| /* |
| * Copyright (c) 2020, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "av1/common/cfl.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/encoder/block.h" |
| #include "av1/encoder/hybrid_fwd_txfm.h" |
| #include "av1/common/idct.h" |
| #include "av1/encoder/model_rd.h" |
| #include "av1/encoder/random.h" |
| #include "av1/encoder/rdopt_utils.h" |
| #include "av1/encoder/sorting_network.h" |
| #include "av1/encoder/tx_prune_model_weights.h" |
| #include "av1/encoder/tx_search.h" |
| #include "av1/encoder/txb_rdopt.h" |
| |
| #define PROB_THRESH_OFFSET_TX_TYPE 100 |
| |
| struct rdcost_block_args { |
| const AV1_COMP *cpi; |
| MACROBLOCK *x; |
| ENTROPY_CONTEXT t_above[MAX_MIB_SIZE]; |
| ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]; |
| RD_STATS rd_stats; |
| int64_t current_rd; |
| int64_t best_rd; |
| int exit_early; |
| int incomplete_exit; |
| FAST_TX_SEARCH_MODE ftxs_mode; |
| int skip_trellis; |
| }; |
| |
| typedef struct { |
| int64_t rd; |
| int txb_entropy_ctx; |
| TX_TYPE tx_type; |
| } TxCandidateInfo; |
| |
| // origin_threshold * 128 / 100 |
| static const uint32_t skip_pred_threshold[3][BLOCK_SIZES_ALL] = { |
| { |
| 64, 64, 64, 70, 60, 60, 68, 68, 68, 68, 68, |
| 68, 68, 68, 68, 68, 64, 64, 70, 70, 68, 68, |
| }, |
| { |
| 88, 88, 88, 86, 87, 87, 68, 68, 68, 68, 68, |
| 68, 68, 68, 68, 68, 88, 88, 86, 86, 68, 68, |
| }, |
| { |
| 90, 93, 93, 90, 93, 93, 74, 74, 74, 74, 74, |
| 74, 74, 74, 74, 74, 90, 90, 90, 90, 74, 74, |
| }, |
| }; |
| |
| // lookup table for predict_skip_txfm |
| // int max_tx_size = max_txsize_rect_lookup[bsize]; |
| // if (tx_size_high[max_tx_size] > 16 || tx_size_wide[max_tx_size] > 16) |
| // max_tx_size = AOMMIN(max_txsize_lookup[bsize], TX_16X16); |
| static const TX_SIZE max_predict_sf_tx_size[BLOCK_SIZES_ALL] = { |
| TX_4X4, TX_4X8, TX_8X4, TX_8X8, TX_8X16, TX_16X8, |
| TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_16X16, |
| TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_4X16, TX_16X4, |
| TX_8X8, TX_8X8, TX_16X16, TX_16X16, |
| }; |
| |
| // look-up table for sqrt of number of pixels in a transform block |
| // rounded up to the nearest integer. |
| static const int sqrt_tx_pixels_2d[TX_SIZES_ALL] = { 4, 8, 16, 32, 32, 6, 6, |
| 12, 12, 23, 23, 32, 32, 8, |
| 8, 16, 16, 23, 23 }; |
| |
| static INLINE uint32_t get_block_residue_hash(MACROBLOCK *x, BLOCK_SIZE bsize) { |
| const int rows = block_size_high[bsize]; |
| const int cols = block_size_wide[bsize]; |
| const int16_t *diff = x->plane[0].src_diff; |
| const uint32_t hash = |
| av1_get_crc32c_value(&x->txfm_search_info.mb_rd_record->crc_calculator, |
| (uint8_t *)diff, 2 * rows * cols); |
| return (hash << 5) + bsize; |
| } |
| |
| static INLINE int32_t find_mb_rd_info(const MB_RD_RECORD *const mb_rd_record, |
| const int64_t ref_best_rd, |
| const uint32_t hash) { |
| int32_t match_index = -1; |
| if (ref_best_rd != INT64_MAX) { |
| for (int i = 0; i < mb_rd_record->num; ++i) { |
| const int index = (mb_rd_record->index_start + i) % RD_RECORD_BUFFER_LEN; |
| // If there is a match in the mb_rd_record, fetch the RD decision and |
| // terminate early. |
| if (mb_rd_record->mb_rd_info[index].hash_value == hash) { |
| match_index = index; |
| break; |
| } |
| } |
| } |
| return match_index; |
| } |
| |
| static AOM_INLINE void fetch_mb_rd_info(int n4, |
| const MB_RD_INFO *const mb_rd_info, |
| RD_STATS *const rd_stats, |
| MACROBLOCK *const x) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| mbmi->tx_size = mb_rd_info->tx_size; |
| memcpy(x->txfm_search_info.blk_skip, mb_rd_info->blk_skip, |
| sizeof(mb_rd_info->blk_skip[0]) * n4); |
| av1_copy(mbmi->inter_tx_size, mb_rd_info->inter_tx_size); |
| av1_copy_array(xd->tx_type_map, mb_rd_info->tx_type_map, n4); |
| *rd_stats = mb_rd_info->rd_stats; |
| } |
| |
| int64_t av1_pixel_diff_dist(const MACROBLOCK *x, int plane, int blk_row, |
| int blk_col, const BLOCK_SIZE plane_bsize, |
| const BLOCK_SIZE tx_bsize, |
| unsigned int *block_mse_q8) { |
| int visible_rows, visible_cols; |
| const MACROBLOCKD *xd = &x->e_mbd; |
| get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, NULL, |
| NULL, &visible_cols, &visible_rows); |
| const int diff_stride = block_size_wide[plane_bsize]; |
| const int16_t *diff = x->plane[plane].src_diff; |
| |
| diff += ((blk_row * diff_stride + blk_col) << MI_SIZE_LOG2); |
| uint64_t sse = |
| aom_sum_squares_2d_i16(diff, diff_stride, visible_cols, visible_rows); |
| if (block_mse_q8 != NULL) { |
| if (visible_cols > 0 && visible_rows > 0) |
| *block_mse_q8 = |
| (unsigned int)((256 * sse) / (visible_cols * visible_rows)); |
| else |
| *block_mse_q8 = UINT_MAX; |
| } |
| return sse; |
| } |
| |
| // Computes the residual block's SSE and mean on all visible 4x4s in the |
| // transform block |
| static INLINE int64_t pixel_diff_stats( |
| MACROBLOCK *x, int plane, int blk_row, int blk_col, |
| const BLOCK_SIZE plane_bsize, const BLOCK_SIZE tx_bsize, |
| unsigned int *block_mse_q8, int64_t *per_px_mean, uint64_t *block_var) { |
| int visible_rows, visible_cols; |
| const MACROBLOCKD *xd = &x->e_mbd; |
| get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, NULL, |
| NULL, &visible_cols, &visible_rows); |
| const int diff_stride = block_size_wide[plane_bsize]; |
| const int16_t *diff = x->plane[plane].src_diff; |
| |
| diff += ((blk_row * diff_stride + blk_col) << MI_SIZE_LOG2); |
| uint64_t sse = 0; |
| int sum = 0; |
| sse = aom_sum_sse_2d_i16(diff, diff_stride, visible_cols, visible_rows, &sum); |
| if (visible_cols > 0 && visible_rows > 0) { |
| double norm_factor = 1.0 / (visible_cols * visible_rows); |
| int sign_sum = sum > 0 ? 1 : -1; |
| // Conversion to transform domain |
| *per_px_mean = (int64_t)(norm_factor * abs(sum)) << 7; |
| *per_px_mean = sign_sum * (*per_px_mean); |
| *block_mse_q8 = (unsigned int)(norm_factor * (256 * sse)); |
| *block_var = (uint64_t)(sse - (uint64_t)(norm_factor * sum * sum)); |
| } else { |
| *block_mse_q8 = UINT_MAX; |
| } |
| return sse; |
| } |
| |
| // Uses simple features on top of DCT coefficients to quickly predict |
| // whether optimal RD decision is to skip encoding the residual. |
| // The sse value is stored in dist. |
| static int predict_skip_txfm(MACROBLOCK *x, BLOCK_SIZE bsize, int64_t *dist, |
| int reduced_tx_set) { |
| const TxfmSearchParams *txfm_params = &x->txfm_search_params; |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| const MACROBLOCKD *xd = &x->e_mbd; |
| const int16_t dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd); |
| |
| *dist = av1_pixel_diff_dist(x, 0, 0, 0, bsize, bsize, NULL); |
| |
| const int64_t mse = *dist / bw / bh; |
| // Normalized quantizer takes the transform upscaling factor (8 for tx size |
| // smaller than 32) into account. |
| const int16_t normalized_dc_q = dc_q >> 3; |
| const int64_t mse_thresh = (int64_t)normalized_dc_q * normalized_dc_q / 8; |
| // For faster early skip decision, use dist to compare against threshold so |
| // that quality risk is less for the skip=1 decision. Otherwise, use mse |
| // since the fwd_txfm coeff checks will take care of quality |
| // TODO(any): Use dist to return 0 when skip_txfm_level is 1 |
| int64_t pred_err = (txfm_params->skip_txfm_level >= 2) ? *dist : mse; |
| // Predict not to skip when error is larger than threshold. |
| if (pred_err > mse_thresh) return 0; |
| // Return as skip otherwise for aggressive early skip |
| else if (txfm_params->skip_txfm_level >= 2) |
| return 1; |
| |
| const int max_tx_size = max_predict_sf_tx_size[bsize]; |
| const int tx_h = tx_size_high[max_tx_size]; |
| const int tx_w = tx_size_wide[max_tx_size]; |
| DECLARE_ALIGNED(32, tran_low_t, coefs[32 * 32]); |
| TxfmParam param; |
| param.tx_type = DCT_DCT; |
| param.tx_size = max_tx_size; |
| param.bd = xd->bd; |
| param.is_hbd = is_cur_buf_hbd(xd); |
| param.lossless = 0; |
| param.tx_set_type = av1_get_ext_tx_set_type( |
| param.tx_size, is_inter_block(xd->mi[0]), reduced_tx_set); |
| const int bd_idx = (xd->bd == 8) ? 0 : ((xd->bd == 10) ? 1 : 2); |
| const uint32_t max_qcoef_thresh = skip_pred_threshold[bd_idx][bsize]; |
| const int16_t *src_diff = x->plane[0].src_diff; |
| const int n_coeff = tx_w * tx_h; |
| const int16_t ac_q = av1_ac_quant_QTX(x->qindex, 0, xd->bd); |
| const uint32_t dc_thresh = max_qcoef_thresh * dc_q; |
| const uint32_t ac_thresh = max_qcoef_thresh * ac_q; |
| for (int row = 0; row < bh; row += tx_h) { |
| for (int col = 0; col < bw; col += tx_w) { |
| av1_fwd_txfm(src_diff + col, coefs, bw, ¶m); |
| // Operating on TX domain, not pixels; we want the QTX quantizers |
| const uint32_t dc_coef = (((uint32_t)abs(coefs[0])) << 7); |
| if (dc_coef >= dc_thresh) return 0; |
| for (int i = 1; i < n_coeff; ++i) { |
| const uint32_t ac_coef = (((uint32_t)abs(coefs[i])) << 7); |
| if (ac_coef >= ac_thresh) return 0; |
| } |
| } |
| src_diff += tx_h * bw; |
| } |
| return 1; |
| } |
| |
| // Used to set proper context for early termination with skip = 1. |
| static AOM_INLINE void set_skip_txfm(MACROBLOCK *x, RD_STATS *rd_stats, |
| BLOCK_SIZE bsize, int64_t dist) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int n4 = bsize_to_num_blk(bsize); |
| const TX_SIZE tx_size = max_txsize_rect_lookup[bsize]; |
| memset(xd->tx_type_map, DCT_DCT, sizeof(xd->tx_type_map[0]) * n4); |
| memset(mbmi->inter_tx_size, tx_size, sizeof(mbmi->inter_tx_size)); |
| mbmi->tx_size = tx_size; |
| for (int i = 0; i < n4; ++i) |
| set_blk_skip(x->txfm_search_info.blk_skip, 0, i, 1); |
| rd_stats->skip_txfm = 1; |
| if (is_cur_buf_hbd(xd)) dist = ROUND_POWER_OF_TWO(dist, (xd->bd - 8) * 2); |
| rd_stats->dist = rd_stats->sse = (dist << 4); |
| // Though decision is to make the block as skip based on luma stats, |
| // it is possible that block becomes non skip after chroma rd. In addition |
| // intermediate non skip costs calculated by caller function will be |
| // incorrect, if rate is set as zero (i.e., if zero_blk_rate is not |
| // accounted). Hence intermediate rate is populated to code the luma tx blks |
| // as skip, the caller function based on final rd decision (i.e., skip vs |
| // non-skip) sets the final rate accordingly. Here the rate populated |
| // corresponds to coding all the tx blocks with zero_blk_rate (based on max tx |
| // size possible) in the current block. Eg: For 128*128 block, rate would be |
| // 4 * zero_blk_rate where zero_blk_rate corresponds to coding of one 64x64 tx |
| // block as 'all zeros' |
| ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE]; |
| ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE]; |
| av1_get_entropy_contexts(bsize, &xd->plane[0], ctxa, ctxl); |
| ENTROPY_CONTEXT *ta = ctxa; |
| ENTROPY_CONTEXT *tl = ctxl; |
| const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); |
| TXB_CTX txb_ctx; |
| get_txb_ctx(bsize, tx_size, 0, ta, tl, &txb_ctx); |
| const int zero_blk_rate = x->coeff_costs.coeff_costs[txs_ctx][PLANE_TYPE_Y] |
| .txb_skip_cost[txb_ctx.txb_skip_ctx][1]; |
| rd_stats->rate = zero_blk_rate * |
| (block_size_wide[bsize] >> tx_size_wide_log2[tx_size]) * |
| (block_size_high[bsize] >> tx_size_high_log2[tx_size]); |
| } |
| |
| static AOM_INLINE void save_mb_rd_info(int n4, uint32_t hash, |
| const MACROBLOCK *const x, |
| const RD_STATS *const rd_stats, |
| MB_RD_RECORD *mb_rd_record) { |
| int index; |
| if (mb_rd_record->num < RD_RECORD_BUFFER_LEN) { |
| index = |
| (mb_rd_record->index_start + mb_rd_record->num) % RD_RECORD_BUFFER_LEN; |
| ++mb_rd_record->num; |
| } else { |
| index = mb_rd_record->index_start; |
| mb_rd_record->index_start = |
| (mb_rd_record->index_start + 1) % RD_RECORD_BUFFER_LEN; |
| } |
| MB_RD_INFO *const mb_rd_info = &mb_rd_record->mb_rd_info[index]; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| mb_rd_info->hash_value = hash; |
| mb_rd_info->tx_size = mbmi->tx_size; |
| memcpy(mb_rd_info->blk_skip, x->txfm_search_info.blk_skip, |
| sizeof(mb_rd_info->blk_skip[0]) * n4); |
| av1_copy(mb_rd_info->inter_tx_size, mbmi->inter_tx_size); |
| av1_copy_array(mb_rd_info->tx_type_map, xd->tx_type_map, n4); |
| mb_rd_info->rd_stats = *rd_stats; |
| } |
| |
| static int get_search_init_depth(int mi_width, int mi_height, int is_inter, |
| const SPEED_FEATURES *sf, |
| int tx_size_search_method) { |
| if (tx_size_search_method == USE_LARGESTALL) return MAX_VARTX_DEPTH; |
| |
| if (sf->tx_sf.tx_size_search_lgr_block) { |
| if (mi_width > mi_size_wide[BLOCK_64X64] || |
| mi_height > mi_size_high[BLOCK_64X64]) |
| return MAX_VARTX_DEPTH; |
| } |
| |
| if (is_inter) { |
| return (mi_height != mi_width) |
| ? sf->tx_sf.inter_tx_size_search_init_depth_rect |
| : sf->tx_sf.inter_tx_size_search_init_depth_sqr; |
| } else { |
| return (mi_height != mi_width) |
| ? sf->tx_sf.intra_tx_size_search_init_depth_rect |
| : sf->tx_sf.intra_tx_size_search_init_depth_sqr; |
| } |
| } |
| |
| static AOM_INLINE void select_tx_block( |
| const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block, |
| TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta, |
| ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left, |
| RD_STATS *rd_stats, int64_t prev_level_rd, int64_t ref_best_rd, |
| int *is_cost_valid, FAST_TX_SEARCH_MODE ftxs_mode); |
| |
| // NOTE: CONFIG_COLLECT_RD_STATS has 3 possible values |
| // 0: Do not collect any RD stats |
| // 1: Collect RD stats for transform units |
| // 2: Collect RD stats for partition units |
| #if CONFIG_COLLECT_RD_STATS |
| |
| static AOM_INLINE void get_energy_distribution_fine( |
| const AV1_COMP *cpi, BLOCK_SIZE bsize, const uint8_t *src, int src_stride, |
| const uint8_t *dst, int dst_stride, int need_4th, double *hordist, |
| double *verdist) { |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| unsigned int esq[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; |
| |
| if (bsize < BLOCK_16X16 || (bsize >= BLOCK_4X16 && bsize <= BLOCK_32X8)) { |
| // Special cases: calculate 'esq' values manually, as we don't have 'vf' |
| // functions for the 16 (very small) sub-blocks of this block. |
| const int w_shift = (bw == 4) ? 0 : (bw == 8) ? 1 : (bw == 16) ? 2 : 3; |
| const int h_shift = (bh == 4) ? 0 : (bh == 8) ? 1 : (bh == 16) ? 2 : 3; |
| assert(bw <= 32); |
| assert(bh <= 32); |
| assert(((bw - 1) >> w_shift) + (((bh - 1) >> h_shift) << 2) == 15); |
| if (cpi->common.seq_params->use_highbitdepth) { |
| const uint16_t *src16 = CONVERT_TO_SHORTPTR(src); |
| const uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); |
| for (int i = 0; i < bh; ++i) |
| for (int j = 0; j < bw; ++j) { |
| const int index = (j >> w_shift) + ((i >> h_shift) << 2); |
| esq[index] += |
| (src16[j + i * src_stride] - dst16[j + i * dst_stride]) * |
| (src16[j + i * src_stride] - dst16[j + i * dst_stride]); |
| } |
| } else { |
| for (int i = 0; i < bh; ++i) |
| for (int j = 0; j < bw; ++j) { |
| const int index = (j >> w_shift) + ((i >> h_shift) << 2); |
| esq[index] += (src[j + i * src_stride] - dst[j + i * dst_stride]) * |
| (src[j + i * src_stride] - dst[j + i * dst_stride]); |
| } |
| } |
| } else { // Calculate 'esq' values using 'vf' functions on the 16 sub-blocks. |
| const int f_index = |
| (bsize < BLOCK_SIZES) ? bsize - BLOCK_16X16 : bsize - BLOCK_8X16; |
| assert(f_index >= 0 && f_index < BLOCK_SIZES_ALL); |
| const BLOCK_SIZE subsize = (BLOCK_SIZE)f_index; |
| assert(block_size_wide[bsize] == 4 * block_size_wide[subsize]); |
| assert(block_size_high[bsize] == 4 * block_size_high[subsize]); |
| cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[0]); |
| cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, |
| dst_stride, &esq[1]); |
| cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, |
| dst_stride, &esq[2]); |
| cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, |
| dst_stride, &esq[3]); |
| src += bh / 4 * src_stride; |
| dst += bh / 4 * dst_stride; |
| |
| cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[4]); |
| cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, |
| dst_stride, &esq[5]); |
| cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, |
| dst_stride, &esq[6]); |
| cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, |
| dst_stride, &esq[7]); |
| src += bh / 4 * src_stride; |
| dst += bh / 4 * dst_stride; |
| |
| cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[8]); |
| cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, |
| dst_stride, &esq[9]); |
| cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, |
| dst_stride, &esq[10]); |
| cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, |
| dst_stride, &esq[11]); |
| src += bh / 4 * src_stride; |
| dst += bh / 4 * dst_stride; |
| |
| cpi->ppi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[12]); |
| cpi->ppi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, |
| dst_stride, &esq[13]); |
| cpi->ppi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, |
| dst_stride, &esq[14]); |
| cpi->ppi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, |
| dst_stride, &esq[15]); |
| } |
| |
| double total = (double)esq[0] + esq[1] + esq[2] + esq[3] + esq[4] + esq[5] + |
| esq[6] + esq[7] + esq[8] + esq[9] + esq[10] + esq[11] + |
| esq[12] + esq[13] + esq[14] + esq[15]; |
| if (total > 0) { |
| const double e_recip = 1.0 / total; |
| hordist[0] = ((double)esq[0] + esq[4] + esq[8] + esq[12]) * e_recip; |
| hordist[1] = ((double)esq[1] + esq[5] + esq[9] + esq[13]) * e_recip; |
| hordist[2] = ((double)esq[2] + esq[6] + esq[10] + esq[14]) * e_recip; |
| if (need_4th) { |
| hordist[3] = ((double)esq[3] + esq[7] + esq[11] + esq[15]) * e_recip; |
| } |
| verdist[0] = ((double)esq[0] + esq[1] + esq[2] + esq[3]) * e_recip; |
| verdist[1] = ((double)esq[4] + esq[5] + esq[6] + esq[7]) * e_recip; |
| verdist[2] = ((double)esq[8] + esq[9] + esq[10] + esq[11]) * e_recip; |
| if (need_4th) { |
| verdist[3] = ((double)esq[12] + esq[13] + esq[14] + esq[15]) * e_recip; |
| } |
| } else { |
| hordist[0] = verdist[0] = 0.25; |
| hordist[1] = verdist[1] = 0.25; |
| hordist[2] = verdist[2] = 0.25; |
| if (need_4th) { |
| hordist[3] = verdist[3] = 0.25; |
| } |
| } |
| } |
| |
| static double get_sse_norm(const int16_t *diff, int stride, int w, int h) { |
| double sum = 0.0; |
| for (int j = 0; j < h; ++j) { |
