), zero); | 
 |     _mm_store_si128((__m128i *)(qcoeff_ptr + 4), zero); | 
 |     _mm_store_si128((__m128i *)(dqcoeff_ptr), zero); | 
 |     _mm_store_si128((__m128i *)(dqcoeff_ptr + 4), zero); | 
 |  | 
 |     round = _mm_unpackhi_epi64(round, round); | 
 |     quant = _mm_unpackhi_epi64(quant, quant); | 
 |     shift = _mm_unpackhi_epi64(shift, shift); | 
 |     dequant = _mm_unpackhi_epi64(dequant, dequant); | 
 |   } else { | 
 |     highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale); | 
 |  | 
 |     round = _mm_unpackhi_epi64(round, round); | 
 |     quant = _mm_unpackhi_epi64(quant, quant); | 
 |     shift = _mm_unpackhi_epi64(shift, shift); | 
 |     highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale); | 
 |  | 
 |     // Reinsert signs | 
 |     qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign); | 
 |     qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign); | 
 |  | 
 |     // Mask out zbin threshold coeffs | 
 |     qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); | 
 |     qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); | 
 |  | 
 |     _mm_store_si128((__m128i *)(qcoeff_ptr), qcoeff0); | 
 |     _mm_store_si128((__m128i *)(qcoeff_ptr + 4), qcoeff1); | 
 |  | 
 |     coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale); | 
 |     dequant = _mm_unpackhi_epi64(dequant, dequant); | 
 |     coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale); | 
 |     _mm_store_si128((__m128i *)(dqcoeff_ptr), coeff0); | 
 |     _mm_store_si128((__m128i *)(dqcoeff_ptr + 4), coeff1); | 
 |   } | 
 |  | 
 |   // AC only loop. | 
 |   while (index < n_coeffs) { | 
 |     coeff0 = _mm_load_si128((__m128i *)(coeff_ptr + index)); | 
 |     coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + index + 4)); | 
 |  | 
 |     coeff0_sign = _mm_srai_epi32(coeff0, 31); | 
 |     coeff1_sign = _mm_srai_epi32(coeff1, 31); | 
 |     qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign); | 
 |     qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign); | 
 |  | 
 |     highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan + index, | 
 |                         &is_found0, &mask0); | 
 |  | 
 |     cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin); | 
 |     cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin); | 
 |     cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1); | 
 |     highbd_update_mask1(&cmp_mask, iscan + index, &is_found1, &mask1); | 
 |  | 
 |     all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); | 
 |     if (_mm_movemask_epi8(all_zero) == 0) { | 
 |       _mm_store_si128((__m128i *)(qcoeff_ptr + index), zero); | 
 |       _mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), zero); | 
 |       _mm_store_si128((__m128i *)(dqcoeff_ptr + index), zero); | 
 |       _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), zero); | 
 |       index += 8; | 
 |       continue; | 
 |     } | 
 |     highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale); | 
 |     highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale); | 
 |  | 
 |     qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign); | 
 |     qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign); | 
 |  | 
 |     qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); | 
 |     qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); | 
 |  | 
 |     _mm_store_si128((__m128i *)(qcoeff_ptr + index), qcoeff0); | 
 |     _mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), qcoeff1); | 
 |  | 
 |     coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale); | 
 |     coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale); | 
 |  | 
