| /* | 
 |  * Copyright (c) 2016, Alliance for Open Media. All rights reserved. | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #ifndef AOM_AV1_ENCODER_ML_H_ | 
 | #define AOM_AV1_ENCODER_ML_H_ | 
 |  | 
 | #ifdef __cplusplus | 
 | extern "C" { | 
 | #endif | 
 |  | 
 | #include "config/av1_rtcd.h" | 
 |  | 
 | #define NN_MAX_HIDDEN_LAYERS 10 | 
 | #define NN_MAX_NODES_PER_LAYER 128 | 
 |  | 
 | struct NN_CONFIG { | 
 |   int num_inputs;         // Number of input nodes, i.e. features. | 
 |   int num_outputs;        // Number of output nodes. | 
 |   int num_hidden_layers;  // Number of hidden layers, maximum 10. | 
 |   // Number of nodes for each hidden layer. | 
 |   int num_hidden_nodes[NN_MAX_HIDDEN_LAYERS]; | 
 |   // Weight parameters, indexed by layer. | 
 |   const float *weights[NN_MAX_HIDDEN_LAYERS + 1]; | 
 |   // Bias parameters, indexed by layer. | 
 |   const float *bias[NN_MAX_HIDDEN_LAYERS + 1]; | 
 | }; | 
 | // Typedef from struct NN_CONFIG to NN_CONFIG is in rtcd_defs | 
 |  | 
 | #if CONFIG_NN_V2 | 
 | // Fully-connectedly layer configuration | 
 | struct FC_LAYER { | 
 |   const int num_inputs;   // Number of input nodes, i.e. features. | 
 |   const int num_outputs;  // Number of output nodes. | 
 |  | 
 |   float *weights;               // Weight parameters. | 
 |   float *bias;                  // Bias parameters. | 
 |   const ACTIVATION activation;  // Activation function. | 
 |  | 
 |   float *output;  // The output array. | 
 |   float *dY;      // Gradient of outputs | 
 |   float *dW;      // Gradient of weights. | 
 |   float *db;      // Gradient of bias | 
 | }; | 
 |  | 
 | // NN configure structure V2 | 
 | struct NN_CONFIG_V2 { | 
 |   const int num_hidden_layers;  // Number of hidden layers, max = 10. | 
 |   FC_LAYER layer[NN_MAX_HIDDEN_LAYERS + 1];  // The layer array | 
 |   const int num_logits;                      // Number of output nodes. | 
 |   float *logits;    // Raw prediction (same as output of final layer) | 
 |   const LOSS loss;  // Loss function | 
 | }; | 
 |  | 
 | // Calculate prediction based on the given input features and neural net config. | 
 | // Assume there are no more than NN_MAX_NODES_PER_LAYER nodes in each hidden | 
 | // layer. | 
 | void av1_nn_predict_v2(const float *features, NN_CONFIG_V2 *nn_config, | 
 |                        int reduce_prec, float *output); | 
 | #endif  // CONFIG_NN_V2 | 
 |  | 
 | // Applies the softmax normalization function to the input | 
 | // to get a valid probability distribution in the output: | 
 | // output[i] = exp(input[i]) / sum_{k \in [0,n)}(exp(input[k])) | 
 | void av1_nn_softmax(const float *input, float *output, int n); | 
 |  | 
 | // A faster but less accurate version of av1_nn_softmax(input, output, 16) | 
 | void av1_nn_fast_softmax_16_c(const float *input, float *output); | 
 |  | 
 | // Applies a precision reduction to output of av1_nn_predict to prevent | 
 | // mismatches between C and SIMD implementations. | 
 | void av1_nn_output_prec_reduce(float *const output, int num_output); | 
 |  | 
 | #ifdef __cplusplus | 
 | }  // extern "C" | 
 | #endif | 
 |  | 
 | #endif  // AOM_AV1_ENCODER_ML_H_ |