| for (int i = 0; i < w; ++i) { |
| const int err = diff[j * stride + i]; |
| sum += err * err; |
| } |
| } |
| assert(w > 0 && h > 0); |
| return sum / (w * h); |
| } |
| |
| static double get_sad_norm(const int16_t *diff, int stride, int w, int h) { |
| double sum = 0.0; |
| for (int j = 0; j < h; ++j) { |
| for (int i = 0; i < w; ++i) { |
| sum += abs(diff[j * stride + i]); |
| } |
| } |
| assert(w > 0 && h > 0); |
| return sum / (w * h); |
| } |
| |
| static AOM_INLINE void get_2x2_normalized_sses_and_sads( |
| const AV1_COMP *const cpi, BLOCK_SIZE tx_bsize, const uint8_t *const src, |
| int src_stride, const uint8_t *const dst, int dst_stride, |
| const int16_t *const src_diff, int diff_stride, double *const sse_norm_arr, |
| double *const sad_norm_arr) { |
| const BLOCK_SIZE tx_bsize_half = |
| get_partition_subsize(tx_bsize, PARTITION_SPLIT); |
| if (tx_bsize_half == BLOCK_INVALID) { // manually calculate stats |
| const int half_width = block_size_wide[tx_bsize] / 2; |
| const int half_height = block_size_high[tx_bsize] / 2; |
| for (int row = 0; row < 2; ++row) { |
| for (int col = 0; col < 2; ++col) { |
| const int16_t *const this_src_diff = |
| src_diff + row * half_height * diff_stride + col * half_width; |
| if (sse_norm_arr) { |
| sse_norm_arr[row * 2 + col] = |
| get_sse_norm(this_src_diff, diff_stride, half_width, half_height); |
| } |
| if (sad_norm_arr) { |
| sad_norm_arr[row * 2 + col] = |
| get_sad_norm(this_src_diff, diff_stride, half_width, half_height); |
| } |
| } |
| } |
| } else { // use function pointers to calculate stats |
| const int half_width = block_size_wide[tx_bsize_half]; |
| const int half_height = block_size_high[tx_bsize_half]; |
| const int num_samples_half = half_width * half_height; |
| for (int row = 0; row < 2; ++row) { |
| for (int col = 0; col < 2; ++col) { |
| const uint8_t *const this_src = |
| src + row * half_height * src_stride + col * half_width; |
| const uint8_t *const this_dst = |
| dst + row * half_height * dst_stride + col * half_width; |
| |
| if (sse_norm_arr) { |
| unsigned int this_sse; |
| cpi->ppi->fn_ptr[tx_bsize_half].vf(this_src, src_stride, this_dst, |
| dst_stride, &this_sse); |
| sse_norm_arr[row * 2 + col] = (double)this_sse / num_samples_half; |
| } |
| |
| if (sad_norm_arr) { |
| const unsigned int this_sad = cpi->ppi->fn_ptr[tx_bsize_half].sdf( |
| this_src, src_stride, this_dst, dst_stride); |
| sad_norm_arr[row * 2 + col] = (double)this_sad / num_samples_half; |
| } |
| } |
| } |
| } |
| } |
| |
| #if CONFIG_COLLECT_RD_STATS == 1 |
| static double get_mean(const int16_t *diff, int stride, int w, int h) { |
| double sum = 0.0; |
| for (int j = 0; j < h; ++j) { |
| for (int i = 0; i < w; ++i) { |
| sum += diff[j * stride + i]; |
| } |
| } |
| assert(w > 0 && h > 0); |
| return sum / (w * h); |
| } |
| static AOM_INLINE void PrintTransformUnitStats( |
| const AV1_COMP *const cpi, MACROBLOCK *x, const RD_STATS *const rd_stats, |
| int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| TX_TYPE tx_type, int64_t rd) { |
| if (rd_stats->rate == INT_MAX || rd_stats->dist == INT64_MAX) return; |
| |
| // Generate small sample to restrict output size. |
| static unsigned int seed = 21743; |
| if (lcg_rand16(&seed) % 256 > 0) return; |
| |
| const char output_file[] = "tu_stats.txt"; |
| FILE *fout = fopen(output_file, "a"); |
| if (!fout) return; |
| |
| const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const int plane = 0; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int txw = tx_size_wide[tx_size]; |
| const int txh = tx_size_high[tx_size]; |
| const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3; |
| const int q_step = p->dequant_QTX[1] >> dequant_shift; |
| const int num_samples = txw * txh; |
| |
| const double rate_norm = (double)rd_stats->rate / num_samples; |
| const double dist_norm = (double)rd_stats->dist / num_samples; |
| |
| fprintf(fout, "%g %g", rate_norm, dist_norm); |
| |
| const int src_stride = p->src.stride; |
| const uint8_t *const src = |
| &p->src.buf[(blk_row * src_stride + blk_col) << MI_SIZE_LOG2]; |
| const int dst_stride = pd->dst.stride; |
| const uint8_t *const dst = |
| &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2]; |
| unsigned int sse; |
| cpi->ppi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse); |
| const double sse_norm = (double)sse / num_samples; |
| |
| const unsigned int sad = |
| cpi->ppi->fn_ptr[tx_bsize].sdf(src, src_stride, dst, dst_stride); |
| const double sad_norm = (double)sad / num_samples; |
| |
| fprintf(fout, " %g %g", sse_norm, sad_norm); |
| |
| const int diff_stride = block_size_wide[plane_bsize]; |
| const int16_t *const src_diff = |
| &p->src_diff[(blk_row * diff_stride + blk_col) << MI_SIZE_LOG2]; |
| |
| double sse_norm_arr[4], sad_norm_arr[4]; |
| get_2x2_normalized_sses_and_sads(cpi, tx_bsize, src, src_stride, dst, |
| dst_stride, src_diff, diff_stride, |
| sse_norm_arr, sad_norm_arr); |
| for (int i = 0; i < 4; ++i) { |
| fprintf(fout, " %g", sse_norm_arr[i]); |
| } |
| for (int i = 0; i < 4; ++i) { |
| fprintf(fout, " %g", sad_norm_arr[i]); |
| } |
| |
| const TX_TYPE_1D tx_type_1d_row = htx_tab[tx_type]; |
| const TX_TYPE_1D tx_type_1d_col = vtx_tab[tx_type]; |
| |
| fprintf(fout, " %d %d %d %d %d", q_step, tx_size_wide[tx_size], |
| tx_size_high[tx_size], tx_type_1d_row, tx_type_1d_col); |
| |
| int model_rate; |
| int64_t model_dist; |
| model_rd_sse_fn[MODELRD_CURVFIT](cpi, x, tx_bsize, plane, sse, num_samples, |
| &model_rate, &model_dist); |
| const double model_rate_norm = (double)model_rate / num_samples; |
| const double model_dist_norm = (double)model_dist / num_samples; |
| fprintf(fout, " %g %g", model_rate_norm, model_dist_norm); |
| |
| const double mean = get_mean(src_diff, diff_stride, txw, txh); |
| float hor_corr, vert_corr; |
| av1_get_horver_correlation_full(src_diff, diff_stride, txw, txh, &hor_corr, |
| &vert_corr); |
| fprintf(fout, " %g %g %g", mean, hor_corr, vert_corr); |
| |
| double hdist[4] = { 0 }, vdist[4] = { 0 }; |
| get_energy_distribution_fine(cpi, tx_bsize, src, src_stride, dst, dst_stride, |
| 1, hdist, vdist); |
| fprintf(fout, " %g %g %g %g %g %g %g %g", hdist[0], hdist[1], hdist[2], |
| hdist[3], vdist[0], vdist[1], vdist[2], vdist[3]); |
| |
| fprintf(fout, " %d %" PRId64, x->rdmult, rd); |
| |
| fprintf(fout, "\n"); |
| fclose(fout); |
| } |
| #endif // CONFIG_COLLECT_RD_STATS == 1 |
| |
| #if CONFIG_COLLECT_RD_STATS >= 2 |
| static int64_t get_sse(const AV1_COMP *cpi, const MACROBLOCK *x) { |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const MACROBLOCKD *xd = &x->e_mbd; |
| const MB_MODE_INFO *mbmi = xd->mi[0]; |
| int64_t total_sse = 0; |
| for (int plane = 0; plane < num_planes; ++plane) { |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE bs = |
| get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y); |
| unsigned int sse; |
| |
| if (plane) continue; |
| |
| cpi->ppi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, |
| pd->dst.stride, &sse); |
| total_sse += sse; |
| } |
| total_sse <<= 4; |
| return total_sse; |
| } |
| |
| static int get_est_rate_dist(const TileDataEnc *tile_data, BLOCK_SIZE bsize, |
| int64_t sse, int *est_residue_cost, |
| int64_t *est_dist) { |
| const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize]; |
| if (md->ready) { |
| if (sse < md->dist_mean) { |
| *est_residue_cost = 0; |
| *est_dist = sse; |
| } else { |
| *est_dist = (int64_t)round(md->dist_mean); |
| const double est_ld = md->a * sse + md->b; |
| // Clamp estimated rate cost by INT_MAX / 2. |
| // TODO(angiebird@google.com): find better solution than clamping. |
| if (fabs(est_ld) < 1e-2) { |
| *est_residue_cost = INT_MAX / 2; |
| } else { |
| double est_residue_cost_dbl = ((sse - md->dist_mean) / est_ld); |
| if (est_residue_cost_dbl < 0) { |
| *est_residue_cost = 0; |
| } else { |
| *est_residue_cost = |
| (int)AOMMIN((int64_t)round(est_residue_cost_dbl), INT_MAX / 2); |
| } |
| } |
| if (*est_residue_cost <= 0) { |
| *est_residue_cost = 0; |
| *est_dist = sse; |
| } |
| } |
| return 1; |
| } |
| return 0; |
| } |
| |
| static double get_highbd_diff_mean(const uint8_t *src8, int src_stride, |
| const uint8_t *dst8, int dst_stride, int w, |
| int h) { |
| const uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
| const uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); |
| double sum = 0.0; |
| for (int j = 0; j < h; ++j) { |
| for (int i = 0; i < w; ++i) { |
| const int diff = src[j * src_stride + i] - dst[j * dst_stride + i]; |
| sum += diff; |
| } |
| } |
| assert(w > 0 && h > 0); |
| return sum / (w * h); |
| } |
| |
| static double get_diff_mean(const uint8_t *src, int src_stride, |
| const uint8_t *dst, int dst_stride, int w, int h) { |
| double sum = 0.0; |
| for (int j = 0; j < h; ++j) { |
| for (int i = 0; i < w; ++i) { |
| const int diff = src[j * src_stride + i] - dst[j * dst_stride + i]; |
| sum += diff; |
| } |
| } |
| assert(w > 0 && h > 0); |
| return sum / (w * h); |
| } |
| |
| static AOM_INLINE void PrintPredictionUnitStats(const AV1_COMP *const cpi, |
| const TileDataEnc *tile_data, |
| MACROBLOCK *x, |
| const RD_STATS *const rd_stats, |
| BLOCK_SIZE plane_bsize) { |
| if (rd_stats->rate == INT_MAX || rd_stats->dist == INT64_MAX) return; |
| |
| if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1 && |
| (tile_data == NULL || |
| !tile_data->inter_mode_rd_models[plane_bsize].ready)) |
| return; |
| (void)tile_data; |
| // Generate small sample to restrict output size. |
| static unsigned int seed = 95014; |
| |
| if ((lcg_rand16(&seed) % (1 << (14 - num_pels_log2_lookup[plane_bsize]))) != |
| 1) |
| return; |
| |
| const char output_file[] = "pu_stats.txt"; |
| FILE *fout = fopen(output_file, "a"); |
| if (!fout) return; |
| |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int plane = 0; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| struct macroblockd_plane *pd = &xd->plane[plane]; |
| const int diff_stride = block_size_wide[plane_bsize]; |
| int bw, bh; |
| get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, &bw, |
| &bh); |
| const int num_samples = bw * bh; |
| const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3; |
| const int q_step = p->dequant_QTX[1] >> dequant_shift; |
| const int shift = (xd->bd - 8); |
| |
| const double rate_norm = (double)rd_stats->rate / num_samples; |
| const double dist_norm = (double)rd_stats->dist / num_samples; |
| const double rdcost_norm = |
| (double)RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) / num_samples; |
| |
| fprintf(fout, "%g %g %g", rate_norm, dist_norm, rdcost_norm); |
| |
| const int src_stride = p->src.stride; |
| const uint8_t *const src = p->src.buf; |
| const int dst_stride = pd->dst.stride; |
| const uint8_t *const dst = pd->dst.buf; |
| const int16_t *const src_diff = p->src_diff; |
| |
| int64_t sse = calculate_sse(xd, p, pd, bw, bh); |
| const double sse_norm = (double)sse / num_samples; |
| |
| const unsigned int sad = |
| cpi->ppi->fn_ptr[plane_bsize].sdf(src, src_stride, dst, dst_stride); |
| const double sad_norm = |
| (double)sad / (1 << num_pels_log2_lookup[plane_bsize]); |
| |
| fprintf(fout, " %g %g", sse_norm, sad_norm); |
| |
| double sse_norm_arr[4], sad_norm_arr[4]; |
| get_2x2_normalized_sses_and_sads(cpi, plane_bsize, src, src_stride, dst, |
| dst_stride, src_diff, diff_stride, |
| sse_norm_arr, sad_norm_arr); |
| if (shift) { |
| for (int k = 0; k < 4; ++k) sse_norm_arr[k] /= (1 << (2 * shift)); |
| for (int k = 0; k < 4; ++k) sad_norm_arr[k] /= (1 << shift); |
| } |
| for (int i = 0; i < 4; ++i) { |
| fprintf(fout, " %g", sse_norm_arr[i]); |
| } |
| for (int i = 0; i < 4; ++i) { |
| fprintf(fout, " %g", sad_norm_arr[i]); |
| } |
| |
| fprintf(fout, " %d %d %d %d", q_step, x->rdmult, bw, bh); |
| |
| int model_rate; |
| int64_t model_dist; |
| model_rd_sse_fn[MODELRD_CURVFIT](cpi, x, plane_bsize, plane, sse, num_samples, |
| &model_rate, &model_dist); |
| const double model_rdcost_norm = |
| (double)RDCOST(x->rdmult, model_rate, model_dist) / num_samples; |
| const double model_rate_norm = (double)model_rate / num_samples; |
| const double model_dist_norm = (double)model_dist / num_samples; |
| fprintf(fout, " %g %g %g", model_rate_norm, model_dist_norm, |
| model_rdcost_norm); |
| |
| double mean; |
| if (is_cur_buf_hbd(xd)) { |
| mean = get_highbd_diff_mean(p->src.buf, p->src.stride, pd->dst.buf, |
| pd->dst.stride, bw, bh); |
| } else { |
| mean = get_diff_mean(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, |
| bw, bh); |
| } |
| mean /= (1 << shift); |
| float hor_corr, vert_corr; |
| av1_get_horver_correlation_full(src_diff, diff_stride, bw, bh, &hor_corr, |
| &vert_corr); |
| fprintf(fout, " %g %g %g", mean, hor_corr, vert_corr); |
| |
| double hdist[4] = { 0 }, vdist[4] = { 0 }; |
| get_energy_distribution_fine(cpi, plane_bsize, src, src_stride, dst, |
| dst_stride, 1, hdist, vdist); |
| fprintf(fout, " %g %g %g %g %g %g %g %g", hdist[0], hdist[1], hdist[2], |
| hdist[3], vdist[0], vdist[1], vdist[2], vdist[3]); |
| |
| if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) { |
| assert(tile_data->inter_mode_rd_models[plane_bsize].ready); |
| const int64_t overall_sse = get_sse(cpi, x); |
| int est_residue_cost = 0; |
| int64_t est_dist = 0; |
| get_est_rate_dist(tile_data, plane_bsize, overall_sse, &est_residue_cost, |
| &est_dist); |
| const double est_residue_cost_norm = (double)est_residue_cost / num_samples; |
| const double est_dist_norm = (double)est_dist / num_samples; |
| const double est_rdcost_norm = |
| (double)RDCOST(x->rdmult, est_residue_cost, est_dist) / num_samples; |
| fprintf(fout, " %g %g %g", est_residue_cost_norm, est_dist_norm, |
| est_rdcost_norm); |
| } |
| |
| fprintf(fout, "\n"); |
| fclose(fout); |
| } |
| #endif // CONFIG_COLLECT_RD_STATS >= 2 |
| #endif // CONFIG_COLLECT_RD_STATS |
| |
| static AOM_INLINE void inverse_transform_block_facade(MACROBLOCK *const x, |
| int plane, int block, |
| int blk_row, int blk_col, |
| int eob, |
| int reduced_tx_set) { |
| if (!eob) return; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| tran_low_t *dqcoeff = p->dqcoeff + BLOCK_OFFSET(block); |
| const PLANE_TYPE plane_type = get_plane_type(plane); |
| const TX_SIZE tx_size = av1_get_tx_size(plane, xd); |
| const TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, |
| tx_size, reduced_tx_set); |
| |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int dst_stride = pd->dst.stride; |
| uint8_t *dst = &pd->dst.buf[(blk_row * dst_stride + blk_col) << MI_SIZE_LOG2]; |
| av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst, |
| dst_stride, eob, reduced_tx_set); |
| } |
| |
| static INLINE void recon_intra(const AV1_COMP *cpi, MACROBLOCK *x, int plane, |
| int block, int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| const TXB_CTX *const txb_ctx, int skip_trellis, |
| TX_TYPE best_tx_type, int do_quant, |
| int *rate_cost, uint16_t best_eob) { |
| const AV1_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const int is_inter = is_inter_block(mbmi); |
| if (!is_inter && best_eob && |
| (blk_row + tx_size_high_unit[tx_size] < mi_size_high[plane_bsize] || |
| blk_col + tx_size_wide_unit[tx_size] < mi_size_wide[plane_bsize])) { |
| // if the quantized coefficients are stored in the dqcoeff buffer, we don't |
| // need to do transform and quantization again. |
| if (do_quant) { |
| TxfmParam txfm_param_intra; |
| QUANT_PARAM quant_param_intra; |
| av1_setup_xform(cm, x, tx_size, best_tx_type, &txfm_param_intra); |
| av1_setup_quant(tx_size, !skip_trellis, |
| skip_trellis |
| ? (USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B |
| : AV1_XFORM_QUANT_FP) |
| : AV1_XFORM_QUANT_FP, |
| cpi->oxcf.q_cfg.quant_b_adapt, &quant_param_intra); |
| av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, best_tx_type, |
| &quant_param_intra); |
| av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, |
| &txfm_param_intra, &quant_param_intra); |
| if (quant_param_intra.use_optimize_b) { |
| av1_optimize_b(cpi, x, plane, block, tx_size, best_tx_type, txb_ctx, |
| rate_cost); |
| } |
| } |
| |
| inverse_transform_block_facade(x, plane, block, blk_row, blk_col, |
| x->plane[plane].eobs[block], |
| cm->features.reduced_tx_set_used); |
| |
| // This may happen because of hash collision. The eob stored in the hash |
| // table is non-zero, but the real eob is zero. We need to make sure tx_type |
| // is DCT_DCT in this case. |
| if (plane == 0 && x->plane[plane].eobs[block] == 0 && |
| best_tx_type != DCT_DCT) { |
| update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT); |
| } |
| } |
| } |
| |
| static unsigned pixel_dist_visible_only( |
| const AV1_COMP *const cpi, const MACROBLOCK *x, const uint8_t *src, |
| const int src_stride, const uint8_t *dst, const int dst_stride, |
| const BLOCK_SIZE tx_bsize, int txb_rows, int txb_cols, int visible_rows, |
| int visible_cols) { |
| unsigned sse; |
| |
| if (txb_rows == visible_rows && txb_cols == visible_cols) { |
| cpi->ppi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse); |
| return sse; |
| } |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| const MACROBLOCKD *xd = &x->e_mbd; |
| if (is_cur_buf_hbd(xd)) { |
| uint64_t sse64 = aom_highbd_sse_odd_size(src, src_stride, dst, dst_stride, |
| visible_cols, visible_rows); |
| return (unsigned int)ROUND_POWER_OF_TWO(sse64, (xd->bd - 8) * 2); |
| } |
| #else |
| (void)x; |
| #endif |
| sse = aom_sse_odd_size(src, src_stride, dst, dst_stride, visible_cols, |
| visible_rows); |
| return sse; |
| } |
| |
| // Compute the pixel domain distortion from src and dst on all visible 4x4s in |
| // the |
| // transform block. |
| static unsigned pixel_dist(const AV1_COMP *const cpi, const MACROBLOCK *x, |
| int plane, const uint8_t *src, const int src_stride, |
| const uint8_t *dst, const int dst_stride, |
| int blk_row, int blk_col, |
| const BLOCK_SIZE plane_bsize, |
| const BLOCK_SIZE tx_bsize) { |
| int txb_rows, txb_cols, visible_rows, visible_cols; |
| const MACROBLOCKD *xd = &x->e_mbd; |
| |
| get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, |
| &txb_cols, &txb_rows, &visible_cols, &visible_rows); |
| assert(visible_rows > 0); |