 |     _mm_store_si128((__m128i *)(dqcoeff_ptr + index), coeff0); | 
 |     _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), coeff1); | 
 |  | 
 |     index += 8; | 
 |   } | 
 |   if (is_found0) non_zero_count = calculate_non_zero_count(mask0); | 
 |   if (is_found1) | 
 |     non_zero_count_prescan_add_zero = calculate_non_zero_count(mask1); | 
 |  | 
 |   for (int i = non_zero_count_prescan_add_zero - 1; i >= non_zero_count; i--) { | 
 |     const int rc = scan[i]; | 
 |     qcoeff_ptr[rc] = 0; | 
 |     dqcoeff_ptr[rc] = 0; | 
 |   } | 
 |  | 
 |   for (int i = non_zero_count - 1; i >= 0; i--) { | 
 |     const int rc = scan[i]; | 
 |     if (qcoeff_ptr[rc]) { | 
 |       eob = i; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   *eob_ptr = eob + 1; | 
 | #if SKIP_EOB_FACTOR_ADJUST | 
 |   // TODO(Aniket): Experiment the following loop with intrinsic by combining | 
 |   // with the quantization loop above | 
 |   for (int i = 0; i < non_zero_count; i++) { | 
 |     const int rc = scan[i]; | 
 |     const int qcoeff = qcoeff_ptr[rc]; | 
 |     if (qcoeff) { | 
 |       first = i; | 
 |       break; | 
 |     } | 
 |   } | 
 |   if ((*eob_ptr - 1) >= 0 && first == (*eob_ptr - 1)) { | 
 |     const int rc = scan[(*eob_ptr - 1)]; | 
 |     if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) { | 
 |       const int coeff = coeff_ptr[rc] * wt; | 
 |       const int coeff_sign = (coeff >> 31); | 
 |       const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; | 
 |       const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST; | 
 |       const int prescan_add_val = ROUND_POWER_OF_TWO( | 
 |           dequant_ptr[rc != 0] * factor, 7 + QUANT_TABLE_BITS); | 
 |       if (abs_coeff < | 
 |           (zbin_ptr[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val)) { | 
 |         qcoeff_ptr[rc] = 0; | 
 |         dqcoeff_ptr[rc] = 0; | 
 |         *eob_ptr = 0; | 
 |       } | 
 |     } | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | #if CONFIG_EXTQUANT | 
 | void aom_highbd_quantize_b_32x32_adaptive_sse2( | 
 |     const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int32_t *zbin_ptr, | 
 |     const int32_t *round_ptr, const int32_t *quant_ptr, | 
 |     const int32_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, | 
 |     tran_low_t *dqcoeff_ptr, const int32_t *dequant_ptr, uint16_t *eob_ptr, | 
 |     const int16_t *scan, const int16_t *iscan) { | 
 | #else | 
 | void aom_highbd_quantize_b_32x32_adaptive_sse2( | 
 |     const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr, | 
 |     const int16_t *round_ptr, const int16_t *quant_ptr, | 
 |     const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, | 
 |     tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, | 
 |     const int16_t *scan, const int16_t *iscan) { | 
 | #endif | 
 |   int index = 8; | 
 |   const int log_scale = 1; | 
 |   int non_zero_count = 0; | 
 |   int non_zero_count_prescan_add_zero = 0; | 
 |   int is_found0 = 0, is_found1 = 0; | 
 |   int eob = -1; | 
 |   const __m128i zero = _mm_setzero_si128(); | 
 |   const __m128i one = _mm_set1_epi32(1); | 
 |   const __m128i log_scale_vec = _mm_set1_epi32(log_scale); | 
 |   __m128i zbin, round, quant, dequant, shift; | 
 |   __m128i coeff0, coeff1, coeff0_sign, coeff1_sign; | 
 |   __m128i qcoeff0, qcoeff1; | 
 |   __m128i cmp_mask0, cmp_mask1, cmp_mask; | 
 |   __m128i all_zero; | 
 |   __m128i mask0 = zero, mask1 = zero; | 
 |  | 
 |   const int zbins[2] = { ROUND_POWER_OF_TWO(zbin_ptr[0], log_scale), | 
 |                          ROUND_POWER_OF_TWO(zbin_ptr[1], log_scale) }; | 
 |   int prescan_add[2]; | 
 |   int thresh[4]; | 