| assert(visible_cols > 0); |
| |
| unsigned sse = pixel_dist_visible_only(cpi, x, src, src_stride, dst, |
| dst_stride, tx_bsize, txb_rows, |
| txb_cols, visible_rows, visible_cols); |
| |
| return sse; |
| } |
| |
| static INLINE int64_t dist_block_px_domain(const AV1_COMP *cpi, MACROBLOCK *x, |
| int plane, BLOCK_SIZE plane_bsize, |
| int block, int blk_row, int blk_col, |
| TX_SIZE tx_size) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const uint16_t eob = p->eobs[block]; |
| const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; |
| const int bsw = block_size_wide[tx_bsize]; |
| const int bsh = block_size_high[tx_bsize]; |
| const int src_stride = x->plane[plane].src.stride; |
| const int dst_stride = xd->plane[plane].dst.stride; |
| // Scale the transform block index to pixel unit. |
| const int src_idx = (blk_row * src_stride + blk_col) << MI_SIZE_LOG2; |
| const int dst_idx = (blk_row * dst_stride + blk_col) << MI_SIZE_LOG2; |
| const uint8_t *src = &x->plane[plane].src.buf[src_idx]; |
| const uint8_t *dst = &xd->plane[plane].dst.buf[dst_idx]; |
| const tran_low_t *dqcoeff = p->dqcoeff + BLOCK_OFFSET(block); |
| |
| assert(cpi != NULL); |
| assert(tx_size_wide_log2[0] == tx_size_high_log2[0]); |
| |
| uint8_t *recon; |
| DECLARE_ALIGNED(16, uint16_t, recon16[MAX_TX_SQUARE]); |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| if (is_cur_buf_hbd(xd)) { |
| recon = CONVERT_TO_BYTEPTR(recon16); |
| aom_highbd_convolve_copy(CONVERT_TO_SHORTPTR(dst), dst_stride, |
| CONVERT_TO_SHORTPTR(recon), MAX_TX_SIZE, bsw, bsh); |
| } else { |
| recon = (uint8_t *)recon16; |
| aom_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE, bsw, bsh); |
| } |
| #else |
| recon = (uint8_t *)recon16; |
| aom_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE, bsw, bsh); |
| #endif |
| |
| const PLANE_TYPE plane_type = get_plane_type(plane); |
| TX_TYPE tx_type = av1_get_tx_type(xd, plane_type, blk_row, blk_col, tx_size, |
| cpi->common.features.reduced_tx_set_used); |
| av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, recon, |
| MAX_TX_SIZE, eob, |
| cpi->common.features.reduced_tx_set_used); |
| |
| return 16 * pixel_dist(cpi, x, plane, src, src_stride, recon, MAX_TX_SIZE, |
| blk_row, blk_col, plane_bsize, tx_bsize); |
| } |
| |
| // pruning thresholds for prune_txk_type and prune_txk_type_separ |
| static const int prune_factors[5] = { 200, 200, 120, 80, 40 }; // scale 1000 |
| static const int mul_factors[5] = { 80, 80, 70, 50, 30 }; // scale 100 |
| |
| // R-D costs are sorted in ascending order. |
| static INLINE void sort_rd(int64_t rds[], int txk[], int len) { |
| int i, j, k; |
| |
| for (i = 1; i <= len - 1; ++i) { |
| for (j = 0; j < i; ++j) { |
| if (rds[j] > rds[i]) { |
| int64_t temprd; |
| int tempi; |
| |
| temprd = rds[i]; |
| tempi = txk[i]; |
| |
| for (k = i; k > j; k--) { |
| rds[k] = rds[k - 1]; |
| txk[k] = txk[k - 1]; |
| } |
| |
| rds[j] = temprd; |
| txk[j] = tempi; |
| break; |
| } |
| } |
| } |
| } |
| |
| static INLINE int64_t av1_block_error_qm(const tran_low_t *coeff, |
| const tran_low_t *dqcoeff, |
| intptr_t block_size, |
| const qm_val_t *qmatrix, |
| const int16_t *scan, int64_t *ssz) { |
| int i; |
| int64_t error = 0, sqcoeff = 0; |
| |
| for (i = 0; i < block_size; i++) { |
| int64_t weight = qmatrix[scan[i]]; |
| int64_t dd = coeff[i] - dqcoeff[i]; |
| dd *= weight; |
| int64_t cc = coeff[i]; |
| cc *= weight; |
| // The ranges of coeff and dqcoeff are |
| // bd8 : 18 bits (including sign) |
| // bd10: 20 bits (including sign) |
| // bd12: 22 bits (including sign) |
| // As AOM_QM_BITS is 5, the intermediate quantities in the calculation |
| // below should fit in 54 bits, thus no overflow should happen. |
| error += (dd * dd + (1 << (2 * AOM_QM_BITS - 1))) >> (2 * AOM_QM_BITS); |
| sqcoeff += (cc * cc + (1 << (2 * AOM_QM_BITS - 1))) >> (2 * AOM_QM_BITS); |
| } |
| |
| *ssz = sqcoeff; |
| return error; |
| } |
| |
| static INLINE void dist_block_tx_domain(MACROBLOCK *x, int plane, int block, |
| TX_SIZE tx_size, |
| const qm_val_t *qmatrix, |
| const int16_t *scan, int64_t *out_dist, |
| int64_t *out_sse) { |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| // Transform domain distortion computation is more efficient as it does |
| // not involve an inverse transform, but it is less accurate. |
| const int buffer_length = av1_get_max_eob(tx_size); |
| int64_t this_sse; |
| // TX-domain results need to shift down to Q2/D10 to match pixel |
| // domain distortion values which are in Q2^2 |
| int shift = (MAX_TX_SCALE - av1_get_tx_scale(tx_size)) * 2; |
| const int block_offset = BLOCK_OFFSET(block); |
| tran_low_t *const coeff = p->coeff + block_offset; |
| tran_low_t *const dqcoeff = p->dqcoeff + block_offset; |
| #if CONFIG_AV1_HIGHBITDEPTH |
| MACROBLOCKD *const xd = &x->e_mbd; |
| if (is_cur_buf_hbd(xd)) { |
| // TODO(veluca): handle use_qm_dist_metric for HBD too. |
| *out_dist = av1_highbd_block_error(coeff, dqcoeff, buffer_length, &this_sse, |
| xd->bd); |
| } else { |
| #endif |
| if (qmatrix == NULL || !x->txfm_search_params.use_qm_dist_metric) { |
| *out_dist = av1_block_error(coeff, dqcoeff, buffer_length, &this_sse); |
| } else { |
| *out_dist = av1_block_error_qm(coeff, dqcoeff, buffer_length, qmatrix, |
| scan, &this_sse); |
| } |
| #if CONFIG_AV1_HIGHBITDEPTH |
| } |
| #endif |
| |
| *out_dist = RIGHT_SIGNED_SHIFT(*out_dist, shift); |
| *out_sse = RIGHT_SIGNED_SHIFT(this_sse, shift); |
| } |
| |
| uint16_t prune_txk_type_separ(const AV1_COMP *cpi, MACROBLOCK *x, int plane, |
| int block, TX_SIZE tx_size, int blk_row, |
| int blk_col, BLOCK_SIZE plane_bsize, int *txk_map, |
| int16_t allowed_tx_mask, int prune_factor, |
| const TXB_CTX *const txb_ctx, |
| int reduced_tx_set_used, int64_t ref_best_rd, |
| int num_sel) { |
| const AV1_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| |
| int idx; |
| |
| int64_t rds_v[4]; |
| int64_t rds_h[4]; |
| int idx_v[4] = { 0, 1, 2, 3 }; |
| int idx_h[4] = { 0, 1, 2, 3 }; |
| int skip_v[4] = { 0 }; |
| int skip_h[4] = { 0 }; |
| const int idx_map[16] = { |
| DCT_DCT, DCT_ADST, DCT_FLIPADST, V_DCT, |
| ADST_DCT, ADST_ADST, ADST_FLIPADST, V_ADST, |
| FLIPADST_DCT, FLIPADST_ADST, FLIPADST_FLIPADST, V_FLIPADST, |
| H_DCT, H_ADST, H_FLIPADST, IDTX |
| }; |
| |
| const int sel_pattern_v[16] = { |
| 0, 0, 1, 1, 0, 2, 1, 2, 2, 0, 3, 1, 3, 2, 3, 3 |
| }; |
| const int sel_pattern_h[16] = { |
| 0, 1, 0, 1, 2, 0, 2, 1, 2, 3, 0, 3, 1, 3, 2, 3 |
| }; |
| |
| QUANT_PARAM quant_param; |
| TxfmParam txfm_param; |
| av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param); |
| av1_setup_quant(tx_size, 1, AV1_XFORM_QUANT_B, cpi->oxcf.q_cfg.quant_b_adapt, |
| &quant_param); |
| int tx_type; |
| // to ensure we can try ones even outside of ext_tx_set of current block |
| // this function should only be called for size < 16 |
| assert(txsize_sqr_up_map[tx_size] <= TX_16X16); |
| txfm_param.tx_set_type = EXT_TX_SET_ALL16; |
| |
| int rate_cost = 0; |
| int64_t dist = 0, sse = 0; |
| // evaluate horizontal with vertical DCT |
| for (idx = 0; idx < 4; ++idx) { |
| tx_type = idx_map[idx]; |
| txfm_param.tx_type = tx_type; |
| |
| av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type, |
| &quant_param); |
| |
| av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param, |
| &quant_param); |
| |
| const SCAN_ORDER *const scan_order = |
| get_scan(txfm_param.tx_size, txfm_param.tx_type); |
| dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix, |
| scan_order->scan, &dist, &sse); |
| |
| rate_cost = av1_cost_coeffs_txb_laplacian(x, plane, block, tx_size, tx_type, |
| txb_ctx, reduced_tx_set_used, 0); |
| |
| rds_h[idx] = RDCOST(x->rdmult, rate_cost, dist); |
| |
| if ((rds_h[idx] - (rds_h[idx] >> 2)) > ref_best_rd) { |
| skip_h[idx] = 1; |
| } |
| } |
| sort_rd(rds_h, idx_h, 4); |
| for (idx = 1; idx < 4; idx++) { |
| if (rds_h[idx] > rds_h[0] * 1.2) skip_h[idx_h[idx]] = 1; |
| } |
| |
| if (skip_h[idx_h[0]]) return (uint16_t)0xFFFF; |
| |
| // evaluate vertical with the best horizontal chosen |
| rds_v[0] = rds_h[0]; |
| int start_v = 1, end_v = 4; |
| const int *idx_map_v = idx_map + idx_h[0]; |
| |
| for (idx = start_v; idx < end_v; ++idx) { |
| tx_type = idx_map_v[idx_v[idx] * 4]; |
| txfm_param.tx_type = tx_type; |
| |
| av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type, |
| &quant_param); |
| |
| av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param, |
| &quant_param); |
| |
| const SCAN_ORDER *const scan_order = |
| get_scan(txfm_param.tx_size, txfm_param.tx_type); |
| dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix, |
| scan_order->scan, &dist, &sse); |
| |
| rate_cost = av1_cost_coeffs_txb_laplacian(x, plane, block, tx_size, tx_type, |
| txb_ctx, reduced_tx_set_used, 0); |
| |
| rds_v[idx] = RDCOST(x->rdmult, rate_cost, dist); |
| |
| if ((rds_v[idx] - (rds_v[idx] >> 2)) > ref_best_rd) { |
| skip_v[idx] = 1; |
| } |
| } |
| sort_rd(rds_v, idx_v, 4); |
| for (idx = 1; idx < 4; idx++) { |
| if (rds_v[idx] > rds_v[0] * 1.2) skip_v[idx_v[idx]] = 1; |
| } |
| |
| // combine rd_h and rd_v to prune tx candidates |
| int i_v, i_h; |
| int64_t rds[16]; |
| int num_cand = 0, last = TX_TYPES - 1; |
| |
| for (int i = 0; i < 16; i++) { |
| i_v = sel_pattern_v[i]; |
| i_h = sel_pattern_h[i]; |
| tx_type = idx_map[idx_v[i_v] * 4 + idx_h[i_h]]; |
| if (!(allowed_tx_mask & (1 << tx_type)) || skip_h[idx_h[i_h]] || |
| skip_v[idx_v[i_v]]) { |
| txk_map[last] = tx_type; |
| last--; |
| } else { |
| txk_map[num_cand] = tx_type; |
| rds[num_cand] = rds_v[i_v] + rds_h[i_h]; |
| if (rds[num_cand] == 0) rds[num_cand] = 1; |
| num_cand++; |
| } |
| } |
| sort_rd(rds, txk_map, num_cand); |
| |
| uint16_t prune = (uint16_t)(~(1 << txk_map[0])); |
| num_sel = AOMMIN(num_sel, num_cand); |
| |
| for (int i = 1; i < num_sel; i++) { |
| int64_t factor = 1800 * (rds[i] - rds[0]) / (rds[0]); |
| if (factor < (int64_t)prune_factor) |
| prune &= ~(1 << txk_map[i]); |
| else |
| break; |
| } |
| return prune; |
| } |
| |
| uint16_t prune_txk_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane, |
| int block, TX_SIZE tx_size, int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, int *txk_map, |
| uint16_t allowed_tx_mask, int prune_factor, |
| const TXB_CTX *const txb_ctx, int reduced_tx_set_used) { |
| const AV1_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| int tx_type; |
| |
| int64_t rds[TX_TYPES]; |
| |
| int num_cand = 0; |
| int last = TX_TYPES - 1; |
| |
| TxfmParam txfm_param; |
| QUANT_PARAM quant_param; |
| av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param); |
| av1_setup_quant(tx_size, 1, AV1_XFORM_QUANT_B, cpi->oxcf.q_cfg.quant_b_adapt, |
| &quant_param); |
| |
| for (int idx = 0; idx < TX_TYPES; idx++) { |
| tx_type = idx; |
| int rate_cost = 0; |
| int64_t dist = 0, sse = 0; |
| if (!(allowed_tx_mask & (1 << tx_type))) { |
| txk_map[last] = tx_type; |
| last--; |
| continue; |
| } |
| txfm_param.tx_type = tx_type; |
| |
| av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type, |
| &quant_param); |
| |
| // do txfm and quantization |
| av1_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param, |
| &quant_param); |
| // estimate rate cost |
| rate_cost = av1_cost_coeffs_txb_laplacian(x, plane, block, tx_size, tx_type, |
| txb_ctx, reduced_tx_set_used, 0); |
| // tx domain dist |
| const SCAN_ORDER *const scan_order = |
| get_scan(txfm_param.tx_size, txfm_param.tx_type); |
| dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix, |
| scan_order->scan, &dist, &sse); |
| |
| txk_map[num_cand] = tx_type; |
| rds[num_cand] = RDCOST(x->rdmult, rate_cost, dist); |
| if (rds[num_cand] == 0) rds[num_cand] = 1; |
| num_cand++; |
| } |
| |
| if (num_cand == 0) return (uint16_t)0xFFFF; |
| |
| sort_rd(rds, txk_map, num_cand); |
| uint16_t prune = (uint16_t)(~(1 << txk_map[0])); |
| |
| // 0 < prune_factor <= 1000 controls aggressiveness |
| int64_t factor = 0; |
| for (int idx = 1; idx < num_cand; idx++) { |
| factor = 1000 * (rds[idx] - rds[0]) / rds[0]; |
| if (factor < (int64_t)prune_factor) |
| prune &= ~(1 << txk_map[idx]); |
| else |
| break; |
| } |
| return prune; |
| } |
| |
| // These thresholds were calibrated to provide a certain number of TX types |
| // pruned by the model on average, i.e. selecting a threshold with index i |
| // will lead to pruning i+1 TX types on average |
| static const float *prune_2D_adaptive_thresholds[] = { |
| // TX_4X4 |
| (float[]){ 0.00549f, 0.01306f, 0.02039f, 0.02747f, 0.03406f, 0.04065f, |
| 0.04724f, 0.05383f, 0.06067f, 0.06799f, 0.07605f, 0.08533f, |
| 0.09778f, 0.11780f }, |
| // TX_8X8 |
| (float[]){ 0.00037f, 0.00183f, 0.00525f, 0.01038f, 0.01697f, 0.02502f, |
| 0.03381f, 0.04333f, 0.05286f, 0.06287f, 0.07434f, 0.08850f, |
| 0.10803f, 0.14124f }, |
| // TX_16X16 |
| (float[]){ 0.01404f, 0.02000f, 0.04211f, 0.05164f, 0.05798f, 0.06335f, |
| 0.06897f, 0.07629f, 0.08875f, 0.11169f }, |
| // TX_32X32 |
| NULL, |
| // TX_64X64 |
| NULL, |
| // TX_4X8 |
| (float[]){ 0.00183f, 0.00745f, 0.01428f, 0.02185f, 0.02966f, 0.03723f, |
| 0.04456f, 0.05188f, 0.05920f, 0.06702f, 0.07605f, 0.08704f, |
| 0.10168f, 0.12585f }, |
| // TX_8X4 |
| (float[]){ 0.00085f, 0.00476f, 0.01135f, 0.01892f, 0.02698f, 0.03528f, |
| 0.04358f, 0.05164f, 0.05994f, 0.06848f, 0.07849f, 0.09021f, |
| 0.10583f, 0.13123f }, |
| // TX_8X16 |
| (float[]){ 0.00037f, 0.00232f, 0.00671f, 0.01257f, 0.01965f, 0.02722f, |
| 0.03552f, 0.04382f, 0.05237f, 0.06189f, 0.07336f, 0.08728f, |
| 0.10730f, 0.14221f }, |
| // TX_16X8 |
| (float[]){ 0.00061f, 0.00330f, 0.00818f, 0.01453f, 0.02185f, 0.02966f, |
| 0.03772f, 0.04578f, 0.05383f, 0.06262f, 0.07288f, 0.08582f, |
| 0.10339f, 0.13464f }, |
| // TX_16X32 |
| NULL, |
| // TX_32X16 |
| NULL, |
| // TX_32X64 |
| NULL, |
| // TX_64X32 |
| NULL, |
| // TX_4X16 |
| (float[]){ 0.00232f, 0.00671f, 0.01257f, 0.01941f, 0.02673f, 0.03430f, |
| 0.04211f, 0.04968f, 0.05750f, 0.06580f, 0.07507f, 0.08655f, |
| 0.10242f, 0.12878f }, |
| // TX_16X4 |
| (float[]){ 0.00110f, 0.00525f, 0.01208f, 0.01990f, 0.02795f, 0.03601f, |
| 0.04358f, 0.05115f, 0.05896f, 0.06702f, 0.07629f, 0.08752f, |
| 0.10217f, 0.12610f }, |
| // TX_8X32 |
| NULL, |
| // TX_32X8 |
| NULL, |
| // TX_16X64 |
| NULL, |
| // TX_64X16 |
| NULL, |
| }; |
| |
| static INLINE float get_adaptive_thresholds( |
| TX_SIZE tx_size, TxSetType tx_set_type, |
| TX_TYPE_PRUNE_MODE prune_2d_txfm_mode) { |
| const int prune_aggr_table[5][2] = { |
| { 4, 1 }, { 6, 3 }, { 9, 6 }, { 9, 6 }, { 12, 9 } |
| }; |
| int pruning_aggressiveness = 0; |
| if (tx_set_type == EXT_TX_SET_ALL16) |
| pruning_aggressiveness = |
| prune_aggr_table[prune_2d_txfm_mode - TX_TYPE_PRUNE_1][0]; |
| else if (tx_set_type == EXT_TX_SET_DTT9_IDTX_1DDCT) |
| pruning_aggressiveness = |
| prune_aggr_table[prune_2d_txfm_mode - TX_TYPE_PRUNE_1][1]; |
| |
| return prune_2D_adaptive_thresholds[tx_size][pruning_aggressiveness]; |
| } |
| |
| static AOM_INLINE void get_energy_distribution_finer(const int16_t *diff, |
| int stride, int bw, int bh, |
| float *hordist, |
| float *verdist) { |
| // First compute downscaled block energy values (esq); downscale factors |
| // are defined by w_shift and h_shift. |
| unsigned int esq[256]; |
| const int w_shift = bw <= 8 ? 0 : 1; |
| const int h_shift = bh <= 8 ? 0 : 1; |
| const int esq_w = bw >> w_shift; |
| const int esq_h = bh >> h_shift; |
| const int esq_sz = esq_w * esq_h; |
| int i, j; |
| memset(esq, 0, esq_sz * sizeof(esq[0])); |
| if (w_shift) { |
| for (i = 0; i < bh; i++) { |
| unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w; |
| const int16_t *cur_diff_row = diff + i * stride; |
| for (j = 0; j < bw; j += 2) { |
| cur_esq_row[j >> 1] += (cur_diff_row[j] * cur_diff_row[j] + |
| cur_diff_row[j + 1] * cur_diff_row[j + 1]); |
| } |
| } |
| } else { |
| for (i = 0; i < bh; i++) { |
| unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w; |
| const int16_t *cur_diff_row = diff + i * stride; |
| for (j = 0; j < bw; j++) { |
| cur_esq_row[j] += cur_diff_row[j] * cur_diff_row[j]; |
| } |
| } |
| } |
| |
| uint64_t total = 0; |
| for (i = 0; i < esq_sz; i++) total += esq[i]; |
| |
| // Output hordist and verdist arrays are normalized 1D projections of esq |
| if (total == 0) { |
| float hor_val = 1.0f / esq_w; |
| for (j = 0; j < esq_w - 1; j++) hordist[j] = hor_val; |
| float ver_val = 1.0f / esq_h; |
| for (i = 0; i < esq_h - 1; i++) verdist[i] = ver_val; |
| return; |
| } |
| |
| const float e_recip = 1.0f / (float)total; |
| memset(hordist, 0, (esq_w - 1) * sizeof(hordist[0])); |
| memset(verdist, 0, (esq_h - 1) * sizeof(verdist[0])); |
| const unsigned int *cur_esq_row; |
| for (i = 0; i < esq_h - 1; i++) { |
| cur_esq_row = esq + i * esq_w; |
| for (j = 0; j < esq_w - 1; j++) { |
| hordist[j] += (float)cur_esq_row[j]; |
| verdist[i] += (float)cur_esq_row[j]; |
| } |
| verdist[i] += (float)cur_esq_row[j]; |
| } |
| cur_esq_row = esq + i * esq_w; |
| for (j = 0; j < esq_w - 1; j++) hordist[j] += (float)cur_esq_row[j]; |
| |
| for (j = 0; j < esq_w - 1; j++) hordist[j] *= e_recip; |
| for (i = 0; i < esq_h - 1; i++) verdist[i] *= e_recip; |
| } |
| |
| static AOM_INLINE bool check_bit_mask(uint16_t mask, int val) { |
| return mask & (1 << val); |
| } |
| |
| static AOM_INLINE void set_bit_mask(uint16_t *mask, int val) { |
| *mask |= (1 << val); |
| } |
| |
| static AOM_INLINE void unset_bit_mask(uint16_t *mask, int val) { |
| *mask &= ~(1 << val); |
| } |
| |
| static void prune_tx_2D(MACROBLOCK *x, BLOCK_SIZE bsize, TX_SIZE tx_size, |
| int blk_row, int blk_col, TxSetType tx_set_type, |
| TX_TYPE_PRUNE_MODE prune_2d_txfm_mode, int *txk_map, |
| uint16_t *allowed_tx_mask) { |
| // This table is used because the search order is different from the enum |
| // order. |
| static const int tx_type_table_2D[16] = { |
| DCT_DCT, DCT_ADST, DCT_FLIPADST, V_DCT, |
| ADST_DCT, ADST_ADST, ADST_FLIPADST, V_ADST, |
| FLIPADST_DCT, FLIPADST_ADST, FLIPADST_FLIPADST, V_FLIPADST, |
| H_DCT, H_ADST, H_FLIPADST, IDTX |
| }; |
| if (tx_set_type != EXT_TX_SET_ALL16 && |
| tx_set_type != EXT_TX_SET_DTT9_IDTX_1DDCT) |
| return; |
| #if CONFIG_NN_V2 |
| NN_CONFIG_V2 *nn_config_hor = av1_tx_type_nnconfig_map_hor[tx_size]; |
| NN_CONFIG_V2 *nn_config_ver = av1_tx_type_nnconfig_map_ver[tx_size]; |
| #else |
| const NN_CONFIG *nn_config_hor = av1_tx_type_nnconfig_map_hor[tx_size]; |
| const NN_CONFIG *nn_config_ver = av1_tx_type_nnconfig_map_ver[tx_size]; |
| #endif |
| if (!nn_config_hor || !nn_config_ver) return; // Model not established yet. |
| |
| float hfeatures[16], vfeatures[16]; |
| float hscores[4], vscores[4]; |
| float scores_2D_raw[16]; |
| const int bw = tx_size_wide[tx_size]; |
| const int bh = tx_size_high[tx_size]; |
| const int hfeatures_num = bw <= 8 ? bw : bw / 2; |
| const int vfeatures_num = bh <= 8 ? bh : bh / 2; |
| assert(hfeatures_num <= 16); |
| assert(vfeatures_num <= 16); |
| |
| const struct macroblock_plane *const p = &x->plane[0]; |
| const int diff_stride = block_size_wide[bsize]; |
| const int16_t *diff = p->src_diff + 4 * blk_row * diff_stride + 4 * blk_col; |
| get_energy_distribution_finer(diff, diff_stride, bw, bh, hfeatures, |
| vfeatures); |
| |
| av1_get_horver_correlation_full(diff, diff_stride, bw, bh, |
| &hfeatures[hfeatures_num - 1], |
| &vfeatures[vfeatures_num - 1]); |
| |
| #if CONFIG_NN_V2 |
| av1_nn_predict_v2(hfeatures, nn_config_hor, 0, hscores); |
| av1_nn_predict_v2(vfeatures, nn_config_ver, 0, vscores); |
| #else |
| av1_nn_predict(hfeatures, nn_config_hor, 1, hscores); |
| av1_nn_predict(vfeatures, nn_config_ver, 1, vscores); |
| #endif |
| |
| for (int i = 0; i < 4; i++) { |
| float *cur_scores_2D = scores_2D_raw + i * 4; |
| cur_scores_2D[0] = vscores[i] * hscores[0]; |
| cur_scores_2D[1] = vscores[i] * hscores[1]; |
| cur_scores_2D[2] = vscores[i] * hscores[2]; |
| cur_scores_2D[3] = vscores[i] * hscores[3]; |
| } |
| |
| assert(TX_TYPES == 16); |
| // This version of the function only works when there are at most 16 classes. |
| // So we will need to change the optimization or use av1_nn_softmax instead if |
| // this ever gets changed. |
| av1_nn_fast_softmax_16(scores_2D_raw, scores_2D_raw); |
| |
| const float score_thresh = |
| get_adaptive_thresholds(tx_size, tx_set_type, prune_2d_txfm_mode); |
| |
| // Always keep the TX type with the highest score, prune all others with |
| // score below score_thresh. |
| int max_score_i = 0; |
| float max_score = 0.0f; |
| uint16_t allow_bitmask = 0; |
| float sum_score = 0.0; |
| // Calculate sum of allowed tx type score and Populate allow bit mask based |
| // on score_thresh and allowed_tx_mask |
| int allow_count = 0; |
| int tx_type_allowed[16] = { TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID, |
| TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID, |
| TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID, |
| TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID, |
| TX_TYPE_INVALID, TX_TYPE_INVALID, TX_TYPE_INVALID, |
| TX_TYPE_INVALID }; |
| float scores_2D[16] = { |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| }; |
| for (int tx_idx = 0; tx_idx < TX_TYPES; tx_idx++) { |
| const int allow_tx_type = |
| check_bit_mask(*allowed_tx_mask, tx_type_table_2D[tx_idx]); |
| if (!allow_tx_type) { |
| continue; |
| } |
| if (scores_2D_raw[tx_idx] > max_score) { |
| max_score = scores_2D_raw[tx_idx]; |
| max_score_i = tx_idx; |
| } |
| if (scores_2D_raw[tx_idx] >= score_thresh) { |
| // Set allow mask based on score_thresh |
| set_bit_mask(&allow_bitmask, tx_type_table_2D[tx_idx]); |
| |
| // Accumulate score of allowed tx type |
| sum_score += scores_2D_raw[tx_idx]; |
| |
| scores_2D[allow_count] = scores_2D_raw[tx_idx]; |
| tx_type_allowed[allow_count] = tx_type_table_2D[tx_idx]; |
| allow_count += 1; |
| } |
| } |
| if (!check_bit_mask(allow_bitmask, tx_type_table_2D[max_score_i])) { |
| // If even the tx_type with max score is pruned, this means that no other |
| // tx_type is feasible. When this happens, we force enable max_score_i and |
| // end the search. |
| set_bit_mask(&allow_bitmask, tx_type_table_2D[max_score_i]); |
| memcpy(txk_map, tx_type_table_2D, sizeof(tx_type_table_2D)); |
| *allowed_tx_mask = allow_bitmask; |
| return; |
| } |
| |
| // Sort tx type probability of all types |
| if (allow_count <= 8) { |
| av1_sort_fi32_8(scores_2D, tx_type_allowed); |
| } else { |
| av1_sort_fi32_16(scores_2D, tx_type_allowed); |
| } |
| |
| // Enable more pruning based on tx type probability and number of allowed tx |
| // types |
| if (prune_2d_txfm_mode >= TX_TYPE_PRUNE_4) { |
| float temp_score = 0.0; |
| float score_ratio = 0.0; |
| int tx_idx, tx_count = 0; |
| const float inv_sum_score = 100 / sum_score; |
| // Get allowed tx types based on sorted probability score and tx count |
| for (tx_idx = 0; tx_idx < allow_count; tx_idx++) { |
| // Skip the tx type which has more than 30% of cumulative |
| // probability and allowed tx type count is more than 2 |
| if (score_ratio > 30.0 && tx_count >= 2) break; |
| |
| assert(check_bit_mask(allow_bitmask, tx_type_allowed[tx_idx])); |
| // Calculate cumulative probability |
| temp_score += scores_2D[tx_idx]; |
| |
| // Calculate percentage of cumulative probability of allowed tx type |
| score_ratio = temp_score * inv_sum_score; |
| tx_count++; |
| } |
| // Set remaining tx types as pruned |
| for (; tx_idx < allow_count; tx_idx++) |
| unset_bit_mask(&allow_bitmask, tx_type_allowed[tx_idx]); |
| } |
| |
| memcpy(txk_map, tx_type_allowed, sizeof(tx_type_table_2D)); |
| *allowed_tx_mask = allow_bitmask; |
| } |
| |
| static float get_dev(float mean, double x2_sum, int num) { |
| const float e_x2 = (float)(x2_sum / num); |
| const float diff = e_x2 - mean * mean; |
| const float dev = (diff > 0) ? sqrtf(diff) : 0; |
| return dev; |
| } |
| |
| // Writes the features required by the ML model to predict tx split based on |
| // mean and standard deviation values of the block and sub-blocks. |
| // Returns the number of elements written to the output array which is at most |
| // 12 currently. Hence 'features' buffer should be able to accommodate at least |
| // 12 elements. |
| static AOM_INLINE int get_mean_dev_features(const int16_t *data, int stride, |
| int bw, int bh, float *features) { |
| const int16_t *const data_ptr = &data[0]; |
| const int subh = (bh >= bw) ? (bh >> 1) : bh; |
| const int subw = (bw >= bh) ? (bw >> 1) : bw; |
| const int num = bw * bh; |
| const int sub_num = subw * subh; |
| int feature_idx = 2; |
| int total_x_sum = 0; |
| int64_t total_x2_sum = 0; |
| int num_sub_blks = 0; |
| double mean2_sum = 0.0f; |
| float dev_sum = 0.0f; |
| |
| for (int row = 0; row < bh; row += subh) { |
| for (int col = 0; col < bw; col += subw) { |
| int x_sum; |
| int64_t x2_sum; |
| // TODO(any): Write a SIMD version. Clear registers. |
| aom_get_blk_sse_sum(data_ptr + row * stride + col, stride, subw, subh, |
| &x_sum, &x2_sum); |
| total_x_sum += x_sum; |
| total_x2_sum += x2_sum; |
| |
| const float mean = (float)x_sum / sub_num; |
| const float dev = get_dev(mean, (double)x2_sum, sub_num); |
| features[feature_idx++] = mean; |
| features[feature_idx++] = dev; |
| mean2_sum += (double)(mean * mean); |
| dev_sum += dev; |
| num_sub_blks++; |
| } |
| } |
| |
| const float lvl0_mean = (float)total_x_sum / num; |
| features[0] = lvl0_mean; |
| features[1] = get_dev(lvl0_mean, (double)total_x2_sum, num); |
| |
| // Deviation of means. |
| features[feature_idx++] = get_dev(lvl0_mean, mean2_sum, num_sub_blks); |
| // Mean of deviations. |
| features[feature_idx++] = dev_sum / num_sub_blks; |
| |
| return feature_idx; |
| } |
| |
| static int ml_predict_tx_split(MACROBLOCK *x, BLOCK_SIZE bsize, int blk_row, |
| int blk_col, TX_SIZE tx_size) { |
| const NN_CONFIG *nn_config = av1_tx_split_nnconfig_map[tx_size]; |
| if (!nn_config) return -1; |
| |
| const int diff_stride = block_size_wide[bsize]; |
| const int16_t *diff = |
| x->plane[0].src_diff + 4 * blk_row * diff_stride + 4 * blk_col; |
| const int bw = tx_size_wide[tx_size]; |
| const int bh = tx_size_high[tx_size]; |
| |
| float features[64] = { 0.0f }; |
| get_mean_dev_features(diff, diff_stride, bw, bh, features); |
| |
| float score = 0.0f; |
| av1_nn_predict(features, nn_config, 1, &score); |
| |
| int int_score = (int)(score * 10000); |
| return clamp(int_score, -80000, 80000); |
| } |
| |
| static INLINE uint16_t |
| get_tx_mask(const AV1_COMP *cpi, MACROBLOCK *x, int plane, int block, |
| int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| const TXB_CTX *const txb_ctx, FAST_TX_SEARCH_MODE ftxs_mode, |
| int64_t ref_best_rd, TX_TYPE *allowed_txk_types, int *txk_map) { |
| const AV1_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const TxfmSearchParams *txfm_params = &x->txfm_search_params; |
| const int is_inter = is_inter_block(mbmi); |
| const int fast_tx_search = ftxs_mode & FTXS_DCT_AND_1D_DCT_ONLY; |
| // if txk_allowed = TX_TYPES, >1 tx types are allowed, else, if txk_allowed < |
| // TX_TYPES, only that specific tx type is allowed. |
| TX_TYPE txk_allowed = TX_TYPES; |
| |
| const FRAME_UPDATE_TYPE update_type = |
| get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); |
| int use_actual_frame_probs = 1; |
| const int *tx_type_probs; |
| #if CONFIG_FPMT_TEST |
| use_actual_frame_probs = |
| (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 0 : 1; |
| if (!use_actual_frame_probs) { |
| tx_type_probs = |
| (int *)cpi->ppi->temp_frame_probs.tx_type_probs[update_type][tx_size]; |
| } |
| #endif |
| if (use_actual_frame_probs) { |
| tx_type_probs = cpi->ppi->frame_probs.tx_type_probs[update_type][tx_size]; |
| } |
| |
| if ((!is_inter && txfm_params->use_default_intra_tx_type) || |
| (is_inter && txfm_params->default_inter_tx_type_prob_thresh == 0)) { |
| txk_allowed = |
| get_default_tx_type(0, xd, tx_size, cpi->use_screen_content_tools); |
| } else if (is_inter && |
| txfm_params->default_inter_tx_type_prob_thresh != INT_MAX) { |
| if (tx_type_probs[DEFAULT_INTER_TX_TYPE] > |
| txfm_params->default_inter_tx_type_prob_thresh) { |
| txk_allowed = DEFAULT_INTER_TX_TYPE; |
| } else { |
| int force_tx_type = 0; |
| int max_prob = 0; |
| const int tx_type_prob_threshold = |
| txfm_params->default_inter_tx_type_prob_thresh + |
| PROB_THRESH_OFFSET_TX_TYPE; |
| for (int i = 1; i < TX_TYPES; i++) { // find maximum probability. |
| if (tx_type_probs[i] > max_prob) { |
| max_prob = tx_type_probs[i]; |
| force_tx_type = i; |
| } |
| } |
| if (max_prob > tx_type_prob_threshold) // force tx type with max prob. |
| txk_allowed = force_tx_type; |
| else if (x->rd_model == LOW_TXFM_RD) { |
| if (plane == 0) txk_allowed = DCT_DCT; |
| } |
| } |
| } else if (x->rd_model == LOW_TXFM_RD) { |
| if (plane == 0) txk_allowed = DCT_DCT; |
| } |
| |
| const TxSetType tx_set_type = av1_get_ext_tx_set_type( |
| tx_size, is_inter, cm->features.reduced_tx_set_used); |
| |
| TX_TYPE uv_tx_type = DCT_DCT; |
| if (plane) { |
| // tx_type of PLANE_TYPE_UV should be the same as PLANE_TYPE_Y |
| uv_tx_type = txk_allowed = |
| av1_get_tx_type(xd, get_plane_type(plane), blk_row, blk_col, tx_size, |
| cm->features.reduced_tx_set_used); |
| } |
| PREDICTION_MODE intra_dir = |
| mbmi->filter_intra_mode_info.use_filter_intra |
| ? fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode] |
| : mbmi->mode; |
| uint16_t ext_tx_used_flag = |
| cpi->sf.tx_sf.tx_type_search.use_reduced_intra_txset != 0 && |
| tx_set_type == EXT_TX_SET_DTT4_IDTX_1DDCT |
| ? av1_reduced_intra_tx_used_flag[intra_dir] |
| : av1_ext_tx_used_flag[tx_set_type]; |
| |
| if (cpi->sf.tx_sf.tx_type_search.use_reduced_intra_txset == 2) |
| ext_tx_used_flag &= av1_derived_intra_tx_used_flag[intra_dir]; |
| |
| if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32 || |
| ext_tx_used_flag == 0x0001 || |
| (is_inter && cpi->oxcf.txfm_cfg.use_inter_dct_only) || |
| (!is_inter && cpi->oxcf.txfm_cfg.use_intra_dct_only)) { |
| txk_allowed = DCT_DCT; |
| } |
| |
| if (cpi->oxcf.txfm_cfg.enable_flip_idtx == 0) |
| ext_tx_used_flag &= DCT_ADST_TX_MASK; |
| |
| uint16_t allowed_tx_mask = 0; // 1: allow; 0: skip. |
| if (txk_allowed < TX_TYPES) { |
| allowed_tx_mask = 1 << txk_allowed; |
| allowed_tx_mask &= ext_tx_used_flag; |
| } else if (fast_tx_search) { |
| allowed_tx_mask = 0x0c01; // V_DCT, H_DCT, DCT_DCT |
| allowed_tx_mask &= ext_tx_used_flag; |
| } else { |
| assert(plane == 0); |
| allowed_tx_mask = ext_tx_used_flag; |
| int num_allowed = 0; |
| int i; |
| |
| if (cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats) { |
| static const int thresh_arr[2][7] = { { 10, 15, 15, 10, 15, 15, 15 }, |
| { 10, 17, 17, 10, 17, 17, 17 } }; |
| const int thresh = |
| thresh_arr[cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats - 1] |
| [update_type]; |
| uint16_t prune = 0; |
| int max_prob = -1; |
| int max_idx = 0; |
| for (i = 0; i < TX_TYPES; i++) { |
| if (tx_type_probs[i] > max_prob && (allowed_tx_mask & (1 << i))) { |
| max_prob = tx_type_probs[i]; |
| max_idx = i; |
| } |
| if (tx_type_probs[i] < thresh) prune |= (1 << i); |
| } |
| if ((prune >> max_idx) & 0x01) prune &= ~(1 << max_idx); |
| allowed_tx_mask &= (~prune); |
| } |
| for (i = 0; i < TX_TYPES; i++) { |
| if (allowed_tx_mask & (1 << i)) num_allowed++; |
| } |
| assert(num_allowed > 0); |
| |
| if (num_allowed > 2 && cpi->sf.tx_sf.tx_type_search.prune_tx_type_est_rd) { |
| int pf = prune_factors[txfm_params->prune_2d_txfm_mode]; |
| int mf = mul_factors[txfm_params->prune_2d_txfm_mode]; |
| if (num_allowed <= 7) { |
| const uint16_t prune = |
| prune_txk_type(cpi, x, plane, block, tx_size, blk_row, blk_col, |
| plane_bsize, txk_map, allowed_tx_mask, pf, txb_ctx, |
| cm->features.reduced_tx_set_used); |
| allowed_tx_mask &= (~prune); |
| } else { |
| const int num_sel = (num_allowed * mf + 50) / 100; |
| const uint16_t prune = prune_txk_type_separ( |
| cpi, x, plane, block, tx_size, blk_row, blk_col, plane_bsize, |
| txk_map, allowed_tx_mask, pf, txb_ctx, |
| cm->features.reduced_tx_set_used, ref_best_rd, num_sel); |
| |
| allowed_tx_mask &= (~prune); |
| } |
| } else { |
| assert(num_allowed > 0); |
| int allowed_tx_count = |
| (txfm_params->prune_2d_txfm_mode >= TX_TYPE_PRUNE_4) ? 1 : 5; |
| // !fast_tx_search && txk_end != txk_start && plane == 0 |
| if (txfm_params->prune_2d_txfm_mode >= TX_TYPE_PRUNE_1 && is_inter && |
| num_allowed > allowed_tx_count) { |
| prune_tx_2D(x, plane_bsize, tx_size, blk_row, blk_col, tx_set_type, |
| txfm_params->prune_2d_txfm_mode, txk_map, &allowed_tx_mask); |
| } |
| } |
| } |
| |
| // Need to have at least one transform type allowed. |
| if (allowed_tx_mask == 0) { |
| txk_allowed = (plane ? uv_tx_type : DCT_DCT); |
| allowed_tx_mask = (1 << txk_allowed); |
| } |
| |
| assert(IMPLIES(txk_allowed < TX_TYPES, allowed_tx_mask == 1 << txk_allowed)); |
| *allowed_txk_types = txk_allowed; |
| return allowed_tx_mask; |
| } |
| |
| #if CONFIG_RD_DEBUG |
| static INLINE void update_txb_coeff_cost(RD_STATS *rd_stats, int plane, |
| int txb_coeff_cost) { |
| rd_stats->txb_coeff_cost[plane] += txb_coeff_cost; |
| } |
| #endif |
| |
| static INLINE int cost_coeffs(MACROBLOCK *x, int plane, int block, |
| TX_SIZE tx_size, const TX_TYPE tx_type, |
| const TXB_CTX *const txb_ctx, |
| int reduced_tx_set_used) { |
| #if TXCOEFF_COST_TIMER |
| struct aom_usec_timer timer; |
| aom_usec_timer_start(&timer); |
| #endif |
| const int cost = av1_cost_coeffs_txb(x, plane, block, tx_size, tx_type, |
| txb_ctx, reduced_tx_set_used); |
| #if TXCOEFF_COST_TIMER |
| AV1_COMMON *tmp_cm = (AV1_COMMON *)&cpi->common; |
| aom_usec_timer_mark(&timer); |
| const int64_t elapsed_time = aom_usec_timer_elapsed(&timer); |
| tmp_cm->txcoeff_cost_timer += elapsed_time; |
| ++tmp_cm->txcoeff_cost_count; |
| #endif |
| return cost; |
| } |
| |
| static int skip_trellis_opt_based_on_satd(MACROBLOCK *x, |
| QUANT_PARAM *quant_param, int plane, |
| int block, TX_SIZE tx_size, |
| int quant_b_adapt, int qstep, |
| unsigned int coeff_opt_satd_threshold, |
| int skip_trellis, int dc_only_blk) { |
| if (skip_trellis || (coeff_opt_satd_threshold == UINT_MAX)) |
| return skip_trellis; |
| |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const int block_offset = BLOCK_OFFSET(block); |
| tran_low_t *const coeff_ptr = p->coeff + block_offset; |
| const int n_coeffs = av1_get_max_eob(tx_size); |
| const int shift = (MAX_TX_SCALE - av1_get_tx_scale(tx_size)); |
| int satd = (dc_only_blk) ? abs(coeff_ptr[0]) : aom_satd(coeff_ptr, n_coeffs); |
| satd = RIGHT_SIGNED_SHIFT(satd, shift); |
| satd >>= (x->e_mbd.bd - 8); |
| |
| const int skip_block_trellis = |
| ((uint64_t)satd > |
| (uint64_t)coeff_opt_satd_threshold * qstep * sqrt_tx_pixels_2d[tx_size]); |
| |
| av1_setup_quant( |
| tx_size, !skip_block_trellis, |
| skip_block_trellis |
| ? (USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP) |
| : AV1_XFORM_QUANT_FP, |
| quant_b_adapt, quant_param); |
| |
| return skip_block_trellis; |
| } |
| |
| // Predict DC only blocks if the residual variance is below a qstep based |
| // threshold.For such blocks, transform type search is bypassed. |
| static INLINE void predict_dc_only_block( |
| MACROBLOCK *x, int plane, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| int block, int blk_row, int blk_col, RD_STATS *best_rd_stats, |
| int64_t *block_sse, unsigned int *block_mse_q8, int64_t *per_px_mean, |
| int *dc_only_blk) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3; |
| const int qstep = x->plane[plane].dequant_QTX[1] >> dequant_shift; |
| uint64_t block_var = UINT64_MAX; |
| const int dc_qstep = x->plane[plane].dequant_QTX[0] >> 3; |
| *block_sse = pixel_diff_stats(x, plane, blk_row, blk_col, plane_bsize, |
| txsize_to_bsize[tx_size], block_mse_q8, |
| per_px_mean, &block_var); |
| assert((*block_mse_q8) != UINT_MAX); |
| uint64_t var_threshold = (uint64_t)(1.8 * qstep * qstep); |
| if (is_cur_buf_hbd(xd)) |
| block_var = ROUND_POWER_OF_TWO(block_var, (xd->bd - 8) * 2); |
| |
| if (block_var >= var_threshold) return; |
| const unsigned int predict_dc_level = x->txfm_search_params.predict_dc_level; |
| assert(predict_dc_level != 0); |
| |
| // Prediction of skip block if residual mean and variance are less |
| // than qstep based threshold |
| if ((llabs(*per_px_mean) * dc_coeff_scale[tx_size]) < (dc_qstep << 12)) { |
| // If the normalized mean of residual block is less than the dc qstep and |
| // the normalized block variance is less than ac qstep, then the block is |