 |   const qm_val_t wt = (1 << AOM_QM_BITS); | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     prescan_add[i] = | 
 |         ROUND_POWER_OF_TWO(dequant_ptr[i] * EOB_FACTOR, 7 + QUANT_TABLE_BITS); | 
 |     thresh[i] = (zbins[i] * wt + prescan_add[i]) - 1; | 
 |   } | 
 |   thresh[2] = thresh[3] = thresh[1]; | 
 |   __m128i threshold[2]; | 
 |   threshold[0] = _mm_loadu_si128((__m128i *)&thresh[0]); | 
 |   threshold[1] = _mm_unpackhi_epi64(threshold[0], threshold[0]); | 
 |  | 
 | #if SKIP_EOB_FACTOR_ADJUST | 
 |   int first = -1; | 
 | #endif | 
 |   // Setup global values. | 
 |   zbin = _mm_load_si128((const __m128i *)zbin_ptr); | 
 |   round = _mm_load_si128((const __m128i *)round_ptr); | 
 |   quant = _mm_load_si128((const __m128i *)quant_ptr); | 
 |   dequant = _mm_load_si128((const __m128i *)dequant_ptr); | 
 |   shift = _mm_load_si128((const __m128i *)quant_shift_ptr); | 
 |  | 
 |   __m128i zbin_sign = _mm_srai_epi16(zbin, 15); | 
 |   __m128i round_sign = _mm_srai_epi16(round, 15); | 
 |   __m128i quant_sign = _mm_srai_epi16(quant, 15); | 
 |   __m128i dequant_sign = _mm_srai_epi16(dequant, 15); | 
 |   __m128i shift_sign = _mm_srai_epi16(shift, 15); | 
 |  | 
 |   zbin = _mm_unpacklo_epi16(zbin, zbin_sign); | 
 |   round = _mm_unpacklo_epi16(round, round_sign); | 
 |   quant = _mm_unpacklo_epi16(quant, quant_sign); | 
 |   dequant = _mm_unpacklo_epi16(dequant, dequant_sign); | 
 |   shift = _mm_unpacklo_epi16(shift, shift_sign); | 
 |  | 
 |   // Shift with rounding. | 
 |   zbin = _mm_add_epi32(zbin, log_scale_vec); | 
 |   round = _mm_add_epi32(round, log_scale_vec); | 
 |   zbin = _mm_srli_epi32(zbin, log_scale); | 
 |   round = _mm_srli_epi32(round, log_scale); | 
 |   zbin = _mm_sub_epi32(zbin, one); | 
 |  | 
 |   // Do DC and first 15 AC. | 
 |   coeff0 = _mm_load_si128((__m128i *)(coeff_ptr)); | 
 |   coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + 4)); | 
 |  | 
 |   coeff0_sign = _mm_srai_epi32(coeff0, 31); | 
 |   coeff1_sign = _mm_srai_epi32(coeff1, 31); | 
 |   qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign); | 
 |   qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign); | 
 |  | 
 |   highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan, &is_found0, &mask0); | 
 |  | 
 |   cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin); | 
 |   zbin = _mm_unpackhi_epi64(zbin, zbin);  // Switch DC to AC | 
 |   cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin); | 
 |   cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1); | 
 |   highbd_update_mask1(&cmp_mask, iscan, &is_found1, &mask1); | 
 |  | 
 |   threshold[0] = threshold[1]; | 
 |   all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); | 
 |   if (_mm_movemask_epi8(all_zero) == 0) { | 
 |     _mm_store_si128((__m128i *)(qcoeff_ptr), zero); | 
 |     _mm_store_si128((__m128i *)(qcoeff_ptr + 4), zero); | 
 |     _mm_store_si128((__m128i *)(dqcoeff_ptr), zero); | 
 |     _mm_store_si128((__m128i *)(dqcoeff_ptr + 4), zero); | 
 |  | 
 |     round = _mm_unpackhi_epi64(round, round); | 
 |     quant = _mm_unpackhi_epi64(quant, quant); | 
 |     shift = _mm_unpackhi_epi64(shift, shift); | 
 |     dequant = _mm_unpackhi_epi64(dequant, dequant); | 
 |   } else { | 
 |     highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale); | 
 |  | 
 |     round = _mm_unpackhi_epi64(round, round); | 
 |     quant = _mm_unpackhi_epi64(quant, quant); | 
 |     shift = _mm_unpackhi_epi64(shift, shift); | 
 |     highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale); | 
 |  | 
 |     // Reinsert signs | 
 |     qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign); | 
 |     qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign); | 
 |  | 
 |     // Mask out zbin threshold coeffs | 