| // assumed to be a skip block and its rdcost is updated accordingly. |
| best_rd_stats->skip_txfm = 1; |
| |
| x->plane[plane].eobs[block] = 0; |
| |
| if (is_cur_buf_hbd(xd)) |
| *block_sse = ROUND_POWER_OF_TWO((*block_sse), (xd->bd - 8) * 2); |
| |
| best_rd_stats->dist = (*block_sse) << 4; |
| best_rd_stats->sse = best_rd_stats->dist; |
| |
| ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE]; |
| ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE]; |
| av1_get_entropy_contexts(plane_bsize, &xd->plane[plane], ctxa, ctxl); |
| ENTROPY_CONTEXT *ta = ctxa; |
| ENTROPY_CONTEXT *tl = ctxl; |
| const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); |
| TXB_CTX txb_ctx_tmp; |
| const PLANE_TYPE plane_type = get_plane_type(plane); |
| get_txb_ctx(plane_bsize, tx_size, plane, ta, tl, &txb_ctx_tmp); |
| const int zero_blk_rate = x->coeff_costs.coeff_costs[txs_ctx][plane_type] |
| .txb_skip_cost[txb_ctx_tmp.txb_skip_ctx][1]; |
| best_rd_stats->rate = zero_blk_rate; |
| |
| best_rd_stats->rdcost = |
| RDCOST(x->rdmult, best_rd_stats->rate, best_rd_stats->sse); |
| |
| x->plane[plane].txb_entropy_ctx[block] = 0; |
| } else if (predict_dc_level > 1) { |
| // Predict DC only blocks based on residual variance. |
| // For chroma plane, this prediction is disabled for intra blocks. |
| if ((plane == 0) || (plane > 0 && is_inter_block(mbmi))) *dc_only_blk = 1; |
| } |
| } |
| |
| // Search for the best transform type for a given transform block. |
| // This function can be used for both inter and intra, both luma and chroma. |
| static void search_tx_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane, |
| int block, int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| const TXB_CTX *const txb_ctx, |
| FAST_TX_SEARCH_MODE ftxs_mode, int skip_trellis, |
| int64_t ref_best_rd, RD_STATS *best_rd_stats) { |
| const AV1_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const TxfmSearchParams *txfm_params = &x->txfm_search_params; |
| int64_t best_rd = INT64_MAX; |
| uint16_t best_eob = 0; |
| TX_TYPE best_tx_type = DCT_DCT; |
| int rate_cost = 0; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| tran_low_t *orig_dqcoeff = p->dqcoeff; |
| tran_low_t *best_dqcoeff = x->dqcoeff_buf; |
| const int tx_type_map_idx = |
| plane ? 0 : blk_row * xd->tx_type_map_stride + blk_col; |
| av1_invalid_rd_stats(best_rd_stats); |
| |
| skip_trellis |= !is_trellis_used(cpi->optimize_seg_arr[xd->mi[0]->segment_id], |
| DRY_RUN_NORMAL); |
| |
| uint8_t best_txb_ctx = 0; |
| // txk_allowed = TX_TYPES: >1 tx types are allowed |
| // txk_allowed < TX_TYPES: only that specific tx type is allowed. |
| TX_TYPE txk_allowed = TX_TYPES; |
| int txk_map[TX_TYPES] = { |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 |
| }; |
| const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3; |
| const int qstep = x->plane[plane].dequant_QTX[1] >> dequant_shift; |
| |
| const uint8_t txw = tx_size_wide[tx_size]; |
| const uint8_t txh = tx_size_high[tx_size]; |
| int64_t block_sse; |
| unsigned int block_mse_q8; |
| int dc_only_blk = 0; |
| const bool predict_dc_block = |
| txfm_params->predict_dc_level >= 1 && txw != 64 && txh != 64; |
| int64_t per_px_mean = INT64_MAX; |
| if (predict_dc_block) { |
| predict_dc_only_block(x, plane, plane_bsize, tx_size, block, blk_row, |
| blk_col, best_rd_stats, &block_sse, &block_mse_q8, |
| &per_px_mean, &dc_only_blk); |
| if (best_rd_stats->skip_txfm == 1) { |
| const TX_TYPE tx_type = DCT_DCT; |
| if (plane == 0) xd->tx_type_map[tx_type_map_idx] = tx_type; |
| return; |
| } |
| } else { |
| block_sse = av1_pixel_diff_dist(x, plane, blk_row, blk_col, plane_bsize, |
| txsize_to_bsize[tx_size], &block_mse_q8); |
| assert(block_mse_q8 != UINT_MAX); |
| } |
| |
| // Bit mask to indicate which transform types are allowed in the RD search. |
| uint16_t tx_mask; |
| |
| // Use DCT_DCT transform for DC only block. |
| if (dc_only_blk || cpi->sf.rt_sf.dct_only_palette_nonrd == 1) |
| tx_mask = 1 << DCT_DCT; |
| else |
| tx_mask = get_tx_mask(cpi, x, plane, block, blk_row, blk_col, plane_bsize, |
| tx_size, txb_ctx, ftxs_mode, ref_best_rd, |
| &txk_allowed, txk_map); |
| const uint16_t allowed_tx_mask = tx_mask; |
| |
| if (is_cur_buf_hbd(xd)) { |
| block_sse = ROUND_POWER_OF_TWO(block_sse, (xd->bd - 8) * 2); |
| block_mse_q8 = ROUND_POWER_OF_TWO(block_mse_q8, (xd->bd - 8) * 2); |
| } |
| block_sse *= 16; |
| // Use mse / qstep^2 based threshold logic to take decision of R-D |
| // optimization of coeffs. For smaller residuals, coeff optimization |
| // would be helpful. For larger residuals, R-D optimization may not be |
| // effective. |
| // TODO(any): Experiment with variance and mean based thresholds |
| const int perform_block_coeff_opt = |
| ((uint64_t)block_mse_q8 <= |
| (uint64_t)txfm_params->coeff_opt_thresholds[0] * qstep * qstep); |
| skip_trellis |= !perform_block_coeff_opt; |
| |
| // Flag to indicate if distortion should be calculated in transform domain or |
| // not during iterating through transform type candidates. |
| // Transform domain distortion is accurate for higher residuals. |
| // TODO(any): Experiment with variance and mean based thresholds |
| int use_transform_domain_distortion = |
| (txfm_params->use_transform_domain_distortion > 0) && |
| (block_mse_q8 >= txfm_params->tx_domain_dist_threshold) && |
| // Any 64-pt transforms only preserves half the coefficients. |
| // Therefore transform domain distortion is not valid for these |
| // transform sizes. |
| (txsize_sqr_up_map[tx_size] != TX_64X64) && |
| // Use pixel domain distortion for DC only blocks |
| !dc_only_blk; |
| // Flag to indicate if an extra calculation of distortion in the pixel domain |
| // should be performed at the end, after the best transform type has been |
| // decided. |
| int calc_pixel_domain_distortion_final = |
| txfm_params->use_transform_domain_distortion == 1 && |
| use_transform_domain_distortion && x->rd_model != LOW_TXFM_RD; |
| if (calc_pixel_domain_distortion_final && |
| (txk_allowed < TX_TYPES || allowed_tx_mask == 0x0001)) |
| calc_pixel_domain_distortion_final = use_transform_domain_distortion = 0; |
| |
| const uint16_t *eobs_ptr = x->plane[plane].eobs; |
| |
| TxfmParam txfm_param; |
| QUANT_PARAM quant_param; |
| int skip_trellis_based_on_satd[TX_TYPES] = { 0 }; |
| av1_setup_xform(cm, x, tx_size, DCT_DCT, &txfm_param); |
| av1_setup_quant(tx_size, !skip_trellis, |
| skip_trellis ? (USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B |
| : AV1_XFORM_QUANT_FP) |
| : AV1_XFORM_QUANT_FP, |
| cpi->oxcf.q_cfg.quant_b_adapt, &quant_param); |
| |
| // Iterate through all transform type candidates. |
| for (int idx = 0; idx < TX_TYPES; ++idx) { |
| const TX_TYPE tx_type = (TX_TYPE)txk_map[idx]; |
| if (tx_type == TX_TYPE_INVALID || !check_bit_mask(allowed_tx_mask, tx_type)) |
| continue; |
| txfm_param.tx_type = tx_type; |
| if (av1_use_qmatrix(&cm->quant_params, xd, mbmi->segment_id)) { |
| av1_setup_qmatrix(&cm->quant_params, xd, plane, tx_size, tx_type, |
| &quant_param); |
| } |
| if (plane == 0) xd->tx_type_map[tx_type_map_idx] = tx_type; |
| RD_STATS this_rd_stats; |
| av1_invalid_rd_stats(&this_rd_stats); |
| |
| if (!dc_only_blk) |
| av1_xform(x, plane, block, blk_row, blk_col, plane_bsize, &txfm_param); |
| else |
| av1_xform_dc_only(x, plane, block, &txfm_param, per_px_mean); |
| |
| skip_trellis_based_on_satd[tx_type] = skip_trellis_opt_based_on_satd( |
| x, &quant_param, plane, block, tx_size, cpi->oxcf.q_cfg.quant_b_adapt, |
| qstep, txfm_params->coeff_opt_thresholds[1], skip_trellis, dc_only_blk); |
| |
| av1_quant(x, plane, block, &txfm_param, &quant_param); |
| |
| // Calculate rate cost of quantized coefficients. |
| if (quant_param.use_optimize_b) { |
| // TODO(aomedia:3209): update Trellis quantization to take into account |
| // quantization matrices. |
| av1_optimize_b(cpi, x, plane, block, tx_size, tx_type, txb_ctx, |
| &rate_cost); |
| } else { |
| rate_cost = cost_coeffs(x, plane, block, tx_size, tx_type, txb_ctx, |
| cm->features.reduced_tx_set_used); |
| } |
| |
| // If rd cost based on coeff rate alone is already more than best_rd, |
| // terminate early. |
| if (RDCOST(x->rdmult, rate_cost, 0) > best_rd) continue; |
| |
| // Calculate distortion. |
| if (eobs_ptr[block] == 0) { |
| // When eob is 0, pixel domain distortion is more efficient and accurate. |
| this_rd_stats.dist = this_rd_stats.sse = block_sse; |
| } else if (dc_only_blk) { |
| this_rd_stats.sse = block_sse; |
| this_rd_stats.dist = dist_block_px_domain( |
| cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size); |
| } else if (use_transform_domain_distortion) { |
| const SCAN_ORDER *const scan_order = |
| get_scan(txfm_param.tx_size, txfm_param.tx_type); |
| dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix, |
| scan_order->scan, &this_rd_stats.dist, |
| &this_rd_stats.sse); |
| } else { |
| int64_t sse_diff = INT64_MAX; |
| // high_energy threshold assumes that every pixel within a txfm block |
| // has a residue energy of at least 25% of the maximum, i.e. 128 * 128 |
| // for 8 bit. |
| const int64_t high_energy_thresh = |
| ((int64_t)128 * 128 * tx_size_2d[tx_size]); |
| const int is_high_energy = (block_sse >= high_energy_thresh); |
| if (tx_size == TX_64X64 || is_high_energy) { |
| // Because 3 out 4 quadrants of transform coefficients are forced to |
| // zero, the inverse transform has a tendency to overflow. sse_diff |
| // is effectively the energy of those 3 quadrants, here we use it |
| // to decide if we should do pixel domain distortion. If the energy |
| // is mostly in first quadrant, then it is unlikely that we have |
| // overflow issue in inverse transform. |
| const SCAN_ORDER *const scan_order = |
| get_scan(txfm_param.tx_size, txfm_param.tx_type); |
| dist_block_tx_domain(x, plane, block, tx_size, quant_param.qmatrix, |
| scan_order->scan, &this_rd_stats.dist, |
| &this_rd_stats.sse); |
| sse_diff = block_sse - this_rd_stats.sse; |
| } |
| if (tx_size != TX_64X64 || !is_high_energy || |
| (sse_diff * 2) < this_rd_stats.sse) { |
| const int64_t tx_domain_dist = this_rd_stats.dist; |
| this_rd_stats.dist = dist_block_px_domain( |
| cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size); |
| // For high energy blocks, occasionally, the pixel domain distortion |
| // can be artificially low due to clamping at reconstruction stage |
| // even when inverse transform output is hugely different from the |
| // actual residue. |
| if (is_high_energy && this_rd_stats.dist < tx_domain_dist) |
| this_rd_stats.dist = tx_domain_dist; |
| } else { |
| assert(sse_diff < INT64_MAX); |
| this_rd_stats.dist += sse_diff; |
| } |
| this_rd_stats.sse = block_sse; |
| } |
| |
| this_rd_stats.rate = rate_cost; |
| |
| const int64_t rd = |
| RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist); |
| |
| if (rd < best_rd) { |
| best_rd = rd; |
| *best_rd_stats = this_rd_stats; |
| best_tx_type = tx_type; |
| best_txb_ctx = x->plane[plane].txb_entropy_ctx[block]; |
| best_eob = x->plane[plane].eobs[block]; |
| // Swap dqcoeff buffers |
| tran_low_t *const tmp_dqcoeff = best_dqcoeff; |
| best_dqcoeff = p->dqcoeff; |
| p->dqcoeff = tmp_dqcoeff; |
| } |
| |
| #if CONFIG_COLLECT_RD_STATS == 1 |
| if (plane == 0) { |
| PrintTransformUnitStats(cpi, x, &this_rd_stats, blk_row, blk_col, |
| plane_bsize, tx_size, tx_type, rd); |
| } |
| #endif // CONFIG_COLLECT_RD_STATS == 1 |
| |
| #if COLLECT_TX_SIZE_DATA |
| // Generate small sample to restrict output size. |
| static unsigned int seed = 21743; |
| if (lcg_rand16(&seed) % 200 == 0) { |
| FILE *fp = NULL; |
| |
| if (within_border) { |
| fp = fopen(av1_tx_size_data_output_file, "a"); |
| } |
| |
| if (fp) { |
| // Transform info and RD |
| const int txb_w = tx_size_wide[tx_size]; |
| const int txb_h = tx_size_high[tx_size]; |
| |
| // Residue signal. |
| const int diff_stride = block_size_wide[plane_bsize]; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| const int16_t *src_diff = |
| &p->src_diff[(blk_row * diff_stride + blk_col) * 4]; |
| |
| for (int r = 0; r < txb_h; ++r) { |
| for (int c = 0; c < txb_w; ++c) { |
| fprintf(fp, "%d,", src_diff[c]); |
| } |
| src_diff += diff_stride; |
| } |
| |
| fprintf(fp, "%d,%d,%d,%" PRId64, txb_w, txb_h, tx_type, rd); |
| fprintf(fp, "\n"); |
| fclose(fp); |
| } |
| } |
| #endif // COLLECT_TX_SIZE_DATA |
| |
| // If the current best RD cost is much worse than the reference RD cost, |
| // terminate early. |
| if (cpi->sf.tx_sf.adaptive_txb_search_level) { |
| if ((best_rd - (best_rd >> cpi->sf.tx_sf.adaptive_txb_search_level)) > |
| ref_best_rd) { |
| break; |
| } |
| } |
| |
| // Terminate transform type search if the block has been quantized to |
| // all zero. |
| if (cpi->sf.tx_sf.tx_type_search.skip_tx_search && !best_eob) break; |
| } |
| |
| assert(best_rd != INT64_MAX); |
| |
| best_rd_stats->skip_txfm = best_eob == 0; |
| if (plane == 0) update_txk_array(xd, blk_row, blk_col, tx_size, best_tx_type); |
| x->plane[plane].txb_entropy_ctx[block] = best_txb_ctx; |
| x->plane[plane].eobs[block] = best_eob; |
| skip_trellis = skip_trellis_based_on_satd[best_tx_type]; |
| |
| // Point dqcoeff to the quantized coefficients corresponding to the best |
| // transform type, then we can skip transform and quantization, e.g. in the |
| // final pixel domain distortion calculation and recon_intra(). |
| p->dqcoeff = best_dqcoeff; |
| |
| if (calc_pixel_domain_distortion_final && best_eob) { |
| best_rd_stats->dist = dist_block_px_domain( |
| cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size); |
| best_rd_stats->sse = block_sse; |
| } |
| |
| // Intra mode needs decoded pixels such that the next transform block |
| // can use them for prediction. |
| recon_intra(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, |
| txb_ctx, skip_trellis, best_tx_type, 0, &rate_cost, best_eob); |
| p->dqcoeff = orig_dqcoeff; |
| } |
| |
| // Pick transform type for a luma transform block of tx_size. Note this function |
| // is used only for inter-predicted blocks. |
| static AOM_INLINE void tx_type_rd(const AV1_COMP *cpi, MACROBLOCK *x, |
| TX_SIZE tx_size, int blk_row, int blk_col, |
| int block, int plane_bsize, TXB_CTX *txb_ctx, |
| RD_STATS *rd_stats, |
| FAST_TX_SEARCH_MODE ftxs_mode, |
| int64_t ref_rdcost) { |
| assert(is_inter_block(x->e_mbd.mi[0])); |
| RD_STATS this_rd_stats; |
| const int skip_trellis = 0; |
| search_tx_type(cpi, x, 0, block, blk_row, blk_col, plane_bsize, tx_size, |
| txb_ctx, ftxs_mode, skip_trellis, ref_rdcost, &this_rd_stats); |
| |
| av1_merge_rd_stats(rd_stats, &this_rd_stats); |
| } |
| |
| static AOM_INLINE void try_tx_block_no_split( |
| const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block, |
| TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, |
| const ENTROPY_CONTEXT *ta, const ENTROPY_CONTEXT *tl, |
| int txfm_partition_ctx, RD_STATS *rd_stats, int64_t ref_best_rd, |
| FAST_TX_SEARCH_MODE ftxs_mode, TxCandidateInfo *no_split) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| struct macroblock_plane *const p = &x->plane[0]; |
| const int bw = mi_size_wide[plane_bsize]; |
| const ENTROPY_CONTEXT *const pta = ta + blk_col; |
| const ENTROPY_CONTEXT *const ptl = tl + blk_row; |
| const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); |
| TXB_CTX txb_ctx; |
| get_txb_ctx(plane_bsize, tx_size, 0, pta, ptl, &txb_ctx); |
| const int zero_blk_rate = x->coeff_costs.coeff_costs[txs_ctx][PLANE_TYPE_Y] |
| .txb_skip_cost[txb_ctx.txb_skip_ctx][1]; |
| rd_stats->zero_rate = zero_blk_rate; |
| const int index = av1_get_txb_size_index(plane_bsize, blk_row, blk_col); |
| mbmi->inter_tx_size[index] = tx_size; |
| tx_type_rd(cpi, x, tx_size, blk_row, blk_col, block, plane_bsize, &txb_ctx, |
| rd_stats, ftxs_mode, ref_best_rd); |
| assert(rd_stats->rate < INT_MAX); |
| |
| const int pick_skip_txfm = |
| !xd->lossless[mbmi->segment_id] && |
| (rd_stats->skip_txfm == 1 || |
| RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >= |
| RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse)); |
| if (pick_skip_txfm) { |
| #if CONFIG_RD_DEBUG |
| update_txb_coeff_cost(rd_stats, 0, zero_blk_rate - rd_stats->rate); |
| #endif // CONFIG_RD_DEBUG |
| rd_stats->rate = zero_blk_rate; |
| rd_stats->dist = rd_stats->sse; |
| p->eobs[block] = 0; |
| update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT); |
| } |
| rd_stats->skip_txfm = pick_skip_txfm; |
| set_blk_skip(x->txfm_search_info.blk_skip, 0, blk_row * bw + blk_col, |
| pick_skip_txfm); |
| |
| if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH) |
| rd_stats->rate += x->mode_costs.txfm_partition_cost[txfm_partition_ctx][0]; |
| |
| no_split->rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); |
| no_split->txb_entropy_ctx = p->txb_entropy_ctx[block]; |
| no_split->tx_type = |
| xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col]; |
| } |
| |
| static AOM_INLINE void try_tx_block_split( |
| const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block, |
| TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta, |
| ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left, |
| int txfm_partition_ctx, int64_t no_split_rd, int64_t ref_best_rd, |
| FAST_TX_SEARCH_MODE ftxs_mode, RD_STATS *split_rd_stats) { |
| assert(tx_size < TX_SIZES_ALL); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int max_blocks_high = max_block_high(xd, plane_bsize, 0); |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0); |
| const int txb_width = tx_size_wide_unit[tx_size]; |
| const int txb_height = tx_size_high_unit[tx_size]; |
| // Transform size after splitting current block. |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int sub_txb_width = tx_size_wide_unit[sub_txs]; |
| const int sub_txb_height = tx_size_high_unit[sub_txs]; |
| const int sub_step = sub_txb_width * sub_txb_height; |
| const int nblks = (txb_height / sub_txb_height) * (txb_width / sub_txb_width); |
| assert(nblks > 0); |
| av1_init_rd_stats(split_rd_stats); |
| split_rd_stats->rate = |
| x->mode_costs.txfm_partition_cost[txfm_partition_ctx][1]; |
| |
| for (int r = 0, blk_idx = 0; r < txb_height; r += sub_txb_height) { |
| const int offsetr = blk_row + r; |
| if (offsetr >= max_blocks_high) break; |
| for (int c = 0; c < txb_width; c += sub_txb_width, ++blk_idx) { |
| assert(blk_idx < 4); |
| const int offsetc = blk_col + c; |
| if (offsetc >= max_blocks_wide) continue; |
| |
| RD_STATS this_rd_stats; |
| int this_cost_valid = 1; |
| select_tx_block(cpi, x, offsetr, offsetc, block, sub_txs, depth + 1, |
| plane_bsize, ta, tl, tx_above, tx_left, &this_rd_stats, |
| no_split_rd / nblks, ref_best_rd - split_rd_stats->rdcost, |
| &this_cost_valid, ftxs_mode); |
| if (!this_cost_valid) { |
| split_rd_stats->rdcost = INT64_MAX; |
| return; |
| } |
| av1_merge_rd_stats(split_rd_stats, &this_rd_stats); |
| split_rd_stats->rdcost = |
| RDCOST(x->rdmult, split_rd_stats->rate, split_rd_stats->dist); |
| if (split_rd_stats->rdcost > ref_best_rd) { |
| split_rd_stats->rdcost = INT64_MAX; |
| return; |
| } |
| block += sub_step; |
| } |
| } |
| } |
| |
| static float get_var(float mean, double x2_sum, int num) { |
| const float e_x2 = (float)(x2_sum / num); |
| const float diff = e_x2 - mean * mean; |
| return diff; |
| } |
| |
| static AOM_INLINE void get_blk_var_dev(const int16_t *data, int stride, int bw, |
| int bh, float *dev_of_mean, |
| float *var_of_vars) { |
| const int16_t *const data_ptr = &data[0]; |
| const int subh = (bh >= bw) ? (bh >> 1) : bh; |
| const int subw = (bw >= bh) ? (bw >> 1) : bw; |
| const int num = bw * bh; |
| const int sub_num = subw * subh; |
| int total_x_sum = 0; |
| int64_t total_x2_sum = 0; |
| int blk_idx = 0; |
| float var_sum = 0.0f; |
| float mean_sum = 0.0f; |
| double var2_sum = 0.0f; |
| double mean2_sum = 0.0f; |
| |
| for (int row = 0; row < bh; row += subh) { |
| for (int col = 0; col < bw; col += subw) { |
| int x_sum; |
| int64_t x2_sum; |
| aom_get_blk_sse_sum(data_ptr + row * stride + col, stride, subw, subh, |
| &x_sum, &x2_sum); |
| total_x_sum += x_sum; |
| total_x2_sum += x2_sum; |
| |
| const float mean = (float)x_sum / sub_num; |
| const float var = get_var(mean, (double)x2_sum, sub_num); |
| mean_sum += mean; |
| mean2_sum += (double)(mean * mean); |
| var_sum += var; |
| var2_sum += var * var; |
| blk_idx++; |
| } |
| } |
| |
| const float lvl0_mean = (float)total_x_sum / num; |
| const float block_var = get_var(lvl0_mean, (double)total_x2_sum, num); |
| mean_sum += lvl0_mean; |
| mean2_sum += (double)(lvl0_mean * lvl0_mean); |
| var_sum += block_var; |
| var2_sum += block_var * block_var; |
| const float av_mean = mean_sum / 5; |
| |
| if (blk_idx > 1) { |
| // Deviation of means. |
| *dev_of_mean = get_dev(av_mean, mean2_sum, (blk_idx + 1)); |
| // Variance of variances. |
| const float mean_var = var_sum / (blk_idx + 1); |
| *var_of_vars = get_var(mean_var, var2_sum, (blk_idx + 1)); |
| } |
| } |
| |
| static void prune_tx_split_no_split(MACROBLOCK *x, BLOCK_SIZE bsize, |
| int blk_row, int blk_col, TX_SIZE tx_size, |
| int *try_no_split, int *try_split, |
| int pruning_level) { |
| const int diff_stride = block_size_wide[bsize]; |
| const int16_t *diff = |
| x->plane[0].src_diff + 4 * blk_row * diff_stride + 4 * blk_col; |
| const int bw = tx_size_wide[tx_size]; |
| const int bh = tx_size_high[tx_size]; |
| float dev_of_means = 0.0f; |
| float var_of_vars = 0.0f; |
| |
| // This function calculates the deviation of means, and the variance of pixel |
| // variances of the block as well as it's sub-blocks. |
| get_blk_var_dev(diff, diff_stride, bw, bh, &dev_of_means, &var_of_vars); |
| const int dc_q = x->plane[0].dequant_QTX[0] >> 3; |
| const int ac_q = x->plane[0].dequant_QTX[1] >> 3; |
| const int no_split_thresh_scales[4] = { 0, 24, 8, 8 }; |
| const int no_split_thresh_scale = no_split_thresh_scales[pruning_level]; |
| const int split_thresh_scales[4] = { 0, 24, 10, 8 }; |
| const int split_thresh_scale = split_thresh_scales[pruning_level]; |
| |
| if ((dev_of_means <= dc_q) && |
| (split_thresh_scale * var_of_vars <= ac_q * ac_q)) { |
| *try_split = 0; |
| } |
| if ((dev_of_means > no_split_thresh_scale * dc_q) && |
| (var_of_vars > no_split_thresh_scale * ac_q * ac_q)) { |
| *try_no_split = 0; |
| } |
| } |
| |
| // Search for the best transform partition(recursive)/type for a given |
| // inter-predicted luma block. The obtained transform selection will be saved |
| // in xd->mi[0], the corresponding RD stats will be saved in rd_stats. |
| static AOM_INLINE void select_tx_block( |
| const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block, |
| TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta, |
| ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left, |
| RD_STATS *rd_stats, int64_t prev_level_rd, int64_t ref_best_rd, |
| int *is_cost_valid, FAST_TX_SEARCH_MODE ftxs_mode) { |
| assert(tx_size < TX_SIZES_ALL); |
| av1_init_rd_stats(rd_stats); |
| if (ref_best_rd < 0) { |
| *is_cost_valid = 0; |
| return; |
| } |
| |
| MACROBLOCKD *const xd = &x->e_mbd; |
| assert(blk_row < max_block_high(xd, plane_bsize, 0) && |
| blk_col < max_block_wide(xd, plane_bsize, 0)); |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row, |
| mbmi->bsize, tx_size); |
| struct macroblock_plane *const p = &x->plane[0]; |
| |
| int try_no_split = (cpi->oxcf.txfm_cfg.enable_tx64 || |
| txsize_sqr_up_map[tx_size] != TX_64X64) && |
| (cpi->oxcf.txfm_cfg.enable_rect_tx || |
| tx_size_wide[tx_size] == tx_size_high[tx_size]); |
| int try_split = tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH; |
| TxCandidateInfo no_split = { INT64_MAX, 0, TX_TYPES }; |
| |
| // Prune tx_split and no-split based on sub-block properties. |
| if (tx_size != TX_4X4 && try_split == 1 && try_no_split == 1 && |
| cpi->sf.tx_sf.prune_tx_size_level > 0) { |
| prune_tx_split_no_split(x, plane_bsize, blk_row, blk_col, tx_size, |
| &try_no_split, &try_split, |
| cpi->sf.tx_sf.prune_tx_size_level); |
| } |
| |
| if (cpi->sf.rt_sf.skip_tx_no_split_var_based_partition) { |
| if (x->try_merge_partition && try_split && p->eobs[block]) try_no_split = 0; |
| } |
| |
| // Try using current block as a single transform block without split. |
| if (try_no_split) { |
| try_tx_block_no_split(cpi, x, blk_row, blk_col, block, tx_size, depth, |
| plane_bsize, ta, tl, ctx, rd_stats, ref_best_rd, |
| ftxs_mode, &no_split); |
| |
| // Speed features for early termination. |
| const int search_level = cpi->sf.tx_sf.adaptive_txb_search_level; |
| if (search_level) { |
| if ((no_split.rd - (no_split.rd >> (1 + search_level))) > ref_best_rd) { |
| *is_cost_valid = 0; |
| return; |
| } |
| if (no_split.rd - (no_split.rd >> (2 + search_level)) > prev_level_rd) { |
| try_split = 0; |
| } |
| } |
| if (cpi->sf.tx_sf.txb_split_cap) { |
| if (p->eobs[block] == 0) try_split = 0; |
| } |
| } |
| |
| // ML based speed feature to skip searching for split transform blocks. |
| if (x->e_mbd.bd == 8 && try_split && |
| !(ref_best_rd == INT64_MAX && no_split.rd == INT64_MAX)) { |
| const int threshold = cpi->sf.tx_sf.tx_type_search.ml_tx_split_thresh; |
| if (threshold >= 0) { |
| const int split_score = |
| ml_predict_tx_split(x, plane_bsize, blk_row, blk_col, tx_size); |
| if (split_score < -threshold) try_split = 0; |
| } |
| } |
| |
| RD_STATS split_rd_stats; |
| split_rd_stats.rdcost = INT64_MAX; |
| // Try splitting current block into smaller transform blocks. |
| if (try_split) { |
| try_tx_block_split(cpi, x, blk_row, blk_col, block, tx_size, depth, |
| plane_bsize, ta, tl, tx_above, tx_left, ctx, no_split.rd, |
| AOMMIN(no_split.rd, ref_best_rd), ftxs_mode, |
| &split_rd_stats); |
| } |
| |
| if (no_split.rd < split_rd_stats.rdcost) { |
| ENTROPY_CONTEXT *pta = ta + blk_col; |
| ENTROPY_CONTEXT *ptl = tl + blk_row; |
| p->txb_entropy_ctx[block] = no_split.txb_entropy_ctx; |
| av1_set_txb_context(x, 0, block, tx_size, pta, ptl); |
| txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size, |
| tx_size); |
| for (int idy = 0; idy < tx_size_high_unit[tx_size]; ++idy) { |
| for (int idx = 0; idx < tx_size_wide_unit[tx_size]; ++idx) { |
| const int index = |
| av1_get_txb_size_index(plane_bsize, blk_row + idy, blk_col + idx); |
| mbmi->inter_tx_size[index] = tx_size; |
| } |
| } |
| mbmi->tx_size = tx_size; |
| update_txk_array(xd, blk_row, blk_col, tx_size, no_split.tx_type); |
| const int bw = mi_size_wide[plane_bsize]; |
| set_blk_skip(x->txfm_search_info.blk_skip, 0, blk_row * bw + blk_col, |
| rd_stats->skip_txfm); |
| } else { |
| *rd_stats = split_rd_stats; |
| if (split_rd_stats.rdcost == INT64_MAX) *is_cost_valid = 0; |
| } |
| } |
| |
| static AOM_INLINE void choose_largest_tx_size(const AV1_COMP *const cpi, |
| MACROBLOCK *x, RD_STATS *rd_stats, |
| int64_t ref_best_rd, |
| BLOCK_SIZE bs) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const TxfmSearchParams *txfm_params = &x->txfm_search_params; |
| mbmi->tx_size = tx_size_from_tx_mode(bs, txfm_params->tx_mode_search_type); |
| |
| // If tx64 is not enabled, we need to go down to the next available size |
| if (!cpi->oxcf.txfm_cfg.enable_tx64 && cpi->oxcf.txfm_cfg.enable_rect_tx) { |
| static const TX_SIZE tx_size_max_32[TX_SIZES_ALL] = { |
| TX_4X4, // 4x4 transform |
| TX_8X8, // 8x8 transform |
| TX_16X16, // 16x16 transform |
| TX_32X32, // 32x32 transform |
| TX_32X32, // 64x64 transform |
| TX_4X8, // 4x8 transform |
| TX_8X4, // 8x4 transform |
| TX_8X16, // 8x16 transform |
| TX_16X8, // 16x8 transform |
| TX_16X32, // 16x32 transform |
| TX_32X16, // 32x16 transform |
| TX_32X32, // 32x64 transform |
| TX_32X32, // 64x32 transform |
| TX_4X16, // 4x16 transform |
| TX_16X4, // 16x4 transform |
| TX_8X32, // 8x32 transform |
| TX_32X8, // 32x8 transform |
| TX_16X32, // 16x64 transform |
| TX_32X16, // 64x16 transform |
| }; |
| mbmi->tx_size = tx_size_max_32[mbmi->tx_size]; |
| } else if (cpi->oxcf.txfm_cfg.enable_tx64 && |
| !cpi->oxcf.txfm_cfg.enable_rect_tx) { |
| static const TX_SIZE tx_size_max_square[TX_SIZES_ALL] = { |
| TX_4X4, // 4x4 transform |
| TX_8X8, // 8x8 transform |
| TX_16X16, // 16x16 transform |
| TX_32X32, // 32x32 transform |
| TX_64X64, // 64x64 transform |
| TX_4X4, // 4x8 transform |
| TX_4X4, // 8x4 transform |
| TX_8X8, // 8x16 transform |
| TX_8X8, // 16x8 transform |
| TX_16X16, // 16x32 transform |
| TX_16X16, // 32x16 transform |
| TX_32X32, // 32x64 transform |
| TX_32X32, // 64x32 transform |
| TX_4X4, // 4x16 transform |
| TX_4X4, // 16x4 transform |
| TX_8X8, // 8x32 transform |
| TX_8X8, // 32x8 transform |
| TX_16X16, // 16x64 transform |
| TX_16X16, // 64x16 transform |
| }; |
| mbmi->tx_size = tx_size_max_square[mbmi->tx_size]; |
| } else if (!cpi->oxcf.txfm_cfg.enable_tx64 && |
| !cpi->oxcf.txfm_cfg.enable_rect_tx) { |
| static const TX_SIZE tx_size_max_32_square[TX_SIZES_ALL] = { |
| TX_4X4, // 4x4 transform |
| TX_8X8, // 8x8 transform |
| TX_16X16, // 16x16 transform |
| TX_32X32, // 32x32 transform |
| TX_32X32, // 64x64 transform |
| TX_4X4, // 4x8 transform |
| TX_4X4, // 8x4 transform |
| TX_8X8, // 8x16 transform |
| TX_8X8, // 16x8 transform |
| TX_16X16, // 16x32 transform |
| TX_16X16, // 32x16 transform |
| TX_32X32, // 32x64 transform |
| TX_32X32, // 64x32 transform |
| TX_4X4, // 4x16 transform |
| TX_4X4, // 16x4 transform |
| TX_8X8, // 8x32 transform |
| TX_8X8, // 32x8 transform |
| TX_16X16, // 16x64 transform |
| TX_16X16, // 64x16 transform |
| }; |
| |
| mbmi->tx_size = tx_size_max_32_square[mbmi->tx_size]; |
| } |
| |
| const int skip_ctx = av1_get_skip_txfm_context(xd); |
| const int no_skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][0]; |
| const int skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][1]; |
| // Skip RDcost is used only for Inter blocks |
| const int64_t skip_txfm_rd = |
| is_inter_block(mbmi) ? RDCOST(x->rdmult, skip_txfm_rate, 0) : INT64_MAX; |
| const int64_t no_skip_txfm_rd = RDCOST(x->rdmult, no_skip_txfm_rate, 0); |
| const int skip_trellis = 0; |
| av1_txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, |
| AOMMIN(no_skip_txfm_rd, skip_txfm_rd), AOM_PLANE_Y, bs, |
| mbmi->tx_size, FTXS_NONE, skip_trellis); |
| } |
| |
| static AOM_INLINE void choose_smallest_tx_size(const AV1_COMP *const cpi, |
| MACROBLOCK *x, |
| RD_STATS *rd_stats, |
| int64_t ref_best_rd, |
| BLOCK_SIZE bs) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| |
| mbmi->tx_size = TX_4X4; |
| // TODO(any) : Pass this_rd based on skip/non-skip cost |
| const int skip_trellis = 0; |
| av1_txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, 0, 0, bs, mbmi->tx_size, |
| FTXS_NONE, skip_trellis); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| static void ml_predict_intra_tx_depth_prune(MACROBLOCK *x, int blk_row, |
| int blk_col, BLOCK_SIZE bsize, |
| TX_SIZE tx_size) { |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| |
| // Disable the pruning logic using NN model for the following cases: |
| // 1) Lossless coding as only 4x4 transform is evaluated in this case |
| // 2) When transform and current block sizes do not match as the features are |
| // obtained over the current block |
| // 3) When operating bit-depth is not 8-bit as the input features are not |
| // scaled according to bit-depth. |
| if (xd->lossless[mbmi->segment_id] || txsize_to_bsize[tx_size] != bsize || |
| xd->bd != 8) |
| return; |
| |
| // Currently NN model based pruning is supported only when largest transform |
| // size is 8x8 |
| if (tx_size != TX_8X8) return; |
| |
| // Neural network model is a sequential neural net and was trained using SGD |
| // optimizer. The model can be further improved in terms of speed/quality by |
| // considering the following experiments: |
| // 1) Generate ML model by training with balanced data for different learning |
| // rates and optimizers. |
| // 2) Experiment with ML model by adding features related to the statistics of |
| // top and left pixels to capture the accuracy of reconstructed neighbouring |
| // pixels for 4x4 blocks numbered 1, 2, 3 in 8x8 block, source variance of 4x4 |
| // sub-blocks, etc. |
| // 3) Generate ML models for transform blocks other than 8x8. |
| const NN_CONFIG *const nn_config = &av1_intra_tx_split_nnconfig_8x8; |
| const float *const intra_tx_prune_thresh = av1_intra_tx_prune_nn_thresh_8x8; |
| |
| float features[NUM_INTRA_TX_SPLIT_FEATURES] = { 0.0f }; |
| const int diff_stride = block_size_wide[bsize]; |
| |
| const int16_t *diff = x->plane[0].src_diff + MI_SIZE * blk_row * diff_stride + |
| MI_SIZE * blk_col; |
| const int bw = tx_size_wide[tx_size]; |
| const int bh = tx_size_high[tx_size]; |
| |
| int feature_idx = get_mean_dev_features(diff, diff_stride, bw, bh, features); |
| |
| features[feature_idx++] = log1pf((float)x->source_variance); |
| |
| const int dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd) >> (xd->bd - 8); |
| const float log_dc_q_square = log1pf((float)(dc_q * dc_q) / 256.0f); |
| features[feature_idx++] = log_dc_q_square; |
| assert(feature_idx == NUM_INTRA_TX_SPLIT_FEATURES); |
| for (int i = 0; i < NUM_INTRA_TX_SPLIT_FEATURES; i++) { |
| features[i] = (features[i] - av1_intra_tx_split_8x8_mean[i]) / |
| av1_intra_tx_split_8x8_std[i]; |
| } |
| |
| float score; |
| av1_nn_predict(features, nn_config, 1, &score); |
| |
| TxfmSearchParams *const txfm_params = &x->txfm_search_params; |
| if (score <= intra_tx_prune_thresh[0]) |
| txfm_params->nn_prune_depths_for_intra_tx = TX_PRUNE_SPLIT; |
| else if (score > intra_tx_prune_thresh[1]) |
| txfm_params->nn_prune_depths_for_intra_tx = TX_PRUNE_LARGEST; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |
| |
| // Search for the best uniform transform size and type for current coding block. |
| static AOM_INLINE void choose_tx_size_type_from_rd(const AV1_COMP *const cpi, |
| MACROBLOCK *x, |
| RD_STATS *rd_stats, |
| int64_t ref_best_rd, |
| BLOCK_SIZE bs) { |
| av1_invalid_rd_stats(rd_stats); |
| |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| TxfmSearchParams *const txfm_params = &x->txfm_search_params; |
| const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bs]; |
| const int tx_select = txfm_params->tx_mode_search_type == TX_MODE_SELECT; |
| int start_tx; |
| // The split depth can be at most MAX_TX_DEPTH, so the init_depth controls |
| // how many times of splitting is allowed during the RD search. |
| int init_depth; |
| |
| if (tx_select) { |
| start_tx = max_rect_tx_size; |
| init_depth = get_search_init_depth(mi_size_wide[bs], mi_size_high[bs], |
| is_inter_block(mbmi), &cpi->sf, |
| txfm_params->tx_size_search_method); |
| if (init_depth == MAX_TX_DEPTH && !cpi->oxcf.txfm_cfg.enable_tx64 && |
| txsize_sqr_up_map[start_tx] == TX_64X64) { |
| start_tx = sub_tx_size_map[start_tx]; |
| } |
| } else { |
| const TX_SIZE chosen_tx_size = |
| tx_size_from_tx_mode(bs, txfm_params->tx_mode_search_type); |
| start_tx = chosen_tx_size; |
| init_depth = MAX_TX_DEPTH; |
| } |
| |
| const int skip_trellis = 0; |
| uint8_t best_txk_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| TX_SIZE best_tx_size = max_rect_tx_size; |
| int64_t best_rd = INT64_MAX; |
| const int num_blks = bsize_to_num_blk(bs); |
| x->rd_model = FULL_TXFM_RD; |
| int64_t rd[MAX_TX_DEPTH + 1] = { INT64_MAX, INT64_MAX, INT64_MAX }; |
| TxfmSearchInfo *txfm_info = &x->txfm_search_info; |
| for (int tx_size = start_tx, depth = init_depth; depth <= MAX_TX_DEPTH; |
| depth++, tx_size = sub_tx_size_map[tx_size]) { |
| if ((!cpi->oxcf.txfm_cfg.enable_tx64 && |
| txsize_sqr_up_map[tx_size] == TX_64X64) || |
| (!cpi->oxcf.txfm_cfg.enable_rect_tx && |
| tx_size_wide[tx_size] != tx_size_high[tx_size])) { |
| continue; |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| if (txfm_params->nn_prune_depths_for_intra_tx == TX_PRUNE_SPLIT) break; |
| |
| // Set the flag to enable the evaluation of NN classifier to prune transform |
| // depths. As the features are based on intra residual information of |
| // largest transform, the evaluation of NN model is enabled only for this |
| // case. |
| txfm_params->enable_nn_prune_intra_tx_depths = |
| (cpi->sf.tx_sf.prune_intra_tx_depths_using_nn && tx_size == start_tx); |
| #endif |
| |
| RD_STATS this_rd_stats; |
| // When the speed feature use_rd_based_breakout_for_intra_tx_search is |
| // enabled, use the known minimum best_rd for early termination. |
| const int64_t rd_thresh = |