 |     qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); | 
 |     qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); | 
 |  | 
 |     _mm_store_si128((__m128i *)(qcoeff_ptr), qcoeff0); | 
 |     _mm_store_si128((__m128i *)(qcoeff_ptr + 4), qcoeff1); | 
 |  | 
 |     coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale); | 
 |     dequant = _mm_unpackhi_epi64(dequant, dequant); | 
 |     coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale); | 
 |     _mm_store_si128((__m128i *)(dqcoeff_ptr), coeff0); | 
 |     _mm_store_si128((__m128i *)(dqcoeff_ptr + 4), coeff1); | 
 |   } | 
 |  | 
 |   // AC only loop. | 
 |   while (index < n_coeffs) { | 
 |     coeff0 = _mm_load_si128((__m128i *)(coeff_ptr + index)); | 
 |     coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + index + 4)); | 
 |  | 
 |     coeff0_sign = _mm_srai_epi32(coeff0, 31); | 
 |     coeff1_sign = _mm_srai_epi32(coeff1, 31); | 
 |     qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign); | 
 |     qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign); | 
 |  | 
 |     highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan + index, | 
 |                         &is_found0, &mask0); | 
 |  | 
 |     cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin); | 
 |     cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin); | 
 |     cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1); | 
 |     highbd_update_mask1(&cmp_mask, iscan + index, &is_found1, &mask1); | 
 |  | 
 |     all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); | 
 |     if (_mm_movemask_epi8(all_zero) == 0) { | 
 |       _mm_store_si128((__m128i *)(qcoeff_ptr + index), zero); | 
 |       _mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), zero); | 
 |       _mm_store_si128((__m128i *)(dqcoeff_ptr + index), zero); | 
 |       _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), zero); | 
 |       index += 8; | 
 |       continue; | 
 |     } | 
 |     highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale); | 
 |     highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale); | 
 |  | 
 |     qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign); | 
 |     qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign); | 
 |  | 
 |     qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); | 
 |     qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); | 
 |  | 
 |     _mm_store_si128((__m128i *)(qcoeff_ptr + index), qcoeff0); | 
 |     _mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), qcoeff1); | 
 |  | 
 |     coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale); | 
 |     coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale); | 
 |  | 
 |     _mm_store_si128((__m128i *)(dqcoeff_ptr + index), coeff0); | 
 |     _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), coeff1); | 
 |  | 
 |     index += 8; | 
 |   } | 
 |   if (is_found0) non_zero_count = calculate_non_zero_count(mask0); | 
 |   if (is_found1) | 
 |     non_zero_count_prescan_add_zero = calculate_non_zero_count(mask1); | 
 |  | 
 |   for (int i = non_zero_count_prescan_add_zero - 1; i >= non_zero_count; i--) { | 
 |     const int rc = scan[i]; | 
 |     qcoeff_ptr[rc] = 0; | 
 |     dqcoeff_ptr[rc] = 0; | 
 |   } | 
 |  | 
 |   for (int i = non_zero_count - 1; i >= 0; i--) { | 
 |     const int rc = scan[i]; | 
 |     if (qcoeff_ptr[rc]) { | 
 |       eob = i; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   *eob_ptr = eob + 1; | 
 | #if SKIP_EOB_FACTOR_ADJUST | 
 |   // TODO(Aniket): Experiment the following loop with intrinsic by combining | 
 |   // with the quantization loop above | 
 |   for (int i = 0; i < non_zero_count; i++) { | 