| cpi->sf.tx_sf.use_rd_based_breakout_for_intra_tx_search |
| ? AOMMIN(ref_best_rd, best_rd) |
| : ref_best_rd; |
| rd[depth] = av1_uniform_txfm_yrd(cpi, x, &this_rd_stats, rd_thresh, bs, |
| tx_size, FTXS_NONE, skip_trellis); |
| if (rd[depth] < best_rd) { |
| av1_copy_array(best_blk_skip, txfm_info->blk_skip, num_blks); |
| av1_copy_array(best_txk_type_map, xd->tx_type_map, num_blks); |
| best_tx_size = tx_size; |
| best_rd = rd[depth]; |
| *rd_stats = this_rd_stats; |
| } |
| if (tx_size == TX_4X4) break; |
| // If we are searching three depths, prune the smallest size depending |
| // on rd results for the first two depths for low contrast blocks. |
| if (depth > init_depth && depth != MAX_TX_DEPTH && |
| x->source_variance < 256) { |
| if (rd[depth - 1] != INT64_MAX && rd[depth] > rd[depth - 1]) break; |
| } |
| } |
| |
| if (rd_stats->rate != INT_MAX) { |
| mbmi->tx_size = best_tx_size; |
| av1_copy_array(xd->tx_type_map, best_txk_type_map, num_blks); |
| av1_copy_array(txfm_info->blk_skip, best_blk_skip, num_blks); |
| } |
| |
| #if !CONFIG_REALTIME_ONLY |
| // Reset the flags to avoid any unintentional evaluation of NN model and |
| // consumption of prune depths. |
| txfm_params->enable_nn_prune_intra_tx_depths = false; |
| txfm_params->nn_prune_depths_for_intra_tx = TX_PRUNE_NONE; |
| #endif |
| } |
| |
| // Search for the best transform type for the given transform block in the |
| // given plane/channel, and calculate the corresponding RD cost. |
| static AOM_INLINE void block_rd_txfm(int plane, int block, int blk_row, |
| int blk_col, BLOCK_SIZE plane_bsize, |
| TX_SIZE tx_size, void *arg) { |
| struct rdcost_block_args *args = arg; |
| if (args->exit_early) { |
| args->incomplete_exit = 1; |
| return; |
| } |
| |
| MACROBLOCK *const x = args->x; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int is_inter = is_inter_block(xd->mi[0]); |
| const AV1_COMP *cpi = args->cpi; |
| ENTROPY_CONTEXT *a = args->t_above + blk_col; |
| ENTROPY_CONTEXT *l = args->t_left + blk_row; |
| const AV1_COMMON *cm = &cpi->common; |
| RD_STATS this_rd_stats; |
| av1_init_rd_stats(&this_rd_stats); |
| |
| if (!is_inter) { |
| av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size); |
| av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size); |
| #if !CONFIG_REALTIME_ONLY |
| const TxfmSearchParams *const txfm_params = &x->txfm_search_params; |
| if (txfm_params->enable_nn_prune_intra_tx_depths) { |
| ml_predict_intra_tx_depth_prune(x, blk_row, blk_col, plane_bsize, |
| tx_size); |
| if (txfm_params->nn_prune_depths_for_intra_tx == TX_PRUNE_LARGEST) { |
| av1_invalid_rd_stats(&args->rd_stats); |
| args->exit_early = 1; |
| return; |
| } |
| } |
| #endif |
| } |
| |
| TXB_CTX txb_ctx; |
| get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx); |
| search_tx_type(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, |
| &txb_ctx, args->ftxs_mode, args->skip_trellis, |
| args->best_rd - args->current_rd, &this_rd_stats); |
| |
| if (plane == AOM_PLANE_Y && xd->cfl.store_y) { |
| assert(!is_inter || plane_bsize < BLOCK_8X8); |
| cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize); |
| } |
| |
| #if CONFIG_RD_DEBUG |
| update_txb_coeff_cost(&this_rd_stats, plane, this_rd_stats.rate); |
| #endif // CONFIG_RD_DEBUG |
| av1_set_txb_context(x, plane, block, tx_size, a, l); |
| |
| const int blk_idx = |
| blk_row * (block_size_wide[plane_bsize] >> MI_SIZE_LOG2) + blk_col; |
| |
| TxfmSearchInfo *txfm_info = &x->txfm_search_info; |
| if (plane == 0) |
| set_blk_skip(txfm_info->blk_skip, plane, blk_idx, |
| x->plane[plane].eobs[block] == 0); |
| else |
| set_blk_skip(txfm_info->blk_skip, plane, blk_idx, 0); |
| |
| int64_t rd; |
| if (is_inter) { |
| const int64_t no_skip_txfm_rd = |
| RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist); |
| const int64_t skip_txfm_rd = RDCOST(x->rdmult, 0, this_rd_stats.sse); |
| rd = AOMMIN(no_skip_txfm_rd, skip_txfm_rd); |
| this_rd_stats.skip_txfm &= !x->plane[plane].eobs[block]; |
| } else { |
| // Signal non-skip_txfm for Intra blocks |
| rd = RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist); |
| this_rd_stats.skip_txfm = 0; |
| } |
| |
| av1_merge_rd_stats(&args->rd_stats, &this_rd_stats); |
| |
| args->current_rd += rd; |
| if (args->current_rd > args->best_rd) args->exit_early = 1; |
| } |
| |
| int64_t av1_estimate_txfm_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, int64_t ref_best_rd, |
| BLOCK_SIZE bs, TX_SIZE tx_size) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const TxfmSearchParams *txfm_params = &x->txfm_search_params; |
| const ModeCosts *mode_costs = &x->mode_costs; |
| const int is_inter = is_inter_block(mbmi); |
| const int tx_select = txfm_params->tx_mode_search_type == TX_MODE_SELECT && |
| block_signals_txsize(mbmi->bsize); |
| int tx_size_rate = 0; |
| if (tx_select) { |
| const int ctx = txfm_partition_context( |
| xd->above_txfm_context, xd->left_txfm_context, mbmi->bsize, tx_size); |
| tx_size_rate = mode_costs->txfm_partition_cost[ctx][0]; |
| } |
| const int skip_ctx = av1_get_skip_txfm_context(xd); |
| const int no_skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][0]; |
| const int skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][1]; |
| const int64_t skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_rate, 0); |
| const int64_t no_this_rd = |
| RDCOST(x->rdmult, no_skip_txfm_rate + tx_size_rate, 0); |
| mbmi->tx_size = tx_size; |
| |
| const uint8_t txw_unit = tx_size_wide_unit[tx_size]; |
| const uint8_t txh_unit = tx_size_high_unit[tx_size]; |
| const int step = txw_unit * txh_unit; |
| const int max_blocks_wide = max_block_wide(xd, bs, 0); |
| const int max_blocks_high = max_block_high(xd, bs, 0); |
| |
| struct rdcost_block_args args; |
| av1_zero(args); |
| args.x = x; |
| args.cpi = cpi; |
| args.best_rd = ref_best_rd; |
| args.current_rd = AOMMIN(no_this_rd, skip_txfm_rd); |
| av1_init_rd_stats(&args.rd_stats); |
| av1_get_entropy_contexts(bs, &xd->plane[0], args.t_above, args.t_left); |
| int i = 0; |
| for (int blk_row = 0; blk_row < max_blocks_high && !args.incomplete_exit; |
| blk_row += txh_unit) { |
| for (int blk_col = 0; blk_col < max_blocks_wide; blk_col += txw_unit) { |
| RD_STATS this_rd_stats; |
| av1_init_rd_stats(&this_rd_stats); |
| |
| if (args.exit_early) { |
| args.incomplete_exit = 1; |
| break; |
| } |
| |
| ENTROPY_CONTEXT *a = args.t_above + blk_col; |
| ENTROPY_CONTEXT *l = args.t_left + blk_row; |
| TXB_CTX txb_ctx; |
| get_txb_ctx(bs, tx_size, 0, a, l, &txb_ctx); |
| |
| TxfmParam txfm_param; |
| QUANT_PARAM quant_param; |
| av1_setup_xform(&cpi->common, x, tx_size, DCT_DCT, &txfm_param); |
| av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_B, 0, &quant_param); |
| |
| av1_xform(x, 0, i, blk_row, blk_col, bs, &txfm_param); |
| av1_quant(x, 0, i, &txfm_param, &quant_param); |
| |
| this_rd_stats.rate = |
| cost_coeffs(x, 0, i, tx_size, txfm_param.tx_type, &txb_ctx, 0); |
| |
| const SCAN_ORDER *const scan_order = |
| get_scan(txfm_param.tx_size, txfm_param.tx_type); |
| dist_block_tx_domain(x, 0, i, tx_size, quant_param.qmatrix, |
| scan_order->scan, &this_rd_stats.dist, |
| &this_rd_stats.sse); |
| |
| const int64_t no_skip_txfm_rd = |
| RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist); |
| const int64_t skip_rd = RDCOST(x->rdmult, 0, this_rd_stats.sse); |
| |
| this_rd_stats.skip_txfm &= !x->plane[0].eobs[i]; |
| |
| av1_merge_rd_stats(&args.rd_stats, &this_rd_stats); |
| args.current_rd += AOMMIN(no_skip_txfm_rd, skip_rd); |
| |
| if (args.current_rd > ref_best_rd) { |
| args.exit_early = 1; |
| break; |
| } |
| |
| av1_set_txb_context(x, 0, i, tx_size, a, l); |
| i += step; |
| } |
| } |
| |
| if (args.incomplete_exit) av1_invalid_rd_stats(&args.rd_stats); |
| |
| *rd_stats = args.rd_stats; |
| if (rd_stats->rate == INT_MAX) return INT64_MAX; |
| |
| int64_t rd; |
| // rdstats->rate should include all the rate except skip/non-skip cost as the |
| // same is accounted in the caller functions after rd evaluation of all |
| // planes. However the decisions should be done after considering the |
| // skip/non-skip header cost |
| if (rd_stats->skip_txfm && is_inter) { |
| rd = RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse); |
| } else { |
| // Intra blocks are always signalled as non-skip |
| rd = RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_rate + tx_size_rate, |
| rd_stats->dist); |
| rd_stats->rate += tx_size_rate; |
| } |
| // Check if forcing the block to skip transform leads to smaller RD cost. |
| if (is_inter && !rd_stats->skip_txfm && !xd->lossless[mbmi->segment_id]) { |
| int64_t temp_skip_txfm_rd = |
| RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse); |
| if (temp_skip_txfm_rd <= rd) { |
| rd = temp_skip_txfm_rd; |
| rd_stats->rate = 0; |
| rd_stats->dist = rd_stats->sse; |
| rd_stats->skip_txfm = 1; |
| } |
| } |
| |
| return rd; |
| } |
| |
| int64_t av1_uniform_txfm_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, int64_t ref_best_rd, |
| BLOCK_SIZE bs, TX_SIZE tx_size, |
| FAST_TX_SEARCH_MODE ftxs_mode, int skip_trellis) { |
| assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed_bsize(bs))); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const TxfmSearchParams *txfm_params = &x->txfm_search_params; |
| const ModeCosts *mode_costs = &x->mode_costs; |
| const int is_inter = is_inter_block(mbmi); |
| const int tx_select = txfm_params->tx_mode_search_type == TX_MODE_SELECT && |
| block_signals_txsize(mbmi->bsize); |
| int tx_size_rate = 0; |
| if (tx_select) { |
| const int ctx = txfm_partition_context( |
| xd->above_txfm_context, xd->left_txfm_context, mbmi->bsize, tx_size); |
| tx_size_rate = is_inter ? mode_costs->txfm_partition_cost[ctx][0] |
| : tx_size_cost(x, bs, tx_size); |
| } |
| const int skip_ctx = av1_get_skip_txfm_context(xd); |
| const int no_skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][0]; |
| const int skip_txfm_rate = mode_costs->skip_txfm_cost[skip_ctx][1]; |
| const int64_t skip_txfm_rd = |
| is_inter ? RDCOST(x->rdmult, skip_txfm_rate, 0) : INT64_MAX; |
| const int64_t no_this_rd = |
| RDCOST(x->rdmult, no_skip_txfm_rate + tx_size_rate, 0); |
| |
| mbmi->tx_size = tx_size; |
| av1_txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, |
| AOMMIN(no_this_rd, skip_txfm_rd), AOM_PLANE_Y, bs, |
| tx_size, ftxs_mode, skip_trellis); |
| if (rd_stats->rate == INT_MAX) return INT64_MAX; |
| |
| int64_t rd; |
| // rdstats->rate should include all the rate except skip/non-skip cost as the |
| // same is accounted in the caller functions after rd evaluation of all |
| // planes. However the decisions should be done after considering the |
| // skip/non-skip header cost |
| if (rd_stats->skip_txfm && is_inter) { |
| rd = RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse); |
| } else { |
| // Intra blocks are always signalled as non-skip |
| rd = RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_rate + tx_size_rate, |
| rd_stats->dist); |
| rd_stats->rate += tx_size_rate; |
| } |
| // Check if forcing the block to skip transform leads to smaller RD cost. |
| if (is_inter && !rd_stats->skip_txfm && !xd->lossless[mbmi->segment_id]) { |
| int64_t temp_skip_txfm_rd = |
| RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse); |
| if (temp_skip_txfm_rd <= rd) { |
| rd = temp_skip_txfm_rd; |
| rd_stats->rate = 0; |
| rd_stats->dist = rd_stats->sse; |
| rd_stats->skip_txfm = 1; |
| } |
| } |
| |
| return rd; |
| } |
| |
| // Search for the best transform type for a luma inter-predicted block, given |
| // the transform block partitions. |
| // This function is used only when some speed features are enabled. |
| static AOM_INLINE void tx_block_yrd( |
| const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block, |
| TX_SIZE tx_size, BLOCK_SIZE plane_bsize, int depth, |
| ENTROPY_CONTEXT *above_ctx, ENTROPY_CONTEXT *left_ctx, |
| TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left, int64_t ref_best_rd, |
| RD_STATS *rd_stats, FAST_TX_SEARCH_MODE ftxs_mode) { |
| assert(tx_size < TX_SIZES_ALL); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| assert(is_inter_block(mbmi)); |
| const int max_blocks_high = max_block_high(xd, plane_bsize, 0); |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0); |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| const TX_SIZE plane_tx_size = mbmi->inter_tx_size[av1_get_txb_size_index( |
| plane_bsize, blk_row, blk_col)]; |
| const int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row, |
| mbmi->bsize, tx_size); |
| |
| av1_init_rd_stats(rd_stats); |
| if (tx_size == plane_tx_size) { |
| ENTROPY_CONTEXT *ta = above_ctx + blk_col; |
| ENTROPY_CONTEXT *tl = left_ctx + blk_row; |
| const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); |
| TXB_CTX txb_ctx; |
| get_txb_ctx(plane_bsize, tx_size, 0, ta, tl, &txb_ctx); |
| |
| const int zero_blk_rate = |
| x->coeff_costs.coeff_costs[txs_ctx][get_plane_type(0)] |
| .txb_skip_cost[txb_ctx.txb_skip_ctx][1]; |
| rd_stats->zero_rate = zero_blk_rate; |
| tx_type_rd(cpi, x, tx_size, blk_row, blk_col, block, plane_bsize, &txb_ctx, |
| rd_stats, ftxs_mode, ref_best_rd); |
| const int mi_width = mi_size_wide[plane_bsize]; |
| TxfmSearchInfo *txfm_info = &x->txfm_search_info; |
| if (RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >= |
| RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse) || |
| rd_stats->skip_txfm == 1) { |
| rd_stats->rate = zero_blk_rate; |
| rd_stats->dist = rd_stats->sse; |
| rd_stats->skip_txfm = 1; |
| set_blk_skip(txfm_info->blk_skip, 0, blk_row * mi_width + blk_col, 1); |
| x->plane[0].eobs[block] = 0; |
| x->plane[0].txb_entropy_ctx[block] = 0; |
| update_txk_array(xd, blk_row, blk_col, tx_size, DCT_DCT); |
| } else { |
| rd_stats->skip_txfm = 0; |
| set_blk_skip(txfm_info->blk_skip, 0, blk_row * mi_width + blk_col, 0); |
| } |
| if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH) |
| rd_stats->rate += x->mode_costs.txfm_partition_cost[ctx][0]; |
| av1_set_txb_context(x, 0, block, tx_size, ta, tl); |
| txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size, |
| tx_size); |
| } else { |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int txb_width = tx_size_wide_unit[sub_txs]; |
| const int txb_height = tx_size_high_unit[sub_txs]; |
| const int step = txb_height * txb_width; |
| const int row_end = |
| AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row); |
| const int col_end = |
| AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col); |
| RD_STATS pn_rd_stats; |
| int64_t this_rd = 0; |
| assert(txb_width > 0 && txb_height > 0); |
| |
| for (int row = 0; row < row_end; row += txb_height) { |
| const int offsetr = blk_row + row; |
| for (int col = 0; col < col_end; col += txb_width) { |
| const int offsetc = blk_col + col; |
| |
| av1_init_rd_stats(&pn_rd_stats); |
| tx_block_yrd(cpi, x, offsetr, offsetc, block, sub_txs, plane_bsize, |
| depth + 1, above_ctx, left_ctx, tx_above, tx_left, |
| ref_best_rd - this_rd, &pn_rd_stats, ftxs_mode); |
| if (pn_rd_stats.rate == INT_MAX) { |
| av1_invalid_rd_stats(rd_stats); |
| return; |
| } |
| av1_merge_rd_stats(rd_stats, &pn_rd_stats); |
| this_rd += RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist); |
| block += step; |
| } |
| } |
| |
| if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH) |
| rd_stats->rate += x->mode_costs.txfm_partition_cost[ctx][1]; |
| } |
| } |
| |
| // search for tx type with tx sizes already decided for a inter-predicted luma |
| // partition block. It's used only when some speed features are enabled. |
| // Return value 0: early termination triggered, no valid rd cost available; |
| // 1: rd cost values are valid. |
| static int inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, BLOCK_SIZE bsize, |
| int64_t ref_best_rd, FAST_TX_SEARCH_MODE ftxs_mode) { |
| if (ref_best_rd < 0) { |
| av1_invalid_rd_stats(rd_stats); |
| return 0; |
| } |
| |
| av1_init_rd_stats(rd_stats); |
| |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const TxfmSearchParams *txfm_params = &x->txfm_search_params; |
| const struct macroblockd_plane *const pd = &xd->plane[0]; |
| const int mi_width = mi_size_wide[bsize]; |
| const int mi_height = mi_size_high[bsize]; |
| const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0); |
| const int bh = tx_size_high_unit[max_tx_size]; |
| const int bw = tx_size_wide_unit[max_tx_size]; |
| const int step = bw * bh; |
| const int init_depth = get_search_init_depth( |
| mi_width, mi_height, 1, &cpi->sf, txfm_params->tx_size_search_method); |
| ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE]; |
| ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE]; |
| TXFM_CONTEXT tx_above[MAX_MIB_SIZE]; |
| TXFM_CONTEXT tx_left[MAX_MIB_SIZE]; |
| av1_get_entropy_contexts(bsize, pd, ctxa, ctxl); |
| memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width); |
| memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height); |
| |
| int64_t this_rd = 0; |
| for (int idy = 0, block = 0; idy < mi_height; idy += bh) { |
| for (int idx = 0; idx < mi_width; idx += bw) { |
| RD_STATS pn_rd_stats; |
| av1_init_rd_stats(&pn_rd_stats); |
| tx_block_yrd(cpi, x, idy, idx, block, max_tx_size, bsize, init_depth, |
| ctxa, ctxl, tx_above, tx_left, ref_best_rd - this_rd, |
| &pn_rd_stats, ftxs_mode); |
| if (pn_rd_stats.rate == INT_MAX) { |
| av1_invalid_rd_stats(rd_stats); |
| return 0; |
| } |
| av1_merge_rd_stats(rd_stats, &pn_rd_stats); |
| this_rd += |
| AOMMIN(RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist), |
| RDCOST(x->rdmult, pn_rd_stats.zero_rate, pn_rd_stats.sse)); |
| block += step; |
| } |
| } |
| |
| const int skip_ctx = av1_get_skip_txfm_context(xd); |
| const int no_skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][0]; |
| const int skip_txfm_rate = x->mode_costs.skip_txfm_cost[skip_ctx][1]; |
| const int64_t skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_rate, rd_stats->sse); |
| this_rd = |
| RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_rate, rd_stats->dist); |
| if (skip_txfm_rd < this_rd) { |
| this_rd = skip_txfm_rd; |
| rd_stats->rate = 0; |
| rd_stats->dist = rd_stats->sse; |
| rd_stats->skip_txfm = 1; |
| } |
| |