 |     const int rc = scan[i]; | 
 |     const int qcoeff = qcoeff_ptr[rc]; | 
 |     if (qcoeff) { | 
 |       first = i; | 
 |       break; | 
 |     } | 
 |   } | 
 |   if ((*eob_ptr - 1) >= 0 && first == (*eob_ptr - 1)) { | 
 |     const int rc = scan[(*eob_ptr - 1)]; | 
 |     if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) { | 
 |       const int coeff = coeff_ptr[rc] * wt; | 
 |       const int coeff_sign = (coeff >> 31); | 
 |       const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; | 
 |       const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST; | 
 |       const int prescan_add_val = ROUND_POWER_OF_TWO( | 
 |           dequant_ptr[rc != 0] * factor, 7 + QUANT_TABLE_BITS); | 
 |       if (abs_coeff < (zbins[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val)) { | 
 |         qcoeff_ptr[rc] = 0; | 
 |         dqcoeff_ptr[rc] = 0; | 
 |         *eob_ptr = 0; | 
 |       } | 
 |     } | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | #if CONFIG_EXTQUANT | 
 | void aom_highbd_quantize_b_64x64_adaptive_sse2( | 
 |     const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int32_t *zbin_ptr, | 
 |     const int32_t *round_ptr, const int32_t *quant_ptr, | 
 |     const int32_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, | 
 |     tran_low_t *dqcoeff_ptr, const int32_t *dequant_ptr, uint16_t *eob_ptr, | 
 |     const int16_t *scan, const int16_t *iscan) { | 
 | #else | 
 | void aom_highbd_quantize_b_64x64_adaptive_sse2( | 
 |     const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr, | 
 |     const int16_t *round_ptr, const int16_t *quant_ptr, | 
 |     const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr, | 
 |     tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr, | 
 |     const int16_t *scan, const int16_t *iscan) { | 
 | #endif | 
 |   int index = 8; | 
 |   const int log_scale = 2; | 
 |   int non_zero_count = 0; | 
 |   int non_zero_count_prescan_add_zero = 0; | 
 |   int is_found0 = 0, is_found1 = 0; | 
 |   int eob = -1; | 
 |   const __m128i zero = _mm_setzero_si128(); | 
 |   const __m128i one = _mm_set1_epi32(1); | 
 |   const __m128i log_scale_vec = _mm_set1_epi32(log_scale); | 
 |   __m128i zbin, round, quant, dequant, shift; | 
 |   __m128i coeff0, coeff1, coeff0_sign, coeff1_sign; | 
 |   __m128i qcoeff0, qcoeff1; | 
 |   __m128i cmp_mask0, cmp_mask1, cmp_mask; | 
 |   __m128i all_zero; | 
 |   __m128i mask0 = zero, mask1 = zero; | 
 |  | 
 |   const int zbins[2] = { ROUND_POWER_OF_TWO(zbin_ptr[0], log_scale), | 
 |                          ROUND_POWER_OF_TWO(zbin_ptr[1], log_scale) }; | 
 |   int prescan_add[2]; | 
 |   int thresh[4]; | 
 |   const qm_val_t wt = (1 << AOM_QM_BITS); | 
 |   for (int i = 0; i < 2; ++i) { | 
 |     prescan_add[i] = | 
 |         ROUND_POWER_OF_TWO(dequant_ptr[i] * EOB_FACTOR, 7 + QUANT_TABLE_BITS); | 
 |     thresh[i] = (zbins[i] * wt + prescan_add[i]) - 1; | 
 |   } | 
 |   thresh[2] = thresh[3] = thresh[1]; | 
 |   __m128i threshold[2]; | 
 |   threshold[0] = _mm_loadu_si128((__m128i *)&thresh[0]); | 
 |   threshold[1] = _mm_unpackhi_epi64(threshold[0], threshold[0]); | 
 |  | 
 | #if SKIP_EOB_FACTOR_ADJUST | 
 |   int first = -1; | 
 | #endif | 
 |   // Setup global values. | 
 |   zbin = _mm_load_si128((const __m128i *)zbin_ptr); | 
 |   round = _mm_load_si128((const __m128i *)round_ptr); | 
 |   quant = _mm_load_si128((const __m128i *)quant_ptr); | 
 |   dequant = _mm_load_si128((const __m128i *)dequant_ptr); | 
 |   shift = _mm_load_si128((const __m128i *)quant_shift_ptr); | 
 |  | 
 |   __m128i zbin_sign = _mm_srai_epi16(zbin, 15); | 
 |   __m128i round_sign = _mm_srai_epi16(round, 15); | 
 |   __m128i quant_sign = _mm_srai_epi16(quant, 15); | 
 |   __m128i dequant_sign = _mm_srai_epi16(dequant, 15); | 
 |   __m128i shift_sign = _mm_srai_epi16(shift, 15); | 
 |  | 
 |   zbin = _mm_unpacklo_epi16(zbin, zbin_sign); | 
 |   round = _mm_unpacklo_epi16(round, round_sign); | 
 |   quant = _mm_unpacklo_epi16(quant, quant_sign); | 
 |   dequant = _mm_unpacklo_epi16(dequant, dequant_sign); | 
 |   shift = _mm_unpacklo_epi16(shift, shift_sign); | 
 |  | 
 |   // Shift with rounding. | 
 |   zbin = _mm_add_epi32(zbin, log_scale_vec); | 
 |   round = _mm_add_epi32(round, log_scale_vec); | 
 |   zbin = _mm_srli_epi32(zbin, log_scale); | 
 |   round = _mm_srli_epi32(round, log_scale); | 
 |   zbin = _mm_sub_epi32(zbin, one); | 
 |  | 
 |   // Do DC and first 15 AC. | 
 |   coeff0 = _mm_load_si128((__m128i *)(coeff_ptr)); | 
 |   coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + 4)); | 
 |  | 
 |   coeff0_sign = _mm_srai_epi32(coeff0, 31); | 
 |   coeff1_sign = _mm_srai_epi32(coeff1, 31); | 
 |   qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign); | 
 |   qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign); | 
 |  | 
 |   highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan, &is_found0, &mask0); | 
 |  | 
 |   cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin); | 
 |   zbin = _mm_unpackhi_epi64(zbin, zbin);  // Switch DC to AC | 
 |   cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin); | 
 |   cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1); | 
 |   highbd_update_mask1(&cmp_mask, iscan, &is_found1, &mask1); | 
 |  | 
 |   threshold[0] = threshold[1]; | 
 |   all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); | 
 |   if (_mm_movemask_epi8(all_zero) == 0) { | 
 |     _mm_store_si128((__m128i *)(qcoeff_ptr), zero); | 
 |     _mm_store_si128((__m128i *)(qcoeff_ptr + 4), zero); | 
 |     _mm_store_si128((__m128i *)(dqcoeff_ptr), zero); | 
 |     _mm_store_si128((__m128i *)(dqcoeff_ptr + 4), zero); | 
 |  | 
 |     round = _mm_unpackhi_epi64(round, round); | 
 |     quant = _mm_unpackhi_epi64(quant, quant); | 
 |     shift = _mm_unpackhi_epi64(shift, shift); | 
 |     dequant = _mm_unpackhi_epi64(dequant, dequant); | 
 |   } else { | 
 |     highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale); | 
 |  | 
 |     round = _mm_unpackhi_epi64(round, round); | 
 |     quant = _mm_unpackhi_epi64(quant, quant); | 
 |     shift = _mm_unpackhi_epi64(shift, shift); | 
 |     highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale); | 
 |  | 
 |     // Reinsert signs | 
 |     qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign); | 
 |     qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign); | 
 |  | 
 |     // Mask out zbin threshold coeffs | 
 |     qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); | 
 |     qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); | 
 |  | 
 |     _mm_store_si128((__m128i *)(qcoeff_ptr), qcoeff0); | 
 |     _mm_store_si128((__m128i *)(qcoeff_ptr + 4), qcoeff1); | 
 |  | 
 |     coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale); | 
 |     dequant = _mm_unpackhi_epi64(dequant, dequant); | 
 |     coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale); | 
 |     _mm_store_si128((__m128i *)(dqcoeff_ptr), coeff0); | 
 |     _mm_store_si128((__m128i *)(dqcoeff_ptr + 4), coeff1); | 
 |   } | 
 |  | 
 |   // AC only loop. | 
 |   while (index < n_coeffs) { | 
 |     coeff0 = _mm_load_si128((__m128i *)(coeff_ptr + index)); | 
 |     coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + index + 4)); | 
 |  | 
 |     coeff0_sign = _mm_srai_epi32(coeff0, 31); | 
 |     coeff1_sign = _mm_srai_epi32(coeff1, 31); | 