| const int is_cost_valid = this_rd > ref_best_rd; |
| if (!is_cost_valid) { |
| // reset cost value |
| av1_invalid_rd_stats(rd_stats); |
| } |
| return is_cost_valid; |
| } |
| |
| // Search for the best transform size and type for current inter-predicted |
| // luma block with recursive transform block partitioning. The obtained |
| // transform selection will be saved in xd->mi[0], the corresponding RD stats |
| // will be saved in rd_stats. The returned value is the corresponding RD cost. |
| static int64_t select_tx_size_and_type(const AV1_COMP *cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, BLOCK_SIZE bsize, |
| int64_t ref_best_rd) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const TxfmSearchParams *txfm_params = &x->txfm_search_params; |
| assert(is_inter_block(xd->mi[0])); |
| assert(bsize < BLOCK_SIZES_ALL); |
| const int fast_tx_search = txfm_params->tx_size_search_method > USE_FULL_RD; |
| int64_t rd_thresh = ref_best_rd; |
| if (rd_thresh == 0) { |
| av1_invalid_rd_stats(rd_stats); |
| return INT64_MAX; |
| } |
| if (fast_tx_search && rd_thresh < INT64_MAX) { |
| if (INT64_MAX - rd_thresh > (rd_thresh >> 3)) rd_thresh += (rd_thresh >> 3); |
| } |
| assert(rd_thresh > 0); |
| const FAST_TX_SEARCH_MODE ftxs_mode = |
| fast_tx_search ? FTXS_DCT_AND_1D_DCT_ONLY : FTXS_NONE; |
| const struct macroblockd_plane *const pd = &xd->plane[0]; |
| assert(bsize < BLOCK_SIZES_ALL); |
| const int mi_width = mi_size_wide[bsize]; |
| const int mi_height = mi_size_high[bsize]; |
| ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE]; |
| ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE]; |
| TXFM_CONTEXT tx_above[MAX_MIB_SIZE]; |
| TXFM_CONTEXT tx_left[MAX_MIB_SIZE]; |
| av1_get_entropy_contexts(bsize, pd, ctxa, ctxl); |
| memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width); |
| memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height); |
| const int init_depth = get_search_init_depth( |
| mi_width, mi_height, 1, &cpi->sf, txfm_params->tx_size_search_method); |
| const TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize]; |
| const int bh = tx_size_high_unit[max_tx_size]; |
| const int bw = tx_size_wide_unit[max_tx_size]; |
| const int step = bw * bh; |
| const int skip_ctx = av1_get_skip_txfm_context(xd); |
| const int no_skip_txfm_cost = x->mode_costs.skip_txfm_cost[skip_ctx][0]; |
| const int skip_txfm_cost = x->mode_costs.skip_txfm_cost[skip_ctx][1]; |
| int64_t skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_cost, 0); |
| int64_t no_skip_txfm_rd = RDCOST(x->rdmult, no_skip_txfm_cost, 0); |
| int block = 0; |
| |
| av1_init_rd_stats(rd_stats); |
| for (int idy = 0; idy < max_block_high(xd, bsize, 0); idy += bh) { |
| for (int idx = 0; idx < max_block_wide(xd, bsize, 0); idx += bw) { |
| const int64_t best_rd_sofar = |
| (rd_thresh == INT64_MAX) |
| ? INT64_MAX |
| : (rd_thresh - (AOMMIN(skip_txfm_rd, no_skip_txfm_rd))); |
| int is_cost_valid = 1; |
| RD_STATS pn_rd_stats; |
| // Search for the best transform block size and type for the sub-block. |
| select_tx_block(cpi, x, idy, idx, block, max_tx_size, init_depth, bsize, |
| ctxa, ctxl, tx_above, tx_left, &pn_rd_stats, INT64_MAX, |
| best_rd_sofar, &is_cost_valid, ftxs_mode); |
| if (!is_cost_valid || pn_rd_stats.rate == INT_MAX) { |
| av1_invalid_rd_stats(rd_stats); |
| return INT64_MAX; |
| } |
| av1_merge_rd_stats(rd_stats, &pn_rd_stats); |
| skip_txfm_rd = RDCOST(x->rdmult, skip_txfm_cost, rd_stats->sse); |
| no_skip_txfm_rd = |
| RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_cost, rd_stats->dist); |
| block += step; |
| } |
| } |
| |
| if (rd_stats->rate == INT_MAX) return INT64_MAX; |
| |
| rd_stats->skip_txfm = (skip_txfm_rd <= no_skip_txfm_rd); |
| |
| // If fast_tx_search is true, only DCT and 1D DCT were tested in |
| // select_inter_block_yrd() above. Do a better search for tx type with |
| // tx sizes already decided. |
| if (fast_tx_search && cpi->sf.tx_sf.refine_fast_tx_search_results) { |
| if (!inter_block_yrd(cpi, x, rd_stats, bsize, ref_best_rd, FTXS_NONE)) |
| return INT64_MAX; |
| } |
| |
| int64_t final_rd; |
| if (rd_stats->skip_txfm) { |
| final_rd = RDCOST(x->rdmult, skip_txfm_cost, rd_stats->sse); |
| } else { |
| final_rd = |
| RDCOST(x->rdmult, rd_stats->rate + no_skip_txfm_cost, rd_stats->dist); |
| if (!xd->lossless[xd->mi[0]->segment_id]) { |
| final_rd = |
| AOMMIN(final_rd, RDCOST(x->rdmult, skip_txfm_cost, rd_stats->sse)); |
| } |
| } |
| |
| return final_rd; |
| } |
| |
| // Return 1 to terminate transform search early. The decision is made based on |
| // the comparison with the reference RD cost and the model-estimated RD cost. |
| static AOM_INLINE int model_based_tx_search_prune(const AV1_COMP *cpi, |
| MACROBLOCK *x, |
| BLOCK_SIZE bsize, |
| int64_t ref_best_rd) { |
| const int level = cpi->sf.tx_sf.model_based_prune_tx_search_level; |
| assert(level >= 0 && level <= 2); |
| int model_rate; |
| int64_t model_dist; |
| uint8_t model_skip; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| model_rd_sb_fn[MODELRD_TYPE_TX_SEARCH_PRUNE]( |
| cpi, bsize, x, xd, 0, 0, &model_rate, &model_dist, &model_skip, NULL, |
| NULL, NULL, NULL); |
| if (model_skip) return 0; |
| const int64_t model_rd = RDCOST(x->rdmult, model_rate, model_dist); |
| // TODO(debargha, urvang): Improve the model and make the check below |
| // tighter. |
| static const int prune_factor_by8[] = { 3, 5 }; |
| const int factor = prune_factor_by8[level - 1]; |
| return ((model_rd * factor) >> 3) > ref_best_rd; |
| } |
| |
| void av1_pick_recursive_tx_size_type_yrd(const AV1_COMP *cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, BLOCK_SIZE bsize, |
| int64_t ref_best_rd) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const TxfmSearchParams *txfm_params = &x->txfm_search_params; |
| assert(is_inter_block(xd->mi[0])); |
| |
| av1_invalid_rd_stats(rd_stats); |
| |
| // If modeled RD cost is a lot worse than the best so far, terminate early. |
| if (cpi->sf.tx_sf.model_based_prune_tx_search_level && |
| ref_best_rd != INT64_MAX) { |
| if (model_based_tx_search_prune(cpi, x, bsize, ref_best_rd)) return; |
| } |
| |
| // Hashing based speed feature. If the hash of the prediction residue block is |
| // found in the hash table, use previous search results and terminate early. |
| uint32_t hash = 0; |
| MB_RD_RECORD *mb_rd_record = NULL; |
| const int mi_row = x->e_mbd.mi_row; |
| const int mi_col = x->e_mbd.mi_col; |
| const int within_border = |
| mi_row >= xd->tile.mi_row_start && |
| (mi_row + mi_size_high[bsize] < xd->tile.mi_row_end) && |
| mi_col >= xd->tile.mi_col_start && |
| (mi_col + mi_size_wide[bsize] < xd->tile.mi_col_end); |
| const int is_mb_rd_hash_enabled = |
| (within_border && cpi->sf.rd_sf.use_mb_rd_hash); |
| const int n4 = bsize_to_num_blk(bsize); |
| if (is_mb_rd_hash_enabled) { |
| hash = get_block_residue_hash(x, bsize); |
| mb_rd_record = x->txfm_search_info.mb_rd_record; |
| const int match_index = find_mb_rd_info(mb_rd_record, ref_best_rd, hash); |
| if (match_index != -1) { |
| MB_RD_INFO *mb_rd_info = &mb_rd_record->mb_rd_info[match_index]; |
| fetch_mb_rd_info(n4, mb_rd_info, rd_stats, x); |
| return; |
| } |
| } |
| |
| // If we predict that skip is the optimal RD decision - set the respective |
| // context and terminate early. |
| int64_t dist; |
| if (txfm_params->skip_txfm_level && |
| predict_skip_txfm(x, bsize, &dist, |
| cpi->common.features.reduced_tx_set_used)) { |
| set_skip_txfm(x, rd_stats, bsize, dist); |
| // Save the RD search results into mb_rd_record. |
| if (is_mb_rd_hash_enabled) |
| save_mb_rd_info(n4, hash, x, rd_stats, mb_rd_record); |
| return; |
| } |
| #if CONFIG_SPEED_STATS |
| ++x->txfm_search_info.tx_search_count; |
| #endif // CONFIG_SPEED_STATS |
| |
| const int64_t rd = |
| select_tx_size_and_type(cpi, x, rd_stats, bsize, ref_best_rd); |
| |
| if (rd == INT64_MAX) { |
| // We should always find at least one candidate unless ref_best_rd is less |
| // than INT64_MAX (in which case, all the calls to select_tx_size_fix_type |
| // might have failed to find something better) |
| assert(ref_best_rd != INT64_MAX); |
| av1_invalid_rd_stats(rd_stats); |
| return; |
| } |
| |
| // Save the RD search results into mb_rd_record. |
| if (is_mb_rd_hash_enabled) { |
| assert(mb_rd_record != NULL); |
| save_mb_rd_info(n4, hash, x, rd_stats, mb_rd_record); |
| } |
| } |
| |
| void av1_pick_uniform_tx_size_type_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, BLOCK_SIZE bs, |
| int64_t ref_best_rd) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const TxfmSearchParams *tx_params = &x->txfm_search_params; |
| assert(bs == mbmi->bsize); |
| const int is_inter = is_inter_block(mbmi); |
| const int mi_row = xd->mi_row; |
| const int mi_col = xd->mi_col; |
| |
| av1_init_rd_stats(rd_stats); |
| |
| // Hashing based speed feature for inter blocks. If the hash of the residue |
| // block is found in the table, use previously saved search results and |
| // terminate early. |
| uint32_t hash = 0; |
| MB_RD_RECORD *mb_rd_record = NULL; |
| const int num_blks = bsize_to_num_blk(bs); |
| if (is_inter && cpi->sf.rd_sf.use_mb_rd_hash) { |
| const int within_border = |
| mi_row >= xd->tile.mi_row_start && |
| (mi_row + mi_size_high[bs] < xd->tile.mi_row_end) && |
| mi_col >= xd->tile.mi_col_start && |
| (mi_col + mi_size_wide[bs] < xd->tile.mi_col_end); |
| if (within_border) { |
| hash = get_block_residue_hash(x, bs); |
| mb_rd_record = x->txfm_search_info.mb_rd_record; |
| const int match_index = find_mb_rd_info(mb_rd_record, ref_best_rd, hash); |
| if (match_index != -1) { |
| MB_RD_INFO *mb_rd_info = &mb_rd_record->mb_rd_info[match_index]; |
| fetch_mb_rd_info(num_blks, mb_rd_info, rd_stats, x); |
| return; |
| } |
| } |
| } |
| |
| // If we predict that skip is the optimal RD decision - set the respective |
| // context and terminate early. |
| int64_t dist; |
| if (tx_params->skip_txfm_level && is_inter && |
| !xd->lossless[mbmi->segment_id] && |
| predict_skip_txfm(x, bs, &dist, |
| cpi->common.features.reduced_tx_set_used)) { |
| // Populate rdstats as per skip decision |
| set_skip_txfm(x, rd_stats, bs, dist); |
| // Save the RD search results into mb_rd_record. |
| if (mb_rd_record) { |
| save_mb_rd_info(num_blks, hash, x, rd_stats, mb_rd_record); |
| } |
| return; |
| } |
| |
| if (xd->lossless[mbmi->segment_id]) { |
| // Lossless mode can only pick the smallest (4x4) transform size. |
| choose_smallest_tx_size(cpi, x, rd_stats, ref_best_rd, bs); |
| } else if (tx_params->tx_size_search_method == USE_LARGESTALL) { |
| choose_largest_tx_size(cpi, x, rd_stats, ref_best_rd, bs); |
| } else { |
| choose_tx_size_type_from_rd(cpi, x, rd_stats, ref_best_rd, bs); |
| } |
| |
| // Save the RD search results into mb_rd_record for possible reuse in future. |
| if (mb_rd_record) { |
| save_mb_rd_info(num_blks, hash, x, rd_stats, mb_rd_record); |
| } |
| } |
| |
| int av1_txfm_uvrd(const AV1_COMP *const cpi, MACROBLOCK *x, RD_STATS *rd_stats, |
| BLOCK_SIZE bsize, int64_t ref_best_rd) { |
| av1_init_rd_stats(rd_stats); |
| if (ref_best_rd < 0) return 0; |
| if (!x->e_mbd.is_chroma_ref) return 1; |
| |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U]; |
| const int is_inter = is_inter_block(mbmi); |
| int64_t this_rd = 0, skip_txfm_rd = 0; |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); |
| |
| if (is_inter) { |
| for (int plane = 1; plane < MAX_MB_PLANE; ++plane) |
| av1_subtract_plane(x, plane_bsize, plane); |
| } |
| |
| const int skip_trellis = 0; |
| const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd); |
| int is_cost_valid = 1; |
| for (int plane = 1; plane < MAX_MB_PLANE; ++plane) { |
| RD_STATS this_rd_stats; |
| int64_t chroma_ref_best_rd = ref_best_rd; |
| // For inter blocks, refined ref_best_rd is used for early exit |
| // For intra blocks, even though current rd crosses ref_best_rd, early |
| // exit is not recommended as current rd is used for gating subsequent |
| // modes as well (say, for angular modes) |
| // TODO(any): Extend the early exit mechanism for intra modes as well |
| if (cpi->sf.inter_sf.perform_best_rd_based_gating_for_chroma && is_inter && |
| chroma_ref_best_rd != INT64_MAX) |
| chroma_ref_best_rd = ref_best_rd - AOMMIN(this_rd, skip_txfm_rd); |
| av1_txfm_rd_in_plane(x, cpi, &this_rd_stats, chroma_ref_best_rd, 0, plane, |
| plane_bsize, uv_tx_size, FTXS_NONE, skip_trellis); |
| if (this_rd_stats.rate == INT_MAX) { |
| is_cost_valid = 0; |
| break; |
| } |
| av1_merge_rd_stats(rd_stats, &this_rd_stats); |
| this_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); |
| skip_txfm_rd = RDCOST(x->rdmult, 0, rd_stats->sse); |
| if (AOMMIN(this_rd, skip_txfm_rd) > ref_best_rd) { |
| is_cost_valid = 0; |
| break; |
| } |
| } |
| |
| if (!is_cost_valid) { |
| // reset cost value |
| av1_invalid_rd_stats(rd_stats); |
| } |
| |
| return is_cost_valid; |
| } |
| |
| void av1_txfm_rd_in_plane(MACROBLOCK *x, const AV1_COMP *cpi, |
| RD_STATS *rd_stats, int64_t ref_best_rd, |
| int64_t current_rd, int plane, BLOCK_SIZE plane_bsize, |
| TX_SIZE tx_size, FAST_TX_SEARCH_MODE ftxs_mode, |
| int skip_trellis) { |
| assert(IMPLIES(plane == 0, x->e_mbd.mi[0]->tx_size == tx_size)); |
| |
| if (!cpi->oxcf.txfm_cfg.enable_tx64 && |
| txsize_sqr_up_map[tx_size] == TX_64X64) { |
| av1_invalid_rd_stats(rd_stats); |
| return; |
| } |
| |
| if (current_rd > ref_best_rd) { |
| av1_invalid_rd_stats(rd_stats); |
| return; |
| } |
| |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| struct rdcost_block_args args; |
| av1_zero(args); |
| args.x = x; |
| args.cpi = cpi; |
| args.best_rd = ref_best_rd; |
| args.current_rd = current_rd; |
| args.ftxs_mode = ftxs_mode; |
| args.skip_trellis = skip_trellis; |
| av1_init_rd_stats(&args.rd_stats); |
| |
| av1_get_entropy_contexts(plane_bsize, pd, args.t_above, args.t_left); |
| av1_foreach_transformed_block_in_plane(xd, plane_bsize, plane, block_rd_txfm, |
| &args); |
| |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int is_inter = is_inter_block(mbmi); |
| const int invalid_rd = is_inter ? args.incomplete_exit : args.exit_early; |
| |
| if (invalid_rd) { |
| av1_invalid_rd_stats(rd_stats); |
| } else { |
| *rd_stats = args.rd_stats; |
| } |
| } |
| |
| int av1_txfm_search(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, |
| RD_STATS *rd_stats, RD_STATS *rd_stats_y, |
| RD_STATS *rd_stats_uv, int mode_rate, int64_t ref_best_rd) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| TxfmSearchParams *txfm_params = &x->txfm_search_params; |
| const int skip_ctx = av1_get_skip_txfm_context(xd); |
| const int skip_txfm_cost[2] = { x->mode_costs.skip_txfm_cost[skip_ctx][0], |
| x->mode_costs.skip_txfm_cost[skip_ctx][1] }; |
| const int64_t min_header_rate = |
| mode_rate + AOMMIN(skip_txfm_cost[0], skip_txfm_cost[1]); |
| // Account for minimum skip and non_skip rd. |
| // Eventually either one of them will be added to mode_rate |
| const int64_t min_header_rd_possible = RDCOST(x->rdmult, min_header_rate, 0); |
| if (min_header_rd_possible > ref_best_rd) { |
| av1_invalid_rd_stats(rd_stats_y); |
| return 0; |
| } |
| |
| const AV1_COMMON *cm = &cpi->common; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int64_t mode_rd = RDCOST(x->rdmult, mode_rate, 0); |
| const int64_t rd_thresh = |
| ref_best_rd == INT64_MAX ? INT64_MAX : ref_best_rd - mode_rd; |
| av1_init_rd_stats(rd_stats); |
| av1_init_rd_stats(rd_stats_y); |
| rd_stats->rate = mode_rate; |
| |
| // cost and distortion |
| av1_subtract_plane(x, bsize, 0); |
| if (txfm_params->tx_mode_search_type == TX_MODE_SELECT && |
| !xd->lossless[mbmi->segment_id]) { |
| av1_pick_recursive_tx_size_type_yrd(cpi, x, rd_stats_y, bsize, rd_thresh); |
| #if CONFIG_COLLECT_RD_STATS == 2 |
| PrintPredictionUnitStats(cpi, tile_data, x, rd_stats_y, bsize); |
| #endif // CONFIG_COLLECT_RD_STATS == 2 |
| } else { |
| av1_pick_uniform_tx_size_type_yrd(cpi, x, rd_stats_y, bsize, rd_thresh); |
| memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); |
| for (int i = 0; i < xd->height * xd->width; ++i) |
| set_blk_skip(x->txfm_search_info.blk_skip, 0, i, rd_stats_y->skip_txfm); |
| } |
| |
| if (rd_stats_y->rate == INT_MAX) return 0; |
| |
| av1_merge_rd_stats(rd_stats, rd_stats_y); |
| |
| const int64_t non_skip_txfm_rdcosty = |
| RDCOST(x->rdmult, rd_stats->rate + skip_txfm_cost[0], rd_stats->dist); |
| const int64_t skip_txfm_rdcosty = |
| RDCOST(x->rdmult, mode_rate + skip_txfm_cost[1], rd_stats->sse); |
| const int64_t min_rdcosty = AOMMIN(non_skip_txfm_rdcosty, skip_txfm_rdcosty); |
| if (min_rdcosty > ref_best_rd) return 0; |
| |
| av1_init_rd_stats(rd_stats_uv); |
| const int num_planes = av1_num_planes(cm); |
| if (num_planes > 1) { |
| int64_t ref_best_chroma_rd = ref_best_rd; |
| // Calculate best rd cost possible for chroma |
| if (cpi->sf.inter_sf.perform_best_rd_based_gating_for_chroma && |
| (ref_best_chroma_rd != INT64_MAX)) { |
| ref_best_chroma_rd = (ref_best_chroma_rd - |
| AOMMIN(non_skip_txfm_rdcosty, skip_txfm_rdcosty)); |
| } |
| const int is_cost_valid_uv = |
| av1_txfm_uvrd(cpi, x, rd_stats_uv, bsize, ref_best_chroma_rd); |
| if (!is_cost_valid_uv) return 0; |
| av1_merge_rd_stats(rd_stats, rd_stats_uv); |
| } |
| |
| int choose_skip_txfm = rd_stats->skip_txfm; |
| if (!choose_skip_txfm && !xd->lossless[mbmi->segment_id]) { |
| const int64_t rdcost_no_skip_txfm = RDCOST( |
| x->rdmult, rd_stats_y->rate + rd_stats_uv->rate + skip_txfm_cost[0], |
| rd_stats->dist); |
| const int64_t rdcost_skip_txfm = |
| RDCOST(x->rdmult, skip_txfm_cost[1], rd_stats->sse); |
| if (rdcost_no_skip_txfm >= rdcost_skip_txfm) choose_skip_txfm = 1; |
| } |
| if (choose_skip_txfm) { |
| rd_stats_y->rate = 0; |
| rd_stats_uv->rate = 0; |
| rd_stats->rate = mode_rate + skip_txfm_cost[1]; |
| rd_stats->dist = rd_stats->sse; |
| rd_stats_y->dist = rd_stats_y->sse; |
| rd_stats_uv->dist = rd_stats_uv->sse; |
| mbmi->skip_txfm = 1; |
| if (rd_stats->skip_txfm) { |
| const int64_t tmprd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); |
| if (tmprd > ref_best_rd) return 0; |
| } |
| } else { |
| rd_stats->rate += skip_txfm_cost[0]; |
| mbmi->skip_txfm = 0; |
| } |
| |
| return 1; |
| } |