 |     qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign); | 
 |     qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign); | 
 |  | 
 |     highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan + index, | 
 |                         &is_found0, &mask0); | 
 |  | 
 |     cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin); | 
 |     cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin); | 
 |     cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1); | 
 |     highbd_update_mask1(&cmp_mask, iscan + index, &is_found1, &mask1); | 
 |  | 
 |     all_zero = _mm_or_si128(cmp_mask0, cmp_mask1); | 
 |     if (_mm_movemask_epi8(all_zero) == 0) { | 
 |       _mm_store_si128((__m128i *)(qcoeff_ptr + index), zero); | 
 |       _mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), zero); | 
 |       _mm_store_si128((__m128i *)(dqcoeff_ptr + index), zero); | 
 |       _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), zero); | 
 |       index += 8; | 
 |       continue; | 
 |     } | 
 |     highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale); | 
 |     highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale); | 
 |  | 
 |     qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign); | 
 |     qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign); | 
 |  | 
 |     qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0); | 
 |     qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1); | 
 |  | 
 |     _mm_store_si128((__m128i *)(qcoeff_ptr + index), qcoeff0); | 
 |     _mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), qcoeff1); | 
 |  | 
 |     coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale); | 
 |     coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale); | 
 |  | 
 |     _mm_store_si128((__m128i *)(dqcoeff_ptr + index), coeff0); | 
 |     _mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), coeff1); | 
 |  | 
 |     index += 8; | 
 |   } | 
 |   if (is_found0) non_zero_count = calculate_non_zero_count(mask0); | 
 |   if (is_found1) | 
 |     non_zero_count_prescan_add_zero = calculate_non_zero_count(mask1); | 
 |  | 
 |   for (int i = non_zero_count_prescan_add_zero - 1; i >= non_zero_count; i--) { | 
 |     const int rc = scan[i]; | 
 |     qcoeff_ptr[rc] = 0; | 
 |     dqcoeff_ptr[rc] = 0; | 
 |   } | 
 |  | 
 |   for (int i = non_zero_count - 1; i >= 0; i--) { | 
 |     const int rc = scan[i]; | 
 |     if (qcoeff_ptr[rc]) { | 
 |       eob = i; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   *eob_ptr = eob + 1; | 
 | #if SKIP_EOB_FACTOR_ADJUST | 
 |   // TODO(Aniket): Experiment the following loop with intrinsic by combining | 
 |   // with the quantization loop above | 
 |   for (int i = 0; i < non_zero_count; i++) { | 
 |     const int rc = scan[i]; | 
 |     const int qcoeff = qcoeff_ptr[rc]; | 
 |     if (qcoeff) { | 
 |       first = i; | 
 |       break; | 
 |     } | 
 |   } | 
 |   if ((*eob_ptr - 1) >= 0 && first == (*eob_ptr - 1)) { | 
 |     const int rc = scan[(*eob_ptr - 1)]; | 
 |     if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) { | 
 |       const int coeff = coeff_ptr[rc] * wt; | 
 |       const int coeff_sign = (coeff >> 31); | 
 |       const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign; | 
 |       const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST; | 
 |       const int prescan_add_val = ROUND_POWER_OF_TWO( | 
 |           dequant_ptr[rc != 0] * factor, 7 + QUANT_TABLE_BITS); | 
 |       if (abs_coeff < (zbins[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val)) { | 
 |         qcoeff_ptr[rc] = 0; | 
 |         dqcoeff_ptr[rc] = 0; | 
 |         *eob_ptr = 0; | 
 |       } | 
 |     } | 
 |   } | 
 | #endif | 
 | } |